0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DRV2625EVM-CT

DRV2625EVM-CT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    DRV2625 电机控制器/驱动器,触觉/振动 电源管理 评估板

  • 数据手册
  • 价格&库存
DRV2625EVM-CT 数据手册
www.ti.com User’s Guide DRV2625 ERM, LRA Haptic Driver Evaluation Kit Arjun Prakash ABSTRACT The DRV2625 is a haptic driver designed for Linear Resonant Actuators (LRA) and Eccentric Rotating Mass (ERM) motors. It provides many features which help eliminate the design complexities of haptic motor control including reduced solution size, high efficiency output drive, closed-loop motor control, quick device startup, memory for waveform storage, and auto-resonance frequency tracking. The DRV2625EVM-CT Evaluation Module (EVM) is a complete demo and evaluation platform for the DRV2625. The kit includes a microcontroller, linear actuator, eccentric rotating mass motor, and capacitive touch buttons which can be used to completely demonstrate and evaluate the DRV2625. This document contains instructions to setup and operate the DRV2625EVM-CT in demo and evaluation mode. Figure 1-1. DRV2625EVM-CT Board Evaluation Kit Contents: • DRV2625EVM-CT demo and evaluation board • Micro-USB cable • Demonstration Firmware Required for programming and advanced configuration: • Code Composer Studio™ (CCS) or IAR Embedded Workbench IDE for MSP430 • MSP430 LaunchPad (MSP-EXP430G2), or MSP430-FET430UIF hardware programming tool • DRV2625EVM-CT firmware available on ti.com SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 1 Table of Contents www.ti.com Table of Contents 1 Getting Started........................................................................................................................................................................5 1.1 Evaluation Module Operating Parameters......................................................................................................................... 6 1.2 Quick Start Board Setup.................................................................................................................................................... 6 2 DRV2625 Demonstration Program........................................................................................................................................ 7 2.1 Modes and Effects Table.................................................................................................................................................... 7 2.2 Description of the Demo Modes.........................................................................................................................................8 2.3 ROM Library Mode...........................................................................................................................................................10 2.4 Waveform Library Effects List...........................................................................................................................................11 3 Additional Hardware Modes.................................................................................................................................................11 3.1 Accessing GUI Mode........................................................................................................................................................11 3.2 Accessing Bluetooth Mode............................................................................................................................................... 11 3.3 Haptics Control Console GUI........................................................................................................................................... 11 4 Hardware Configuration.......................................................................................................................................................13 4.1 Input and Output Overview.............................................................................................................................................. 13 4.2 Power Supply Selection................................................................................................................................................... 13 4.3 Using an External Actuator.............................................................................................................................................. 13 4.4 PWM Input....................................................................................................................................................................... 14 4.5 External Trigger Control................................................................................................................................................... 15 4.6 External I2C Input............................................................................................................................................................. 16 4.7 Analog Input..................................................................................................................................................................... 17 5 Measurement and Analysis................................................................................................................................................. 18 5.1 Using Low-Pass Filter to Record Waveforms...................................................................................................................18 6 Modifying or Reprogramming the Firmware...................................................................................................................... 19 6.1 MSP430 Pin-Out.............................................................................................................................................................. 19 7 Schematic..............................................................................................................................................................................21 8 Layout.................................................................................................................................................................................... 23 9 Bill of Materials..................................................................................................................................................................... 27 10 Revision History................................................................................................................................................................. 30 11 Trademarks..........................................................................................................................................................................30 2 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Table of Contents List of Figures Figure 1-1. DRV2625EVM-CT Board...........................................................................................................................................1 Figure 1-1. Board Diagram.......................................................................................................................................................... 5 Figure 2-1. LRA Sharp Click Closed Loop Waveform..................................................................................................................8 Figure 2-2. LRA Sharp Click Open Loop Waveform.................................................................................................................... 8 Figure 2-3. ERM Sharp Click Closed Loop Waveform.................................................................................................................8 Figure 2-4. ERM Sharp Click Open Loop Waveform................................................................................................................... 8 Figure 2-5. ERM Closed-Loop Click Waveform (Button 1).......................................................................................................... 9 Figure 2-6. ERM Open-Loop Click Waveform (Button 4).............................................................................................................9 Figure 2-7. LRA Closed-Loop Click Waveform............................................................................................................................ 9 Figure 2-8. LRA Open-Loop Click Waveform.............................................................................................................................. 9 Figure 2-9. LRA Auto-Resonance ON Waveform (Button 1)..................................................................................................... 10 Figure 2-10. LRA Auto-Resonance OFF Waveform (Button 2)................................................................................................. 10 Figure 2-11. Acceleration Versus Frequency............................................................................................................................. 10 Figure 3-1. Haptics Control Console..........................................................................................................................................12 Figure 3-2. HCC DRV2625 Console.......................................................................................................................................... 12 Figure 4-1. Power Jumper Selection......................................................................................................................................... 13 Figure 4-2. External PWM Input................................................................................................................................................ 14 Figure 4-3. External Trigger Control.......................................................................................................................................... 15 Figure 4-4. External I2C Input.................................................................................................................................................... 16 Figure 4-5. Analog Input............................................................................................................................................................ 17 Figure 5-1. Terminal Block and Test Points............................................................................................................................... 18 Figure 5-2. DRV2625 Unfiltered Waveform............................................................................................................................... 18 Figure 5-3. DRV2625 Filtered Waveform...................................................................................................................................18 Figure 5-4. Measuring the DRV2625 Output Signal with an Analog Low-Pass Filter................................................................ 18 Figure 6-1. FET Programmer Connection................................................................................................................................. 19 Figure 7-1. DRV2625EVM-CT Schematic Page 1..................................................................................................................... 21 Figure 7-2. DRV2625EVM-CT Schematic Page 2..................................................................................................................... 22 Figure 8-1. Top Layer.................................................................................................................................................................23 Figure 8-2. Layout Layer 2.........................................................................................................................................................24 Figure 8-3. Layout Layer 3.........................................................................................................................................................25 Figure 8-4. Layout Layer 4.........................................................................................................................................................26 SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 3 Table of Contents www.ti.com List of Tables Table 1-1. Recommended Operating Conditions.........................................................................................................................6 Table 1-2. Jumper Descriptions................................................................................................................................................... 6 Table 2-1. Mode and Effects Table...............................................................................................................................................7 Table 2-2. Library Effect Overview............................................................................................................................................. 11 Table 4-1. Hardware Overview.................................................................................................................................................. 13 Table 4-2. Power Supply Configurations....................................................................................................................................13 Table 4-3. JP1 Options for PWM Input...................................................................................................................................... 14 Table 4-4. JP1 Options for External Trigger Control.................................................................................................................. 15 Table 6-1. MSP430 Pin-Out....................................................................................................................................................... 19 4 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Getting Started 1 Getting Started The DRV2625 can be used as a demonstration or evaluation tool. When the DRV2625EVM-CT evaluation module is powered on for the first time, a demo application automatically starts. To power the board, connect the DRV2625EVM-CT to an available USB port on your computer using the included micro-USB cable. The demo begins with a board power-up sequence and then enters the demo effects mode. The four larger buttons on the wheel (1–4) can be used to sample haptic effects using both the ERM and LRA motor in the top right corner. ERM and LRA actuators Mode + Effect Button TI Button OUT + B2 LED Mode Indicator DRV2625 B3 MSP430 MSP430 Program Connector µUSB CC2640 B1 B4 External VDD Bluetooth Pair CC2640 Program Connector Mode - Effect Button Figure 1-1. Board Diagram SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 5 Getting Started www.ti.com 1.1 Evaluation Module Operating Parameters The following table lists the operating conditions for the DRV2625 on the evaluation module. Table 1-1. Recommended Operating Conditions Parameter Specification Supply voltage range 2.7 V to 5.5 V Power-supply current rating 400 mA 1.2 Quick Start Board Setup The DRV2625EVM-CT firmware contains haptic waveforms which showcase the features and benefits of the DRV2625. Follow the instructions below to begin the demo: 1. Out of the box, the jumpers are set to begin demo mode using USB power. The default jumper settings are found in the table below. Table 1-2. Jumper Descriptions Jumper Default Position Description J3 Short pin 2-3 Powers using USB J2 Short pin 2-3 USB power to DVDD J5 Shorted Level translator J17 Open Trigger/NRST for DRV2625 J7 Shorted Bypass the I-Sense J8 Shorted Motor+ terminal J9 Shorted Motor- terminal J4 Open SDA/SCL connections to debug/Monitor advanced operations 2. Connect the included micro-USB cable to the USB connector on the DRV2625EVM-CT board. 3. Connect the other end of the USB cable to an available USB port on a computer, USB charger, or USB battery pack. 4. If the board is powered correctly, the LEDs will blink and the LRA and the ERM actuator will spin and stop at the start up. 6 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com DRV2625 Demonstration Program 2 DRV2625 Demonstration Program The sections below provide a detailed description of the demo modes and effects. 2.1 Modes and Effects Table The effects preloaded on the DRV2625EVM-CT are listed in Table 2-1. The modes are selected using the + and – mode buttons in the center of the board. The current mode is identified by the white LEDs directly above the mode buttons. Buttons B1–B4 trigger the effects listed in the description column and change based on the selected mode. Table 2-1. Mode and Effects Table Mode Button Description Actuator Waveform Location Interface Mode 0 LEDs Off B1 Sharp Click ERM ROM Internal Trigger (I2C) B2 Sharp Click LRA B3 PulsingSharp ERM B4 PulsingSharp LRA B1 Soft Bump ERM ROM Internal Trigger (I2C) B2 Soft Bump LRA B3 Double Click ERM B4 Double Click LRA B1 Heartbeat x 3 ERM ROM Internal Trigger (I2C) B2 Heartbeat x 3 LRA B3 Buzz Alert 750 mS LRA B4 Buzz Alert 750 mS ERM B1 Closed Loop RTP 7F Buzz LRA ROM RTP (I2C) B2 Open Loop Pulsing with Auto Brake LRA RTP (I2C) B3 Sine Wave Buzz RTP 7F LRA RTP (I2C) B4 Open Loop Pulsing with no Auto Brake LRA RTP (I2C) B1 RTP Strength change on position of the wheel ERM and LRA Mode 1 LED M1 On Mode 2 LED M2 On Mode 3 LED M3 On Mode 4 LED M1 On B2 ROM RTP (I2C) B3 B4 TI Button Toggle ERM/LRA Trigger One wire SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 7 DRV2625 Demonstration Program www.ti.com 2.2 Description of the Demo Modes The following section highlights different features and benefits of using the DRV2625. 2.2.1 Mode Off – Haptics Effect Sequences Below are a set of ERM and LRA Sharp Click waveforms. The four effects below show the difference between closed and open loop operation for both ERM and LRA. In closed-loop operation for ERM’s, the driver automatically overdrives and brakes the actuator. In open-loop, the waveform must be predefined with overdrive and braking. For LRA’s in closed-loop, the driver automatically tracks the resonant frequency, and overdrives and brakes the actuator. In open-loop, the waveform must be predefined with a static drive frequency, and overdrive and braking times. Acceleration [OUT+] − [OUT−] (Filtered) Voltage (2V/div) Voltage (2V/div) Acceleration [OUT+] − [OUT−] (Filtered) 0 20m 40m 60m 80m 100m 0 20m 40m Time (s) 60m 80m 100m Time (s) Figure 2-1. LRA Sharp Click Closed Loop Waveform Figure 2-2. LRA Sharp Click Open Loop Waveform Acceleration [OUT+] − [OUT−] (Filtered) Voltage (2V/div) Voltage (2V/div) Acceleration [OUT+] − [OUT−] (Filtered) 0 20m 40m 60m 80m 100m Time (s) 0 20m 40m 60m 80m 100m Time (s) Figure 2-3. ERM Sharp Click Closed Loop Waveform Figure 2-4. ERM Sharp Click Open Loop Waveform 2.2.2 Mode 4 – ERM Clicks Mode 4 shows the difference in open-loop and closed-loop ERM clicks. In closed-loop the driver automatically overdrives and brakes the actuator. In open-loop, the waveform must be predefined with overdrive and braking. The image on the left shows a closed-loop waveform and the image on the right shows the same input waveform without closed-loop feedback enabled. 8 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com DRV2625 Demonstration Program Figure 2-5. ERM Closed-Loop Click Waveform (Button 1) Figure 2-6. ERM Open-Loop Click Waveform (Button 4) 2.2.3 Automatic Braking in Open Loop The DRV2625 offers automatic braking in open-loop operation for both ERM and LRA. See Figure 2-7 and Figure 2-8 below for two separate LRA waveforms that show the advantage of using closed-loop breaking out of open loop operation. Notice that the settling time of the waveform with automatic braking is 15 ms, significantly faster than the 40-ms time achieved without automatic braking enabled. Acceleration [OUT+] − [OUT−] (Filtered) Voltage (2V/div) Voltage (2V/div) Acceleration [OUT+] − [OUT−] (Filtered) 0 20m 40m 60m 80m 100m Time (s) Figure 2-7. LRA Closed-Loop Click Waveform 0 20m 40m 60m 80m 100m Time (s) Figure 2-8. LRA Open-Loop Click Waveform 2.2.4 Auto-Resonance Tracking Figure 2-9 and Figure 2-10 below showcase the advantages of the Smart Loop Architecture which includes auto-resonance tracking, automatic overdrive, and automatic braking. The two images below show the difference in acceleration between LRA auto-resonance ON and LRA auto-resonance OFF. Notice that the acceleration is higher when driven at the resonant frequency. The auto-resonance ON waveform has 1.32 G of acceleration and the auto-resonance OFF waveform has 0.92 G of acceleration. The auto-resonance ON waveform has 43% more acceleration. SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 9 DRV2625 Demonstration Program www.ti.com Figure 2-9. LRA Auto-Resonance ON Waveform (Button 1) Figure 2-10. LRA Auto-Resonance OFF Waveform (Button 2) The reason for higher acceleration can be seen in the acceleration versus frequency graph below. The LRA has a very narrow operating frequency range due to the properties of a spring-mass system. Furthermore, the resonance frequency drifts over various conditions such as temperature and drive voltage. With the Smart Loop auto-resonance feature, the DRV2625 dynamically tracks the exact resonant frequency to maximize the vibration force. Figure 2-11. Acceleration Versus Frequency 2.3 ROM Library Mode Access the ROM library effects by holding the + button until the mode LEDs flash and the colored LEDs flash ONCE. Once in Library Mode the DRV2625 loaded ROM effects can be accessed in sequential order. For example, with all Mode LEDs off, B1 is waveform 1, B2 is waveform 2, and so on. Then when Mode LED M0 is on, B1 is waveform 5, B2 is waveform 6, and so on. The equations for calculating the Mode and Button of an effect are: Mode = RoundDown( [Effect No.] / 4 ) Button = ([Effect No.] – 1) % 4 + 1 % - modulo operator 10 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com DRV2625 Demonstration Program To change between ERM and LRA: 1. Select mode 31 (11111'b) using the + or – buttons. • B1 – Press to select ERM • B2 – Press to select LRA 2. Then use the ROM effects as described above. 2.4 Waveform Library Effects List Below is a description of the waveforms embedded in the DRV2625. Table 2-2. Library Effect Overview Effect ID Waveform Name 1 Strong Click 2 Medium Click 3 Light Click 4 Tick 5 Bump 6 Strong Double Click 7 Medium Double Click 8 Light Double Click 9 Strong Triple Click 10 Buzz 11 Ramp Up 12 Ramp Down 13 Click + Bounce 14 Ramp Up + Click 15 Gallop Alert 16 Pulsing Alert 3 Additional Hardware Modes Additional modes are available on the DRV2625EVM-CT providing increased board control and functionality. 3.1 Accessing GUI Mode The DRV2625EVM-CT has the ability to be controlled via Haptics Control Console. In order to place the EVM into ‘GUI Mode’, hold down the (+) for approximately 3 seconds. The LED indicators will blink, and the right half of the LED’s will remain on, indicating that the EVM is in GUI Mode. 3.2 Accessing Bluetooth Mode The DRV2625EVM-CT Evaluation Module also features a mobile app for control over Bluetooth from an iOS app. In order to control the evaluation module via the mobile app, hold down the (-) for approximately 3 seconds. The LED indicators will blink, and the left half of the LED’s will remain on, indicating that the EVM is in ‘Bluetooth Mode’. 3.3 Haptics Control Console GUI Haptics Control Console (HCC) allows the user to have control over the DRV2625 driver through a number of controls and features. To control the DRV2625EVM-CT via HCC, connect the EVM to an available port on a computer using the included micro USB cable. Once the EVM is powered on, access GUI Mode by holding down the (+) for approximately 3 seconds as described in Section 3.1. Open up the latest version of Haptics Control Console, and on the tool bar the USB tab will read out '2.Haptics DRV2625 EVM [version]'. Once the GUI has recognized the DRV2625EVM-CT, press 'Connect' to access the device Console. SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 11 Additional Hardware Modes www.ti.com Once connected the HCC provides the user flexibility to control the EVM functions through a GUI ‘Console’, and the ability to read and write to and from the DRV2625 through the ‘Register Map’ window as seen below inFigure 3-1 below. Figure 3-1. Haptics Control Console 3.3.1 DRV2625 Console The DRV2625 Console is divided into three sections Initialization, Work Mode, and Board Status, as seen below in Figure 3-2. Each section allows the user to control the device on the EVM through I2C writes and communication. Figure 3-2. HCC DRV2625 Console Please refer to the Haptics Control Console Users Guide for more detailed information on the device management features accessible through Haptics Control Console. The user’s guide can be found on www.ti.com. 12 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Hardware Configuration 4 Hardware Configuration The DRV2625EVM-CT is very flexible and can be used to completely evaluate the DRV2625. The following sections list the various hardware configurations. 4.1 Input and Output Overview The DRV2625EVM-CT allows complete evaluation of the DRV2625 though test points, jacks, and connectors. Table 4-1 gives a brief description of the hardware. Table 4-1. Hardware Overview Signal Description I/O DRV TRIG External input or monitor for DRV2625 IN/TRIG pin Input/Output NRST External DRV2625 Shutdown control Input OUT+/OUT– Filtered output test points for observation, connect to oscilloscope or measurement Output equipment USB USB power (5 V) Input VBAT External Supply Power (2.5 V – 5.5 V) Input SBW MSP430 programming header Input/Output I2C DRV2625 and MSP430 I2C bus Input/Output Hardware configuration details can be found in the following sections. 4.2 Power Supply Selection The DRV2625EVM-CT can be powered by USB and an external power supply (VBAT). Jumpers J3 is used to select USB or VBAT for the DRV2625 and MSP430G2553, respectively. See Table 4-2 for possible configurations. USB USB MSP VBAT USB VBAT DRV VBAT Figure 4-1. Power Jumper Selection Table 4-2. Power Supply Configurations Supply Configuration DRV MSP DRV2625 Supply Voltage(1) USB – Both USB USB 5V DRV2625 external supply, MSP430 USB VBAT USB VBAT (1) The DRV2625 supply must be on before operating the MSP430. 4.3 Using an External Actuator The DRV2625EVM-CT can be used with an external actuator. Follow the instructions below to attach an actuator to the OUT terminal block. 1. Remove jumpers J8 and J9 which disconnects the on-board actuators from the DRV2625. 2. Attach the positive and negative leads of the actuator to the green OUT terminal block keeping in mind polarity. 3. Screw down the terminal block to secure the actuator leads. SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 13 Hardware Configuration www.ti.com Use the green terminal block when connecting an external actuator. The OUT+ and OUT– test points have low-pass filters and should only be used for oscilloscope and bench measurements. 4.4 PWM Input AUDIO R40, 0Q R41, NP EN PWM R43, 0Q MSP430 DRV2604 C11 R8 P3.1 PWM/ GPIO EN OUT+ IN/TRIG GND JP1 VDD SDA SDA SCL SCL OUT- SDA SCL Figure 4-2. External PWM Input Table 4-3. JP1 Options for PWM Input JP1 PWM Source Shorted MSP430 Open External PWM using PWM test point To control the DRV2625 using PWM, follow the instructions below: 1. Enter Additional Hardware Modes. 2. Select Mode 2 (00010'b) using the increment mode button (+). • B1 – Disable Amplifier • B2 – ERM Mode • B3 – LRA Mode • B4 – No function 3. Choose either the on-board ERM or LRA using buttons B1 or B2. 4. Apply the PWM signal to the PWM test point at the top of the board. 14 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Hardware Configuration 4.5 External Trigger Control R40, 0Q AUDIO R41, NP EN PWM R43, 0Q MSP430 DRV2604 C11 R8 P3.1 PWM/ GPIO EN OUT+ IN/TRIG GND JP1 VDD SDA SDA SCL SCL OUT- SDA SCL Figure 4-3. External Trigger Control Table 4-4. JP1 Options for External Trigger Control JP1 PWM Source Shorted MSP430 Open External GPIO using PWM test point The DRV2625 internal waveform sequencer can be triggered by controlling the IN/TRIG pin. There are two external trigger options: edge trigger and level trigger. See the data sheet for more information on these Input Trigger Modes. In Mode 0 in the Additional Hardware Modes section, the DRV2625 can be set in external trigger mode and then triggered by using the trigger button control on button B4 or alternatively by applying an external trigger signal to the PWM test point. 4.5.1 MSP430 Trigger Control 1. Enter Additional Hardware Modes. 2. Select Mode 0 (00000’b) using the increment mode button (+). • B1 – Select the on-board ERM • B2 – Select the on-board LRA • B3 – Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level) • B4 – Trigger the waveform sequence using the MSP430. 3. Fill the waveform sequencer with waveforms using the external I2C port. 4. Choose either the on-board ERM or LRA using buttons B1 or B2. 5. Select either External Edge (2) or External Level (3) trigger using the B3 button. The trigger type appears in binary on the mode LEDs. 6. Apply the trigger signal to the IN/TRIG pin by pressing the B4 button. 4.5.2 External Source Trigger Control 1. Remove jumper JP1. 2. Enter Additional Hardware Modes. 3. Select Mode 0 (00000’b) using the increment mode button (+). • B1 – Select the on-board ERM • B2 – Select the on-board LRA • B3 – Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level) • B4 – Trigger the waveform sequence using the MSP430. SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 15 Hardware Configuration www.ti.com 4. Fill the waveform sequencer with waveforms using the external I2C port. 5. Choose either the on-board ERM or LRA using buttons B1 or B2. 6. Select either External Edge (2) or External Level (3) trigger using the B3 button. The trigger type appears in binary on the mode LEDs. 7. Apply the external logic signal to the PWM test point to trigger the waveform. 4.6 External I2C Input AUDIO R40, 0Q R41, NP EN PWM R43, 0Q MSP430 DRV2604 C11 R8 P3.1 PWM/ GPIO EN OUT+ IN/TRIG GND JP1 VDD SDA SDA SCL SCL OUT- SDA SCL Figure 4-4. External I2C Input The DV2625 can be controlled by an external I2C source. Attach the external controller to the I2C header at the top of the board; be sure to connect SDA, SCL and GND from the external source. 4.6.1 External I2C Control Initialization I2C communication is possible only when the EN pin is set high. To enable the DRV2625 and allow external I2C control, follow the instructions below. 1. Enter Additional Hardware Modes. 2. Select Mode 0 (00000’b) using the increment mode button (+). • B1 – Select the on-board ERM • B2 – Select the on-board LRA • B3 – Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level) • B4 – Trigger the waveform sequence using the MSP430. 3. Choose either the on-board ERM or LRA using buttons B1 or B2. Either button sets the EN pin high and turns on the Active LED. 4. Begin controlling the DRV2625 using the external I2C source. 16 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Hardware Configuration 4.7 Analog Input AUDIO R40, 0Q R41, NP EN PWM R43, 0Q MSP430 DRV2604 C11 R8 P3.1 PWM/ GPIO EN OUT+ IN/TRIG GND JP1 VDD SDA SDA SCL SCL OUT- SDA SCL Figure 4-5. Analog Input The analog input accepts an analog signal to control the envelope of the output waveform. Use the following steps to use analog input mode: 1. Apply an analog signal (not PWM) to the AUDIO jack on the left side of the board. The tip of the inserted male 3.5 mm jack is applied to the IN/TRIG pin of the DRV2625. See Figure 4-5. 2. Enter Additional Hardware Modes. 3. Select Mode 5 (00101’b) using the increment mode button (+). 4. In Mode 5, choose button B1–B4, depending on the actuator and input coupling. • B1 – AC Coupling – ERM • B2 – DC Coupling – ERM • B3 – AC Coupling – LRA • B4 – DC Coupling – LRA 5. Enable the analog input signal. SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 17 Measurement and Analysis www.ti.com 5 Measurement and Analysis The DRV2625 uses PWM modulation to create the output signal for both ERM and LRA actuators. To measure and observe the DRV2625 output waveform, connect an oscilloscope or other measurement equipment to the filtered output test points, OUT+ and OUT–. OUT- 470pF OUT+ 100k 470pF 100k Figure 5-1. Terminal Block and Test Points 5.1 Using Low-Pass Filter to Record Waveforms The DRV2625 drives LRA and ERM actuators using a 20-kHz PWM modulated waveform, but only the frequencies around the LRA resonant frequency or the ERM DC drive voltage are relevant to the haptic actuator vibration. The higher frequency switching content does not contribute to the vibration strength of the actuator and can make it difficult to interpret the modulated output waveform on an oscilloscope. The oscilloscope image on the left shows the DRV2625 unfiltered waveform and the image on the right shows a filtered version used for observation and measurement. Figure 5-2. DRV2625 Unfiltered Waveform Figure 5-3. DRV2625 Filtered Waveform If the DRV2625EVM-CT filter is not used, TI recommends using a 1st-order, low-pass filter with a cutoff between 1kHz and 3.5kHz . Below is a recommended output filter for use while measuring and characterizing the DRV2625 in the lab. 100k OUT+ 470 pF ERM Or LRA Ch1 Ch2 Ch1-Ch2 (Differential ) 100k OUT- Oscilloscope 470 pF Figure 5-4. Measuring the DRV2625 Output Signal with an Analog Low-Pass Filter 18 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Modifying or Reprogramming the Firmware 6 Modifying or Reprogramming the Firmware The MSP430 firmware on the DRV2625EVM-CT can be modified or reprogrammed to create new haptic effects or behaviors. Find the latest firmware source code and binaries on ti.com. Follow the instructions below to modify or reprogram the DRV2625EVM-CT. 1. Purchase one of the following MSP430F5510 compatible programmers: • MSP430 64-pin Target Development Board and MSP-FET(MSP-FETU64USB) • MSP-FET MCU Programmer and Debugger 2. Download and install Code Compose Studio (CCS) or IAR Embedded Workbench IDE. 3. Download the DRV2625EVM-CT source code and binaries from ti.com. 4. Connect the programmer to an available USB port. 5. Connect the programmer to the J6 header on the DRV2625EVM-CT. 6. In CCS, a. Open the project file by selecting Project→Import Existing CCS Project. b. Select Browse and navigate to the DRV2625EVM-CT project folder, then press OK. c. Select the checkbox next to the DRV2625EVM-CT project in the Discovered projects window and then press Finish. d. Before compiling, navigate to Project→Properties→Build→MSP430 Compiler→Advanced Options→Language Options and make sure the checkbox for Enable support for GCC extensions (–gcc) is checked. 7. In IAR, a. Create a new MSP430 project in IAR, b. Select the MSP430F5510 device, c. Copy the files in the project folder downloaded from ti.com to the new project directory. Figure 6-1 below shows the connection between the MSP430 Programmer and Debugger (MSP-FET) and the DRV2625EVM-CT. OUT + B2 DRV2624 B3 B1 MSP430 MSP-FET CC2640 B4 Figure 6-1. FET Programmer Connection 6.1 MSP430 Pin-Out The DRV2625EVM-CT contains a MSP430G2553 low-cost microcontroller which controls the board and contains sample haptic effects. The pin-out for the microcontroller is found in Table 6-1. Table 6-1. MSP430 Pin-Out # Label Description 1 P1.1 Green LED 2 P1.2 Yellow LED 3 P1.3 Blue LED 4 P1.4 VREF+ SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 19 Modifying or Reprogramming the Firmware www.ti.com Table 6-1. MSP430 Pin-Out (continued) 20 # Label Description 5 P1.5 Audio-to-Haptics 6 P3.1 Enable 7 P3.0 Actuator Mode Selection 8 NC 9 P2.0 Button 1 10 P2.1 Button 2 11 P2.2 Button 3 12 P3.2 PWM 13 P3.3 WLED 0 14 P3.4 WLED 1 15 P2.3 Button 4 16 P2.4 + Button 17 P2.5 – Button 18 P3.5 WLED 2 19 P3.6 WLED 3 20 P3.7 WLED 4 21 P1.6/SCL I2C Clock 22 P1.7/SDA I2C Data 23 SBWTDIO Spy-Bi-Wire Data 24 SBWTCK Spy-Bi-Wire Clock 25 P2.7 26 P2.6 LRA/ERM Load Switch 27 AVSS Analog Ground 28 DVSS Digital Ground 29 AVCC Analog Supply 30 DVCC Digital Supply 31 P1.0 32 NC DRV2625 ERM, LRA Haptic Driver Evaluation Kit Red LED SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Schematic 7 Schematic Figure 7-1. DRV2625EVM-CT Schematic Page 1 SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback DRV2625 ERM, LRA Haptic Driver Evaluation Kit Copyright © 2021 Texas Instruments Incorporated 21 Schematic www.ti.com Figure 7-2. DRV2625EVM-CT Schematic Page 2 22 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Layout 8 Layout Figure 8-1. Top Layer SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 23 Layout www.ti.com Figure 8-2. Layout Layer 2 24 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Layout Figure 8-3. Layout Layer 3 SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 DRV2625 ERM, LRA Haptic Driver Evaluation Kit Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 25 Layout www.ti.com Figure 8-4. Layout Layer 4 26 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Bill of Materials 9 Bill of Materials Item # Designator Quantity 1 !PCB1 1 2 ANT1, ANT4, L2, L3 4 3 ANT3, C15, C18 3 4 ANT5, R3, R4, R6, R7, R9, R39, R40, R46, R47, R48 5 6 Value Part Number Manufacturer Description Package Reference AIP044 Any Printed Circuit Board 2.4nH LQG15HS2N4S02D MuRata Inductor, Multilayer, Air Core, 2.4 nH, 0.3 A, 0.15 ohm, SMD 0402 polarized 1pF GRM1555C1H1R0CA01D MuRata CAP, CERM, 1 pF, 50 V, +/- 5%, C0G/NP0, 0402 0402 11 0 CRCW04020000Z0ED Vishay-Dale RES, 0, 5%, 0.063 W, 0402 0402 ANT6 1 0.5pF GRM1555C1HR50BA01D MuRata CAP, CERM, 0.5 pF, 50 V, +/- 20%, C0G, 0402 0402 BSL1, MSPRST1 2 TL1015AF160QG E-Switch Switch, Tactile, SPST-NO, 0.05A, 12V, SMT Switch, 4.4x2x2.9 mm 7 C1, C2 2 470pF C1005C0G1H471J TDK CAP, CERM, 470 pF, 50 V, +/- 5%, C0G/NP0, 0402 0402 8 C3, C4, C19, C38, C39, C40, C41, C42, C43, C44, C45 11 0.1uF GRM155R71C104KA88D MuRata CAP, CERM, 0.1 µF, 16 V, +/- 10%, X7R, 0402 0402 9 C5 1 0.27uF GRM155R61A274KE15D MuRata CAP, CERM, 0.27 µF, 10 V, +/- 10%, X5R, 0402 0402 10 C6, C7, C8, C28, C29 5 0.1uF GRM155R61C104KA88D MuRata CAP, CERM, 0.1uF, 16V, +/-10%, X5R, 0402 0402 11 C9, C30 2 10uF GRM155R61A106ME44 MuRata CAP, CERM, 10 µF, 10 V, +/- 20%, X5R, 0402 0402 12 C10, C33, C36 3 1uF GRM155R61A105KE15D MuRata CAP, CERM, 1 µF, 10 V, +/- 10%, X5R, 0402, CAP, CERM, 1uF, 10V, +/-10%, X5R, 0402, CAP, CERM, 1 µF, 10 V, +/10%, X5R, 0402 0402 13 C11, C12, C13, C14, C22, C23 6 12pF GRM1555C1H120JA01D MuRata CAP, CERM, 12 pF, 50 V, +/- 5%, C0G/NP0, 0402, CAP, CERM, 12 pF, 50 V, +/- 5%, C0G/NP0, 0402, CAP, CERM, 12 pF, 50 V, +/- 5%, C0G/NP0, 0402, CAP, CERM, 12 pF, 50 V, +/- 5%, C0G/NP0, 0402, CAP, CERM, 12pF, 50V, +/-5%, C0G/NP0, 0402, CAP, CERM, 12pF, 50V, +/-5%, C0G/NP0, 0402 0402 14 C16, C17 2 15pF GRM1555C1H150JA01D MuRata CAP, CERM, 15 pF, 50 V, +/- 5%, C0G/NP0, 0402 0402 15 C20, C21 2 18pF GRM1555C1H180JA01D MuRata CAP, CERM, 18pF, 50V, +/-5%, C0G/NP0, 0402 0402 16 C24, C25 2 10pF GRM1555C1H100JA01D MuRata CAP, CERM, 10pF, 50V, +/-5%, C0G/NP0, 0402 0402 17 C26, C32 2 0.22uF GRM155R71C224KA12D MuRata CAP, CERM, 0.22uF, 16V, +/-10%, X7R, 0402 0402 18 C27 1 0.47uF GRM155R61C474KE01 MuRata CAP, CERM, 0.47uF, 16V, +/-10%, X5R, 0402 0402 19 C31 1 4.7uF GRM155R61A475M MuRata CAP, CERM, 4.7uF, 10V, +/-20%, X5R, 0402 0402 20 C34, C35 2 22uF GRM21BR61C226ME44 MuRata CAP, CERM, 22 µF, 16 V, +/- 20%, X5R, 0805 0805 21 C37 1 47pF GRM1555C1E470JA01D MuRata CAP, CERM, 47pF, 25V, +/-5%, C0G/NP0, 0402 0402 22 C46 1 10uF GRM155R61A106ME21D MuRata CAP, CERM, 10 µF, 10 V, +/- 20%, X5R, 0402 0402 23 D1, D13, D18 3 Green LTST-C190GKT Lite-On LED, Green, SMD 1.6x0.8x0.8mm 24 D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12 11 SML312WBCW1 Rohm LED, White, SMD LED, 0603 25 D14 1 5.6V MMSZ5232B-7-F Diodes Inc. Diode, Zener, 5.6V, 500 mW, SOD-123 SOD-123 26 D15 1 Green 150060VS75000 Wurth Elektronik eiSos LED, Green, SMD LED_0603 27 D16 1 Blue LB Q39G-L2N2-35-1 OSRAM LED, Blue, SMD BLUE 0603 LED 28 D17 1 Yellow/green SML-P12MTT86 Rohm LED, Yellow/green, SMD 0402 LED 29 H1 1 ELV1036A AAC AAC1036 LRA Actuator Used in PnP output 30 H2 1 TI-EVACASE-BLACK Royal Case TI Black EVA Case Used in PnP output 31 H3 1 3-5-468MP 3M TAPE TRANSFER ADHESIVE 3" X 5YD Used in PnP output 32 H4 1 2-5-4466W 3M TAPE POLY FOAM 2" x 5YD Used in PnP output 33 H5 1 Heavy Metal Metal Block (Custom Block, Heavy Metal, See metal block spec) Used in PnP output SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback DRV2625 ERM, LRA Haptic Driver Evaluation Kit Copyright © 2021 Texas Instruments Incorporated 27 Bill of Materials Item # www.ti.com Designator Quantity Value Part Number Manufacturer Description Package Reference 34 J1, J10 2 1725656 Phoenix Contact Terminal Block, 100mil, 2x1, 6A, 63V, TH 6.2x8.5x5.54 mm 35 J2, J3, J4 3 5-146278-3 TE Connectivity Header, 100mil, 3x1, Tin, TH Header, 3x1, 100mil, TH 36 J5 1 90120-0122 Molex Header, 100mil, 2x1, Tin, TH Header 2x1 37 J6 1 LPPB061NGCN-RC Sullins Connector Solutions Receptacle, 50mil, 6x1, Gold, R/A, TH 6x1 Receptacle 38 J7, J8, J9, J17 4 5-146278-2 TE Connectivity Header, 100mil, 2x1, Tin, TH Header, 2x1, 100mil, TH 39 J11 1 GRPB052VWVN-RC Sullins Connector Solutions Header, 50mil, 5x2, Gold, TH Header, 5x2, 50mil 40 J16 1 DX4R205JJAR1800 JAE Electronics Connector, Receptacle, Micro-USB Type AB, R/A, Bottom Mount SMT Connector, USB Micro AB 41 L1 1 10uH CKS2125100M-T Taiyo Yuden Inductor, Multilayer, Ferrite, 10 µH, 0.11 A, 0.52 ohm, SMD 0805 42 L4 1 1500 ohm BLM18HE152SN1D MuRata Ferrite Bead, 1500 ohm @ 100 MHz, 0.5 A, 0603_950 0603_950 43 M1 1 BAL-3611 NIDEC SEIMITSU Motor, SMT 15.1x4.55mm 44 R1, R2, R13, R14, R15, R16, R17, R18, R19 9 100k CRCW0402100KJNED Vishay-Dale RES, 100 k, 5%, 0.063 W, 0402, RES, 100 k, 5%, 0.063 W, 0402, RES, 100k ohm, 5%, 0.063W, 0402, RES, 100k ohm, 5%, 0.063W, 0402, RES, 100k ohm, 5%, 0.063W, 0402, RES, 100k ohm, 5%, 0.063W, 0402, RES, 100k ohm, 5%, 0.063W, 0402, RES, 100k ohm, 5%, 0.063W, 0402, RES, 100k ohm, 5%, 0.063W, 0402 0402 45 R5 1 0.18 ERJ-3RSFR18V Panasonic RES, 0.18, 1%, 0.1 W, 0603 0603 46 R10, R38, R45, R49 4 1.5k CRCW04021K50JNED Vishay-Dale RES, 1.5k ohm, 5%, 0.063W, 0402 0402 48 R23 1 1.40k CRCW04021K40FKED Vishay-Dale RES, 1.40k ohm, 1%, 0.063W, 0402 0402 49 R24 1 100 CRCW0402100RJNED Vishay-Dale RES, 100 ohm, 5%, 0.063W, 0402 0402 50 R25 1 1.0Meg CRCW04021M00JNED Vishay-Dale RES, 1.0Meg ohm, 5%, 0.063W, 0402 0402 51 R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36 11 75.0 CRCW040275R0FKED Vishay-Dale RES, 75.0 ohm, 1%, 0.063W, 0402 0402 52 R37 1 33k CRCW040233K0JNED Vishay-Dale RES, 33k ohm, 5%, 0.063W, 0402 0402 53 R41 1 100k RG1005P-104-B-T5 Susumu Co Ltd RES, 100 k, 0.1%, 0.063 W, 0402 0402 54 R42 1 150 CRCW0402150RJNED Vishay-Dale RES, 150, 5%, 0.063 W, 0402 0402 55 R43 1 249 CRCW0402249RFKED Vishay-Dale RES, 249 ohm, 1%, 0.063W, 0402 0402 56 R44 1 270 CRCW0402270RJNED Vishay-Dale RES, 270, 5%, 0.063 W, 0402 0402 57 S1 1 PTS840 PM SMTR LFS C&K Components SWITCH TACTILE SPST-NO 0.05A 12V, SMT 3.5x1.35x3.55mm 58 SH-J1, SH-J2, SH-J3, SH-J4, SH-J5, SH-J6 6 1x2 969102-0000-DA 3M Shunt, 100mil, Gold plated, Black Shunt 59 TP1, TP8 2 Orange 5013 Keystone Test Point, Multipurpose, Orange, TH Orange Multipurpose Testpoint 60 TP2, TP3 2 Black 5011 Keystone Test Point, Multipurpose, Black, TH Black Multipurpose Testpoint 61 U1 1 DRV2625YFF Texas Instruments DRV2625YFF, YFF0009AHAN YFF0009AHAN 62 U2 1 NA231AIYFF Texas Instruments High- or Low-Side Measurement, Bidirectional CURRENT/ POWER MONITOR with 1.8-V I2C Interface, YFF0012AKAD YFF0012AKAD 63 U3 1 CC2640F128RGZR Texas Instruments Ultra low-power ARM Cortex M3 2.4 GHz Radio MCU, Bluetooth Low Energy, RGZ0048A RGZ0048A 64 U4 1 24AA32AT-I/OT Microchip 32K I2C™ Serial EEPROM, SOT-23-5 SOT-23-5 65 U5 1 TS5A12301EYFP Texas Instruments IEC LEVEL 4 ESD-PROTECTED 0.75-O SPDT ANALOG SWITCH WITH 1.8-V COMPATIBLE INPUT LOGIC, YFP0006AAAA YFP0006AAAA 66 U6 1 TXS0102DCT Texas Instruments 2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS, DCT0008A DCT0008A 28 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Bill of Materials Item # Designator Quantity Value Part Number Manufacturer Description Package Reference 67 U7 1 MSP430F5510IZQEA Texas Instruments 25 MHz Mixed Signal Microcontroller with 32 KB Flash, 4096 B SRAM and 47 GPIOs, -40 to 85 degC, 80-pin BGA (ZQE), Green (RoHS & no Sb/Br) ZQE0080A 68 U8 1 TPS73633DBV Texas Instruments Cap-Free, NMOS, 400mA Low-Dropout Regulator with Reverse Current Protection, DBV0005A DBV0005A 69 U9 1 TPD2E001IDRLRQ1 Texas Instruments Automotive Catalog Low-Capacitance + / - 15 kV ESDProtection Array for High-Speed Data Inter, 2 Channels, -40 to +85 degC, 5-pin SOT (DRL), Green (RoHS & no Sb/Br) DRL0005A 70 Y1 1 FC-135 32.7680KA-A3 Epson Crystal, 32.768 KHz, 12.5 pF, SMD SMD, 2-Leads, Body 3.2x1.5mm 71 Y2 1 TSX-3225 24.0000MF20GAC3 Epson Crystal, 24 MHz, 9 pF, SMD SMD, 4-Leads, Body 2.65x3.35mm, Height 0.6mm 72 Y3 1 ABM8-24.000MHZ-B2-T Abracon Corportation Crystal, 24.000MHz, 18pF, SMD 3.2x0.8x2.5mm 73 Y4 1 FC-12M 32.7680KD-A3 Epson Crystal, 32.768kHz, 12.5pF, SMD Crystal 2.05x.6x1.2mm 74 FID1, FID2, FID3 0 N/A N/A Fiducial mark. There is nothing to buy or mount. Fiducial 75 J12, J13 0 PEC06SAAN Sullins Connector Solutions Header, 100mil, 6x1, Tin, TH TH, 6-Leads, Body 608x100mil, Pitch 100mil 76 R8 0 0 CRCW04020000Z0ED Vishay-Dale RES, 0, 5%, 0.063 W, 0402 0402 77 R11, R12 0 2.2k CRCW04022K20JNED Vishay-Dale RES, 2.2k ohm, 5%, 0.063W, 0402 0402 SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback DRV2625 ERM, LRA Haptic Driver Evaluation Kit Copyright © 2021 Texas Instruments Incorporated 29 Revision History www.ti.com 10 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision * (December 2016) to Revision A (March 2017) Page • Changed 'LRM' to 'LRA' in Actuator column of Mode 2 – B3 row in Table 2-1 .................................................. 7 • Changed 'ERA' to 'ERM' in Actuator column of Mode 2 – B4 in Table 2-1 ........................................................ 7 • Deleted 'ROM Library Mode' and 'Waveform Library Effects List' sections.......................................................11 Changes from Revision A (March 2017) to Revision B (December 2021) Page • Updated front image........................................................................................................................................... 1 11 Trademarks Code Composer Studio™ is a trademark of TI. All trademarks are the property of their respective owners. 30 DRV2625 ERM, LRA Haptic Driver Evaluation Kit SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
DRV2625EVM-CT 价格&库存

很抱歉,暂时无法提供与“DRV2625EVM-CT”相匹配的价格&库存,您可以联系我们找货

免费人工找货