0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMH6550MAX

LMH6550MAX

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC OPAMP VFB 400MHZ 8SOIC

  • 数据手册
  • 价格&库存
LMH6550MAX 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 LMH6550 Differential, High-Speed Operational Amplifier 1 Features • • • • • • 1 3 Description The LMH6550 device is a high-performance voltage feedback differential amplifier. The LMH6550 has the high speed and low distortion necessary for driving high-performance ADCs as well as the current handling capability to drive signals over balanced transmission lines like CAT 5 data cables. The LMH6550 can handle a wide range of video and data formats. 400 MHz −3-dB Bandwidth (VOUT = 0.5 VPP) 90 MHz 0.1-dB Bandwidth 3000 V/µs Slew Rate 8 ns Settling Time to 0.1% −92/−103 dB HD2/HD3 at 5 MHz 10 ns Shutdown/Enable With external gain set resistors, the LMH6550 can be used at any desired gain. Gain flexibility coupled with high speed makes the LMH6550 suitable for use as an IF amplifier in high-performance communications equipment. 2 Applications • • • • • • • Differential AD Driver Video Over Twisted-Pair Differential Line Driver Single End to Differential Converter High-Speed Differential Signaling IF/RF Amplifier SAW Filter Buffer/Driver The LMH6550 is available in the space-saving SOIC and VSSOP packages. Device Information(1) PART NUMBER LMH6550 PACKAGE BODY SIZE (NOM) SOIC (8) 4.90 mm × 3.91 mm VSSOP (8) 3.00 mm × 3.00 mm (1) For all available packages, see the orderable addendum at the end of the datasheet. 4 Typical Application Schematic RF AV, RIN RS VS a VI + V RO RG + - VCM RT + RM RG IN- ADC VO IN+ RO - V RF For R M  R G : Av RIN # DesignTarget : VO RF # VI R G 1) Set R T 2R G (1  A v ) 2  Av 2) Set RM 1 1 1  R S RIN R T || R S 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Typical Application Schematic............................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 1 2 3 3 7.1 7.2 7.3 7.4 7.5 7.6 7.7 3 3 4 4 4 6 8 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics: ±5 V ................................. Electrical Characteristics: 5 V ................................... Typical Characteristics .............................................. Detailed Description ............................................ 12 8.1 Overview ................................................................. 12 8.2 Functional Block Diagram ....................................... 12 8.3 Feature Description................................................. 12 8.4 Device Functional Modes........................................ 13 9 Application and Implementation ........................ 14 9.1 Application Information............................................ 14 9.2 Typical Applications ................................................ 14 10 Power Supply Recommendations ..................... 22 11 Layout................................................................... 22 11.1 11.2 11.3 11.4 Layout Guidelines ................................................. Layout Example .................................................... Power Dissipation ................................................. ESD Protection...................................................... 22 22 24 24 12 Device and Documentation Support ................. 25 12.1 12.2 12.3 12.4 12.5 Device Support...................................................... Documentation Support ........................................ Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 25 25 25 25 25 13 Mechanical, Packaging, and Orderable Information ........................................................... 25 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision H (March 2013) to Revision I • Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .................................................................................................. 1 Changes from Revision G (March 2013) to Revision H • 2 Page Page Changed layout of National Data Sheet to TI format ........................................................................................................... 22 Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 6 Pin Configuration and Functions D Package / DGK Package 8 Pins Top View 1 8 +IN -IN - 2 + VCM 7 3 6 4 5 EN V- V+ +OUT -OUT Pin Functions PIN NAME NO. I/O DESCRIPTION EN 7 I Enable -IN 1 I Negative Input +IN 8 I Positive Input -OUT 5 O Negative Output +OUT 4 O Positive Output V- 6 P Negative Supply V+ 3 P Positive Supply VCM 2 I Output Common-Mode Input 7 Specifications 7.1 Absolute Maximum Ratings (1) (2) (3) MAX UNIT Supply Voltage MIN 13.2 V Common-Mode Input Voltage ±VS V 30 mA 150 °C 150 °C Maximum Input Current (pins 1, 2, 7, 8) (4) Maximum Output Current (pins 4, 5) Maximum Junction Temperature −65 Storage Temperature, Tstg (1) (2) (3) (4) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications. For Soldering Information, see Product Folder at www.ti.com and SNOA549. The maximum output current (IOUT) is determined by device power dissipation limitations. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge (1) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 Machine model (MM) (2) UNIT ±2000 ±200 V Human body model: 1.5 kΩ in series with 100 pF. Machine model: 0 Ω in series with 200 pF. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 3 LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com 7.3 Recommended Operating Conditions MIN NOM MAX UNIT Operating Temperature −40 85 °C Total Supply Voltage 4.5 12 V 7.4 Thermal Information LMH6550 THERMAL METRIC (1) RθJA (1) (2) Junction-to-ambient thermal resistance (2) D DGK UNIT 8 PINS 8 PINS 150 235 °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. The maximum power dissipation is a function of TJ(MAX), θJA and TA. The maximum allowable power dissipation at any ambient temperature is P D= (TJ(MAX) — TA)/ θJA. All numbers apply for package soldered directly into a 2 layer PC board with zero air flow. 7.5 Electrical Characteristics: ±5 V (1) Single-ended in differential out, TA = 25°C, VS = ±5 V, VCM = 0 V, RF = RG = 365 Ω, RL = 500 Ω; unless specified. PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT AC PERFORMANCE (DIFFERENTIAL) SSBW Small Signal −3 dB Bandwidth VOUT = 0.5 VPP 400 MHz LSBW Large Signal −3 dB Bandwidth VOUT = 2 VPP 380 MHz Large Signal −3 dB Bandwidth VOUT = 4 VPP 320 MHz 0.1 dB Bandwidth VOUT = 0.5 VPP 90 MHz Slew Rate 4-V Step 3000 V/μs Rise/Fall Time 2-V Step 1 ns Settling Time 2-V Step, 0.1% 8 ns (4) 2000 VCM PIN AC PERFORMANCE (COMMON-MODE FEEDBACK AMPLIFIER) Common-Mode Small Signal Bandwidth VCM Bypass Capacitor Removed 210 MHz Slew Rate VCM Bypass Capacitor Removed 200 V/µs VO = 2 VPP, f = 5 MHz, RL = 800 Ω −92 VO = 2 VPP, f = 20 MHz, RL = 800 Ω −78 VO = 2 VPP, f = 70 MHz, RL = 800 Ω −59 VO = 2 VPP, f = 5 MHz, RL = 800 Ω −103 VO = 2 VPP, f = 20 MHz, RL = 800 Ω −88 VO = 2 VPP, f = 70 MHz, RL = 800 Ω −50 DISTORTION AND NOISE RESPONSE HD2 HD3 2nd Harmonic Distortion 3rd Harmonic Distortion dBc dBc en Input Referred Voltage Noise f ≥ 1 MHz 6.0 nV/√Hz in Input Referred Noise Current f ≥ 1 MHz 1.5 pA/√Hz INPUT CHARACTERISTICS (DIFFERENTIAL) VOSD IBI (1) (2) (3) (4) (5) (6) 4 Input Offset Voltage Differential Mode, VID = 0, VCM = 0 Input Offset Voltage Average Temperature Drift (5) Input Bias Current (6) 1 At extreme temperatures ±4 mV ±6 1.6 0 -8 µV/°C −16 µA Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. Typical numbers are the most likely parametric norm. Slew Rate is the average of the rising and falling edges. Drift determined by dividing the change in parameter at temperature extremes by the total temperature change. Negative input current implies current flowing out of the device. Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 Electrical Characteristics: ±5 V(1) (continued) Single-ended in differential out, TA = 25°C, VS = ±5 V, VCM = 0 V, RF = RG = 365 Ω, RL = 500 Ω; unless specified. PARAMETER Input Bias Current Average Temperature Drift TEST CONDITIONS MIN (2) (5) TYP (3) MAX (2) UNIT 9.6 nA/°C 0.3 µA Input Bias Difference Difference in Bias Currents Between the Two Inputs CMRR Common-Mode Rejection Ratio DC, VCM = 0 V, VID = 0 V 82 dBc RIN Input Resistance Differential 5 MΩ CIN Input Capacitance Differential 1 pF CMVR Input Common-Mode Voltage Range CMRR > 53 dB +3.2 −4.7 V 72 +3.1 −4.6 VCM PIN INPUT CHARACTERISTICS (COMMON-MODE FEEDBACK AMPLIFIER) VOSC Input Offset Voltage Common Mode, VID = 0 1 At extreme temperatures Input Offset Voltage Average Temperature Drift (5) Input Bias Current (6) VCM CMRR VID = 0 V, 1-V Step on VCM Pin, Measure VOD mV ±8 25 µV/°C −2 μA 70 75 dB 0.995 0.997 7.38 7.8 V ±3.8 V Input Resistance Common-Mode Gain ±5 25 ΔVO,CM/ΔVCM kΩ 1.005 V/V OUTPUT PERFORMANCE Output Voltage Swing Peak to Peak, Differential At extreme temperatures Output Common-Mode Voltage Range VID = 0 V, IOUT Linear Output Current VOUT = 0 V ISC Short Circuit Current Output Shorted to Ground VIN = 3 V Single-Ended (7) Output Balance Error ΔVOUT Common Mode /ΔVOUT Differential, VOUT = 1 VPP Differential, f = 10 MHz 7.18 ±3.69 ±63 ±75 mA ±200 mA −68 dB MISCELLANEOUS PERFORMANCE Enable Voltage Threshold Pin 7 Disable Voltage Threshold Pin 7 Enable Pin Current 2.0 V 1.5 VEN =0 V (6) -250 VEN =4 V (6) 55 Enable/Disable Time ns 70 dB Open Loop Gain Differential PSRR Power Supply Rejection Ratio DC, ΔVS = ±1 V 74 90 Supply Current RL = ∞ 18 20 At extreme temperatures (7) µA 10 AVOL Disabled Supply Current V dB 24 mA 27 1 1.2 mA The maximum output current (IOUT) is determined by device power dissipation limitations. Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 5 LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com 7.6 Electrical Characteristics: 5 V (1) Single-ended in differential out, TA = 25°C, AV = +1, VS = 5 V, VCM = 2.5 V, RF = RG = 365 Ω, RL = 500 Ω; unless specified. PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT SSBW Small Signal −3 dB Bandwidth RL = 500 Ω, VOUT = 0.5 VPP 350 MHz LSBW Large Signal −3 dB Bandwidth RL = 500 Ω, VOUT = 2 VPP 330 MHz 60 MHz 1500 V/μs 0.1 dB Bandwidth (4) Slew Rate 2-V Step Rise/Fall Time, 10% to 90% 1-V Step Settling Time 1-V Step, 0.05% 1 ns 12 ns Common-Mode Small Signal Bandwidth 185 MHz Slew Rate 180 V/μs VCM PIN AC PERFORMANCE (COMMON-MODE FEEDBACK AMPLIFIER) DISTORTION AND NOISE RESPONSE HD2 HD3 2nd Harmonic Distortion 3rd Harmonic Distortion VO = 2 VPP, f = 5 MHz, RL = 800 Ω −89 VO = 2 VPP, f = 20 MHz, RL = 800 Ω −88 VO = 2 VPP, f = 5 MHz, RL = 800 Ω −85 VO = 2 VPP, f = 20 MHz, RL = 800 Ω −70 dBc dBc en Input Referred Noise Voltage f ≥ 1 MHz 6.0 nV/√Hz in Input Referred Noise Current f ≥ 1 MHz 1.5 pA/√Hz INPUT CHARACTERISTICS (DIFFERENTIAL) VOSD IBIAS CMRR VICM Input Offset Voltage Differential Mode, VID = 0, VCM = 0 Input Offset Voltage Average Temperature Drift (5) Input Bias Current (6) Input Bias Current Average Temperature Drift (5) 1 At extreme temperatures ±4 mV ±6 1.6 0 −8 µV/°C −16 μA 9.5 nA/°C 0.3 µA Input Bias Current Difference Difference in Bias Currents Between the Two Inputs Common-Mode Rejection Ratio DC, VID = 0 V 80 dBc Input Resistance Differential 5 MΩ Input Capacitance Differential 1 pF Input Common-Mode Range CMRR > 53 dB 70 +3.1 +0.4 +3.2 +0.3 VCM PIN INPUT CHARACTERISTICS (COMMON-MODE FEEDBACK AMPLIFIER) Input Offset Voltage Common-Mode, VID = 0 1 At extreme temperatures 18.6 Input Bias Current (1) (2) (3) (4) (5) (6) 6 VID = 0, 1-V Step on VCM Pin, Measure VOD Input Resistance VCM Pin to Ground mV ±8 Input Offset Voltage Average Temperature Drift VCM CMRR ±5 70 µV/°C 3 μA 75 dB 25 kΩ Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. Typical numbers are the most likely parametric norm. Slew Rate is the average of the rising and falling edges. Drift determined by dividing the change in parameter at temperature extremes by the total temperature change. Negative input current implies current flowing out of the device. Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 Electrical Characteristics: 5 V(1) (continued) Single-ended in differential out, TA = 25°C, AV = +1, VS = 5 V, VCM = 2.5 V, RF = RG = 365 Ω, RL = 500 Ω; unless specified. PARAMETER Common-Mode Gain TEST CONDITIONS MIN (2) ΔVO,CM/ΔVCM TYP (3) MAX (2) UNIT 0.991 V/V OUTPUT PERFORMANCE VOUT Output Voltage Swing Peak to Peak, Differential, VS = ±2.5 V, VCM = 0 V 2.4 IOUT Linear Output Current VOUT = 0-V Differential ±54 ISC Output Short Circuit Current Output Shorted to Ground VIN = 3 V Single-Ended (7) CMVR Common-Mode Voltage Range VID = 0, VCM Pin = 1.2 V and 3.8 V Output Balance Error ΔVOUT Common Mode /ΔVOUT DIfferential, VOUT = 1 VPP Differential, f = 10 MHz 3.72 1.23 2.8 V ±70 mA 250 mA 3.8 1.2 V −65 dB MISCELLANEOUS PERFORMANCE Enable Voltage Threshold Pin 7 2.0 V Disable Voltage Threshold Pin 7 Enable Pin Current VEN =0 V (6) -250 VEN =4 V (6) 55 1.5 Enable/Disable Time Open Loop Gain DC, Differential PSRR Power Supply Rejection Ratio DC, ΔVS = ±0.5 V IS Supply Current RL = ∞ 10 ns 70 dB 72 77 16.5 19 At extreme temperatures ISD (7) Disabled Supply Current V µA dB 23.5 mA 26.5 1 1.2 mA The maximum output current (IOUT) is determined by device power dissipation limitations. Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 7 LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com 7.7 Typical Characteristics (TA = 25°C, VS = ±5 V, RL = 500 Ω, RF = RG = 365 Ω; unless specified). 1 1 0 0 VS = 5V -1 -2 VS = ±5V GAIN (dB) GAIN (dB) -2 VS = 5V -1 -3 -4 -5 VS = ±5V -3 -4 -5 -6 -6 VOD = 0.5VPP -7 -8 VOD = 1VPP -7 AV = 1 AV = 1 -8 DIFFERENTIAL INPUT SINGLE ENDED INPUT -9 -9 1 10 100 1 1000 10 100 1000 FREQUENCY (MHz) FREQUENCY (MHz) Figure 1. Frequency Response vs Supply Voltage Figure 2. Frequency Response 1 0 -1 VOD = 4.0VPP -2 GAIN (dB) NORMALIZED GAIN (dB) 1 0 -3 VOD = 0.5VPP -4 -5 VOD = 2.0VPP -6 Vs = ±5V -7 AV = 1 -8 GAIN = 2 -1 -2 -3 GAIN = 4 -4 -5 GAIN = 6 -6 -7 VOUT = 0.5 VPP SINGLE ENDED INPUT -8 SINGLE ENDED INPUT -9 -9 1 10 100 1 1000 10 100 FREQUENCY (MHz) FREQUENCY (MHz) Figure 4. Frequency Response vs Gain Figure 3. Frequency Response vs VOUT 2 1 CL = 5.7 pF, ROUT = 40: 1000 70 VS = ±5V 60 -1 CL = 10 pF, ROUT = 30: -2 CL = 22 pF, ROUT = 22: -3 -4 SUGGESTED RO (:) GAIN (dB) 0 CL = 47 pF, ROUT = 13: -5 VOD = 210 mVPP -6 A = 1 V -7 LOAD = (CL || 1 k:) IN SERIES WITH 2 ROUTS -8 1 10 100 40 30 20 LOAD = 1 k: || CAP LOAD 10 VS = ±5V 0 1000 FREQUENCY (MHz) 1 10 100 CAPACITIVE LOAD (pF) Figure 5. Frequency Response vs Capacitive Load 8 50 Submit Documentation Feedback Figure 6. Suggested ROUT vs Cap Load Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 Typical Characteristics (continued) (TA = 25°C, VS = ±5 V, RL = 500 Ω, RF = RG = 365 Ω; unless specified). 1.5 2.5 2 1 1.5 1 VOUT (V) VOUT (V) 0.5 0 -0.5 VS = ±5 -1 RL = 500: 0.5 0 -0.5 -1 RL = 500: -1.5 RF = 360: SINGLE ENDED INPUT -2 RF = 360: -1.5 -2.5 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 TIME (ns) TIME (ns) Figure 7. 2 VPP Pulse Response Single-Ended Input Figure 8. Large Signal Pulse Response -30 40 -40 20 HD3 DISTORTION (dBc) COMMON MODE VOUT (mV) 30 10 0 -10 -20 -30 RL = 500: -40 -60 -70 VS = 5V -80 RL = 800: HD2 RF = 360: -50 -50 VOD = 2 VPP -90 VOD = 4 VPP VOCM = 2.5V -100 -60 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 TIME (ns) FREQUENCY (MHz) Figure 9. Output Common-Mode Pulse Response Figure 10. Distortion vs Frequency Single-Ended Input 4 -40 3.9 -50 3.8 MAXIMUM VOUT (V) DISTORTION (dBc) HD3 -60 -70 -80 HD2 -90 VS = ±5V RL = 800: 3.6 3.5 3.4 3.3 3.2 VOD = 2 VPP -100 3.7 3.1 VOCM = 0V -110 VS = ±5V AV = 2 RF = 730: VIN = 3.88V SINGLE ENDED 3 0 10 20 30 40 50 60 70 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 FREQUENCY (MHz) OUTPUT CURRENT (mA) Figure 11. Distortion vs Frequency Single-Ended Input Figure 12. Maximum VOUT vs IOUT Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 9 LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com Typical Characteristics (continued) (TA = 25°C, VS = ±5 V, RL = 500 Ω, RF = RG = 365 Ω; unless specified). 100 -3 VS = ±5V VS = ±5V AV = 2 VIN = 0V -3.2 RF = 730: -3.3 VIN = 3.88V SINGLE ENDED AV = 1 10 -3.4 |Z| (:) MINIMUM VOUT (V) -3.1 -3.5 1 -3.6 -3.7 0.1 -3.8 -3.9 0.01 -4 0.01 10 20 30 40 50 60 70 80 90 100 0 100 90 PSRR - PSRR (dBc DIFFERENTIAL) |Z| (:) 1000 Figure 14. Closed-Loop Output Impedance VIN = 0V AV = 1 1 0.1 80 70 PSRR + 60 50 40 30 20 10 0.01 1 0.1 10 100 VS = ±5V RL = 500: AV = 1 VIN = 0V 0 0.01 0.1 0.01 1000 10 1 100 1000 FREQUENCY (MHz) FREQUENCY (MHz) Figure 15. Closed-Loop Output Impedance Figure 16. PSRR 100 85 90 80 PSRR - 80 75 70 CMRR (dB) PSRR (dBc DIFFERENTIAL) 100 Figure 13. Minimum VOUT vs IOUT VS = 5V PSRR + 60 50 40 70 65 60 30 VS = 5V 55 20 RL = 500: 50 10 AV = 1 VIN = 2.5V 0 0.01 0.1 10 10 FREQUENCY (MHz) 100 10 1 0.1 OUTPUT CURRENT (mA) 45 1 10 100 1000 40 0.1 1 10 100 FREQUENCY (MHz) FREQUENCY (MHz) Figure 17. PSRR Figure 18. CMRR Submit Documentation Feedback 1000 Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 Typical Characteristics (continued) (TA = 25°C, VS = ±5 V, RL = 500 Ω, RF = RG = 365 Ω; unless specified). -40 -30 RL = 500: -35 -40 -45 -50 RF = 360: VS = 5V AV = 1 -55 IMD 3 (dBc) BALANCE ERROR (dBc) -25 VS = ±5V -60 -65 -70 -75 VS = ±5V -45 AV = 2 V/V -50 RL = 200: f = 40 MHz -55 f = 20 MHz -60 -65 -70 f = 5 MHz -75 -80 -85 -90 -80 -85 1 10 100 0 1000 1 2 3 4 5 6 7 FREQUENCY (MHz) DIFFERENTIAL VOUT (VPP) Figure 19. Balance Error Figure 20. Third-Order Intermodulation Products vs VOUT Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 11 LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com 8 Detailed Description 8.1 Overview The LMH6550 is a fully differential amplifier designed to provide low distortion amplification to wide bandwidth differential signals. The LMH6550, though fully integrated for ultimate balance and distortion performance, functionally provides three channels. Two of these channels are the V+ and V− signal path channels, which function similarly to inverting mode operational amplifiers and are the primary signal paths. The third channel is the common-mode feedback circuit. This is the circuit that sets the output common mode as well as driving the V+ and V− outputs to be equal magnitude and opposite phase, even when only one of the two input channels is driven. The common-mode feedback circuit allows single-ended to differential operation. 8.2 Functional Block Diagram V+ +OUT -IN ± 2.5 k High-Aol + Differential I/O Amplifier ± +IN 2.5 k + -OUT V+ 50 k ± Vcm Error Amplifier + EN Vcm Buffer 50 k V± 8.3 Feature Description The LMH6550 combines a core differential I/O, high-gain block with an output common-mode sense that is compared to a reference voltage and then fed back into the main amplifier block to control the average output to that reference. The differential I/O block is a classic, high open-loop gain stage. The high-speed differential outputs include an internal averaging resistor network to sense the output common-mode voltage. This voltage is compared by a separate Vcm error amplifier to the voltage on the Vocm pin. If floated, this reference is at half the total supply voltage across the device using two 50-kΩ resistors. This Vcm error amplifier transmits a correction signal into the main amplifier to force the output average voltage to meet the target voltage on the Vocm pin. 12 Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 8.4 Device Functional Modes This wideband FDA requires external resistors for correct signal-path operation. When configured for the desired input impedance and gain setting with these external resistors, the amplifier can be either on with the PD pin asserted to a voltage greater than Vs– + 1.7 V, or turned off by asserting PD low. Disabling the amplifier shuts off the quiescent current and stops correct amplifier operation. The signal path is still present for the source signal through the external resistors. The Vocm control pin sets the output average voltage. Left open, Vocm defaults to an internal midsupply value. Driving this high-impedance input with a voltage reference within its valid range sets a target for the internal Vcm error amplifier. Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 13 LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The LMH6550 is a fully differential amplifier designed to provide low distortion amplification to wide bandwidth differential signals. The LMH6550, though fully integrated for ultimate balance and distortion performance, functionally provides three channels. Two of these channels are the V+ and V− signal path channels, which function similarly to inverting mode operational amplifiers and are the primary signal paths. The third channel is the common-mode feedback circuit. This is the circuit that sets the output common mode as well as driving the V+ and V− outputs to be equal magnitude and opposite phase, even when only one of the two input channels is driven. The common-mode feedback circuit allows single-ended to differential operation. The LMH6550 is a voltage feedback amplifier with gain set by external resistors. Output common-mode voltage is set by the VCM pin. This pin should be driven by a low impedance reference and should be bypassed to ground with a 0.1-µF ceramic capacitor. Any signal coupling into the VCM will be passed along to the output and will reduce the dynamic range of the amplifier. The LMH6550 is equipped with a ENABLE pin to reduce power consumption when not in use. The ENABLE pin floats to logic high. If this pin is not used it can be left floating. The amplifier output stage goes into a high impedance state when the amplifier is disabled. The feedback and gain set resistors will then set the impedance of the circuit. For this reason input to output isolation will be poor in the disabled state. 9.2 Typical Applications 9.2.1 Typical Fully Differential Application The LMH6550 performs best when used with split supplies and in a fully differential configuration. See Figure 21 and Figure 22 for recommend circuits. RF1 RO RG1 + VI a CL VCM RL VO RG2 RO RF2 ENABLE Figure 21. Typical Fully Differential Application Schematic 9.2.1.1 Design Requirements Applications using fully differential amplifiers have several requirements. The main requirements are high linearity and good signal amplitude. Linearity is accomplished by using well matched feedback and gain set resistors as well as an appropriate supply voltage. The signal amplitude can be tailored by using an appropriate gain. In this design the gain is set for a gain of 2 (RF=500/ RG=250) and the distortion criteria is better than -90 dBc at a frequency of 5 Mhz. The supply voltages are set to +5 V and -5 V and the output common mode is 0 V. The LMH6550 can be placed into shutdown to reduce power dissipation to 10 mW. 14 Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 Typical Applications (continued) 9.2.1.2 Detailed Design Procedure The power supplies for this design are symmetrical ±5-V supplies (not shown for simplicity). The ADC input common mode is 1 V which is within the optimum operating range for the LMH6550 when used on ±5-V split supplies. The gain of this circuit is equal to RF/RG and due to the split supplies can be set to gains of 15 V/V or less. Higher gains will result in values of RF that are too large for high speed operation. 9.2.1.2.1 Fully Differential Operation The circuit shown in is a typical fully differential application as might be used to drive an ADC. In this circuit closed loop gain, (AV) = VOUT/ VIN = RF/RG. For all the applications in this data sheet VIN is presumed to be the voltage presented to the circuit by the signal source. For differential signals this will be the difference of the signals on each input (which will be double the magnitude of each individual signal), while in single-ended inputs it will just be the driven input signal. The resistors RO help keep the amplifier stable when presented with a load CL as is typical in an analog to digital converter (ADC). When fed with a differential signal, the LMH6550 provides excellent distortion, balance and common-mode rejection provided the resistors RF, RG and RO are well matched and strict symmetry is observed in board layout. With a DC CMRR of over 80 dB, the DC and low frequency CMRR of most circuits will be dominated by the external resistors and board trace resistance. At higher frequencies board layout symmetry becomes a factor as well. Precision resistors of at least 0.1% accuracy are recommended and careful board layout will also be required. 500 50: 100: TWISTED PAIR 250 + 2 VPP a VCM 250 2 VPP 50: 500 GAIN = 2 ENABLE Figure 22. Fully Differential Cable Driver With up to 15 VPP differential output voltage swing and 80 mA of linear drive current the LMH6550 makes an excellent cable driver as shown in Figure 22. The LMH6550 is also suitable for driving differential cables from a single-ended source. The LMH6550 requires supply bypassing capacitors as shown in Figure 23 and Figure 24. The 0.01 µF and 0.1 µF capacitors should be leadless SMT ceramic capacitors and should be no more than 3 mm from the supply pins. The SMT capacitors should be connected directly to a ground plane. Thin traces or small vias will reduce the effectiveness of bypass capacitors. Also shown in both figures is a capacitor from the VCM pin to ground. The VCM pin is a high impedance input to a buffer which sets the output common-mode voltage. Any noise on this input is transferred directly to the output. Output common-mode noise will result in loss of dynamic range, degraded CMRR, degraded Balance and higher distortion. The VCM pin should be bypassed even if the pin in not used. There is an internal resistive divider on chip to set the output common-mode voltage to the mid point of the supply pins. The impedance looking into this pin is approximately 25 kΩ. If a different output common-mode voltage is desired drive this pin with a clean, accurate voltage reference. Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 15 LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com Typical Applications (continued) + V V + 0.01 PF 0.01 PF 10 PF 10 PF 0.01 PF + VCM + 0.1 PF VCM - 0.1 PF 0.1 PF 0.01 PF 10 PF V - Figure 23. Split Supply Bypassing Capacitors Figure 24. Single Supply Bypassing Capacitors 9.2.1.2.2 Capacitive Drive As noted in Driving Analog-to-Digital Converters, capacitive loads should be isolated from the amplifier output with small valued resistors. This is particularly the case when the load has a resistive component that is 500 Ω or higher. A typical ADC has capacitive components of around 10 pF and the resistive component could be 1000 Ω or higher. If driving a transmission line, such as 50-Ω coaxial or 100-Ω twisted pair, using matching resistors will be sufficient to isolate any subsequent capacitance. For other applications see Figure 6 and Figure 25 in Typical Characteristics. 9.2.1.2.3 Application Curves Many application circuits have capacitive loading. As shown in Figure 25, amplifier bandwidth is reduced with increasing capacitive load, so parasitic capacitance should be strictly limited. 70 0.8 60 0.6 50 0.4 VOUT (V) SUGGESTED RO (:) To ensure stability, resistance should be added between the capacitive load and the amplifier output pins. The value of the resistor is dependent on the amount of capacitive load as shown in Figure 26. This resistive value is a suggestion. System testing will be required to determine the optimal value. Using a smaller resistor will retain more system bandwidth at the expense of overshoot and ringing, while larger values of resistance will reduce overshoot but will also reduce system bandwidth. 40 30 20 VS = 5V RL = 500: -0.6 VS = 5V RF = 360: -0.8 1 10 100 0 10 20 30 40 50 60 70 80 90 100 TIME (ns) CAPACITIVE LOAD (pF) Figure 25. Suggested ROUT vs Cap Load 16 0 -0.2 -0.4 LOAD = 1 k: || CAP LOAD 10 0 0.2 Figure 26. 1 VPP Pulse Response Single-Ended Input Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 Typical Applications (continued) 9.2.2 Driving Analog-to-Digital Converters Analog-to-digital converters (ADC) present challenging load conditions. They typically have high-impedance inputs with large and often variable capacitive components. As well, there are usually current spikes associated with switched capacitor or sample and hold circuits. Figure 27 shows a typical circuit for driving an ADC. The two 56-Ω resistors serve to isolate the capacitive loading of the ADC from the amplifier and ensure stability. In addition, the resistors form part of a low pass filter which helps to provide anti alias and noise reduction functions. The two 39-pF capacitors help to smooth the current spikes associated with the internal switching circuits of the ADC and also are a key component in the low pass filtering of the ADC input. In the circuit of Figure 27 the cutoff frequency of the filter is 1/ (2*π*56 Ω *(39 pF + 14 pF)) = 53 MHz (which is slightly less than the sampling frequency). Note that the ADC input capacitance must be factored into the frequency response of the input filter, and that being a differential input the effective input capacitance is double. Also as shown in Figure 27 the input capacitance to many ADCs is variable based on the clock cycle. See the data sheet for your particular ADC for details. The amplifier and ADC should be located as closely together as possible. Both devices require that the filter components be in close proximity to them. The amplifier needs to have minimal parasitic loading on the output traces and the ADC is sensitive to high frequency noise that may couple in on its input lines. Some high performance ADCs have an input stage that has a bandwidth of several times its sample rate. The sampling process results in all input signals presented to the input stage mixing down into the Nyquist range (DC to Fs/2). See AN-236 for more details on the subsampling process and the requirements this imposes on the filtering necessary in your system. RF1 56 RG1 ADC12LO66 39 pF + VI a VCM - 7 - 8 pF 39 pF RG2 56 VREF RF2 ENABLE 1V LOW IMPEDANCE VOLTAGE REFERENCE Figure 27. Driving an ADC Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 17 LMH6550 SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 www.ti.com Typical Applications (continued) 9.2.3 Single-Ended Input to Differential Output The LMH6550 provides excellent performance as an active balun transformer. Figure 28 shows a typical application where an LMH6550 is used to produce a differential signal from a single-ended source. In single-ended input operation the output common-mode voltage is set by the VCM pin as in fully differential mode. Also, in this mode the common-mode feedback circuit must recreate the signal that is not present on the unused differential input pin. Figure 19 is the measurement of the effectiveness of this process. The commonmode feedback circuit is responsible for ensuring balanced output with a single-ended input. Balance error is defined as the amount of input signal that couples into the output common mode. It is measured as a the undesired output common-mode swing divided by the signal on the input. Balance error can be caused by either a channel to channel gain error, or phase error. Either condition will produce a common-mode shift. Figure 19 measures the balance error with a single-ended input as that is the most demanding mode of operation for the amplifier. Supply and VCM pin bypassing are also critical in this mode of operation. See the above section on for bypassing recommendations and also see Figure 23 and Figure 24 for recommended supply bypassing configurations. RF AV, RIN RS VS a + V RG VI VI1 - VCM RT RM IN- VO + - VI2 RG RO VO1 + VO2 ADC IN+ RO - +- V RF Definitions : Conditions : R S R T || RIN RM RT || RS 1 RG R G  RF 2 R G  RM R G  RM  RF 2(1  1 ) R F for R M  R G # 1   2 RG Av VO VI RIN 2R G  RM (1 2 ) 1  2 RG (1 2 ) 1 1  2 # 2R G (1 A v ) for RM  RG 2  Av VO1  VO2 (by design) 2 VOCM VCM VICM VI1  VI2 2 VOCM . 2 # VOCM 1 Av for R M  R G Figure 28. Single-Ended Input to Differential Output Schematic 18 Submit Documentation Feedback Copyright © 2004–2015, Texas Instruments Incorporated Product Folder Links: LMH6550 LMH6550 www.ti.com SNOSAK0I – DECEMBER 2004 – REVISED JANUARY 2015 Typical Applications (continued) 9.2.4 Single Supply Operation The input stage of the LMH6550 has a built in offset of 0.7 V towards the lower supply to accommodate single supply operation with single-ended inputs. As shown in Figure 28, the input common-mode voltage is less than the output common voltage. It is set by current flowing through the feedback network from the device output. The input common-mode range of 0.4 V to 3.2 V places constraints on gain settings. Possible solutions to this limitation include AC coupling the input signal, using split power supplies and limiting stage gain. AC coupling with single supply is shown in Figure 29. In Figure 28 closed loop gain = VO / VI ≊ RF / RG, where VI =VS / 2, as long as RM
LMH6550MAX 价格&库存

很抱歉,暂时无法提供与“LMH6550MAX”相匹配的价格&库存,您可以联系我们找货

免费人工找货