0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO7220CDR

ISO7220CDR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    2.8V~5.5V 2500Vrms 25Mbps 25kV/µs 2通路

  • 数据手册
  • 价格&库存
ISO7220CDR 数据手册
Product Folder Order Now Technical Documents Support & Community Tools & Software ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 ISO722x Dual-Channel Digital Isolators 1 Features • 1 • • • • • • • 1, 5, 25, and 150-Mbps Signaling Rate Options – Low Channel-to-Channel Output Skew; 1-ns Max – Low Pulse-Width Distortion (PWD); 1-ns Max – Low Jitter Content; 1 ns Typ at 150 Mbps 50 kV/μs Typical Transient Immunity Operates with 2.8-V (C-Grade), 3.3-V, or 5-V Supplies 4-kV ESD Protection High Electromagnetic Immunity –40°C to +125°C Operating Range Typical 28-Year Life at Rated Voltage (see High-Voltage Lifetime of the ISO72x Family of Digital Isolators and Isolation Capacitor Lifetime Projection) Safety-Related Certifications – VDE Basic Insulation with 4000-VPK VIOTM, 560 VPK VIORM per DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1) – 2500 VRMS Isolation per UL 1577 – CSA Approved for Component Acceptance Notice 5A and IEC 60950-1 2 Applications • • • • Industrial Fieldbus – Modbus – Profibus™ – DeviceNet™ Data Buses Computer Peripheral Interface Servo Control Interface Data Acquisition A binary input signal is conditioned, translated to a balanced signal, then differentiated by the capacitive isolation barrier. Across the isolation barrier, a differential comparator receives the logic transition information, then sets or resets a flip-flop and the output circuit accordingly. A periodic update pulse is sent across the barrier to ensure the proper dc level of the output. If this dc-refresh pulse is not received every 4 μs, the input is assumed to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high state. The small capacitance and resulting time constant provide fast operation with signaling rates available from 0 Mbps (DC) to 150 Mbps (The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps). The Aoption, B-option, and C-option devices have TTL input thresholds and a noise filter at the input that prevents transient pulses from being passed to the output of the device. The M-option devices have CMOS VCC/2 input thresholds and do not have the input noise filter and the additional propagation delay. The ISO7220x and ISO7221x family of devices require two supply voltages of 2.8 V (C-Grade), 3.3 V, 5 V, or any combination. All inputs are 5-V tolerant when supplied from a 2.8-V or 3.3-V supply and all outputs are 4-mA CMOS. The ISO7220x and ISO7221x family of devices are characterized for operation over the ambient temperature range of –40°C to +125°C. Device Information(1) PART NUMBER ISO7220x SOIC (8) ISO7221x BODY SIZE (NOM) 4.90 mm × 3.91 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic 3 Description The ISO7220x and ISO7221x family devices are dual-channel digital isolators. To facilitate PCB layout, the channels are oriented in the same direction in the ISO7220x and in opposite directions in the ISO7221x. These devices have a logic input and output buffer separated by TI’s silicon-dioxide (SiO2) isolation barrier, providing galvanic isolation of up to 4000 VPK per VDE. Used in conjunction with isolated power supplies, these devices block high voltage and isolate grounds, as well as prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. PACKAGE VCCI Isolation Capacitor VCCO INx OUTx GNDI GNDO VCCI and GNDI are supply and ground connections respectively for the input channels. VCCO and GNDO are supply and ground connections respectively for the output channels. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 6 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 Absolute Maximum Ratings ...................................... 6 ESD Ratings.............................................................. 6 Recommended Operating Conditions....................... 7 Thermal Information .................................................. 7 Power Ratings........................................................... 7 Insulation Specifications............................................ 8 Safety-Related Certifications..................................... 9 Safety Limiting Values .............................................. 9 Electrical Characteristics—5-V VCC1 and V CC2 Supplies ................................................................... 10 6.10 Electrical Characteristics—5-V VCC1 and 3.3-V VCC2 Supply ...................................................................... 11 6.11 Electrical Characteristics—3.3-V VCC1 and 5-V VCC2 Supply ..................................................................... 12 6.12 Electrical Characteristics—3.3-V VCC1 and VCC2 Supplies ................................................................... 13 6.13 Electrical Characteristics—2.8-V VCC1 and VCC2 Supplies ................................................................... 13 6.14 Switching Characteristics—5-V VCC1 and VCC2 Supplies ................................................................... 14 6.15 Switching Characteristics—5-V VCC1 and 3.3-V VCC2 Supply ............................................................. 15 6.16 Switching Characteristics—3.3-V CC1 and 5-V VCC2 Supplies ................................................................... 16 6.17 Switching Characteristics—3.3-V VCC1 and VCC2 Supplies ................................................................... 6.18 Switching Characteristics—2.8-V VCC1 and VCC2 Supplies ................................................................... 6.19 Insulation Characteristics Curves ......................... 6.20 Typical Characteristics .......................................... 7 8 17 18 19 Parameter Measurement Information ................ 21 Detailed Description ............................................ 23 8.1 8.2 8.3 8.4 9 17 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 23 23 24 24 Application and Implementation ........................ 25 9.1 Application Information............................................ 25 9.2 Typical Application .................................................. 25 10 Power Supply Recommendations ..................... 27 11 Layout................................................................... 27 11.1 Layout Guidelines ................................................. 27 11.2 Layout Example .................................................... 27 12 Device and Documentation Support ................. 28 12.1 12.2 12.3 12.4 12.5 12.6 12.7 Documentation Support ........................................ Related Links ........................................................ Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 28 28 28 28 28 29 29 13 Mechanical, Packaging, and Orderable Information ........................................................... 29 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision N (September 2015) to Revision O Page • Changed the Dissipation Characteristics table to Power Ratings. Combined the DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation Characteristics table IEC Package Characteristics, and IEC 60664-1 Ratings Table in the Insulation Specifications table. Changed the Regulatory Information table to Safety-Related Certifications .................. 7 • Deleted the maximum surge voltage, 4000 VPK for VDE in the Safety-Related Certifications table...................................... 9 • Changed the CSA information in the Safety-Related Certifications table .............................................................................. 9 • Added the Receiving Notification of Documentation Updates section ................................................................................ 28 • Changed the Electrostatic Discharge Caution section ......................................................................................................... 28 Changes from Revision M (October 2014) to Revision N Page • Changed the VDE Cerification from: DIN EN 60747-5-5 (VDE 0884-5) to: DIN V VDE V 0884-10 (VDE V 088410):2006-12 throughout the document ................................................................................................................................... 1 • Updated the Simplified Schematic to a higher quality version. .............................................................................................. 1 • Changed the max value of the IN and OUT voltage from 6 to VCC + 0.5 in the Absolute Maximum Ratings table............... 6 • Changed L(I01) MIN value from 4.8 to 4 in the IEC Package Characteristics table. ............................................................. 8 • Added the JEDEC package dimensions note in the IEC Package Characteristics table....................................................... 8 • Changed L(I01) MIN value from 4.8 to 4 in the IEC Package Characteristics table. ............................................................. 8 2 Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 • Added the DTI parameter to the IEC Package Characteristics table. .................................................................................... 8 • Changed the DTI test condition From: IEC 60112 / VDE 0303 Part 1 To: DIN EN 60112 (VDE 0303-11); IEC 60112 ........ 8 • Added = 150°C to insulation resistance test condition in the DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation Characteristics table. ............................................................................................................................................. 8 • Added table row with input side VCC = X to the ISO7220x or ISO7221x Function table...................................................... 24 Changes from Revision L (January 2012) to Revision M Page • Changed the title of this data sheet to ISO722x Dual Channel Digital Isolators ................................................................... 1 • Added Pin Configuration and Functions section, Handling Rating table, Dissipation Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section, changed Thermal Information table ........................................................... 1 • Updated the Features section ............................................................................................................................................... 1 • Added per VDE to 4000 VPK in second sentence of Description .......................................................................................... 1 • Updated the Regulatory Information Table............................................................................................................................. 6 • Added the min and max values to the Storage temperature parameter in the Absolute Maximum Ratings table. ............... 6 • Changed in ROC table Max col, VIH row from VCC to 5.5 .................................................................................................... 7 • Changed the L(I01) parameter name to external clearance (CLR) and L(I02) to external creepage (CPG). Also changed the input-to-output test voltage (VPR) parameter name to apparent charge (qpd) ................................................... 8 • Changed the Device Options table, Input Threshold column from ≠ symbol to ~ symbol 6 places .................................... 24 • Changed Isolation Glossary ................................................................................................................................................ 28 Changes from Revision K (January 2010) to Revision L Page • Changed Feature From: Operates with 3.3-V or 5-V Supplies To: Operates with 2.8-V (C-Grade), 3.3-V or 5-V Supplies . 1 • Changed Feature From: 4000-Vpeak Isolation, 560 Vpeak VIORM To: 4000-VPK VIOTM, 560 VPK VIORM per IEC 60747-5-2 (VDE 0884, Rev2) ................................................................................................................................................................. 1 • Added device options to VCC in the RECOMMENDED OPERATING CONDITIONS table ................................................... 7 • Changed Note: (1) in the RECOMMENDED OPERATING CONDITIONS table ................................................................... 7 • Changed the CTI MIN value From: ≥175 V To: ≥400 V ......................................................................................................... 8 • Updated the Regulatory Information table.............................................................................................................................. 9 • Changed ICC1 and ICC2 test conditions in the 5-V table......................................................................................................... 10 • Changed Table Note: (1) ...................................................................................................................................................... 10 • Changed ICC1 and ICC2 test conditions in the VCC1 at 5 V, VCC2 at 3.3 V table...................................................................... 11 • Changed Table Note: (1) ...................................................................................................................................................... 11 • Changed ICC1 and ICC2 test conditions in the VCC1 at 3.3 V, VCC2 at 5 V table...................................................................... 12 • Changed Table Note (1) ....................................................................................................................................................... 12 • Changed ICC1 and ICC2 test conditions in the VCC1 and VCC2 at 3.3 V table .......................................................................... 13 • Changed Table Note (1) ....................................................................................................................................................... 13 • Added ELECTRICAL and Switching CHARACTERISTICS table for VCC1 and VCC2 at 2.8 V (ISO722xC-Only) ................. 13 • Changed VCC Undervoltage Threshold vs Free-Air Temperature ........................................................................................ 19 • Changed Failsafe Delay Time Test Circuit and Voltage Waveforms ................................................................................... 21 Changes from Revision J (May 2009) to Revision K Page • Changed the RECOMMENDED OPERATING CONDITIONS so that Note (2) is associated with all device options in the Input pulse width and Signaling rate ................................................................................................................................ 7 • Changed Note (2) From: Typical signaling rate under ideal conditions at 25°C. To: Typical signaling rate and Input Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 3 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com pulse width are measured at ideal conditions at 25°C. .......................................................................................................... 7 • Changed column 2 of the AVAILABLE OPTIONS table From: Signaling Rate To: Max Signaling Rate ............................. 24 Changes from Revision I (December 2008) to Revision J • Page Changed ISO7221C Marked As column From: TI7221C To: I7221C in the AVAILABLE OPTIONS table ......................... 24 Changes from Revision H (May 2008) to Revision I • Page Added "IEC 61010-1, IEC 60950-1 and CSA Approved" to the UL 1577 FEATURES bullet ................................................ 1 Changes from Revision G (March 2008) to Revision H Page • Added Note: (1) to the RECOMMENDED OPERATING CONDITIONS table ....................................................................... 7 • Added Note: (1) to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 5-V table.................................................... 10 • Added Note: (1) to the ELECTRICAL CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V table ............................................ 11 • Added Note (1): to the ELECTRICAL CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V table ............................................ 12 • Added Note (1): to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V.......................................................... 13 Changes from Revision F (August 2007) to Revision G Page • Added Part Numbers ISO7220B and ISO7221B to the data sheet........................................................................................ 1 • Added 5-Mbps Signaling rate to the FEATURES list ............................................................................................................. 1 • Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 5-V table . 10 • Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V table................................................................................................................................................................................... 11 • Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V table................................................................................................................................................................................... 12 • Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V ....... 13 • Added PROPAGATION DELAY vs FREE-AIR TEMPERATURE, ISO722xB, Propagation Delay vs Free-Air Temperature, ISO722xB....................................................................................................................................................... 19 • Added Part Numbers ISO7220B and ISO7221B to the AVAILABLE OPTIONS table......................................................... 24 Changes from Revision E (July 2007) to Revision F Page • Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION table ....................... 14 • Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION table......................... 14 • Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION table................ 15 • Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION table ................. 15 • Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION table................ 16 • Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION table ................. 16 • Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS table................................................................................. 17 • Changed 3.3-VRMS Supply Current vs Signaling Rate - Re-scaled the Y-axis ..................................................................... 19 • Changed 5-VRMS Supply Current vs Signaling Rate - New Curves...................................................................................... 19 Changes from Revision D (June 2007) to Revision E Page • Changed 3.3-VRMS Supply Current vs Signaling Rate - New Curves................................................................................... 19 • Changed 5-VRMS Supply Current vs Signaling Rate - Re-scaled the Y-axis ....................................................................... 19 4 Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 Changes from Revision C (May 2007) to Revision D • Page Changed Typical ISO7220x Circuit Hook-Up - Pin 2 (INA) label From: OUTPUT to INPUT ............................................... 26 Changes from Revision B (May 2007) to Revision C Page • Added the Signaling rate values to the RECOMMENDED OPERATING CONDITIONS table.............................................. 7 • Changed the IEC 60664-1 RATINGS TABLE - Specification I-III test conditions From: Rated mains voltage ≤150 VRMS To: Rated mains voltage ≤300 VRMS. Added a row for the I-II specifications........................................................... 8 • Added ISO722xM Jitter vs Signaling Rate cross reference to the Peak-to-peak eye-pattern jitter of the SWITCHING CHARACTERISTICS table ................................................................................................................................................... 14 • Added Time-Dependent Dielectric Breakdown Test Results ............................................................................................... 26 Changes from Revision A (August 2006) to Revision B Page • Added the TYPICAL CHARACTERISTIC CURVES to the data sheet. ............................................................................... 19 • Added the PARAMETER MEASUREMENT INFORMATION to the data sheet .................................................................. 21 • Added the APPLICATION INFORMATION section to the data sheet.................................................................................. 25 • Added the ISOLATION GLOSSARY section to the data sheet ........................................................................................... 28 Changes from Original (July 2006) to Revision A Page • Deleted "and CSA Apporved" from the UL 1577 FEATURES bullet...................................................................................... 1 • Added option A to the AVAILABLE OPTIONS table ............................................................................................................ 24 Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 5 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 Pin Configuration and Functions ISO7220x D Package 8-Pin SOIC Top View INA 2 INB 3 8 VCC2 ISOLATION VCC1 1 ISO7221x D Package 8-Pin SOIC Top View GND1 4 VCC1 1 7 OUTA OUTA 2 6 OUTB INB 3 5 GND2 GND1 4 8 VCC2 ISOLATION 5 www.ti.com 7 INA 6 OUTB 5 GND2 Pin Functions PIN NAME I/O DESCRIPTION ISO7220x ISO7221x INA 2 7 I Input, channel A INB 3 3 I Input, channel B GND1 4 4 — Ground connection for VCC1 GND2 5 5 — Ground connection for VCC2 OUTA 7 2 O Output, channel A OUTB 6 6 O Output, channel B VCC1 1 1 — Power supply, VCC1 VCC2 8 8 — Power supply, VCC2 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT VCC Supply voltage (2), VCC1, VCC2 –0.5 6 V VI Voltage at IN, OUT –0.5 VCC + 0.5 (3) V IO Output current –15 15 mA TJ Maximum junction temperature 170 °C Tstg Storage temperature 150 °C (1) (2) (3) –65 Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These ratings are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability. All voltage values except differential I/O bus voltages are with respect to network ground pin and are peak voltage values. Maximum voltage must not exceed 6 V. 6.2 ESD Ratings Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins V(ESD) (1) (2) 6 Electrostatic discharge (1) VALUE UNIT ±4000 V Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) ±1000 V Machine Model, ANSI/ESDS5.2-1996 ±200 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 6.3 Recommended Operating Conditions MIN VCC Supply voltage (1), VCC1, VCC2 IOH High-level output current IOL Low-level output current tui Input pulse width ISO722xA, ISO722xB, ISO722xM ISO722xC MAX 5.5 2.8 5.5 –4 (2) UNIT V mA 4 Signaling rate (2) 1/tui NOM 3 ISO722xA 1 0.67 ISO722xB 200 100 ISO722xC 40 33 ISO722xM 6.67 5 ISO722xA 0 1500 1000 ISO722xB 0 10 5 ISO722xC 0 30 25 ISO722xM 0 200 150 mA μs ns kbps Mbps VIH High-level input voltage ISO722xA, ISO722xB, ISO722xC 2 5.5 V VIL Low-level input voltage ISO722xA, ISO722xB, ISO722xC 0 0.8 V VIH High-level input voltage ISO722xM 0.7 VCC VCC V VIL Low-level input voltage ISO722xM 0 0.3 VCC V TJ Junction temperature –40 150 °C H External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification 1000 A/m (1) For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. For the 3.3-V operation, VCC1 or VCC2 is specified from 3 V to 3.6 V. For the 2.8-V operation, VCC1 or VCC2 is specified at 2.8 V. Typical signaling rate and Input pulse width are measured at ideal conditions at 25°C. (2) 6.4 Thermal Information ISO7220x ISO7221x THERMAL METRIC (1) UNIT D (SOIC) 8 PINS Low-K Thermal Resistance (2) 212 High-K Thermal Resistance 122 RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance 69.1 °C/W RθJB Junction-to-board thermal resistance 47.7 °C/W ψJT Junction-to-top characterization parameter 15.2 °C/W ψJB Junction-to-board characterization parameter 47.2 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — °C/W (1) (2) °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953). Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages. 6.5 Power Ratings VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 150 Mbps 50% duty cycle square wave PARAMETER PD Device power dissipation, ISO722xM Copyright © 2006–2017, Texas Instruments Incorporated TEST CONDITIONS MIN TYP MAX UNIT 390 mW Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 7 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com 6.6 Insulation Specifications PARAMETER TEST CONDITIONS VALUE UNIT GENERAL External clearance (1) Shortest terminal-to-terminal distance through air 4 mm CPG External creepage (1) Shortest terminal-to-terminal distance across the package surface 4 mm DTI Distance through the insulation Minimum internal gap (internal clearance) 0.008 mm CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 400 V Rated mains voltage ≤150 VRMS I-IV Rated mains voltage ≤300 VRMS I-III Rated mains voltage ≤400 VRMS I-II CLR Material group Overvoltage category II DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 (2) VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar) VIOTM Maximum transient isolation voltage Apparent charge (3) qpd Barrier capacitance, input to output (4) CIO Isolation resistance, input to output (4) RIO VTEST = VIOTM t = 60 s (qualification), t = 1 s (100% production) 560 VPK 4000 VPK Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM , tm = 10 s ≤5 Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.3 × VIORM, tm = 10 s ≤5 Method b1: At routine test (100% production) and preconditioning (type test) Vini = VIOTM, tini = 1 s; Vpd(m) = 1.5 × VIORM, tm = 1 s ≤5 VIO = 0.4 sin (4E6πt) 1 VIO = 500 V, TA = 25°C >1012 VIO = 500 V, 100°C ≤ TA ≤ 125°C >1011 VIO = 500 V at TS = 150°C >109 Pollution degree 2 Climatic category 40/125/21 pC pF Ω UL 1577 VISO (1) (2) (3) (4) 8 Withstand isolation voltage VTEST = VISO = 2500 VRMS, t = 60 s (qualification); VTEST = 1.2 × VISO = 3000 VRMS, t = 1 s (100% production) 2500 VRMS Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Apparent charge is electrical discharge caused by a partial discharge (pd). All pins on each side of the barrier tied together creating a two-terminal device Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 6.7 Safety-Related Certifications VDE CSA UL Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1):2011-07 Approved under CSA Component Acceptance Notice 5A, IEC 60950-1 Recognized under UL 1577 Component Recognition Program Basic Insulation Maximum Transient Overvoltage, 4000 VPK; Maximum Repetitive Peak Isolation Voltage, 560 VPK 2000 VRMS Isolation rating 400 VRMS Basic insulation and 148 VRMS Reinforced insulation working voltage per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed. +A1+A2. Single protection, 2500 VRMS Certificate number: 40016131 Master contract number: 220991 File number: E181974 6.8 Safety Limiting Values Safety limiting (1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures. PARAMETER IS TS (1) Safety input, output, or supply current TEST CONDITIONS MIN TYP MAX RθJA = 212°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C, see Figure 1 124 RθJA = 212°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C, see Figure 1 190 Safety temperature UNIT mA 150 °C The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance. Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 9 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com 6.9 Electrical Characteristics—5-V VCC1 and V CC2 Supplies VCC1 and V CC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS MIN ISO7220x quiescent, VI = VCC or 0 V, no load 1 2 17 2 3 10 18 4 9 ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock signal, no load 12 22 ISO7220x quiescent, VI = VCC or 0 V, no load 16 31 ISO7221x quiescent, VI = VCC or 0 V, no load 8.5 17 ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal, no load 17 32 ISO7221A, ISO7221B 1 Mbps, 0.5-MHz input clock signal, no load 10 18 ISO7220C, ISO7220M 25 Mbps, 12.5-MHz input clock signal, no load 20 34 ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock signal, no load 12 22 ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal, no load VCC1 supply current VCC2 supply current VOH High-level output voltage VOL Low-level output voltage mA VCC – 0.8 4.6 VCC – 0.1 5 0.2 0.4 IOL = 20 μA, See Figure 14 0 0.1 VI(HYS) Input voltage hysteresis 150 IN from 0 V to VCC Low-level input current IN from 0 V to VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 16 10 Submit Documentation Feedback V IOL = 4 mA, See Figure 14 High-level input current mA mA IOH = –20 μA, See Figure 14 IIL mA mA IOH = –4 mA, See Figure 14 IIH UNIT mA ISO7221A, ISO7221B 1 Mbps, 0.5-MHz input clock signal, no load ISO7220C, ISO7220M 25 Mbps, 12.5-MHz input clock signal, no load ICC2 MAX 8.5 ISO7221 quiescent, VI = VCC or 0 V, no load ICC1 TYP mV 10 –10 25 V μA μA 1 pF 50 kV/μs Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 6.10 Electrical Characteristics—5-V VCC1 and 3.3-V VCC2 Supply VCC1 at 5 V ± 10%, VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER ICC1 ICC2 VOH VCC1 supply current VCC2 supply current High-level output voltage TYP MAX ISO7220x quiescent, VI = VCC or 0 V, no load TEST CONDITIONS MIN 1 2 ISO7221x quiescent, VI = VCC or 0 V, no load 8.5 17 ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal, no load 2 3 ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal, no load 10 18 ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock signal, no load 4 9 ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock signal, no load 12 22 mA 8 18 ISO7221x quiescent, VI = VCC or 0 V, no load 4.3 9.5 ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal, no load 9 19 ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal, no load 5 11 ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock signal, no load 10 20 ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock signal, no load 6 12 mA VCC – 0.4 ISO7221x (5-V side), IOH = –4 mA, See Figure 14 VCC – 0.8 All devices, IOH = –20 μA, See Figure 14 VCC – 0.1 V IOL = 4 mA, See Figure 14 0.4 IOL = 20 μA, See Figure 14 0.1 VI(HYS) Input voltage hysteresis IIH High-level input current IN from 0 V to VCC IIL Low-level input current IN from 0 V to VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 16 150 Copyright © 2006–2017, Texas Instruments Incorporated mA mA ISO7220x, ISO7221x (3.3-V side), IOH = –4 mA, See Figure 14 Low-level output voltage mA mA ISO7220x quiescent, VI = VCC or 0 V, no load VOL UNIT mV 10 –10 15 V μA μA 1 pF 40 kV/μs Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 11 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com 6.11 Electrical Characteristics—3.3-V VCC1 and 5-V VCC2 Supply VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER ICC1 ICC2 VOH VCC1 supply current VCC2 supply current High-level output voltage TYP MAX ISO7220x quiescent, VI = VCC or 0 V, no load TEST CONDITIONS 0.6 1 ISO7221x quiescent, VI = VCC or 0 V, no load 4.3 9.5 ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal, no load 1 2 ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal, no load 5 11 ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock signal, no load 2 4 ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock signal, no load 6 12 ISO7220x quiescent, VI = VCC or 0 V, no load 16 31 ISO7221x quiescent, VI = VCC or 0 V, no load 8.5 17 ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal, no load 18 32 ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal, no load 10 18 ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock signal, no load 20 34 ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock signal, no load 12 22 VCC – 0.4 VCC – 0.1 V IOL = 4 mA, See Figure 14 IIH High-level input current IN from 0 V or VCC IIL Low-level input current IN from 0 V or VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 16 Submit Documentation Feedback mA All devices, IOH = –20 μA, See Figure 14 Input threshold voltage hysteresis mA mA ISO7221x (3.3-V side), IOH = –4 mA, See Figure 14 VI(HYS) mA mA VCC – 0.8 Low-level output voltage UNIT mA ISO7220x and ISO7221x (5-V side), IOH = –4 mA, See Figure 14 VOL 12 MIN 0.4 IOL = 20 μA, See Figure 14 0 0.1 150 mV 10 –10 15 μA μA 1 pF 40 kV/μs Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 6.12 Electrical Characteristics—3.3-V VCC1 and VCC2 Supplies VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.) (1) PARAMETER ICC1 VCC2 supply current ICC2 VCC2 supply current TYP MAX ISO7220x quiescent, VI = VCC or 0 V, no load TEST CONDITIONS 0.6 1 ISO7221x quiescent, VI = VCC or 0 V, no load 4.3 9.5 ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal, no load 1 2 ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal, no load 5 11 ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock signal, no load 2 4 ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock signal, no load 6 12 8 18 4.3 9.5 ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal, no load 9 19 ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal, no load 5 11 ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock signal, no load 10 20 ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock signal, no load 6 12 mA VCC – 0.4 3 IOH = –20 μA, See Figure 14 VCC – 0.1 3.3 Low-level output voltage VI(HYS) Input voltage hysteresis IIH High-level input current IN from 0 V or VCC IIL Low-level input current IN from 0 V or VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 16 mA mA IOH = –4 mA, See Figure 14 VOL mA mA ISO7221x quiescent, VI = VCC or 0 V, no load High-level output voltage UNIT mA ISO7220x quiescent, VI = VCC or 0 V, no load VOH (1) MIN IOL = 4 mA, See Figure 14 IOL = 20 μA, See Figure 14 0.2 0.4 0 0.1 150 mV 10 –10 15 V μA μA 1 pF 40 kV/μs For the 3.3-V operation, VCC1 or VCC2 is specified from 3 V to 3.6 V. 6.13 Electrical Characteristics—2.8-V VCC1 and VCC2 Supplies VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.) 2.8-V operation is only specified for ISO722xC with production screening starting in January 2012. The first two digits of the Lot Trace Code (YMSLLLLG4) written on top of each device can be used to identify year and month of production respectively. PARAMETER ICC1 ICC2 VOH VCC1 supply current VCC2 supply current High-level output voltage TYP MAX ISO7220C quiescent, VI = VCC or 0 V, no load TEST CONDITIONS MIN 0.4 0.9 ISO7221C quiescent, VI = VCC or 0 V, no load 3.7 7.5 ISO7220C 25 Mbps, 12.5-MHz input clock signal, no load 1.5 3.5 ISO7221C 25 Mbps, 12.5-MHz input clock signal, no load 4.5 10 ISO7220C quiescent, VI = VCC or 0 V, no load 6.8 15 ISO7221C quiescent, VI = VCC or 0 V, no load 3.7 7.5 ISO7220C 25 Mbps, 12.5-MHz input clock signal, no load 9 17 ISO7221C 25 Mbps, 12.5-MHz input clock signal, no load 4.5 10 IOH = –4 mA, See Figure 14 VCC – 0.6 IOH = –20 μA, See Figure 14 VCC – 0.1 IOL = 4 mA, See Figure 14 VOL Low-level output voltage VI(HYS) Input voltage hysteresis IIH High-level input current IN from 0 V or VCC IIL Low-level input current IN from 0 V or VCC CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 16 IOL = 20 μA, See Figure 14 Copyright © 2006–2017, Texas Instruments Incorporated mA mA mA mA 2.55 2.8 0.25 0.6 0 0.1 150 V mV 10 –10 10 UNIT μA μA 1 pF 30 kV/μs Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 13 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com 6.14 Switching Characteristics—5-V VCC1 and VCC2 Supplies VCC1 and VCC2 at 5 V (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew (2) ISO722xA, see Figure 14 MIN TYP MAX UNIT 280 405 475 ns 1 14 ns 55 70 ns 1 3 ns 32 42 ns 1 2 ns 10 16 ns 0.5 1 ns 42 ISO722xB, see Figure 14 22 ISO722xC, see Figure 14 6 ISO722xM, see Figure 14 ISO722xA 180 ISO722xB 17 ISO722xC 10 ISO722xM tsk(o) Channel-to-channel output skew (3) tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss tjit(pp) Peak-to-peak eye-pattern jitter (1) (2) (3) 14 ns 3 ISO722xA 3 15 ISO722xB 0.6 3 ISO722xC, ISO722xM 0.2 1 ns 1 ns 1 ns See Figure 15 3 μs ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same polarity input, both channels, See Figure 17, Figure 13 1 ISO722xM, 150 Mbps unrestricted bit run length data input, both channels, See Figure 17 2 See Figure 14 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 6.15 Switching Characteristics—5-V VCC1 and 3.3-V VCC2 Supply VCC1 at 5 V ± 10%, VCC2 at 3.3 V ± 10%(over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew (2) ISO722xA, see Figure 14 MIN TYP MAX UNIT 285 410 480 ns 1 14 ns 58 75 ns 1 3 ns 36 48 ns 1 2 ns 12 20 ns 0.5 1 ns 45 ISO722xB, see Figure 14 25 ISO722xC, see Figure 14 7 ISO722xM, see Figure 14 ISO722xA 180 ISO722xB 17 ISO722xC 10 ISO722xM tsk(o) Channel-to-channel output skew (3) tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss tjit(pp) Peak-to-peak eye-pattern jitter (1) (2) (3) ns 5 ISO722xA 3 15 ISO722xB 0.6 3 ISO722xC, ISO722xM 0.2 1 ns 2 ns 2 ns See Figure 15 3 μs ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same polarity input, both channels, See Figure 17, Figure 13 1 ISO722xM, 150 Mbps unrestricted bit run length data input, both channels, See Figure 17 2 See Figure 14 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 15 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com 6.16 Switching Characteristics—3.3-V CC1 and 5-V VCC2 Supplies VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew (2) ISO722xA, see Figure 14 MIN TYP MAX UNIT 285 395 480 ns 1 18 ns 58 75 ns 1 4 ns 36 48 ns 1 3 ns 12 21 ns 0.5 1 ns 45 ISO722xB, see Figure 14 25 ISO722xC, see Figure 14 7 ISO722xM, see Figure 14 ISO722xA 190 ISO722xB 17 ISO722xC 10 ISO722xM tsk(o) Channel-to-channel output skew (3) tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss tjit(pp) Peak-to-peak eye-pattern jitter (1) (2) (3) 16 ns 5 ISO722xA 3 15 ISO722xB 0.6 3 ISO722xC, ISO722xM 0.2 1 ns 1 ns 1 ns See Figure 15 3 μs ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same polarity input, both channels, see Figure 17, Figure 13 1 ISO722xM, 150 Mbps unrestricted bit run length data input, both channels, see Figure 17 2 See Figure 14 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 6.17 Switching Characteristics—3.3-V VCC1 and VCC2 Supplies VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew (2) ISO722xA, see Figure 14 MIN TYP MAX UNIT 290 400 485 ns 1 18 ns 62 78 ns 1 4 ns 40 52 ns 1 3 ns 16 25 ns 0.5 1 ns 46 ISO722xB, see Figure 14 26 ISO722xC, see Figure 14 8 ISO722xM, see Figure 14 ISO722xA 190 ISO722xB 17 ISO722xC 10 ISO722xM tsk(o) Channel-to-channel output skew (3) tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss tjit(pp) Peak-to-peak eye-pattern jitter (1) (2) (3) ns 5 ISO722xA 3 15 ISO722xB 0.6 3 ISO722xC, ISO722xM 0.2 1 ns 2 ns 2 ns See Figure 15 3 μs ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same polarity input, both channels, See Figure 17, Figure 13 1 ISO722xM, 150 Mbps unrestricted bit run length data input, both channels, See Figure 17 2 See Figure 14 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. 6.18 Switching Characteristics—2.8-V VCC1 and VCC2 Supplies VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew (2) tsk(o) Channel-to-channel output skew tr Output signal rise time tf Output signal fall time tfs Failsafe output delay time from input power loss (1) (2) (3) ISO722xC, see Figure 14 MIN TYP MAX 26 45 65 ns 1.5 5 ns 12 ns 5 ns ISO722xC (3) ISO722xC See Figure 14 See Figure 15 0.2 UNIT 2 ns 2 ns 4.6 μs Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 17 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com 6.19 Insulation Characteristics Curves 250 Safety Limiting Current - mA 225 VCC1,2 at 3.6 V 200 175 150 125 VCC1,2 at 5.5 V 100 75 50 25 0 0 50 100 150 TC - Case Temperature - °C 200 Figure 1. Thermal Derating Curve for Limiting Current per VDE 18 Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 6.20 Typical Characteristics 20 30 TA = 25°C, 15 pF Load 18 26 16 ISO7220x ICC2 24 14 ICC - Supply Current - mA ICC - Supply Current - mA TA = 25°C, 15 pF Load 28 ISO7220x ICC2 12 10 ISO7221x ICC1&2 8 6 4 ISO7220x ICC1 22 20 ISO7221x ICC1&2 18 16 14 12 10 ISO7220x ICC1 8 6 4 2 2 0 0 0 25 50 75 100 Signaling Rate - Mbps 50 75 Signaling Rate - Mbps Figure 2. 3.3-VRMS Supply Current vs Signaling Rate (Mbps) Figure 3. 5-VRMS Supply Current vs Signaling Rate (Mbps) 450 25 100 70 TA = 25°C, 15 pF Load 15 pF Load 440 65 Propagation Delay - ns 430 Propagation Delay - ns 0 420 VCC = 3.3 V 410 tpLH & tpHL 400 VCC = 5 V 390 tpLH & tpHL 380 370 tPLH & tPHL VCC = 3.3 V 60 VCC = 5 V 55 tPLH & tPHL 50 360 350 -40 -15 10 35 60 85 45 -40 110 125 25 Temperature - °C Temperature - °C Figure 4. Propagation Delay vs Free-Air Temperature, ISO722xA Figure 5. Propagation Delay vs Free-Air Temperature, ISO722xB 30 20 VCC = 3.3 V 25 VCC = 3.3 V tpLH & tpHL 15 Propagation Delay - ns Propagation Delay - ns 125 20 15 tpLH & tpHL VCC = 5 V 10 tpLH & tpHL 10 tpLH & tpHL VCC = 5 V 5 5 0 -40 15 pF Load -15 10 35 60 85 110 125 Temperature - °C Figure 6. Propagation Delay vs Free-Air Temperature, ISO722xC Copyright © 2006–2017, Texas Instruments Incorporated 15 pF Load 0 -40 -15 10 35 60 85 110 125 Temperature - °C Figure 7. Propagation Delay vs Free-Air Temperature, ISO722xM Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 19 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com Typical Characteristics (continued) 2.5 1.4 2.4 5-V Vth+ 1.35 5-V Vth+ 1.3 Input Voltage Threshold - V Input Voltage Threshold - V 2.3 3.3-V Vth+ 1.25 15 pF Load 1.2 1.15 5-V Vth1.1 2.2 5-V Vth- 2.1 2 15 pF Load 1.9 1.8 3.3-V Vth+ 1.7 1.6 1.05 1.5 3.3-V Vth-40 -25 -10 5 20 35 50 65 80 95 3.3-V Vth- 1.4 -40 -25 -10 1 110 125 5 20 35 50 65 80 95 110 125 Temperature - °C Temperature - °C Figure 8. ISO722xA, ISO722xB and ISO722xC Input Voltage Low-to-High Switching Threshold vs Free-Air Temperature Figure 9. ISO722xM Input Voltage High-to-Low vs Free-Air Temperature -80 15 pF Load TA = 25°C -70 2.64 -60 VCC = 5 V VCC Rising -50 2.6 IOUT - mA Power Supply Undervoltage Threshold - V 2.68 2.56 -40 -30 VCC Falling VCC = 3.3 V -20 2.52 -10 2.48 -40 -25 -10 0 5 20 35 50 65 80 95 110 125 0 2 4 6 Free-Air Temperature - °C VOUT - V Figure 10. VCC Undervoltage Threshold vs Free-Air Temperature Figure 11. High-Level Output Current vs High-Level Output Voltage 70 2000 15 pF Load TA = 25°C 60 VCC = 5 V 1600 50 1400 1200 40 Jitter − ps IOUT - mA 15 pF Load TA = 25°C 1800 VCC = 3.3 V 30 VCC1 = VCC2 = 5 V 1000 800 600 20 VCC1 = VCC2 = 3.3 V 400 10 200 0 0 0 1 2 3 4 5 VOUT - V Figure 12. Low-Level Output Current vs Low-Level Output Voltage 20 Submit Documentation Feedback 0 50 100 150 200 Signaling Rate - Mbps Figure 13. ISO722xM Jitter vs Signaling Rate Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 ISOLATION BARRIER 7 Parameter Measurement Information IN Input Generator VI 50 W NOTE A VCC VI VCC/2 VCC/2 OUT 0V tPHL tPLH CL NOTE B VO VO VOH 90% 50% 50% 10% tr tf A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω. B. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%. VOL Figure 14. Switching Characteristic Test Circuit and Voltage Waveforms VI ISOLATION BARRIER VCC IN = 0 V A. VCC OUT VI 2.7 V VO 0V VOH tfs CL NOTE A VO 50% FAILSAFE HIGH VOL CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%. Figure 15. Failsafe Delay Time Test Circuit and Voltage Waveforms VCCO VCCI S1 Isolation Barrier C = 0.1 µF ±1% IN C = 0.1 µF ±1% Pass-fail criteria: The output must remain stable. OUT + EN CL See Note A GNDI + VCM ± VOH or VOL ± GNDO Copyright © 2016, Texas Instruments Incorporated A. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%. Figure 16. Common-Mode Transient Immunity Test Circuit Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 21 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com Parameter Measurement Information (continued) VCC DUT Tektronix HFS9009 IN OUT 0V Tektronix 784D PATTERN GENERATOR VCC/2 Jitter NOTE: PRBS bit pattern run length is 2 16 – 1. Transition time is 800 ps. Figure 17. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform 22 Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 8 Detailed Description 8.1 Overview The isolator in theFunctional Block Diagram is based on a capacitive isolation barrier technique. The I/O channel of the ISO7220x and ISO7221x family of devices consists of two internal data channels, a high-frequency channel (HF) with a bandwidth from 100 kbps up to 150 Mbps, and a low-frequency channel (LF) covering the range from 100 kbps down to DC. In principle, a single-ended input signal entering the HF-channel is split into a differential signal via the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into transients, which then are converted into differential pulses by two comparators. The comparator outputs drive a NOR-gate flip-flop whose output feeds an output multiplexer. A decision logic (DCL) at the driving output of the flip-flop measures the durations between signal transients. If the duration between two consecutive transients exceeds a certain time limit, (as in the case of a low-frequency signal), the DCL forces the outputmultiplexer to switch from the high-frequency to the low-frequency channel. Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output multiplexer. 8.2 Functional Block Diagram Isolation Barrier OSC LPF Low t Frequency Channel (DC...100 kbps) PWM VREF 0 OUT 1 S IN DCL High t Frequency Channel (100 kbps...150 Mbps) VREF Copyright © 2016, Texas Instruments Incorporated Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 23 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com 8.3 Feature Description Table 1 provides an overview of the device features. Table 1. Device Features PART NUMBER MAXIMUM SIGNALING RATE INPUT THRESHOLD CHANNEL DIRECTION ISO7220A 1 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7220B 5 Mbps ≈ 1.5 V (TTL) (CMOS compatible ISO7220C 25 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7220M 150 Mbps VCC/ 2 (CMOS) ISO7221A 1 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7221B 5 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7221C 25 Mbps ≈ 1.5 V (TTL) (CMOS compatible) ISO7221M 150 Mbps VCC/ 2 (CMOS) Same direction Opposite directions 8.4 Device Functional Modes The ISO7220x and ISO7221x family of devices functional modes are listed in Table 2. Table 2. ISO7220x or ISO7221x Function Table (1) (1) INPUT SIDE VCC OUTPUT SIDE VCC PU PU INPUT (IN) OUTPUT (OUT) H H L L Open H PD PU X H X PD X Undetermined PU = Powered Up (VCC ≥ 3.0 V), PD = Powered Down (VCC ≤ 2.5 V), X = Irrelevant, H = High Level, L = Low Level Input VCC1 VCC1 VCC1 Output VCC2 750 kW IN 500 W 8W OUT 13 W Figure 18. Device I/O Schematics 24 Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The ISO7220x and ISO7221x family devices use single-ended TTL or CMOS-logic switching technology. The supply voltage range is from 3 V (2.8 V for C-grade) to 5.5 V for both supplies, VCC1 and VCC2. When designing with digital isolators, because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or standard. 9.2 Typical Application The ISO7221x family of devices can be used with Texas Instruments' mixed signal micro-controller, digital-toanalog converter, transformer driver, and voltage regulator to create an isolated 4- to 20-mA current loop. VS 3.3 V 0.1 F 2 VCC D2 3 1:1.33 MBR0520L 1 SN6501 10 F GND D1 0.1 F IN OUT 3.3VISO 5 10 F TPS76333 3 1 EN GND 2 10 F MBR0520L 4, 5 0.1 F ISO-BARRIER 0.1 F 20 LOOP+ 0.1 F 0.1 F 15 0.1 F 10 1 8 2 5 6 VCC1 DVCC XOUT XIN MSP430 G2132 8 VCC2 2 OUTA P3.0 11 12 P3.1 INA ISO7221 3 INB GND1 DVSS 4 4 OUTB GND2 5 7 5 6 4 3 VA VD LOW BASE ERRLVL 16 0.1 F DAC161P997 22 DBACK DIN C1 14 3 × 22 nF 1 F C2 13 C3 COMA 12 1 OUT COMD 9 LOOP± 2 Figure 19. Isolated 4- to 20-mA Current Loop 9.2.1 Design Requirements Unlike optocouplers, which require external components to improve performance, provide bias (or limit current), the ISO7220x and ISO7221x devices require only two external bypass capacitors to operate. Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 25 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com Typical Application (continued) 9.2.2 Detailed Design Procedure Figure 20 and Figure 21 show the hookup of a typical ISO7220x and ISO7221x circuit. The only external components are two bypass capacitors. V CC1 V CC 2 0.1mF 2 mm max . from Vcc 1 INPUT 1 INA 2 INB INPUT 3 4 8 OUTA 7 OUTB 6 5 2 mm max . from Vcc 2 0.1mF OUTPUT OUTPUT ISO7220 GND 1 GND 2 Figure 20. Typical ISO7220x Circuit Hook-Up V CC1 V CC2 0.1mF 2 mm max . from Vcc1 OUTPUT 1 OUTA 2 INB INPUT 3 4 8 INA 7 OUTB 6 5 2 mm max . from Vcc 2 0.1mF INPUT OUTPUT ISO7221 GND 1 GND 2 Figure 21. Typical ISO7221x Circuit Hook-Up 9.2.3 Application Curve At maximum working voltage, the isolation barrier of the ISO7220x and ISO7221x family of devices has more than 28 years of life. Working Life (Years) 100 VIORM at 560 VPK 28 10 0 120 250 500 750 880 1000 Working Voltage, VIORM (VPK) Figure 22. Time-Dependent Dielectric Breakdown Test Results 26 Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 10 Power Supply Recommendations To help ensure reliable operation at all data rates and supply voltages, a 0.1-μF bypass capacitor is recommended at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments SN6501 device. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 Transformer Driver for Isolated Power Supplies. 11 Layout 11.1 Layout Guidelines A minimum of four layers are required to accomplish a low EMI PCB design (see Figure 23). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and lowfrequency signal layer. • Route the high-speed traces on the top layer to avoid the use of vias (and the introduction of the inductances) and allow for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. • Place a solid ground plane next to the high-speed signal layer to establish controlled impedance for transmission line interconnects and provide an excellent low-inductance path for the return current flow. • Place the power plane next to the ground plane to create additional high-frequency bypass capacitance of approximately 100 pF/in2. • Route the slower speed control signals on the bottom layer to allow for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. Adding a second plane system to the stack makes the stack mechanically stable and prevents it from warping. The power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly. For detailed layout recommendations, refer to the Digital Isolator Design Guide. 11.1.1 PCB Material For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics. 11.2 Layout Example High-speed traces 10 mils Ground plane 40 mils Keep this space free from planes, traces, pads, and vias FR-4 0r ~ 4.5 Power plane 10 mils Low-speed traces Figure 23. Recommended Layer Stack Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 27 ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M SLLS755O – JULY 2006 – REVISED APRIL 2017 www.ti.com 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: • DAC161P997 Single-Wire 16-bit DAC for 4- to 20-mA Loops • Digital Isolator Design Guide • High-Voltage Lifetime of the ISO72x Family of Digital Isolators • Isolation Glossary • MSP430G2x32 Mixed Signal Microcontroller • SN6501 Transformer Driver for Isolated Power Supplies • TPS763xx Low-Power 150-mA Low-Dropout Linear Regulators 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 3. Related Links PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY ISO7220A Click here Click here Click here Click here Click here ISO7220B Click here Click here Click here Click here Click here ISO7220C Click here Click here Click here Click here Click here ISO7220M Click here Click here Click here Click here Click here ISO7221A Click here Click here Click here Click here Click here ISO7221B Click here Click here Click here Click here Click here ISO7221C Click here Click here Click here Click here Click here ISO7221M Click here Click here Click here Click here Click here 12.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 12.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.5 Trademarks E2E is a trademark of Texas Instruments. DeviceNet is a trademark of Open DeviceNet Vendors Association. Profibus is a trademark of Profibus. All other trademarks are the property of their respective owners. 28 Submit Documentation Feedback Copyright © 2006–2017, Texas Instruments Incorporated Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M ISO7220A, ISO7220B, ISO7220C, ISO7220M ISO7221A, ISO7221B, ISO7221C, ISO7221M www.ti.com SLLS755O – JULY 2006 – REVISED APRIL 2017 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2006–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7220A ISO7220B ISO7220C ISO7220M ISO7221A ISO7221B ISO7221C ISO7221M 29 PACKAGE OPTION ADDENDUM www.ti.com 31-Oct-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) ISO7220AD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A ISO7220ADG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A ISO7220ADR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A ISO7220ADRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220A ISO7220BD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B ISO7220BDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B ISO7220BDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B ISO7220BDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220B ISO7220CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C ISO7220CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C ISO7220CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C ISO7220CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220C ISO7220MD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M ISO7220MDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M ISO7220MDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M ISO7220MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7220M ISO7221AD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 31-Oct-2016 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) ISO7221ADG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A ISO7221ADR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A ISO7221ADRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221A ISO7221BD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B ISO7221BDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B ISO7221BDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B ISO7221BDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221B ISO7221CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C ISO7221CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C ISO7221CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C ISO7221CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221C ISO7221MD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M ISO7221MDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M ISO7221MDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M ISO7221MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 I7221M (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 31-Oct-2016 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF ISO7220A, ISO7221A, ISO7221C : • Automotive: ISO7220A-Q1, ISO7221A-Q1, ISO7221C-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 31-Oct-2016 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant ISO7220ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7220BDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7220CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7220MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7221ADR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7221BDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7221CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 ISO7221MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 31-Oct-2016 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) ISO7220ADR SOIC D 8 2500 367.0 367.0 38.0 ISO7220BDR SOIC D 8 2500 367.0 367.0 38.0 ISO7220CDR SOIC D 8 2500 367.0 367.0 38.0 ISO7220MDR SOIC D 8 2500 367.0 367.0 38.0 ISO7221ADR SOIC D 8 2500 367.0 367.0 38.0 ISO7221BDR SOIC D 8 2500 367.0 367.0 38.0 ISO7221CDR SOIC D 8 2500 367.0 367.0 38.0 ISO7221MDR SOIC D 8 2500 367.0 367.0 38.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated
ISO7220CDR 价格&库存

很抱歉,暂时无法提供与“ISO7220CDR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO7220CDR
  •  国内价格
  • 1+10.20627
  • 30+9.85433
  • 100+9.15045
  • 500+8.44656
  • 1000+8.09462

库存:0