0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO7241CDWR

ISO7241CDWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16_300MIL

  • 描述:

    3.15V~5.5V 2.500KV 25Mbps 25kV/µs 4通路

  • 数据手册
  • 价格&库存
ISO7241CDWR 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 ISO724x High-Speed, Quad-Channel Digital Isolators 1 Features 3 Description • The ISO7240x, ISO7241x, and ISO7242x devices are quad-channel digital isolators with multiple channel configurations and output-enable functions. These devices have logic-input and logic-output buffers separated by Texas Instrument’s silicon-dioxide (SiO2) isolation barrier. Used in conjunction with isolated power supplies, these devices help block high voltage, isolate grounds, and prevent noise currents from entering the local ground and interfering with or damaging sensitive circuitry. 1 • • • • • • • 25 and 150-Mbps Signaling Rate Options – Low Channel-to-Channel Output Skew; 1 ns Maximum – Low Pulse-Width Distortion (PWD); 2 ns Maximum – Low Jitter Content; 1 ns Typ at 150 Mbps Selectable Default Output (ISO7240CF) > 25-Year Life at Rated Working Voltage (see High-Voltage Lifetime of the ISO72x Family of Digital Isolators and Isolation Capacitor Lifetime Projection) 4-kV ESD Protection Operates With 3.3-V or 5-V Supplies High Electromagnetic Immunity (see ISO72x Digital Isolator Magnetic-Field Immunity) –40°C to +125°C Operating Temperature Range Safety-Related Certifications: – VDE 4000 VPK Basic Insulation per DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 – 2.5 kVRMS Insulation for 1 minute per UL 1577 – CSA Component Acceptance Notice #5A and IEC 60950-1 End Equipment Standard The ISO7240x family of devices has all four channels in the same direction. The ISO7241x family of devices has three channels in the same direction and one channel in the opposition direction. The ISO7242x family of devices has two channels in each direction. Device Information(1) PART NUMBER BODY SIZE (NOM) SOIC (16) 10.30 mm × 7.50 mm ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M (1) For all available packages, see the orderable addendum at the end of the data sheet. 2 Applications • • • • PACKAGE ISO7240CF Industrial Fieldbus Computer Peripheral Interface Servo Control Interface Data Acquisition Simplified Schematic VCCI INx Isolation Capacitor VCCO OUTx Disable (ISO7240CF only) GNDI ENx or CTRL (ISO7240CF only) GNDO Copyright © 2016, Texas Instruments Incorporated VCCI and GNDI are supply and ground connections respectively for the input channels. VCCO and GNDO are supply and ground connections respectively for the output channels. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Description (Continued) ........................................ Pin Configurations and Functions ....................... Specifications......................................................... 7.18 Switching Characteristics: VCC1 at 5-V, VCC2 at 3.3V Operation ............................................................. 16 7.19 Switching Characteristics: VCC1 at 3.3-V and VCC2 at 5-V Operation....................................................... 17 7.20 Switching Characteristics: VCC1 and VCC2 at 3.3-V Operation ................................................................ 17 7.21 Insulation Characteristics Curves ......................... 18 7.22 Typical Characteristics .......................................... 19 1 1 1 2 7 8 9 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 Absolute Maximum Ratings ...................................... 9 ESD Ratings.............................................................. 9 Recommended Operating Conditions....................... 9 Thermal Information ................................................ 10 Power Ratings......................................................... 10 Insulation Specifications.......................................... 11 Safety-Related Certifications................................... 11 Safety Limiting Values ............................................ 12 Electrical Characteristics: VCC1 and VCC2 at 5-V Operation ................................................................. 12 7.10 Supply Current Characteristics: VCC1 and VCC2 at 5V Operation.............................................................. 12 7.11 Electrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation ................................................................. 13 7.12 Supply Current Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation........................................................ 13 7.13 Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation ................................................................. 14 7.14 Supply Current Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation....................................................... 14 7.15 Electrical Characteristics: VCC1 and VCC2 at 3.3 V Operation ................................................................. 15 7.16 Supply Current Characteristics: VCC1 and VCC2 at 3.3 V Operation........................................................ 15 7.17 Switching Characteristics: VCC1 and VCC2 at 5-V Operation ................................................................. 16 8 9 Parameter Measurement Information ................ 21 Detailed Description ............................................ 24 9.1 9.2 9.3 9.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 24 24 25 25 10 Application and Implementation........................ 27 10.1 Application Information.......................................... 27 10.2 Typical Application ................................................ 27 11 Power Supply Recommendations ..................... 32 12 Layout................................................................... 32 12.1 Layout Guidelines ................................................. 32 12.2 Layout Example .................................................... 32 13 Device and Documentation Support ................. 33 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Documentation Support ........................................ Related Links ........................................................ Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 33 33 33 33 33 34 34 14 Mechanical, Packaging, and Orderable Information ........................................................... 34 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision S (April 2016) to Revision T Page • Added isolation resistance for 100°C ≤ TA ≤ 125°C in the Insulation Specifications table................................................... 11 • Deleted the maximum transient overvoltage from VDE in the Safety-Related Certifications table...................................... 11 • Added the Receiving Notification of Documentation Updates and the Community Resources section............................... 33 Changes from Revision R (September 2015) to Revision S Page • Changed the HBM value from ±4 V to ±4000 V and the CDM value from ±1 V to ±1000 V in the ESD Ratings table......... 9 • Moved the device power dissipation parameter from the Thermal Information table to the Power Dissipation Characteristics table ............................................................................................................................................................ 10 Changes from Revision Q (January 2015) to Revision R Page • Changed Features From: "Basic Isolation per DIN EN 60747-5-5 (VDE 0884-5) & DIN EN 61010-1" To:"Basic Insulation per DIN V VDE V 0884-10 (VDE V 0884-10):2006-12" ......................................................................................... 1 • Changed VCC1 To VCCI, VCC2 To VCCO, GND1 To GNDI, and GND2 To GNDO, and added Notes 1 and 2 to the 2 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 Simplified Schematic .............................................................................................................................................................. 1 • Changed the CTI Test Conditions From: IEC 60112/VDE 0303 Part 1 To: DIN EN 60112 (VDE 0303-11); IEC 60112 in the Package Characteristics table ................................................................................................................................... 11 • Changed section title From: DIN EN 60747-5-5 Insulation Characteristics To: DIN V VDE V 0884-10 (VDE V 088410):2006-1 Insulation Characteristics( .................................................................................................................................. 11 • Deleted CI - Input capacitance to ground from the Package Characteristics table ............................................................. 11 • Changed RS Test Conditions From: VIO = 500 V at TS To: VIO = 500 V at TS = 150°C in the DIN V VDE V 0884-10 (VDE V 0884-10):2006-1 Insulation Characteristics table.................................................................................................... 11 • Changed "DIN EN 60747-5-5 & DIN EN 61010-1" To: DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1): 2011-07 in the Regulatory Information table.................................................................................. 11 • Changed title From: IEC Safety Limiting Values To: Safety Limiting Values ....................................................................... 12 • Changed VOH MIN values From: VCC - 0.8 To: VCCO - 0.8 and VCC - 0.1 To: VCCO - 0.1 in the Electrical Characteristics: VCC1 and VCC2 at 5-V Operation ................................................................................................................. 12 • Changed VOH Test Condition ISO7240 To: 3.3-V side and the MIN value From: VCC - 0.4 To VCCO -0.4 in the Electrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation .......................................................................................... 13 • Changed VOH Test Condition ISO724x (5-V side) To: 5-V side and the MIN value From: VCC - 0.8 To: VCCO - 0.8 in the Electrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation .................................................................................... 13 • Changed VOH, Test Condition IOH = -20 µA MIN value From: VCC - 0.1 To VCCO - 0.1 in the lectrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation ............................................................................................................................... 13 • Changed VOH Test Condition ISO7240 To: 3.3-V side and the MIN value From: VCC - 0.4 To VCCO -0.4 in the Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation .......................................................................................... 14 • Changed VOH Test Condition ISO724x (5-V side) To: 5-V side and the MIN value From: VCC - 0.8 To: VCCO - 0.8 in the Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation .................................................................................... 14 • Changed VOH, Test Condition IOH = -20 µA MIN value From: VCC - 0.1 To VCCO - 0.1 in the Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation .................................................................................................................................... 14 • Changed VOH MIN values From: VCC - 0.4 To: VCCO - 0.4 and VCC - 0.1 To: VCCO - 0.1 in the Electrical Characteristics: VCC1 and VCC2 at 3.3 V Operation .............................................................................................................. 15 • Changed Figure 2 title From: Thermal Derating Curve per DIN EN 60747-5-5 To: Thermal Derating Curve per VDE ...... 18 • Changed VCC1 To: VCCI and VCC2 To: VCCO in Common-Mode Transient Immunity Test Circuit and Voltage Waveform ... 23 Changes from Revision P (August 2014) to Revision Q Page • Changed the VI MAX value in the Absolute Maximum Ratings table From: 6 V To: VCC + 0.5 V .......................................... 9 • Added Note 3 to the Absolute Maximum Ratings table.......................................................................................................... 9 • Moved TSTG - Storage From the ESD Ratings table to the Absolute Maximum Ratings table .............................................. 9 • Changed the Handling Rating table to the ESD Ratings table. ............................................................................................. 9 • Added one row to the ISO7240CF Functions Table table. Values: X, PD, X, X, X, Undetermined .................................... 25 • Added one row to the Device Function Table ISO724x table. Values: X, PD, X, X, Undetermined ................................... 25 • Changed the Device I/O Schematics labels From: "ISO7240CF Input" To: "ISO7240CF Input, Disable" and From: "Enable" To: "Enable, Control" ............................................................................................................................................ 26 Changes from Revision O (November 2012) to Revision P Page • Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ................................................................................................................................................................................... 1 • Changed ISO7241C minimum supply from 2.8 V to 3.15 V................................................................................................... 9 Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 3 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com Changes from Revision N (January 2012) to Revision O • Page Added the Safety Limiting Values section ............................................................................................................................ 12 Changes from Revision M (January 2011) to Revision N Page • Changed Feature From: Operates 3.3-V or 5-V Supplies To: Operates With 2.8-V (ISO7241C), 3.3-V or 5-V Supplies ..... 1 • Added device options to VCC in the RECOMMENDED OPERATING CONDITIONS table ................................................... 9 • Changed Table Note (1) ......................................................................................................................................................... 9 • Changed the CTI MIN value From: ≥175 V To:≥400 V ........................................................................................................ 11 • Changed the Regulatory Information table........................................................................................................................... 11 • Changed Table Note (1) ....................................................................................................................................................... 12 • Changed ICC1 and ICC2 test conditions in the VCC1 and VCC2 at 5-V Electrical Characteristics: VCC1 and VCC2 at 5-V Operation table ..................................................................................................................................................................... 12 • Changed Table Note (1) ....................................................................................................................................................... 13 • Changed ICC1 and ICC2 test conditions in the VCC1 at 5-V, VCC2 at 3.3-V Electrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation table ........................................................................................................................................................... 13 • Changed Table Note (1) ....................................................................................................................................................... 14 • Changed ICC1 and ICC2 test conditions in the VCC1 at 3.3-V, VCC2 at 5-V Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation table .......................................................................................................................................................... 14 • Changed Table Note (1) ....................................................................................................................................................... 15 • Added ELECTRICAL and Switching CHARACTERISTICS tables forVCC1 and VCC2 at 2.8V (ISO722xC-only)................... 15 • Changed ICC1 and ICC2 test conditions in the VCC1 and VCC2 at 3.3 V table .......................................................................... 15 • Changed VCC Undervoltage Threshold vs Free-Air Temperature From VCC1 Failsafe Threshold To: VCC Undervoltage Threshold.............................................................................................................................................................................. 19 Changes from Revision L (January 2010) to Revision M Page • Changed the CSA File Number From: 1698195 To: 220991 ............................................................................................... 11 • Changed Switching Characteristic Test Circuit and Voltage Waveforms, Failsafe Delay Time Test Circuit and Voltage Waveforms, and Wake Time From Input Disable Test Circuit and Voltage Waveforms ........................................ 21 Changes from Revision K (Decemberl 2009) to Revision L Page • Added CTI - Tracking resistance (comparative tracking index to the Package Characteristics table.................................. 11 • Added the IEC 60664-1 RATINGS TABLE .......................................................................................................................... 11 • Added the IEC 60747-5-2 INSULATION CHARACTERISTIC table..................................................................................... 11 Changes from Revision J (April 2009) to Revision K Page • Changed the Input circuit in the DEVICE I/O SCHEMATICS illustration ............................................................................... 1 • Added Note 1 to LI01), and changed the MIN value From: 8.34 To 8 mm in the Package Characteristics table .............. 11 • Added Note 1 to LI02), and changed the MIN value From: 8.1 To 8 mm in the Package Characteristics table ................ 11 Changes from Revision I (December 2008) to Revision J Page • Changed ICC1 for Quiescent and 1Mbps From: 10mA To: 11mA ......................................................................................... 12 • Changed ICC1 for Quiescent and 1Mbps From: 10mA To: 11mA ......................................................................................... 13 4 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 Changes from Revision G (July 2008) to Revision H Page • Added Device number ISO7240CF. ....................................................................................................................................... 1 • Added Features Bullet: Selectable Failsafe Output (ISO7240CF) ......................................................................................... 1 • Changed description paragraph 4 text. .................................................................................................................................. 7 • Changed VI in the Absolute Maximum Ratings table From: Voltage at IN, OUT, EN To: Voltage at IN, OUT, EN, DISABLE, CTRL ..................................................................................................................................................................... 9 • Added twake, Wake time from input disable ........................................................................................................................... 16 • Added twake, Wake time from input disable ........................................................................................................................... 16 • Added twake, Wake time from input disable ........................................................................................................................... 17 • Added twake, Wake time from input disable ........................................................................................................................... 17 Changes from Revision F (May 2008) to Revision G • Page Changed the Package Characteristics table, line , L(IO1) MIN value from7.7mm to 8.34mm................................................ 11 Changes from Revision E (May 2008) to Revision F Page • Deleted ISO724xA devices. See SLLS905 for the ISO7240A, ISO7241A, and ISO7242A................................................... 1 • Changed Title From: QUAD DIGITAL ISOLATORS To: HIGH SPEED QUAD DIGITAL ISOLATORS................................. 1 • Changed Feature Low Jitter Content - From: 1, 25, and 150-Mbps Signaling Rate Options To: 25, and 150-Mbps Signaling Rate Options ........................................................................................................................................................... 1 • Added tsk(pp) footnote............................................................................................................................................................. 16 • Added tsk(o) footnote. ............................................................................................................................................................. 16 • Added tsk(pp) footnote............................................................................................................................................................. 17 • Added tsk(o) footnote. ............................................................................................................................................................. 17 Changes from Revision D (April 2008) to Revision E Page • Added Table Note (1): For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. ............................................... 9 • Added Table Note (1): For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V .............................................. 13 • Added Table Note (1): For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V .............................................. 14 • Added Table Note (1): For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V .............................................. 15 Changes from Revision C (April 2008) to Revision D Page • Added tsk(pp) Part-to-part skew .............................................................................................................................................. 16 • Added tsk(pp) Part-to-part skew .............................................................................................................................................. 16 • Added tsk(pp) Part-to-part skew .............................................................................................................................................. 17 • Added tsk(pp) Part-to-part skew .............................................................................................................................................. 17 • Changed Typical ISO724x Application Circuit, Isolated Data Acquisition System for Process Control .............................. 27 Changes from Revision B (August 2008) to Revision C Page • Deleted Min = 4.5 V and max = 5.5 V for Supply Voltage of the ROC Table. ....................................................................... 9 • Changed VCC Supply Voltage in the ROC Table From: 3.6 To: 5.5 ....................................................................................... 9 Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 5 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com Changes from Revision A (December 2007) to Revision B • Page Changed VCC Supply Voltage in the ROC Table From: 3.45 To: 3.6 ..................................................................................... 9 Changes from Original (September 2007) to Revision A Page • Changed VCC Supply Voltage in the ROC Table From: 3.6 To: 3.45 ..................................................................................... 9 • Changed VCC Supply Voltage in the ROC Table From: 3 To: 3.15 ........................................................................................ 9 • Changed CIO - typ value From: 1 To: 2 ................................................................................................................................ 11 • Changed the Regulatory Information.................................................................................................................................... 11 • Changed CI - typ value From: 1 To: 2 in the Electrical Characteristics: VCC1 and VCC2 at 5-V Operation ........................... 12 • Changed TBDs to actual values. .......................................................................................................................................... 12 • Changed CI - typ value From: 1 To: 2 in the Electrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation.................... 13 • Changed CI - typ value From: 1 To: 2 in the Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation.................... 14 • Changed typ value From: 1 To: 2 in the Electrical Characteristics: VCC1 and VCC2 at 3.3 V Operation ............................... 15 • Changed Propagation delay max From: 22 To: 23 .............................................................................................................. 16 • Changed Propagation delay max From: 46 To: 50 .............................................................................................................. 16 • Changed Propagation delay max From: 28 To: 29 .............................................................................................................. 16 • Changed ISO724xA/C max value From: 2.5 To: 3............................................................................................................... 16 • Changed Propagation delay max From: 26 To: 30 .............................................................................................................. 17 • Changed Propagation delay max From: 32 To: 34 .............................................................................................................. 17 • Changed ISO724xA/C max value From: 3 To: 3.5............................................................................................................... 17 • Changed ISO7240C/M RMS Supply Current vs Signaling Rate, ISO7241C/M RMS Supply Current vs Signaling Rate, and Propagation Delay vs Free-Air Temperature. Added ISO7242C/M RMS Supply Current vs Signaling Rate. .... 19 6 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 5 Description (Continued) The devices with the C suffix (C option) have TTL input thresholds and a noise-filter at the input that prevents transient pulses from being passed to the output of the device. The devices with the M suffix (M option) have CMOS VCC/2 input thresholds and do not have the input noise filter or the additional propagation delay. The ISO7240CF device has an input disable function on pin 7, and a selectable high or low failsafe-output function with the CTRL pin (pin 10). The failsafe output is a logic high when a logic high is placed on the CTRL pin or it is left unconnected. If a logic low signal is applied to the CTRL pin, the failsafe output becomes a logiclow output state. The input disable function of the ISO7240CF device prevents data from being passed across the isolation barrier to the output. When the inputs are disabled or VCC1 is powered down, the outputs are set by the CTRL pin. These devices can be powered from 3.3-V or 5-V supplies on either side, in any combination. The signal input pins are 5-V tolerant regardless of the voltage supply level that is used. These devices are characterized for operation over the ambient temperature range of –40°C to +125°C. Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 7 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 6 Pin Configurations and Functions ISO7240CF DW Package 16-Pin SOIC Top View ISO7240C and ISO7240M DW Package 16-Pin SOIC Top View 16 VCC2 VCC1 1 16 VCC2 15 GND2 GND1 2 15 GND2 INA 3 14 OUTA INA 3 14 OUTA 13 OUTB INB 4 13 OUTB 12 OUTC INC 5 12 OUTC 11 OUTD IND 6 11 OUTD EN INB 4 INC 5 IND 6 ISOLATION 1 2 ISOLATION VCC1 GND1 DISABLE 7 10 CTRL NC 7 10 GND1 8 9 GND2 GND1 8 9 ISO7241C and ISO7241M DW Package 16-Pin SOIC Top View GND2 ISO7242C and ISO7242M DW Package 16-Pin SOIC Top View 16 VCC2 VCC1 1 16 VCC2 2 15 GND2 GND1 2 15 GND2 INA 3 14 OUTA INA 3 14 OUTA 13 OUTB INB 4 13 OUTB 12 OUTC OUTC 5 12 INC 11 IND OUTD 6 11 IND EN2 EN2 INB 4 INC 5 OUTD 6 EN1 7 10 GND1 8 9 GND2 ISOLATION 1 ISOLATION VCC1 GND1 EN1 7 10 GND1 8 9 GND2 Pin Functions PIN NO. NAME I/O DESCRIPTION3 ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M CTRL 10 — — — I Failsafe output control. Output state is determined by CTRL pin when DISABLE is high or VCC1 is powered down. Output is high when CTRL is high or open and low when CTRL is low. DISABLE 7 — — — I Input disable. All input pins are disabled when DISABLE is high and enabled when DISABLE is low or open. EN — 10 — — I Output enable. All output pins are enabled when EN is high or open and disabled when EN is low. EN1 — — 7 7 I Output enable 1. Output pins on side 1 are enabled when EN1 is high or open and disabled when EN1 is low. EN2 — — 10 10 I Output enable 2. Output pins on side-2 are enabled when EN2 is high or open and disabled when EN2 is low. GND1 2, 8 2, 8 2, 8 2, 8 — Ground connection for VCC1 GND2 9, 15 9, 15 9, 15 9, 15 — Ground connection for VCC2 INA 3 3 3 3 I Input, channel A INB 4 4 4 4 I Input, channel B INC 5 5 5 12 I Input, channel C IND 6 6 11 11 I Input, channel D NC — 7 — — — No Connect pins are floating with no internal connection OUTA 14 14 14 14 O Output, channel A OUTB 13 13 13 13 O Output, channel B OUTC 12 12 12 5 O Output, channel C OUTD 11 11 6 6 O Output, channel D VCC1 1 1 1 1 — Power supply, VCC1 VCC2 16 16 16 16 — Power supply, VCC2 8 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 7 Specifications 7.1 Absolute Maximum Ratings See (1) MIN MAX UNIT VCC Supply voltage (2), VCC1, VCC2 –0.5 6 V VI Voltage at IN, OUT, EN, DISABLE, CTRL –0.5 VCC + 0.5 (3) V IO Output current –15 15 mA TJ Maximum junction temperature 170 °C Tstg Storage temperature 150 °C (1) (2) (3) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal and are peak voltage values. Maximum voltage must not exceed 6 V. 7.2 ESD Ratings VALUE Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 V(ESD) (1) (2) Electrostatic discharge (1) UNIT ±4000 Charged device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000 Machine model (MM), per ANSI/ESDS5.2-1996 ±200 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions MIN VCC Supply voltage (1), VCC1, VCC2 IOH High-level output current IOL Low-level output current 5.5 ISO724xC 40 ISO724xM 6.67 5 ISO724xC 0 30 (2) 25 ISO724xM 0 200 (2) 150 1/tui Signaling rate VIH High-level input voltage (IN) VIL Low-level input voltage (IN) VIH High-level input voltage (IN, DISABLE, CTRL, EN) VIL Low-level input voltage (IN, DISABLE, CTRL, EN) TJ Junction temperature H External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification ISO724xM ISO724xC UNIT V mA 4 Input pulse width (2) MAX –4 tui (1) NOM 3.15 mA ns Mbps 0.7 VCC VCC V 0 0.3 VCC V 2 5.5 V 0 0.8 V 150 °C 1000 A/m For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. For the 3.3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V. Typical value at room temperature and well-regulated power supply. Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 9 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 7.4 Thermal Information ISO724xx THERMAL METRIC (1) DW (SOIC) UNIT 16 PINS RθJA Junction-to-ambient thermal resistance Low-K board 168 °C/W RθJC(top) Junction-to-case (top) thermal resistance High-K board 77.3 °C/W 39.5 RθJB °C/W Junction-to-board thermal resistance 41.9 °C/W ψJT Junction-to-top characterization parameter 13.5 °C/W ψJB Junction-to-board characterization parameter 41.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.5 Power Ratings VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 50% duty cycle square wave (unless otherwise noted) PARAMETER PD 10 TEST CONDITIONS MIN TYP Maximum power dissipation Submit Documentation Feedback MAX UNIT 220 mW Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 7.6 Insulation Specifications PARAMETER TEST CONDITIONS VALUE UNIT GENERAL External clearance (1) Shortest terminal-to-terminal distance through air 8 mm CPG External creepage (1) Shortest terminal-to-terminal distance across the package surface 8 mm DTI Distance through the insulation Minimum internal gap (internal clearance) 0.008 mm CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 ≥ 400 V CLR Material group II Overvoltage Category DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 VIORM VIOTM qpd Rated mains voltage ≤ 300 VRMS I-III (2) VTEST = VIOTM t = 60 s (qualification), t = 1 s (100% production) Maximum transient isolation voltage (3) Barrier capacitance, input to output (4) Isolation resistance, input to output (4) RIO I-IV Maximum repetitive peak isolation voltage AC voltage (bipolar) Apparent charge CIO Rated mains voltage ≤ 150 VRMS 560 VPK 4000 VPK Method a: After I/O safety test subgroup 2/3. Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM , tm = 10 s, ≤5 Method a: After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.3 × VIORM , tm = 10 s, ≤5 Method b1: At routine test (100% production) and preconditioning (type test) Vini = VIOTM, tini = 1 s; Vpd(m) = 1.5 × VIORM , tm = 1 s, ≤5 VI = 0.4 sin (4E6πt) 2 pC pF 12 VIO = 500 V, TA = 25°C > 10 VIO = 500 V, 100°C ≤ TA ≤ 125°C >1011 VIO = 500 V at TS = 150°C >109 Pollution degree 2 Climatic category 40/125/21 Ω UL 1577 VISO (1) (2) (3) (4) VTEST = VISO = 2500 VRMS, t = 60 s (qualification); VTEST = 1.2 × VISO = 3000 VRMS, t = 1 s (100% production) Withstand isolation voltage 2500 VRMS Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Apparent charge is electrical discharge caused by a partial discharge (pd). All pins on each side of the barrier tied together creating a two-terminal device 7.7 Safety-Related Certifications VDE CSA UL Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 and DIN EN 61010-1 (VDE 0411-1): 2011-07 Approved under CSA Component Acceptance Notice 5A and IEC 60950-1 Recognized under UL 1577 Component Recognition Program Basic Insulation Maximum Transient Isolation Voltage, 4000 VPK; Maximum Repetitive Peak Isolation Voltage, 560 VPK 4000 VPK maximum isolation rating; Basic insulation per CSA 60950-1-07 and IEC 60950-1 (2nd Ed), 366 VRMS maximum working voltage, Single protection, 2500 VRMS Certificate Number: 40016131 Master Contract Number: 220991 File Number: E181974 Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 11 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 7.8 Safety Limiting Values Safety limiting (1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures. PARAMETER Safety input, output, or supply current IS TS (1) TEST CONDITIONS MIN TYP MAX RθJA = 168°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C, see Figure 2 156 RθJA = 168°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C, see Figure 2 239 UNIT mA Safety temperature 150 °C The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance. 7.9 Electrical Characteristics: VCC1 and VCC2 at 5-V Operation For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. Over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS IOFF Sleep mode output current VOH High-level output voltage VOL Low-level output voltage VI(HYS) Input voltage hysteresis IIH High-level input current IN at VCCI IIL Low-level input current IN at 0 V CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 MIN EN at 0 V, Single channel TYP MAX UNIT 0 IOH = –4 mA, See Figure 11 VCCO – 0.8 IOH = –20 μA, See Figure 11 VCCO – 0.1 μA V IOL = 4 mA, See Figure 11 0.4 IOL = 20 μA, See Figure 11 0.1 V 150 mV 10 μA –10 25 2 pF 50 kV/μs 7.10 Supply Current Characteristics: VCC1 and VCC2 at 5-V Operation For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. Over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7240C/M ICC1 Supply current, side 1 ICC2 Supply current, side 2 Quiescent, All channels, no load, EN at 3 V, VI = VCC or 0 V 1 3 25 Mbps, All channels, no load, EN at 3 V, 12.5-MHz input-clock signal 7 10.5 Quiescent, VI = VCC or 0 V 15 22 25 Mbps, 12.5-MHz input-clock signal 17 25 Quiescent, VI = VCC or 0 V 6.5 11 25 Mbps, 12.5-MHz input-clock signal 12 18 Quiescent, VI = VCC or 0 V 13 20 25 Mbps, 12.5-MHz input-clock signal 18 28 Quiescent, VI = VCC or 0 V 10 16 25 Mbps, 12.5-MHz input-clock signal 15 24 Quiescent, VI = VCC or 0 V 10 16 25 Mbps, 12.5-MHz input-clock signal 15 24 All channels, no load, EN at 3 V mA mA ISO7241C/M ICC1 Supply current, side 1 All channels, no load, EN1 at 3 V, EN2 at 3 V ICC2 Supply current, side 2 All channels, no load, EN1 at 3 V, EN2 at 3 V mA mA ISO7242C/M ICC1 Supply current, side 1 All channels, no load, EN1 at 3 V, EN2 at 3 V ICC2 Supply current, side 2 All channels, no load, EN1 at 3 V, EN2 at 3 V 12 Submit Documentation Feedback mA mA Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 7.11 Electrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. For the 3.3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V. Over recommended operating conditions (unless otherwise noted) PARAMETER IOFF VOH TEST CONDITIONS Sleep mode output current High-level output voltage MIN EN at 0 V, Single channel IOH = –4 mA, See Figure 11 TYP MAX 3.3-V side VCCO – 0.4 5-V side VCCO – 0.8 IOH = –20 μA, See Figure 11 μA V VCCO – 0.1 IOL = 4 mA, See Figure 11 0.4 IOL = 20 μA, See Figure 11 0.1 VOL Low-level output voltage VI(HYS) Input voltage hysteresis IIH High-level input current IN at VCCI IIL Low-level input current IN at 0 V CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 UNIT 0 V 150 mV 10 μA –10 25 2 pF 50 kV/μs 7.12 Supply Current Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. For the 3.3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V. Over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7240C/M ICC1 Supply current, side 1 All channels, no load, EN at 3 V ICC2 Supply current, side 2 All channels, no load, EN at 3 V Quiescent, VI = VCC or 0 V 1 3 25 Mbps, 12.5-MHz input-clock signal 7 10.5 Quiescent, VI = VCC or 0 V 9.5 15 10.5 17 Quiescent, VI = VCC or 0 V 6.5 11 12.5-MHz input-clock signal 12 18 25 Mbps, 12.5-MHz input-clock signal mA mA ISO7241C/M ICC1 Supply current, side 1 All channels, no load, EN1 at 3 V, EN2 at 3 V ICC2 Supply current, side 2 All channels, no load, EN1 at 3 V, EN2 at 3 V Quiescent, VI = VCC or 0 V 8 13 11.5 18 Quiescent, VI = VCC or 0 V 10 16 12.5-MHz input-clock signal 15 24 Quiescent, VI = VCC or 0 V 6 10 25 Mbps, 12.5-MHz input-clock signal 9 14 25 Mbps, 12.5-MHz input-clock signal mA mA ISO7242C/M ICC1 Supply current, side 1 All channels, no load, EN1 at 3 V, EN2 at 3 V ICC2 Supply current, side 2 All channels, no load, EN1 at 3 V, EN2 at 3 V Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M mA mA 13 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 7.13 Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. For the 3.3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V. Over recommended operating conditions (unless otherwise noted) PARAMETER IOFF VOH TEST CONDITIONS Sleep mode output current High-level output voltage MIN EN at 0 V, Single channel IOH = –4 mA, See Figure 11 TYP MAX 3.3-V side VCCO – 0.4 5-V side VCCO – 0.8 IOH = –20 μA, See Figure 11 μA V VCCO – 0.1 IOL = 4 mA, See Figure 11 0.4 IOL = 20 μA, See Figure 11 0.1 VOL Low-level output voltage VI(HYS) Input voltage hysteresis IIH High-level input current IN at VCCI IIL Low-level input current IN at 0 V CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 UNIT 0 V 150 mV 10 μA –10 25 2 pF 50 kV/μs 7.14 Supply Current Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V. For the 3.3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V. Over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX 0.5 1 3 5 Quiescent, VI = VCC or 0 V 15 22 25 Mbps, 12.5-MHz input-clock signal 17 25 UNIT ISO7240C/M ICC1 Supply current, side 1 All channels, no load, EN at 3 V ICC2 Supply current, side 2 All channels, no load, EN at 3 V Quiescent, VI = VCC or 0 V 25 Mbps, 12.5-MHz input-clock signal mA mA ISO7241C/M ICC1 Supply current, side 1 All channels, no load, EN1 at 3 V, EN2 at 3 V ICC2 Supply current, side 2 All channels, no load, EN1 at 3 V, EN2 at 3 V Quiescent, VI = VCC or 0 V 4 7 25 Mbps, 12.5-MHz input-clock signal 6.5 11 Quiescent, VI = VCC or 0 V 13 20 25 Mbps, 12.5-MHz input-clock signal 18 28 Quiescent, VI = VCC or 0 V 6 10 25 Mbps, 12.5-MHz input-clock signal 9 14 Quiescent, VI = VCC or 0 V 10 16 25 Mbps, 12.5-MHz input-clock signal 15 24 mA mA ISO7242C/M ICC1 Supply current, side 1 All channels, no load, EN1 at 3 V, EN2 at 3 V ICC2 Supply current, side 2 All channels, no load, EN1 at 3 V, EN2 at 3 V 14 Submit Documentation Feedback mA mA Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 7.15 Electrical Characteristics: VCC1 and VCC2 at 3.3 V Operation For the 3.3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V. Over recommended operating conditions (unless otherwise noted) PARAMETER IOFF TEST CONDITIONS Sleep mode output current MIN EN at 0 V, single channel VCCO – 0.4 IOH = –20 μA, See Figure 11 VCCO – 0.1 High-level output voltage VOL Low-level output voltage VI(HYS) Input voltage hysteresis IIH High-level input current IN at VCCI IIL Low-level input current IN at 0 V CI Input capacitance to ground IN at VCC, VI = 0.4 sin (4E6πt) CMTI Common-mode transient immunity VI = VCC or 0 V, See Figure 15 MAX UNIT 0 IOH = –4 mA, See Figure 11 VOH TYP μA V IOL = 4 mA, See Figure 11 0.4 IOL = 20 μA, See Figure 11 0.1 V 150 mV 10 μA –10 25 2 pF 50 kV/μs 7.16 Supply Current Characteristics: VCC1 and VCC2 at 3.3 V Operation For the 3.3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V. Over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX 0.5 1 3 5 9.5 15 10.5 17 UNIT ISO7240C/M ICC1 Supply current, side 1 All channels, no load, EN at 3 V ICC2 Supply current, side 2 All channels, no load, EN at 3 V Quiescent, VI = VCC or 0 V 25 Mbps, 12.5-MHz input-clock signal Quiescent, VI = VCC or 0 V 25 Mbps, 12.5-MHz input-clock signal mA mA ISO7241C/M ICC1 Supply current, side 1 All channels, no load, EN1 at 3 V, EN2 at 3 V ICC2 Supply current, side 2 All channels, no load, EN1 at 3 V, EN2 at 3 V Quiescent, VI = VCC or 0 V 25 Mbps, 12.5-MHz input-clock signal Quiescent, VI = VCC or 0 V 4 7 6.5 11 8 13 11.5 18 Quiescent, VI = VCC or 0 V 6 10 25 Mbps, 12.5-MHz input-clock signal 9 14 Quiescent, VI = VCC or 0 V 6 10 25 Mbps, 12.5-MHz input-clock signal 9 14 25 Mbps, 12.5-MHz input-clock signal mA mA ISO7242C/M ICC1 Supply current, side 1 All channels, no load, EN1 at 3 V, EN2 at 3 V ICC2 Supply current, side 2 All channels, no load, EN1 at 3 V, EN2 at 3 V Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M mA mA 15 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 7.17 Switching Characteristics: VCC1 and VCC2 at 5-V Operation over recommended operating conditions (unless otherwise noted) PARAMETER tPLH, tPHL TEST CONDITIONS Propagation delay PWD Pulse-width distortion tPLH, tPHL Propagation delay |tPHL – tPLH| MAX 42 UNIT ns 2.5 See Figure 11 10 ISO724xM (1) TYP 18 ISO724xC (1) MIN Pulse-width distortion tsk(pp) Part-to-part skew tsk(o) Channel-to-channel output skew tr Output signal rise time tf Output signal fall time tPHZ Propagation delay, high-level-to-high-impedance output 15 20 tPZH Propagation delay, high-impedance-to-high-level output 15 20 tPLZ Propagation delay, low-level-to-high-impedance output 15 20 tPZL Propagation delay, high-impedance-to-low-level output 15 20 tfs Failsafe output delay time from input power loss See Figure 13 12 μs twake Wake time from input disable See Figure 14 15 μs Peak-to-peak eye-pattern jitter 150 Mbps NRZ data input, Same polarity input on all channels, See Figure 16 1 ns (1) (2) (3) 1 ns PWD tjit(pp) |tPHL – tPLH| 23 ISO724xC (2) 8 ISO724xM 0 ISO724xC (3) 3 2 ISO724xM 0 1 2 See Figure 11 ISO724xM 2 ns ns 2 See Figure 12 ns ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. 7.18 Switching Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP PWD Pulse-width distortion (1) |tPHL – tPLH| tPLH, tPHL Propagation delay PWD Pulse-width distortion(1) |tPHL – tPLH| tsk(pp) Part-to-part skew tsk(o) Channel-to-channel output skew tr Output signal rise time tf Output signal fall time tPHZ Propagation delay, high-level-to-high-impedance output 15 20 tPZH Propagation delay, high-impedance-to-high-level output 15 20 tPLZ Propagation delay, low-level-to-high-impedance output 15 20 tPZL Propagation delay, high-impedance-to-low-level output 15 20 tfs Failsafe output delay time from input power loss See Figure 13 18 μs twake Wake time from input disable See Figure 14 15 μs Peak-to-peak eye-pattern jitter 150 Mbps PRBS NRZ data input, Same polarity input on all channels, See Figure 16 1 ns (1) (2) (3) 16 ISO724xC 50 UNIT Propagation delay tjit(pp) 20 MAX tPLH, tPHL 3 See Figure 11 12 ISO724xM 29 1 ISO724xC (2) (3) 0 ISO724xC 5 3 ISO724xM 0 1 2 See Figure 11 ISO724xM 2 10 ISO724xM ns ns ns ns 2 See Figure 12 ns ns Also known as pulse skew tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 7.19 Switching Characteristics: VCC1 at 3.3-V and VCC2 at 5-V Operation over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay PWD Pulse-width distortion (1) |tPHL – tPLH| MIN TYP 22 ISO724xC MAX 51 3 See Figure 11 ns tPLH, tPHL Propagation delay PWD Pulse-width distortion(1) |tPHL – tPLH| tsk(pp) Part-to-part skew tsk(o) Channel-to-channel output skew tr Output signal rise time tf Output signal fall time tPHZ Propagation delay, high-level-to-high-impedance output 15 20 tPZH Propagation delay, high-impedance-to-high-level output 15 20 tPLZ Propagation delay, low-level-to-high-impedance output 15 20 tPZL Propagation delay, high-impedance-to-low-level output 15 20 tfs Failsafe output delay time from input power loss See Figure 13 12 μs twake Wake time from input disable See Figure 14 15 μs Peak-to-peak eye-pattern jitter 150 Mbps NRZ data input, Same polarity input on all channels, See Figure 16 1 ns tjit(pp) (1) (2) (3) 12 UNIT ISO724xM 30 1 ISO724xC (2) 10 ISO724xM (3) 0 ISO724xC 5 2.5 ISO724xM 0 1 2 See Figure 11 ISO724xM 2 ns ns ns 2 See Figure 12 ns ns Also known as pulse skew tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. 7.20 Switching Characteristics: VCC1 and VCC2 at 3.3-V Operation over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP PWD Pulse-width distortion |tPHL – tPLH| (1) tPLH, tPHL Propagation delay PWD Pulse-width distortion |tPHL – tPLH| (1) tsk(pp) Part-to-part skew tsk(o) Channel-to-channel output skew tr Output signal rise time tf Output signal fall time tPHZ Propagation delay, high-level-to-high-impedance output tPZH Propagation delay, high-impedance-to-high-level output tPLZ Propagation delay, low-level-to-high-impedance output tPZL Propagation delay, high-impedance-to-low-level output tfs Failsafe output delay time from input power loss See Figure 13 18 μs twake Wake time from input disable See Figure 14 15 μs Peak-to-peak eye-pattern jitter 150 Mbps PRBS NRZ data input, same polarity input on all channels, See Figure 16 1 ns (1) (2) (3) ISO724xC 56 UNIT Propagation delay tjit(pp) 25 MAX tPLH, tPHL 4 See Figure 11 12 ISO724xM 34 1 ISO724xC (2) 10 ISO724xM (3) 0 ISO724xC 5 3.5 ISO724xM 0 1 2 See Figure 11 ISO724xM 2 ns ns ns ns 2 See Figure 12 ns ns 15 20 15 20 15 20 15 20 ns Also referred to as pulse skew. tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 17 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 7.21 Insulation Characteristics Curves 300 VCC1,2 at 3.6 V 250 Safety Limiting Current - mA Working Life [Years] 100 VIORM at 560 VPK 28 Years 10 0 120 250 500 750 880 Working Voltage (VIORM) [VPK] 1000 200 150 VCC1,2 at 5.5 V 100 50 0 0 Figure 1. Isolation Capacitor Lifetime Projection 18 Submit Documentation Feedback 50 100 150 TC - Case Temperature - °C 200 Figure 2. Thermal Derating Curve for Limiting Current per VDE Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 45 45 40 40 ICC - Supply Current - mA/RMS ICC - Supply Current - mA/RMS 7.22 Typical Characteristics 35 5-V ICC2 30 3.3-V ICC2 25 20 5-V ICC1 15 10 5 35 5-V ICC2 30 25 20 3.3-V ICC2 15 5 3.3-V ICC1 25 50 75 100 Signaling Rate - Mbps TA = 25°C 3.3-V ICC1 10 0 0 0 0 5-V ICC1 125 150 25 Load = 15 pF All Channels TA = 25°C 45 45 40 40 35 35 Propagation Delay - ns ICC - Supply Current - mA/RMS 100 125 150 Load = 15 pF All Channels Figure 4. ISO7241C/M RMS Supply Current vs Signaling Rate 30 5-V ICC1,ICC2 25 20 15 3.3-V ICC1,ICC2 3.3-V t pLH , t pHL ( C-grade) 5-V tpLH, tpHL (C-grade) 30 25 3.3-V tpLH, tpHL (M-grade) 20 15 10 10 5 5 5-V tpLH, tpHL (M-grade) 0 25 50 75 100 125 150 -40 -25 -10 Signaling Rate - Mbps TA = 25°C Load = 15 pF All Channels 80 65 35 20 50 TA - Free-Air Temperature - °C 95 Load = 15 pF 110 125 All Channels Figure 6. Propagation Delay vs Free-Air Temperature 3 1.4 5 V Vth+ 2.9 VCC - Undervoltage Threshold - V 1.35 1.3 3.3 V Vth+ 1.25 1.2 1.15 5 V Vth1.1 1.05 -25 -10 Air Flow at 7 cf/m 2.8 VCC Rising 2.7 2.6 2.5 VCC Falling 2.4 2.3 2.2 2.1 3.3 V Vth1 -40 5 TA = 25°C Figure 5. ISO7242C/M RMS Supply Current vs Signaling Rate Input Voltage Threshold - V 75 Signaling Rate - Mbps Figure 3. ISO7240C/M RMS Supply Current vs Signaling Rate 0 0 50 5 20 35 50 65 80 TA - Free-Air Temperature - °C 95 110 125 2 -40 -25 -10 5 20 35 50 65 80 95 110 125 TA - Free-Air Temperature - °C Low_K Board Figure 7. Input Voltage Threshold vs Free-Air Temperature Copyright © 2007–2017, Texas Instruments Incorporated Figure 8. VCC Undervoltage Threshold vs Free-Air Temperature Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 19 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com Typical Characteristics (continued) 50 50 VCC = 5 V 45 40 IO - Output Current - mA IO - Output Current - mA 40 VCC = 3.3 V 30 20 10 35 VCC = 3.3 V 30 25 VCC = 5 V 20 15 10 5 0 0 2 TA = 25°C 4 VO - Output Voltage - V Load = 15 pF Figure 9. High-Level Output Current vs High-Level Output Voltage 20 Submit Documentation Feedback 6 0 0 1 TA = 25°C 2 3 VO - Output Voltage - V 4 5 Load = 15 pF Figure 10. Low-Level Output Current vs Low-Level Output Voltage Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 8 Parameter Measurement Information Isolation Barrier IN Input Generator (See Note A) VI VCC VI OUT VCC/2 VCC/2 0V tPLH CL See Note B VO 50 tPHL VO VOH 90% 50% 50% 10% VOL tf tr Copyright © 2016, Texas Instruments Incorporated A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 11. Switching Characteristic Test Circuit and Voltage Waveforms VCC VCC Isolation Barrier IN 0V VO VI tPZL 0V tPLZ VCC EN 0.5 V VO 50% VOL 50 OUT VCC VO VCC / 2 VCC / 2 VI 0V EN CL See Note B VI VCC/2 VCC/2 VI CL See Note B IN Input Generator (See Note A) ±1% OUT Isolation Barrier Input Generator (See Note A) 3V RL = 1 k tPZH RL = 1 k ±1% VOH VO 50 50% 0.5 V tPHZ 0V Copyright © 2016, Texas Instruments Incorporated A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50Ω. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 12. Enable or Disable Propagation-Delay Time Test Circuit and Waveform Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 21 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com Parameter Measurement Information (continued) VI VCC VCC A. Isolation Barrier 0 V (fs high) or VCC1 (fs low) VI IN OUT 2.7 V 0V tfs VO VOH 50% VO CL See Note A fs high fs low VOL CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. 3V IN DISABLE Isolation Barrier Figure 13. Failsafe Delay Time Test Circuit and Voltage Waveforms VCC OUT VI VI VCC/2 0V CRTL 0V Input Generator (See Note A) VO twake CL See Note B VCC 50 50% VO 0V IN DISABLE Isolation Barrier 0V VCC OUT VI VI VCC/2 CRTL 3V Input Generator (See Note A) VO 0V twake CL See Note B VCC 50 50% VO 0V Copyright © 2016, Texas Instruments Incorporated NOTE: The test that yields the longest time is used in this data sheet. A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50Ω. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 14. Wake Time From Input Disable Test Circuit and Voltage Waveforms 22 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 Parameter Measurement Information (continued) S1 C = 0.1 µF ±1% VCCO IN C = 0.1 µF ±1% Pass-fail criteria – output must remain stable. Isolation Barrier VCCI OUT + CL See Note A GNDI GNDO VOH or VOL – + VCM – A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. B. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω. Figure 15. Common-Mode Transient Immunity Test Circuit and Voltage Waveform VCC DUT Input IN 0V Tektronix HFS9009 OUT Pattern Generator Tektronix 784D Output VCC/2 Jitter Copyright © 2016, Texas Instruments Incorporated NOTE: PRBS bit pattern run length is 216 – 1. Transition time is 800 ps. NRZ data input has no more than five consecutive 1s or 0s. Figure 16. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 23 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 9 Detailed Description 9.1 Overview The isolator in Figure 17 is based on a capacitive isolation-barrier technique. The I/O channel of the device consists of two internal data channels, a high-frequency channel (HF) with a bandwidth from 100 kbps up to 150 Mbps, and a low-frequency channel (LF) covering the range from 100 kbps down to DC. In principle, a singleended input signal entering the HF-channel is split into a differential signal through the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into transients, which then are converted into differential pulses by two comparators. The comparator outputs drive a NOR-gate flip-flop the output of which feeds an output multiplexer. A decision logic (DCL) at the driving output of the flip-flop measures the durations between signal transients. If the duration between two consecutive transients exceeds a certain time limit, as in the case of a low-frequency signal, the DCL forces the output-multiplexer to switch from the high- to the lowfrequency channel. Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a low-pass filter (LPF) is required to remove the high-frequency carrier from the actual data before passing it on to the output multiplexer. 9.2 Functional Block Diagram Isolation Barrier OSC LPF Low t Frequency Channel (DC...100 kbps) PWM VREF 0 OUT 1 S IN DCL High t Frequency Channel (100 kbps...150 Mbps) VREF Copyright © 2016, Texas Instruments Incorporated Figure 17. Conceptual Block Diagram of a Digital Capacitive Isolator 24 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 9.3 Feature Description The ISO724xx family of devices is available in multiple channel configurations and default output-state options to enable wide variety of application uses. Table 1 lists these device features. Table 1. Device Features PRODUCT SIGNALING RATE INPUT THRESHOLD ISO7240C 25 Mbps ~1.5 V (TTL) ISO7240CF 25 Mbps ~1.5 V (TTL) ISO7240M 150 Mbps VCC/ 2 (CMOS) ISO7241C 25 Mbps ~1.5 V (TTL) ISO7241M 150 Mbps VCC/ 2 (CMOS) ISO7242C 25 Mbps ~1.5 V (TTL) ISO7242M 150 Mbps VCC/ 2 (CMOS) CHANNEL CONFIGURATION 4/0 3/1 2/2 9.4 Device Functional Modes Table 2 lists the ISO724xx functional modes. Table 3 lists the ISO7240CF functional modes. Table 2. Device Function Table ISO724x (1) INPUT VCC (1) OUTPUT VCC INPUT (IN) OUTPUT ENABLE (EN) OUTPUT (OUT) H H or Open H L H or Open L X L Z PU PU Open H or Open H PD PU X H or Open H PD PU X L Z X PD X X Undetermined PU = Powered Up; PD = Powered Down; X = Irrelevant; H = High Level; L = Low Level; Z = High Impedance; Open = Not Connected Table 3. ISO7240CF Functions Table (1) (1) VCC1 VCC2 DATA INPUT (IN) DISABLE INPUT (DISABLE) FAILSAFE CONTROL (CTRL) DATA OUTPUT (OUT) PU PU H L or Open X H PU PU L L or Open X L X PU X H H or Open H X PU X H L L PD PU X X H or Open H PD PU X X L L X PD X X X Undetermined PU = Powered Up; PD = Powered Down; X = Irrelevant; H = High Level; L = Low Level; Z = High Impedance; Open = Not Connected Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 25 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 9.4.1 Device I/O Schematics Input VCC Output VCC VCC VCC 1 MW IN 8W 500 W OUT 13 W Enable, Control ISO7240CF Input, Disable VCC VCC VCC VCC VCC 1 MW IN or DISABLE 500 W EN or CTRL 500 W 1 MW Copyright © 2016, Texas Instruments Incorporated Figure 18. Device I/O Schematics 26 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 10 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Application Information The ISO724xx family of devices uses a single-ended TTL or CMOS-logic switching technology. The supply voltage range is from 3.15 V to 5.5 V for both supplies, VCC1 and VCC2. When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or standard. 10.2 Typical Application 10.2.1 Isolated Data Acquisition System for Process Control The ISO724xx family of devices can be used with Texas Instruments' precision analog-to-digital converter and mixed signal microcontroller to create an advanced isolated data acquisition system as shown in Figure 19. 5 VISO Isolation Barrier 5 VISO 5 VISO 0.1 F 22 AVDD 11 RTD 12 16 1 0.1 F DVDD AIN1+ A0 AIN1± A1 SCLK Bridge 18 17 AIN2+ DOUT ADS1234 AIN2± REF+ 13 Thermo couple 14 16 Current shunt 15 AIN3+ AIN3± REF± GAIN0 GAIN1 AIN4+ AIN4± SPEED PWDN 14 7 13 27 12 28 11 9, 15 5 VISO VCC2 VCC1 EN2 EN1 INA OUTA OUTB ISO7241 OUTC INB INC IND OUTD GND2 GND1 0.1 F 1 7 0.1 F 19 0.1 F 0.1 F 16 10 23 14 24 13 25 12 26 11 9, 15 VCC2 VCC1 EN NC OUTA INA OUTB ISO7240 INB OUTC INC OUTD IND GND2 GND1 2 DVcc 3 11 P3.0 4 12 P3.1 MSP430F2132 14 6 XIN CLK 13 18 P3.7 SOMI 17 P3.6 15 16 P3.4 P3.5 DVss 5 6 2, 8 3.3 V 20 AGND DGND 21 10 8 5 VISO 3.3 V 3.3 V 0.1 F 1 7 0.1 F XOUT 5 4 3 4 5 6 2, 8 2 Copyright © 2016, Texas Instruments Incorporated Figure 19. Isolated Data Acquisition System for Process Control 10.2.1.1 Design Requirements Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO724x family of devices only require two external bypass capacitors to operate. Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 27 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com Typical Application (continued) 10.2.1.2 Detailed Design Procedure 2 mm maximum from VCC2 2 mm maximum from VCC1 ISO7240C and ISO7240M 0.1 µF 0.1 µF 1 16 2 15 INA 3 14 OUTA INB 4 13 OUTB INC 5 12 OUTC IND 6 11 OUTD 7 10 8 9 VCC2 VCC1 GND2 GND1 NC EN GND1 GND2 Copyright © 2016, Texas Instruments Incorporated Figure 20. ISO7240x Typical Circuit Hook-Up 2 mm maximum from VCC2 2 mm maximum from VCC1 ISO7240CF 0.1 µF 0.1 µF 1 16 2 15 INA 3 14 OUTA INB 4 13 OUTB INC 5 12 OUTC IND 6 11 OUTD 7 10 8 9 VCC2 VCC1 GND2 GND1 DISABLE CTRL GND2 GND1 Copyright © 2016, Texas Instruments Incorporated Figure 21. ISO7240CF Typical Circuit Hook-Up 28 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 Typical Application (continued) 2 mm maximum from VCC1 2 mm maximum from VCC2 ISO7241C and ISO7241M 0.1 µF 0.1 µF 1 16 2 15 INA 3 14 OUTA INB 4 13 OUTB INC 5 12 OUTC OUTD 6 11 IND 7 10 8 9 VCC2 VCC1 GND2 GND1 EN2 EN1 GND1 GND2 Copyright © 2016, Texas Instruments Incorporated Figure 22. ISO7241x Typical Circuit Hook-Up 2 mm maximum from VCC1 2 mm maximum from VCC2 ISO7242C and ISO7242M 0.1 µF 0.1 µF 1 16 2 15 INA 3 14 OUTA INB 4 13 OUTB OUTC 5 12 INC OUTD 6 11 IND 7 10 8 9 VCC2 VCC1 GND2 GND1 EN2 EN1 GND1 GND2 Copyright © 2016, Texas Instruments Incorporated Figure 23. ISO7242x Typical Circuit Hook-Up Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 29 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com Typical Application (continued) 10.2.1.3 Application Curves Figure 25. ISO7242M Eye Diagram at 150 Mbps, 3.3 V and 25°C Figure 24. ISO7242M Eye Diagram at 25 Mbps, 3.3 V and 25°C 10.2.2 Isolated SPI for an Analog Input Module with 16 Inputs The ISO7241x family of devices and several other components from Texas Instruments can be used to create an isolated SPI for an input module with 16 inputs. VS 3.3 V 0.1 F 2 VCC D2 3 1:1.33 MBR0520L 4 SN6501 10 F GND D1 0.1 F 1 IN OUT 1 TLV70733 3 EN GND 2 3.3VISO 10 F 2 10 F 4, 5 MBR0520L 1 F 4.7 k 2 7 DVCC P1.4 XOUT XIN 22 F GND 0.1 F 1 6 6 0.1 F 0.1 F 5 VOUT REF5025 4 Isolation Barrier 0.1 F VIN 6 3 7 4 SCLK MSP430G2132 8 SDO (14-PW) 9 SDI DVss 4 5 6 16 VCC1 VCC2 EN1 INA EN2 OUTA ISO7241x INB INC OUTD GND1 2, 8 OUTB OUTC IND GND2 9, 15 4.7 k 3 10 14 23 13 24 12 25 11 26 2 28 AINP MXO VBD 32 31 VA REFP CS CH0 SCLK 20 16 Analog Inputs ADS7953 SDI SDO CH15 BDGND 27 AGND 1, 22 5 REFM 30 Copyright © 2016, Texas Instruments Incorporated Figure 26. Isolated SPI for an Analog Input Module With 16 Inputs 10.2.2.1 Design Requirements See the Design Requirements in the Isolated Data Acquisition System for Process Control section. 30 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 Typical Application (continued) 10.2.2.2 Detailed Design Procedure See the Detailed Design Procedure in the Isolated Data Acquisition System for Process Control section.. 10.2.2.3 Application Curve See the Application Curves in the Isolated Data Acquisition System for Process Control section.. 10.2.3 Isolated RS-232 Interface Figure 27 shows a typical isolated RS-232 interface implementation. VIN 3.3 V 0.1 F 2 VCC D2 1:2.1 3 MBR0520L 1 SN6501 10 F 0.1 F GND D1 1 10 F 4, 5 OUT IN 5VISO 5 LP2985-50 3 ON MBR0520L 3.3 F 4 BP GND 2 10 nF Isolation Barrier 0.1 F 0.1 F 0.1 F 16 1 F 0.1 F 16 1 4.7 k 2 7 VCC1 VCC2 EN1 DVCC 5 6 XOUT XIN UCA0TXD 15 3 16 5 UCA0RXD MSP430F2132 12 P3.1 11 P3.0 DVSS 4 6 INA ISO7242x OUTC INB OUTD 2, 8 1 F 3 EN2 GND1 4 1 4.7 k 10 2 OUTA INC OUTB IND 14 11 12 12 13 10 11 9 GND2 9, 15 VCC VS+ VS- C1+ C2+ TRS232 C1- C2T1OUT T1IN R1IN R1OUT T2OUT T2IN R2IN R2OUT 6 1 F 4 5 1 F 14 13 7 8 TxD RxD RST CST GND 15 ISOGND Copyright © 2016, Texas Instruments Incorporated Figure 27. Isolated RS-232 Interface 10.2.3.1 Design Requirements See the Design Requirements in the Isolated Data Acquisition System for Process Control section. 10.2.3.2 Detailed Design Procedure See the Detailed Design Procedure in the Isolated Data Acquisition System for Process Control section.. 10.2.3.3 Application Curve See the Application Curves in the Isolated Data Acquisition System for Process Control section.. Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 31 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 11 Power Supply Recommendations To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 device. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 Transformer Driver for Isolated Power Supplies. 12 Layout 12.1 Layout Guidelines A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 28). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer. • Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. • Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. • Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in2. • Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly. For detailed layout recommendations, refer to Digital Isolator Design Guide. 12.1.1 PCB Material For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics. 12.2 Layout Example High-speed traces 10 mils Ground plane 40 mils Keep this space free from planes, traces, pads, and vias FR-4 0r ~ 4.5 Power plane 10 mils Low-speed traces Figure 28. Recommended Layer Stack 32 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M www.ti.com SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 13 Device and Documentation Support 13.1 Documentation Support 13.1.1 Related Documentation For related documentation, see the following: • ADS1234 24-Bit Analog-to-Digital Converter For Bridge Sensors • ADS79xx 12/10/8-Bit, 1 MSPS, 16/12/8/4-Channel, Single-Ended, MicroPower, Serial Interface ADCs • Digital Isolator Design Guide • High-Voltage Lifetime of the ISO72x Family of Digital Isolators • ISO72x Digital Isolator Magnetic-Field Immunity • Isolation Glossary • LP2985 150-mA Low-noise Low-dropout Regulator With Shutdown • MSP430F2132 Mixed Signal Microcontroller • MSP430G2x32, MSP430G2x02 Mixed Signal Microcontroller • REF50xx Low-Noise, Very Low Drift, Precision Voltage Reference • SN6501 Transformer Driver for Isolated Power Supplies • TLV707, TLV707P 200-mA, Low-IQ, Low-Noise, Low-Dropout Regulator for Portable Devices • TRS232 Dual RS-232 Driver/Receiver With IEC61000-4-2 Protection 13.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 4. Related Links PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY ISO7240CF Click here Click here Click here Click here Click here ISO7240C Click here Click here Click here Click here Click here ISO7240M Click here Click here Click here Click here Click here ISO7241C Click here Click here Click here Click here Click here ISO7241M Click here Click here Click here Click here Click here ISO7242C Click here Click here Click here Click here Click here ISO7242M Click here Click here Click here Click here Click here 13.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 13.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 13.5 Trademarks Copyright © 2007–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M 33 ISO7240CF, ISO7240C, ISO7240M ISO7241C, ISO7241M, ISO7242C, ISO7242M SLLS868T – SEPTEMBER 2007 – REVISED APRIL 2017 www.ti.com 13.5 Trademarks (continued) E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 13.6 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 13.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 34 Submit Documentation Feedback Copyright © 2007–2017, Texas Instruments Incorporated Product Folder Links: ISO7240CF ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) ISO7240CDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240C Samples ISO7240CDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240C Samples ISO7240CDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240C Samples ISO7240CFDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240CF Samples ISO7240CFDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240CF Samples ISO7240CFDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240CF Samples ISO7240MDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240M Samples ISO7240MDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240M Samples ISO7240MDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240M Samples ISO7240MDWRG4 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7240M Samples ISO7241CDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7241C Samples ISO7241CDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7241C Samples ISO7241CDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7241C Samples ISO7241CDWRG4 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7241C Samples ISO7241MDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7241M Samples ISO7241MDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7241M Samples ISO7241MDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7241M Samples ISO7241MDWRG4 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7241M Samples ISO7242CDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7242C Samples ISO7242CDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7242C Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 14-Oct-2022 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) ISO7242CDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7242C Samples ISO7242MDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7242M Samples ISO7242MDWG4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7242M Samples ISO7242MDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7242M Samples ISO7242MDWRG4 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7242M Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ISO7241CDWR 价格&库存

很抱歉,暂时无法提供与“ISO7241CDWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO7241CDWR
  •  国内价格
  • 1+10.89660
  • 10+10.03860
  • 30+9.86700

库存:75