www.ti.com
User’s Guide
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Arjun Prakash
ABSTRACT
The DRV2625 is a haptic driver designed for Linear Resonant Actuators (LRA) and Eccentric Rotating Mass
(ERM) motors. It provides many features which help eliminate the design complexities of haptic motor control
including reduced solution size, high efficiency output drive, closed-loop motor control, quick device startup,
memory for waveform storage, and auto-resonance frequency tracking.
The DRV2625EVM-CT Evaluation Module (EVM) is a complete demo and evaluation platform for the DRV2625.
The kit includes a microcontroller, linear actuator, eccentric rotating mass motor, and capacitive touch buttons
which can be used to completely demonstrate and evaluate the DRV2625.
This document contains instructions to setup and operate the DRV2625EVM-CT in demo and evaluation mode.
Figure 1-1. DRV2625EVM-CT Board
Evaluation Kit Contents:
• DRV2625EVM-CT demo and evaluation board
• Micro-USB cable
• Demonstration Firmware
Required for programming and advanced configuration:
• Code Composer Studio™ (CCS) or IAR Embedded Workbench IDE for MSP430
• MSP430 LaunchPad (MSP-EXP430G2), or MSP430-FET430UIF hardware programming tool
• DRV2625EVM-CT firmware available on ti.com
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
1
Table of Contents
www.ti.com
Table of Contents
1 Getting Started........................................................................................................................................................................5
1.1 Evaluation Module Operating Parameters......................................................................................................................... 6
1.2 Quick Start Board Setup.................................................................................................................................................... 6
2 DRV2625 Demonstration Program........................................................................................................................................ 7
2.1 Modes and Effects Table.................................................................................................................................................... 7
2.2 Description of the Demo Modes.........................................................................................................................................8
2.3 ROM Library Mode...........................................................................................................................................................10
2.4 Waveform Library Effects List...........................................................................................................................................11
3 Additional Hardware Modes.................................................................................................................................................11
3.1 Accessing GUI Mode........................................................................................................................................................11
3.2 Accessing Bluetooth Mode............................................................................................................................................... 11
3.3 Haptics Control Console GUI........................................................................................................................................... 11
4 Hardware Configuration.......................................................................................................................................................13
4.1 Input and Output Overview.............................................................................................................................................. 13
4.2 Power Supply Selection................................................................................................................................................... 13
4.3 Using an External Actuator.............................................................................................................................................. 13
4.4 PWM Input....................................................................................................................................................................... 14
4.5 External Trigger Control................................................................................................................................................... 15
4.6 External I2C Input............................................................................................................................................................. 16
4.7 Analog Input..................................................................................................................................................................... 17
5 Measurement and Analysis................................................................................................................................................. 18
5.1 Using Low-Pass Filter to Record Waveforms...................................................................................................................18
6 Modifying or Reprogramming the Firmware...................................................................................................................... 19
6.1 MSP430 Pin-Out.............................................................................................................................................................. 19
7 Schematic..............................................................................................................................................................................21
8 Layout.................................................................................................................................................................................... 23
9 Bill of Materials..................................................................................................................................................................... 27
10 Revision History................................................................................................................................................................. 30
11 Trademarks..........................................................................................................................................................................30
2
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Table of Contents
List of Figures
Figure 1-1. DRV2625EVM-CT Board...........................................................................................................................................1
Figure 1-1. Board Diagram.......................................................................................................................................................... 5
Figure 2-1. LRA Sharp Click Closed Loop Waveform..................................................................................................................8
Figure 2-2. LRA Sharp Click Open Loop Waveform.................................................................................................................... 8
Figure 2-3. ERM Sharp Click Closed Loop Waveform.................................................................................................................8
Figure 2-4. ERM Sharp Click Open Loop Waveform................................................................................................................... 8
Figure 2-5. ERM Closed-Loop Click Waveform (Button 1).......................................................................................................... 9
Figure 2-6. ERM Open-Loop Click Waveform (Button 4).............................................................................................................9
Figure 2-7. LRA Closed-Loop Click Waveform............................................................................................................................ 9
Figure 2-8. LRA Open-Loop Click Waveform.............................................................................................................................. 9
Figure 2-9. LRA Auto-Resonance ON Waveform (Button 1)..................................................................................................... 10
Figure 2-10. LRA Auto-Resonance OFF Waveform (Button 2)................................................................................................. 10
Figure 2-11. Acceleration Versus Frequency............................................................................................................................. 10
Figure 3-1. Haptics Control Console..........................................................................................................................................12
Figure 3-2. HCC DRV2625 Console.......................................................................................................................................... 12
Figure 4-1. Power Jumper Selection......................................................................................................................................... 13
Figure 4-2. External PWM Input................................................................................................................................................ 14
Figure 4-3. External Trigger Control.......................................................................................................................................... 15
Figure 4-4. External I2C Input.................................................................................................................................................... 16
Figure 4-5. Analog Input............................................................................................................................................................ 17
Figure 5-1. Terminal Block and Test Points............................................................................................................................... 18
Figure 5-2. DRV2625 Unfiltered Waveform............................................................................................................................... 18
Figure 5-3. DRV2625 Filtered Waveform...................................................................................................................................18
Figure 5-4. Measuring the DRV2625 Output Signal with an Analog Low-Pass Filter................................................................ 18
Figure 6-1. FET Programmer Connection................................................................................................................................. 19
Figure 7-1. DRV2625EVM-CT Schematic Page 1..................................................................................................................... 21
Figure 7-2. DRV2625EVM-CT Schematic Page 2..................................................................................................................... 22
Figure 8-1. Top Layer.................................................................................................................................................................23
Figure 8-2. Layout Layer 2.........................................................................................................................................................24
Figure 8-3. Layout Layer 3.........................................................................................................................................................25
Figure 8-4. Layout Layer 4.........................................................................................................................................................26
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
3
Table of Contents
www.ti.com
List of Tables
Table 1-1. Recommended Operating Conditions.........................................................................................................................6
Table 1-2. Jumper Descriptions................................................................................................................................................... 6
Table 2-1. Mode and Effects Table...............................................................................................................................................7
Table 2-2. Library Effect Overview............................................................................................................................................. 11
Table 4-1. Hardware Overview.................................................................................................................................................. 13
Table 4-2. Power Supply Configurations....................................................................................................................................13
Table 4-3. JP1 Options for PWM Input...................................................................................................................................... 14
Table 4-4. JP1 Options for External Trigger Control.................................................................................................................. 15
Table 6-1. MSP430 Pin-Out....................................................................................................................................................... 19
4
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Getting Started
1 Getting Started
The DRV2625 can be used as a demonstration or evaluation tool. When the DRV2625EVM-CT evaluation
module is powered on for the first time, a demo application automatically starts. To power the board, connect the
DRV2625EVM-CT to an available USB port on your computer using the included micro-USB cable. The demo
begins with a board power-up sequence and then enters the demo effects mode. The four larger buttons on the
wheel (1–4) can be used to sample haptic effects using both the ERM and LRA motor in the top right corner.
ERM and LRA actuators
Mode +
Effect Button
TI Button
OUT
+
B2
LED Mode Indicator
DRV2625
B3
MSP430
MSP430
Program Connector
µUSB
CC2640
B1
B4
External VDD
Bluetooth Pair
CC2640
Program Connector
Mode -
Effect Button
Figure 1-1. Board Diagram
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
5
Getting Started
www.ti.com
1.1 Evaluation Module Operating Parameters
The following table lists the operating conditions for the DRV2625 on the evaluation module.
Table 1-1. Recommended Operating Conditions
Parameter
Specification
Supply voltage range
2.7 V to 5.5 V
Power-supply current rating
400 mA
1.2 Quick Start Board Setup
The DRV2625EVM-CT firmware contains haptic waveforms which showcase the features and benefits of the
DRV2625. Follow the instructions below to begin the demo:
1. Out of the box, the jumpers are set to begin demo mode using USB power. The default jumper settings are
found in the table below.
Table 1-2. Jumper Descriptions
Jumper
Default Position
Description
J3
Short pin 2-3
Powers using USB
J2
Short pin 2-3
USB power to DVDD
J5
Shorted
Level translator
J17
Open
Trigger/NRST for DRV2625
J7
Shorted
Bypass the I-Sense
J8
Shorted
Motor+ terminal
J9
Shorted
Motor- terminal
J4
Open
SDA/SCL connections to debug/Monitor advanced operations
2. Connect the included micro-USB cable to the USB connector on the DRV2625EVM-CT board.
3. Connect the other end of the USB cable to an available USB port on a computer, USB charger, or USB
battery pack.
4. If the board is powered correctly, the LEDs will blink and the LRA and the ERM actuator will spin and stop at
the start up.
6
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
DRV2625 Demonstration Program
2 DRV2625 Demonstration Program
The sections below provide a detailed description of the demo modes and effects.
2.1 Modes and Effects Table
The effects preloaded on the DRV2625EVM-CT are listed in Table 2-1. The modes are selected using the +
and – mode buttons in the center of the board. The current mode is identified by the white LEDs directly above
the mode buttons. Buttons B1–B4 trigger the effects listed in the description column and change based on the
selected mode.
Table 2-1. Mode and Effects Table
Mode
Button
Description
Actuator
Waveform
Location
Interface
Mode 0
LEDs Off
B1
Sharp Click
ERM
ROM
Internal Trigger (I2C)
B2
Sharp Click
LRA
B3
PulsingSharp
ERM
B4
PulsingSharp
LRA
B1
Soft Bump
ERM
ROM
Internal Trigger (I2C)
B2
Soft Bump
LRA
B3
Double Click
ERM
B4
Double Click
LRA
B1
Heartbeat x 3
ERM
ROM
Internal Trigger (I2C)
B2
Heartbeat x 3
LRA
B3
Buzz Alert 750 mS
LRA
B4
Buzz Alert 750 mS
ERM
B1
Closed Loop RTP 7F Buzz
LRA
ROM
RTP (I2C)
B2
Open Loop Pulsing with Auto Brake
LRA
RTP (I2C)
B3
Sine Wave Buzz RTP 7F
LRA
RTP (I2C)
B4
Open Loop Pulsing with no Auto Brake
LRA
RTP (I2C)
B1
RTP Strength change on position of the
wheel
ERM and LRA
Mode 1
LED M1 On
Mode 2
LED M2 On
Mode 3
LED M3 On
Mode 4
LED M1 On
B2
ROM
RTP (I2C)
B3
B4
TI Button Toggle ERM/LRA
Trigger One wire
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
7
DRV2625 Demonstration Program
www.ti.com
2.2 Description of the Demo Modes
The following section highlights different features and benefits of using the DRV2625.
2.2.1 Mode Off – Haptics Effect Sequences
Below are a set of ERM and LRA Sharp Click waveforms. The four effects below show the difference between
closed and open loop operation for both ERM and LRA.
In closed-loop operation for ERM’s, the driver automatically overdrives and brakes the actuator. In open-loop, the
waveform must be predefined with overdrive and braking.
For LRA’s in closed-loop, the driver automatically tracks the resonant frequency, and overdrives and brakes the
actuator. In open-loop, the waveform must be predefined with a static drive frequency, and overdrive and braking
times.
Acceleration
[OUT+] − [OUT−] (Filtered)
Voltage (2V/div)
Voltage (2V/div)
Acceleration
[OUT+] − [OUT−] (Filtered)
0
20m
40m
60m
80m
100m
0
20m
40m
Time (s)
60m
80m
100m
Time (s)
Figure 2-1. LRA Sharp Click Closed Loop
Waveform
Figure 2-2. LRA Sharp Click Open Loop Waveform
Acceleration
[OUT+] − [OUT−] (Filtered)
Voltage (2V/div)
Voltage (2V/div)
Acceleration
[OUT+] − [OUT−] (Filtered)
0
20m
40m
60m
80m
100m
Time (s)
0
20m
40m
60m
80m
100m
Time (s)
Figure 2-3. ERM Sharp Click Closed Loop
Waveform
Figure 2-4. ERM Sharp Click Open Loop Waveform
2.2.2 Mode 4 – ERM Clicks
Mode 4 shows the difference in open-loop and closed-loop ERM clicks. In closed-loop the driver automatically
overdrives and brakes the actuator. In open-loop, the waveform must be predefined with overdrive and braking.
The image on the left shows a closed-loop waveform and the image on the right shows the same input waveform
without closed-loop feedback enabled.
8
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
DRV2625 Demonstration Program
Figure 2-5. ERM Closed-Loop Click Waveform
(Button 1)
Figure 2-6. ERM Open-Loop Click Waveform
(Button 4)
2.2.3 Automatic Braking in Open Loop
The DRV2625 offers automatic braking in open-loop operation for both ERM and LRA. See Figure 2-7 and
Figure 2-8 below for two separate LRA waveforms that show the advantage of using closed-loop breaking out of
open loop operation. Notice that the settling time of the waveform with automatic braking is 15 ms, significantly
faster than the 40-ms time achieved without automatic braking enabled.
Acceleration
[OUT+] − [OUT−] (Filtered)
Voltage (2V/div)
Voltage (2V/div)
Acceleration
[OUT+] − [OUT−] (Filtered)
0
20m
40m
60m
80m
100m
Time (s)
Figure 2-7. LRA Closed-Loop Click Waveform
0
20m
40m
60m
80m
100m
Time (s)
Figure 2-8. LRA Open-Loop Click Waveform
2.2.4 Auto-Resonance Tracking
Figure 2-9 and Figure 2-10 below showcase the advantages of the Smart Loop Architecture which includes
auto-resonance tracking, automatic overdrive, and automatic braking. The two images below show the difference
in acceleration between LRA auto-resonance ON and LRA auto-resonance OFF. Notice that the acceleration is
higher when driven at the resonant frequency. The auto-resonance ON waveform has 1.32 G of acceleration
and the auto-resonance OFF waveform has 0.92 G of acceleration. The auto-resonance ON waveform has 43%
more acceleration.
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
9
DRV2625 Demonstration Program
www.ti.com
Figure 2-9. LRA Auto-Resonance ON Waveform
(Button 1)
Figure 2-10. LRA Auto-Resonance OFF Waveform
(Button 2)
The reason for higher acceleration can be seen in the acceleration versus frequency graph below. The LRA
has a very narrow operating frequency range due to the properties of a spring-mass system. Furthermore, the
resonance frequency drifts over various conditions such as temperature and drive voltage. With the Smart Loop
auto-resonance feature, the DRV2625 dynamically tracks the exact resonant frequency to maximize the vibration
force.
Figure 2-11. Acceleration Versus Frequency
2.3 ROM Library Mode
Access the ROM library effects by holding the + button until the mode LEDs flash and the colored LEDs flash
ONCE.
Once in Library Mode the DRV2625 loaded ROM effects can be accessed in sequential order. For example, with
all Mode LEDs off, B1 is waveform 1, B2 is waveform 2, and so on. Then when Mode LED M0 is on, B1 is
waveform 5, B2 is waveform 6, and so on.
The equations for calculating the Mode and Button of an effect are:
Mode = RoundDown( [Effect No.] / 4 )
Button = ([Effect No.] – 1) % 4 + 1
% - modulo operator
10
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
DRV2625 Demonstration Program
To change between ERM and LRA:
1. Select mode 31 (11111'b) using the + or – buttons.
• B1 – Press to select ERM
• B2 – Press to select LRA
2. Then use the ROM effects as described above.
2.4 Waveform Library Effects List
Below is a description of the waveforms embedded in the DRV2625.
Table 2-2. Library Effect Overview
Effect ID
Waveform Name
1
Strong Click
2
Medium Click
3
Light Click
4
Tick
5
Bump
6
Strong Double Click
7
Medium Double Click
8
Light Double Click
9
Strong Triple Click
10
Buzz
11
Ramp Up
12
Ramp Down
13
Click + Bounce
14
Ramp Up + Click
15
Gallop Alert
16
Pulsing Alert
3 Additional Hardware Modes
Additional modes are available on the DRV2625EVM-CT providing increased board control and functionality.
3.1 Accessing GUI Mode
The DRV2625EVM-CT has the ability to be controlled via Haptics Control Console. In order to place the EVM
into ‘GUI Mode’, hold down the (+) for approximately 3 seconds. The LED indicators will blink, and the right half
of the LED’s will remain on, indicating that the EVM is in GUI Mode.
3.2 Accessing Bluetooth Mode
The DRV2625EVM-CT Evaluation Module also features a mobile app for control over Bluetooth from an iOS
app. In order to control the evaluation module via the mobile app, hold down the (-) for approximately 3 seconds.
The LED indicators will blink, and the left half of the LED’s will remain on, indicating that the EVM is in ‘Bluetooth
Mode’.
3.3 Haptics Control Console GUI
Haptics Control Console (HCC) allows the user to have control over the DRV2625 driver through a number of
controls and features.
To control the DRV2625EVM-CT via HCC, connect the EVM to an available port on a computer using the
included micro USB cable. Once the EVM is powered on, access GUI Mode by holding down the (+) for
approximately 3 seconds as described in Section 3.1.
Open up the latest version of Haptics Control Console, and on the tool bar the USB tab will read out '2.Haptics
DRV2625 EVM [version]'. Once the GUI has recognized the DRV2625EVM-CT, press 'Connect' to access the
device Console.
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
11
Additional Hardware Modes
www.ti.com
Once connected the HCC provides the user flexibility to control the EVM functions through a GUI ‘Console’, and
the ability to read and write to and from the DRV2625 through the ‘Register Map’ window as seen below inFigure
3-1 below.
Figure 3-1. Haptics Control Console
3.3.1 DRV2625 Console
The DRV2625 Console is divided into three sections Initialization, Work Mode, and Board Status, as seen
below in Figure 3-2. Each section allows the user to control the device on the EVM through I2C writes and
communication.
Figure 3-2. HCC DRV2625 Console
Please refer to the Haptics Control Console Users Guide for more detailed information on the device
management features accessible through Haptics Control Console. The user’s guide can be found on
www.ti.com.
12
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Hardware Configuration
4 Hardware Configuration
The DRV2625EVM-CT is very flexible and can be used to completely evaluate the DRV2625. The following
sections list the various hardware configurations.
4.1 Input and Output Overview
The DRV2625EVM-CT allows complete evaluation of the DRV2625 though test points, jacks, and connectors.
Table 4-1 gives a brief description of the hardware.
Table 4-1. Hardware Overview
Signal
Description
I/O
DRV TRIG
External input or monitor for DRV2625 IN/TRIG pin
Input/Output
NRST
External DRV2625 Shutdown control
Input
OUT+/OUT–
Filtered output test points for observation, connect to oscilloscope or measurement
Output
equipment
USB
USB power (5 V)
Input
VBAT
External Supply Power (2.5 V – 5.5 V)
Input
SBW
MSP430 programming header
Input/Output
I2C
DRV2625 and MSP430
I2C
bus
Input/Output
Hardware configuration details can be found in the following sections.
4.2 Power Supply Selection
The DRV2625EVM-CT can be powered by USB and an external power supply (VBAT). Jumpers J3 is
used to select USB or VBAT for the DRV2625 and MSP430G2553, respectively. See Table 4-2 for possible
configurations.
USB
USB
MSP
VBAT
USB
VBAT
DRV
VBAT
Figure 4-1. Power Jumper Selection
Table 4-2. Power Supply Configurations
Supply Configuration
DRV
MSP
DRV2625 Supply Voltage(1)
USB – Both
USB
USB
5V
DRV2625 external supply, MSP430
USB
VBAT
USB
VBAT
(1)
The DRV2625 supply must be on before operating the MSP430.
4.3 Using an External Actuator
The DRV2625EVM-CT can be used with an external actuator. Follow the instructions below to attach an actuator
to the OUT terminal block.
1. Remove jumpers J8 and J9 which disconnects the on-board actuators from the DRV2625.
2. Attach the positive and negative leads of the actuator to the green OUT terminal block keeping in mind
polarity.
3. Screw down the terminal block to secure the actuator leads.
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
13
Hardware Configuration
www.ti.com
Use the green terminal block when connecting an external actuator. The OUT+ and OUT– test points have
low-pass filters and should only be used for oscilloscope and bench measurements.
4.4 PWM Input
AUDIO
R40, 0Q
R41, NP
EN
PWM
R43, 0Q
MSP430
DRV2604
C11
R8
P3.1
PWM/
GPIO
EN
OUT+
IN/TRIG
GND
JP1
VDD
SDA
SDA
SCL
SCL
OUT-
SDA SCL
Figure 4-2. External PWM Input
Table 4-3. JP1 Options for PWM Input
JP1
PWM Source
Shorted
MSP430
Open
External PWM using PWM test point
To control the DRV2625 using PWM, follow the instructions below:
1. Enter Additional Hardware Modes.
2. Select Mode 2 (00010'b) using the increment mode button (+).
• B1 – Disable Amplifier
• B2 – ERM Mode
• B3 – LRA Mode
• B4 – No function
3. Choose either the on-board ERM or LRA using buttons B1 or B2.
4. Apply the PWM signal to the PWM test point at the top of the board.
14
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Hardware Configuration
4.5 External Trigger Control
R40, 0Q
AUDIO
R41, NP
EN
PWM
R43, 0Q
MSP430
DRV2604
C11
R8
P3.1
PWM/
GPIO
EN
OUT+
IN/TRIG
GND
JP1
VDD
SDA
SDA
SCL
SCL
OUT-
SDA SCL
Figure 4-3. External Trigger Control
Table 4-4. JP1 Options for External Trigger Control
JP1
PWM Source
Shorted
MSP430
Open
External GPIO using PWM test point
The DRV2625 internal waveform sequencer can be triggered by controlling the IN/TRIG pin. There are two
external trigger options: edge trigger and level trigger. See the data sheet for more information on these Input
Trigger Modes.
In Mode 0 in the Additional Hardware Modes section, the DRV2625 can be set in external trigger mode and then
triggered by using the trigger button control on button B4 or alternatively by applying an external trigger signal to
the PWM test point.
4.5.1 MSP430 Trigger Control
1. Enter Additional Hardware Modes.
2. Select Mode 0 (00000’b) using the increment mode button (+).
• B1 – Select the on-board ERM
• B2 – Select the on-board LRA
• B3 – Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level)
• B4 – Trigger the waveform sequence using the MSP430.
3. Fill the waveform sequencer with waveforms using the external I2C port.
4. Choose either the on-board ERM or LRA using buttons B1 or B2.
5. Select either External Edge (2) or External Level (3) trigger using the B3 button. The trigger type appears in
binary on the mode LEDs.
6. Apply the trigger signal to the IN/TRIG pin by pressing the B4 button.
4.5.2 External Source Trigger Control
1. Remove jumper JP1.
2. Enter Additional Hardware Modes.
3. Select Mode 0 (00000’b) using the increment mode button (+).
• B1 – Select the on-board ERM
• B2 – Select the on-board LRA
• B3 – Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level)
• B4 – Trigger the waveform sequence using the MSP430.
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
15
Hardware Configuration
www.ti.com
4. Fill the waveform sequencer with waveforms using the external I2C port.
5. Choose either the on-board ERM or LRA using buttons B1 or B2.
6. Select either External Edge (2) or External Level (3) trigger using the B3 button. The trigger type appears in
binary on the mode LEDs.
7. Apply the external logic signal to the PWM test point to trigger the waveform.
4.6 External I2C Input
AUDIO
R40, 0Q
R41, NP
EN
PWM
R43, 0Q
MSP430
DRV2604
C11
R8
P3.1
PWM/
GPIO
EN
OUT+
IN/TRIG
GND
JP1
VDD
SDA
SDA
SCL
SCL
OUT-
SDA SCL
Figure 4-4. External I2C Input
The DV2625 can be controlled by an external I2C source. Attach the external controller to the I2C header at the
top of the board; be sure to connect SDA, SCL and GND from the external source.
4.6.1 External I2C Control Initialization
I2C communication is possible only when the EN pin is set high. To enable the DRV2625 and allow external I2C
control, follow the instructions below.
1. Enter Additional Hardware Modes.
2. Select Mode 0 (00000’b) using the increment mode button (+).
• B1 – Select the on-board ERM
• B2 – Select the on-board LRA
• B3 – Trigger Select (1 = Internal Trigger, 2 = Ext. Edge, 3 = Ext. Level)
• B4 – Trigger the waveform sequence using the MSP430.
3. Choose either the on-board ERM or LRA using buttons B1 or B2. Either button sets the EN pin high and
turns on the Active LED.
4. Begin controlling the DRV2625 using the external I2C source.
16
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Hardware Configuration
4.7 Analog Input
AUDIO
R40, 0Q
R41, NP
EN
PWM
R43, 0Q
MSP430
DRV2604
C11
R8
P3.1
PWM/
GPIO
EN
OUT+
IN/TRIG
GND
JP1
VDD
SDA
SDA
SCL
SCL
OUT-
SDA SCL
Figure 4-5. Analog Input
The analog input accepts an analog signal to control the envelope of the output waveform.
Use the following steps to use analog input mode:
1. Apply an analog signal (not PWM) to the AUDIO jack on the left side of the board. The tip of the inserted
male 3.5 mm jack is applied to the IN/TRIG pin of the DRV2625. See Figure 4-5.
2. Enter Additional Hardware Modes.
3. Select Mode 5 (00101’b) using the increment mode button (+).
4. In Mode 5, choose button B1–B4, depending on the actuator and input coupling.
• B1 – AC Coupling – ERM
• B2 – DC Coupling – ERM
• B3 – AC Coupling – LRA
• B4 – DC Coupling – LRA
5. Enable the analog input signal.
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
17
Measurement and Analysis
www.ti.com
5 Measurement and Analysis
The DRV2625 uses PWM modulation to create the output signal for both ERM and LRA actuators. To measure
and observe the DRV2625 output waveform, connect an oscilloscope or other measurement equipment to the
filtered output test points, OUT+ and OUT–.
OUT-
470pF
OUT+
100k
470pF
100k
Figure 5-1. Terminal Block and Test Points
5.1 Using Low-Pass Filter to Record Waveforms
The DRV2625 drives LRA and ERM actuators using a 20-kHz PWM modulated waveform, but only the
frequencies around the LRA resonant frequency or the ERM DC drive voltage are relevant to the haptic actuator
vibration. The higher frequency switching content does not contribute to the vibration strength of the actuator and
can make it difficult to interpret the modulated output waveform on an oscilloscope. The oscilloscope image on
the left shows the DRV2625 unfiltered waveform and the image on the right shows a filtered version used for
observation and measurement.
Figure 5-2. DRV2625 Unfiltered Waveform
Figure 5-3. DRV2625 Filtered Waveform
If the DRV2625EVM-CT filter is not used, TI recommends using a 1st-order, low-pass filter with a cutoff between
1kHz and 3.5kHz . Below is a recommended output filter for use while measuring and characterizing the
DRV2625 in the lab.
100k
OUT+
470 pF
ERM
Or
LRA
Ch1
Ch2
Ch1-Ch2
(Differential )
100k
OUT-
Oscilloscope
470 pF
Figure 5-4. Measuring the DRV2625 Output Signal with an Analog Low-Pass Filter
18
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Modifying or Reprogramming the Firmware
6 Modifying or Reprogramming the Firmware
The MSP430 firmware on the DRV2625EVM-CT can be modified or reprogrammed to create new haptic effects
or behaviors. Find the latest firmware source code and binaries on ti.com. Follow the instructions below to
modify or reprogram the DRV2625EVM-CT.
1. Purchase one of the following MSP430F5510 compatible programmers:
• MSP430 64-pin Target Development Board and MSP-FET(MSP-FETU64USB)
• MSP-FET MCU Programmer and Debugger
2. Download and install Code Compose Studio (CCS) or IAR Embedded Workbench IDE.
3. Download the DRV2625EVM-CT source code and binaries from ti.com.
4. Connect the programmer to an available USB port.
5. Connect the programmer to the J6 header on the DRV2625EVM-CT.
6. In CCS,
a. Open the project file by selecting Project→Import Existing CCS Project.
b. Select Browse and navigate to the DRV2625EVM-CT project folder, then press OK.
c. Select the checkbox next to the DRV2625EVM-CT project in the Discovered projects window and then
press Finish.
d. Before compiling, navigate to Project→Properties→Build→MSP430 Compiler→Advanced
Options→Language Options and make sure the checkbox for Enable support for GCC extensions (–gcc)
is checked.
7. In IAR,
a. Create a new MSP430 project in IAR,
b. Select the MSP430F5510 device,
c. Copy the files in the project folder downloaded from ti.com to the new project directory.
Figure 6-1 below shows the connection between the MSP430 Programmer and Debugger (MSP-FET) and the
DRV2625EVM-CT.
OUT
+
B2
DRV2624
B3
B1
MSP430
MSP-FET
CC2640
B4
Figure 6-1. FET Programmer Connection
6.1 MSP430 Pin-Out
The DRV2625EVM-CT contains a MSP430G2553 low-cost microcontroller which controls the board and
contains sample haptic effects. The pin-out for the microcontroller is found in Table 6-1.
Table 6-1. MSP430 Pin-Out
#
Label
Description
1
P1.1
Green LED
2
P1.2
Yellow LED
3
P1.3
Blue LED
4
P1.4
VREF+
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
19
Modifying or Reprogramming the Firmware
www.ti.com
Table 6-1. MSP430 Pin-Out (continued)
20
#
Label
Description
5
P1.5
Audio-to-Haptics
6
P3.1
Enable
7
P3.0
Actuator Mode Selection
8
NC
9
P2.0
Button 1
10
P2.1
Button 2
11
P2.2
Button 3
12
P3.2
PWM
13
P3.3
WLED 0
14
P3.4
WLED 1
15
P2.3
Button 4
16
P2.4
+ Button
17
P2.5
– Button
18
P3.5
WLED 2
19
P3.6
WLED 3
20
P3.7
WLED 4
21
P1.6/SCL
I2C Clock
22
P1.7/SDA
I2C Data
23
SBWTDIO
Spy-Bi-Wire Data
24
SBWTCK
Spy-Bi-Wire Clock
25
P2.7
26
P2.6
LRA/ERM Load Switch
27
AVSS
Analog Ground
28
DVSS
Digital Ground
29
AVCC
Analog Supply
30
DVCC
Digital Supply
31
P1.0
32
NC
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Red LED
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Schematic
7 Schematic
Figure 7-1. DRV2625EVM-CT Schematic Page 1
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Copyright © 2021 Texas Instruments Incorporated
21
Schematic
www.ti.com
Figure 7-2. DRV2625EVM-CT Schematic Page 2
22
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Layout
8 Layout
Figure 8-1. Top Layer
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
23
Layout
www.ti.com
Figure 8-2. Layout Layer 2
24
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Layout
Figure 8-3. Layout Layer 3
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
25
Layout
www.ti.com
Figure 8-4. Layout Layer 4
26
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Bill of Materials
9 Bill of Materials
Item #
Designator
Quantity
1
!PCB1
1
2
ANT1, ANT4, L2, L3
4
3
ANT3, C15, C18
3
4
ANT5, R3, R4, R6, R7, R9,
R39, R40, R46, R47, R48
5
6
Value
Part Number
Manufacturer
Description
Package Reference
AIP044
Any
Printed Circuit Board
2.4nH
LQG15HS2N4S02D
MuRata
Inductor, Multilayer, Air Core, 2.4 nH, 0.3 A, 0.15 ohm, SMD
0402 polarized
1pF
GRM1555C1H1R0CA01D
MuRata
CAP, CERM, 1 pF, 50 V, +/- 5%, C0G/NP0, 0402
0402
11
0
CRCW04020000Z0ED
Vishay-Dale
RES, 0, 5%, 0.063 W, 0402
0402
ANT6
1
0.5pF
GRM1555C1HR50BA01D
MuRata
CAP, CERM, 0.5 pF, 50 V, +/- 20%, C0G, 0402
0402
BSL1, MSPRST1
2
TL1015AF160QG
E-Switch
Switch, Tactile, SPST-NO, 0.05A, 12V, SMT
Switch, 4.4x2x2.9 mm
7
C1, C2
2
470pF
C1005C0G1H471J
TDK
CAP, CERM, 470 pF, 50 V, +/- 5%, C0G/NP0, 0402
0402
8
C3, C4, C19, C38, C39, C40,
C41, C42, C43, C44, C45
11
0.1uF
GRM155R71C104KA88D
MuRata
CAP, CERM, 0.1 µF, 16 V, +/- 10%, X7R, 0402
0402
9
C5
1
0.27uF
GRM155R61A274KE15D
MuRata
CAP, CERM, 0.27 µF, 10 V, +/- 10%, X5R, 0402
0402
10
C6, C7, C8, C28, C29
5
0.1uF
GRM155R61C104KA88D
MuRata
CAP, CERM, 0.1uF, 16V, +/-10%, X5R, 0402
0402
11
C9, C30
2
10uF
GRM155R61A106ME44
MuRata
CAP, CERM, 10 µF, 10 V, +/- 20%, X5R, 0402
0402
12
C10, C33, C36
3
1uF
GRM155R61A105KE15D
MuRata
CAP, CERM, 1 µF, 10 V, +/- 10%, X5R, 0402, CAP, CERM,
1uF, 10V, +/-10%, X5R, 0402, CAP, CERM, 1 µF, 10 V, +/10%, X5R, 0402
0402
13
C11, C12, C13, C14, C22,
C23
6
12pF
GRM1555C1H120JA01D
MuRata
CAP, CERM, 12 pF, 50 V, +/- 5%, C0G/NP0, 0402, CAP,
CERM, 12 pF, 50 V, +/- 5%, C0G/NP0, 0402, CAP, CERM,
12 pF, 50 V, +/- 5%, C0G/NP0, 0402, CAP, CERM, 12 pF, 50
V, +/- 5%, C0G/NP0, 0402, CAP, CERM, 12pF, 50V, +/-5%,
C0G/NP0, 0402, CAP, CERM, 12pF, 50V, +/-5%, C0G/NP0,
0402
0402
14
C16, C17
2
15pF
GRM1555C1H150JA01D
MuRata
CAP, CERM, 15 pF, 50 V, +/- 5%, C0G/NP0, 0402
0402
15
C20, C21
2
18pF
GRM1555C1H180JA01D
MuRata
CAP, CERM, 18pF, 50V, +/-5%, C0G/NP0, 0402
0402
16
C24, C25
2
10pF
GRM1555C1H100JA01D
MuRata
CAP, CERM, 10pF, 50V, +/-5%, C0G/NP0, 0402
0402
17
C26, C32
2
0.22uF
GRM155R71C224KA12D
MuRata
CAP, CERM, 0.22uF, 16V, +/-10%, X7R, 0402
0402
18
C27
1
0.47uF
GRM155R61C474KE01
MuRata
CAP, CERM, 0.47uF, 16V, +/-10%, X5R, 0402
0402
19
C31
1
4.7uF
GRM155R61A475M
MuRata
CAP, CERM, 4.7uF, 10V, +/-20%, X5R, 0402
0402
20
C34, C35
2
22uF
GRM21BR61C226ME44
MuRata
CAP, CERM, 22 µF, 16 V, +/- 20%, X5R, 0805
0805
21
C37
1
47pF
GRM1555C1E470JA01D
MuRata
CAP, CERM, 47pF, 25V, +/-5%, C0G/NP0, 0402
0402
22
C46
1
10uF
GRM155R61A106ME21D
MuRata
CAP, CERM, 10 µF, 10 V, +/- 20%, X5R, 0402
0402
23
D1, D13, D18
3
Green
LTST-C190GKT
Lite-On
LED, Green, SMD
1.6x0.8x0.8mm
24
D2, D3, D4, D5, D6, D7, D8,
D9, D10, D11, D12
11
SML312WBCW1
Rohm
LED, White, SMD
LED, 0603
25
D14
1
5.6V
MMSZ5232B-7-F
Diodes Inc.
Diode, Zener, 5.6V, 500 mW, SOD-123
SOD-123
26
D15
1
Green
150060VS75000
Wurth Elektronik eiSos
LED, Green, SMD
LED_0603
27
D16
1
Blue
LB Q39G-L2N2-35-1
OSRAM
LED, Blue, SMD
BLUE 0603 LED
28
D17
1
Yellow/green
SML-P12MTT86
Rohm
LED, Yellow/green, SMD
0402 LED
29
H1
1
ELV1036A
AAC
AAC1036 LRA Actuator
Used in PnP output
30
H2
1
TI-EVACASE-BLACK
Royal Case
TI Black EVA Case
Used in PnP output
31
H3
1
3-5-468MP
3M
TAPE TRANSFER ADHESIVE 3" X 5YD
Used in PnP output
32
H4
1
2-5-4466W
3M
TAPE POLY FOAM 2" x 5YD
Used in PnP output
33
H5
1
Heavy Metal
Metal Block (Custom Block, Heavy Metal, See metal block
spec)
Used in PnP output
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Copyright © 2021 Texas Instruments Incorporated
27
Bill of Materials
Item #
www.ti.com
Designator
Quantity
Value
Part Number
Manufacturer
Description
Package Reference
34
J1, J10
2
1725656
Phoenix Contact
Terminal Block, 100mil, 2x1, 6A, 63V, TH
6.2x8.5x5.54 mm
35
J2, J3, J4
3
5-146278-3
TE Connectivity
Header, 100mil, 3x1, Tin, TH
Header, 3x1, 100mil, TH
36
J5
1
90120-0122
Molex
Header, 100mil, 2x1, Tin, TH
Header 2x1
37
J6
1
LPPB061NGCN-RC
Sullins Connector Solutions
Receptacle, 50mil, 6x1, Gold, R/A, TH
6x1 Receptacle
38
J7, J8, J9, J17
4
5-146278-2
TE Connectivity
Header, 100mil, 2x1, Tin, TH
Header, 2x1, 100mil, TH
39
J11
1
GRPB052VWVN-RC
Sullins Connector Solutions
Header, 50mil, 5x2, Gold, TH
Header, 5x2, 50mil
40
J16
1
DX4R205JJAR1800
JAE Electronics
Connector, Receptacle, Micro-USB Type AB, R/A, Bottom
Mount SMT
Connector, USB Micro AB
41
L1
1
10uH
CKS2125100M-T
Taiyo Yuden
Inductor, Multilayer, Ferrite, 10 µH, 0.11 A, 0.52 ohm, SMD
0805
42
L4
1
1500 ohm
BLM18HE152SN1D
MuRata
Ferrite Bead, 1500 ohm @ 100 MHz, 0.5 A, 0603_950
0603_950
43
M1
1
BAL-3611
NIDEC SEIMITSU
Motor, SMT
15.1x4.55mm
44
R1, R2, R13, R14, R15, R16,
R17, R18, R19
9
100k
CRCW0402100KJNED
Vishay-Dale
RES, 100 k, 5%, 0.063 W, 0402, RES, 100 k, 5%, 0.063 W,
0402, RES, 100k ohm, 5%, 0.063W, 0402, RES, 100k ohm,
5%, 0.063W, 0402, RES, 100k ohm, 5%, 0.063W, 0402, RES,
100k ohm, 5%, 0.063W, 0402, RES, 100k ohm, 5%, 0.063W,
0402, RES, 100k ohm, 5%, 0.063W, 0402, RES, 100k ohm,
5%, 0.063W, 0402
0402
45
R5
1
0.18
ERJ-3RSFR18V
Panasonic
RES, 0.18, 1%, 0.1 W, 0603
0603
46
R10, R38, R45, R49
4
1.5k
CRCW04021K50JNED
Vishay-Dale
RES, 1.5k ohm, 5%, 0.063W, 0402
0402
48
R23
1
1.40k
CRCW04021K40FKED
Vishay-Dale
RES, 1.40k ohm, 1%, 0.063W, 0402
0402
49
R24
1
100
CRCW0402100RJNED
Vishay-Dale
RES, 100 ohm, 5%, 0.063W, 0402
0402
50
R25
1
1.0Meg
CRCW04021M00JNED
Vishay-Dale
RES, 1.0Meg ohm, 5%, 0.063W, 0402
0402
51
R26, R27, R28, R29, R30,
R31, R32, R33, R34, R35,
R36
11
75.0
CRCW040275R0FKED
Vishay-Dale
RES, 75.0 ohm, 1%, 0.063W, 0402
0402
52
R37
1
33k
CRCW040233K0JNED
Vishay-Dale
RES, 33k ohm, 5%, 0.063W, 0402
0402
53
R41
1
100k
RG1005P-104-B-T5
Susumu Co Ltd
RES, 100 k, 0.1%, 0.063 W, 0402
0402
54
R42
1
150
CRCW0402150RJNED
Vishay-Dale
RES, 150, 5%, 0.063 W, 0402
0402
55
R43
1
249
CRCW0402249RFKED
Vishay-Dale
RES, 249 ohm, 1%, 0.063W, 0402
0402
56
R44
1
270
CRCW0402270RJNED
Vishay-Dale
RES, 270, 5%, 0.063 W, 0402
0402
57
S1
1
PTS840 PM SMTR LFS
C&K Components
SWITCH TACTILE SPST-NO 0.05A 12V, SMT
3.5x1.35x3.55mm
58
SH-J1, SH-J2, SH-J3, SH-J4,
SH-J5, SH-J6
6
1x2
969102-0000-DA
3M
Shunt, 100mil, Gold plated, Black
Shunt
59
TP1, TP8
2
Orange
5013
Keystone
Test Point, Multipurpose, Orange, TH
Orange Multipurpose
Testpoint
60
TP2, TP3
2
Black
5011
Keystone
Test Point, Multipurpose, Black, TH
Black Multipurpose
Testpoint
61
U1
1
DRV2625YFF
Texas Instruments
DRV2625YFF, YFF0009AHAN
YFF0009AHAN
62
U2
1
NA231AIYFF
Texas Instruments
High- or Low-Side Measurement, Bidirectional CURRENT/
POWER MONITOR with 1.8-V I2C Interface, YFF0012AKAD
YFF0012AKAD
63
U3
1
CC2640F128RGZR
Texas Instruments
Ultra low-power ARM Cortex M3 2.4 GHz Radio MCU,
Bluetooth Low Energy, RGZ0048A
RGZ0048A
64
U4
1
24AA32AT-I/OT
Microchip
32K I2C™ Serial EEPROM, SOT-23-5
SOT-23-5
65
U5
1
TS5A12301EYFP
Texas Instruments
IEC LEVEL 4 ESD-PROTECTED 0.75-O SPDT ANALOG
SWITCH WITH 1.8-V COMPATIBLE INPUT LOGIC,
YFP0006AAAA
YFP0006AAAA
66
U6
1
TXS0102DCT
Texas Instruments
2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR
FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS,
DCT0008A
DCT0008A
28
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Bill of Materials
Item #
Designator
Quantity
Value
Part Number
Manufacturer
Description
Package Reference
67
U7
1
MSP430F5510IZQEA
Texas Instruments
25 MHz Mixed Signal Microcontroller with 32 KB Flash, 4096
B SRAM and 47 GPIOs, -40 to 85 degC, 80-pin BGA (ZQE),
Green (RoHS & no Sb/Br)
ZQE0080A
68
U8
1
TPS73633DBV
Texas Instruments
Cap-Free, NMOS, 400mA Low-Dropout Regulator with
Reverse Current Protection, DBV0005A
DBV0005A
69
U9
1
TPD2E001IDRLRQ1
Texas Instruments
Automotive Catalog Low-Capacitance + / - 15 kV ESDProtection Array for High-Speed Data Inter, 2 Channels, -40
to +85 degC, 5-pin SOT (DRL), Green (RoHS & no Sb/Br)
DRL0005A
70
Y1
1
FC-135 32.7680KA-A3
Epson
Crystal, 32.768 KHz, 12.5 pF, SMD
SMD, 2-Leads, Body
3.2x1.5mm
71
Y2
1
TSX-3225 24.0000MF20GAC3
Epson
Crystal, 24 MHz, 9 pF, SMD
SMD, 4-Leads, Body
2.65x3.35mm, Height
0.6mm
72
Y3
1
ABM8-24.000MHZ-B2-T
Abracon Corportation
Crystal, 24.000MHz, 18pF, SMD
3.2x0.8x2.5mm
73
Y4
1
FC-12M 32.7680KD-A3
Epson
Crystal, 32.768kHz, 12.5pF, SMD
Crystal 2.05x.6x1.2mm
74
FID1, FID2, FID3
0
N/A
N/A
Fiducial mark. There is nothing to buy or mount.
Fiducial
75
J12, J13
0
PEC06SAAN
Sullins Connector Solutions
Header, 100mil, 6x1, Tin, TH
TH, 6-Leads, Body
608x100mil, Pitch 100mil
76
R8
0
0
CRCW04020000Z0ED
Vishay-Dale
RES, 0, 5%, 0.063 W, 0402
0402
77
R11, R12
0
2.2k
CRCW04022K20JNED
Vishay-Dale
RES, 2.2k ohm, 5%, 0.063W, 0402
0402
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
Copyright © 2021 Texas Instruments Incorporated
29
Revision History
www.ti.com
10 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision * (December 2016) to Revision A (March 2017)
Page
• Changed 'LRM' to 'LRA' in Actuator column of Mode 2 – B3 row in Table 2-1 .................................................. 7
• Changed 'ERA' to 'ERM' in Actuator column of Mode 2 – B4 in Table 2-1 ........................................................ 7
• Deleted 'ROM Library Mode' and 'Waveform Library Effects List' sections.......................................................11
Changes from Revision A (March 2017) to Revision B (December 2021)
Page
• Updated front image........................................................................................................................................... 1
11 Trademarks
Code Composer Studio™ is a trademark of TI.
All trademarks are the property of their respective owners.
30
DRV2625 ERM, LRA Haptic Driver Evaluation Kit
SLOU432B – DECEMBER 2015 – REVISED DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated