0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN65LVCP204RGZT

SN65LVCP204RGZT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN48_EP

  • 描述:

    IC CROSSPOINT SW 1 X 4:4 48VQFN

  • 数据手册
  • 价格&库存
SN65LVCP204RGZT 数据手册
SN65LVCP204 www.ti.com ................................................................................................................................................................................................... SLLS913 – MARCH 2009 Gigabit 4 × 4 CROSSPOINT SWITCH • • • • • • • • • • The SN65LVCP204 is characterized for operation from –40°C to 85°C. 3DE Up to 2.5-Gbps Operation Non-Blocking Architecture Allows Each Output to Be Connected to Any Input 30 ps of Deterministic Jitter Selectable Transmit Preemphasis Per Lane Selectable Receive Equalization Available Packaging: 48-Pin QFN Propagation Delay Times: 500 ps Typical Inputs Electrically Compatible With CML Signal Levels Operates From a Single 3.3-V Supply Ability to Place Ouputs in High-Impedance State Low Power: 560 mW Integrated Termination Resistors 2DE • • 1DE FEATURES 1 4DE APPLICATIONS • • • • Clock Buffering/Clock MUXing Wireless Base Stations High-Speed Network Routing Telecom/Datacom DESCRIPTION The SN65LVCP204 is a 4×4 non-blocking crosspoint switch in a flow-through pinout that allows for ease in PCB layout. VML signaling is used to achieve a high-speed data throughput while using low power. Each of the output drivers includes a 4:1 multiplexer to allow any input to be routed to any output. Internal signal paths are fully differential to achieve high signaling speeds while maintaining low signal skews. The SN65LVCP204 incorporates 100-Ω termination resistors for those applications where board space is at a premium. Transmit preemphasis and receive equalization are built in for superior signal integrity performance. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009, Texas Instruments Incorporated SN65LVCP204 SLLS913 – MARCH 2009 ................................................................................................................................................................................................... www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. LOGIC DIAGRAM VBB 1A EQ RT RT 2 EQ S10 S11 P11 P12 00 1B 2 01 10 11 VBB 2A 1Y 1Z 4x1 MUX 1DE EQ RT RT 2 00 EQ P21 P22 S20 S21 2 2Y 2Z 01 2B 10 11 VBB 3A 2 EQ RT RT 00 EQ 10 11 2 4A EQ 00 RT RT 2DE S30 S31 P31 P32 2 01 3B VBB 4x1 MUX 3Y 3Z 4x1 MUX 3DE P41 P42 S40 S41 2 4Y 4Z 01 10 EQ 11 4x1 MUX 4DE 4B e -W -W TERMINAL FUNCTIONS TERMINAL NAME TYPE NO. DESCRIPTION High Speed I/O Differential inputs (with 50-Ω termination to VBB) xA = P; xB = N Line-side differential inputs, CML compatible 41, 34, 31, 28 40, 33, 30, 27 Differential output xY = P; xZ = N Switch-side differential outputs, VML 45, 38, 37, 25 Input Data enable; active low; LVTTL; when not enabled, the ouput is in the high-impedance state for power savings. Input; S1x = channel 1, bit x Switching selection; LVTTL xA xB 3, 6, 9, 16 4, 7, 10, 17 xY xZ Control Signals xDE S10–S41 2 47, 48, 1, 2, 13, 14, 19, 20 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP204 SN65LVCP204 www.ti.com ................................................................................................................................................................................................... SLLS913 – MARCH 2009 TERMINAL FUNCTIONS (continued) TERMINAL NAME P11–P42 EQ TYPE NO. 43, 44, 35, 36, 23, 24, 21, 22 11 DESCRIPTION Input; P1x = channel 1, bit x Output preemphasis control; LVTTL Input; selection for receive equalization setting EQ = 1 (default) is for the 5-dB setting, EQ = 0 is for the 12-dB setting Power Power supply 3.3 V ±5% Power Supply VCC 8, 18, 29, 39, 46 GND 5, 15, 26, 32, 42 Ground The ground center pad of the package must be connected to GND plane. Thermal pad VBB 12 Input Receiver input biasing voltage EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS VCC IN+ RT(SE) = 50 W Gain Stage + EQ VCC RBBDC RT(SE) = 50 W IN− VBB ESD LineEndTermination Self−Biasing Network Figure 1. Equivalent Input Circuit Design OUT+ 49.9 W OUT− 49.9 W VOCM 1 pF Figure 2. Common-Mode Output Voltage Test Circuit Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP204 3 SN65LVCP204 SLLS913 – MARCH 2009 ................................................................................................................................................................................................... www.ti.com Table 1. CROSSPOINT LOGIC TABLES OUTPUT CHANNEL 1 CONTROL PINS INPUT SELECTED OUTPUT CHANNEL 2 CONTROL PINS INPUT SELECTED OUTPUT CHANNEL 3 CONTROL PINS OUTPUT CHANNEL 4 INPUT SELECTED CONTROL PINS INPUT SELECTED S10 S11 1Y/1Z S20 S21 2Y/2Z S30 S31 3Y/3Z S40 S41 4Y/4Z 0 0 1A/1B 0 0 1A/1B 0 0 1A/1B 0 0 1A/1B 0 1 2A/2B 0 1 2A/2B 0 1 2A/2B 0 1 2A/2B 1 0 3A/3B 1 0 3A/3B 1 0 3A/3B 1 0 3A/3B 1 1 4A/4B 1 1 4A/4B 1 1 4A/4B 1 1 4A/4B AVAILABLE OPTIONS (1) TA DESCRIPTION –40°C to 85°C Serial multiplexer PACKAGED DEVICE (1) RGZ (48-Pin) (Orderable) SN65LVCP204RGZ The package is available taped and reeled. Add an R suffix to device types (e.g., SN65LVCP204RGZR). PACKAGE THERMAL CHARACTERISTICS PACKAGE THERMAL CHARACTERISTICS (1) NOM UNIT 33 °C/W θJA (junction-to-ambient) θJB (junction-to-board) θJC (junction-to-case) Ψ-jt (junction-to-top pseudo) Ψ-jb (junction-to-board pseudo) Four-layer JEDEC board (JESD51-7) using eight GND-vias of 0.3-mm diameter on the center pad as shown in the section: Recommended PCB footprint with boundary and environment conditions of JEDEC board (JESD51-2) 20 °C/W 23.6 °C/W 0.6 °C/W 19.4 °C/W 5.4 °C/W θJP (junction-to-pad) (1) See the IC Package Thermal Metrics application report SPRA953 for a detailed explanation of thermal parameters. ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) UNIT VCC Supply-voltage range (2) –0.5 V to 6 V Control inputs, all outputs Voltage range ESD TJ Receiver inputs All pins 3 kV Charged-device model (4) All pins 500 V See Package Thermal Characteristics table Maximum junction temperature 2 Reflow temperature package soldering, 4 seconds (2) (3) (4) 4 –0.5 V to 4 V Human-body model (3) Moisture sensitivity level (1) –0.5 V to (VCC + 0.5 V) 260°C Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential I/O bus voltages, are with respect to the ground terminals. Tested in accordance with JEDEC Standard 22, Test Method A114-A. Tested in accordance with JEDEC Standard 22, Test Method C101. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP204 SN65LVCP204 www.ti.com ................................................................................................................................................................................................... SLLS913 – MARCH 2009 RECOMMENDED OPERATING CONDITIONS dR Operating data rate VCC Supply voltage VCC(N) Supply-voltage noise amplitude TJ Junction temperature TA Operating free-air temperature (1) MIN NOM MAX UNIT 2.5 Gbps 3.135 3.3 3.465 10 Hz to 1.25 GHz V 20 mV 125 °C –40 85 °C dR(in) ≤ 1.25 Gbps 100 1750 mVPP 1.25 Gbps < dR(in) ≤ 2.5 Gbps 100 1560 mVPP dR(in) > 2.5 Gbps 100 1000 mVPP Note: for best jitter performance, ac coupling is recommended. 1.5 DIFFERENTIAL INPUTS Receiver peak-to-peak differential input voltage (2) VID VICM Receiver common-mode input voltage |V VCC * 1.6 | ID 2 V CONTROL INPUTS VIH High-level input voltage 2 VCC + 0.3 V VIL Low-level input voltage –0.3 0.8 V 120 Ω DIFFERENTIAL OUTPUTS RL (1) (2) Differential load resistance 80 100 Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded. Differential input voltage VID is defined as | IN+ – IN– |. ELECTRICAL CHARACTERISTICS over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT DIFFERENTIAL INPUTS VIT+ Positive-going differential input, high threshold VIT– Negative-going differential input, low threshold A(EQ) Equalizer gain RT(D) Termination resistance, differential VBB Open-circuit input voltage (input self-bias voltage) R(BBDC) Biasing network dc impedance R(BBAC) Biasing network ac impedance 50 –50 at 1.25 GHz (EQ = 0) mV 12 80 AC-coupled inputs 375 MHz mV 100 dB 120 Ω 1.6 V 30 kΩ 42 Ω 650 mVPP –650 mVPP DIFFERENTIAL OUTPUTS VODH High-level output voltage VODL Low-level output voltage VODB(PP) Output differential voltage without preemphasis (2) VOCM Output common-mode voltage ΔVOC(SS) Change in steady-state common-mode output voltage between logic states (1) (2) RL = 100 Ω ±1%, Px2 = Px1 = 0; 2.5 Gbps alternating 1010-pattern; Figure 3 1000 1300 1500 1.65 See Figure 2 1 mVPP V mV All typical values are at TA = 25°C and VCC = 3.3-V supply unless otherwise noted. They are for reference purposes and are not production tested. Differential output voltage V(ODB) is defined as | OUT+ – OUT– |. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP204 5 SN65LVCP204 SLLS913 – MARCH 2009 ................................................................................................................................................................................................... www.ti.com ELECTRICAL CHARACTERISTICS (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) Px2:Px1 = 00 0 Px2:Px1 = 01 3 Px2:Px1 = 10 6 Px2:Px1 = 11 9 MAX UNIT Output preemphasis voltage V ODB(PP) VODPE(PP) ratio, RL = 100 Ω±1%; x = L or S; See Figure 3 t(PRE) Preemphasis duration measurement Output preemphasis is set to 9 dB during test; Pxx = 1; Measured with a 100-MHz clock signal; RL = 100 Ω ±1%, See Figure 4 175 ps RO Output resistance Differential on-chip termination between OUT+ and OUT– 100 Ω V(PE) dB CONTROL INPUTS IIH High-level input current VIN = VCC IIL Low-level input current VIN = GND R(PU) Pullup resistance 5 –125 µA –90 µA 35 kΩ POWER CONSUMPTION PD Device power dissipation All outputs terminated 100 Ω PZ Device power dissipation in high-impedance state ICC Device current consumption 560 750 mW All outputs in high-impedance state 600 mW All outputs terminated 100 Ω PRBS 27 – 1 pattern at 2.5 Gbps 220 mA TYP (1) MAX UNIT 3 6 ns 0.5 0.7 ns 0.5 0.7 ns SWITCHING CHARACTERISTICS over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MULTIPLEXER t(SM) Multiplexer switch time Multiplexer to valid output DIFFERENTIAL OUTPUTS tPLH Low-to-high propagation delay tPHL High-to-low propagation delay tr Rise time tf Fall time tsk(p) Pulse skew, | tPHL – tPLH | (2) tsk(o) Output skew (3) tsk(pp) Part-to-part skew (4) tzd Switch time, hi-Z state to disable tze RJ (1) (2) (3) (4) 6 Propagation delay, input to output See Figure 6 20% to 80% of VO(DB); test pattern: 100-MHz clock signal; see Figure 5 and Figure 8 110 ps 110 ps 20 ps 100 ps 300 ps 50 Ω to Vcm and 150-pF load on each output 20 ns Switch time, hi-Z state to enable 50 Ω to Vcm and 150-pF load on each output 10 ns Device random jitter, rms See Figure 8 for test circuit. BERT setting 10–15 Alternating 10-pattern. 2 ps-rms All outputs terminated with 100 Ω 25 0.8 All typical values are at 25°C and with 3.3-V supply, unless otherwise noted. tsk(p) is the magnitude of the time difference between the tPLH and tPHL of any output of a single device. tsk(o) is the magnitude of the time difference between the tPLH and tPHL of any two outputs of a single device. tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP204 SN65LVCP204 www.ti.com ................................................................................................................................................................................................... SLLS913 – MARCH 2009 SWITCHING CHARACTERISTICS (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS 0 dB preemphasis Intrinsic deterministic device (PREx_x = 0); jitter (5) (6), peak-to-peak See Figure 8 for the test circuit. DJ (5) (6) (7) 0 dB preemphasis Absolute deterministic (PREx_x = 0); output jitter (7), peak-to-peak See Figure 8 for the test circuit. MIN PRBS 27 – 1 pattern 7 PRBS 2 – 1 pattern TYP (1) 2.5 Gbps MAX 30 1.25 Gbps; EQ = 1 Over 25-inch (63,5-cm) FR4 trace 7 UNIT ps ps Intrinsic deterministic device jitter is a measurement of the deterministic jitter contribution from the device. It is derived by the equation (DJ(OUT) – DJ(IN)), where DJ(OUT) is the total peak-to-peak deterministic jitter measured at the output of the device in PSPP. DJ(IN) is the peak-to-peak deterministic jitter of the pattern generator driving the device. The SN65LVCP204 built-in passive input equalizer compensates for ISI. For a 25-inch (63,5-cm) FR4 transmission line with 8-mil (0,2-mm) trace width, the SN65LVCP204 typically reduces jitter by 60 ps from the device input to the device output. Absolute deterministic output jitter reflects the deterministic jitter measured at the SN65LVCP204 output. The value is a real value measured with a bit-error tester as described in Figure 8. The absolute DJ reflects the sum of all deterministic jitter components accumulated over the link: DJ(absolute) = DJ(Signal generator) + DJ(transmission line) + DJ(intrinsic(LVCP204)). Table 2. Preemphasis Controls PL2, PL1, PS2, and PS1 (1) Px2 (1) Px1 (1) OUTPUT PREEMPHASIS LEVEL IN dB OUTPUT LEVEL IN mVpp DE-EMPHASIZED PREEMPHASIZED TYPICAL FR4 TRACE LENGTH 0 0 0 dB 1200 1200 10 inches (25,4 cm) of FR4 trace 0 1 3 dB 850 1200 20 inches (50,8 cm) of FR4 trace 1 0 6 dB 600 1200 30 inches (76,2 cm) of FR4 trace 1 1 9 dB 425 1200 40 inches (101,6 cm) of FR4 trace x = L or S Table 3. Receive Equalization Settings EQ EQUALIZATION 1 5 dB 25 inches (63,5 cm) of FR4 TYPICAL TRACE 0 12 dB 43 inches (109,2 cm) of FR4 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP204 7 SN65LVCP204 SLLS913 – MARCH 2009 ................................................................................................................................................................................................... www.ti.com PARAMETER MEASUREMENT INFORMATION 1−bit 1 to N bit 3−dB Preemphasis VODPE3(pp) 9−dB Preemphasis VOCM VODB(PP) VODPE2(pp) 6−dB Preemphasis VODPE1(pp) 0−dB Preemphasis VOH VOL Figure 3. Preemphasis and Output Voltage Waveforms and Definitions 1−bit VODPE3(pp) 9−dB Preemphasis 1 to N bit VODB(PP) 80% 20% tPRE Figure 4. t(PRE) Preemphasis Duration Measurement 80% 80% VODB 20% 20% tr tf Figure 5. Driver Output Transition Time 8 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): SN65LVCP204 SN65LVCP204 www.ti.com ................................................................................................................................................................................................... SLLS913 – MARCH 2009 PARAMETER MEASUREMENT INFORMATION (continued) VID = 0 V IN t PHLD t PLHD VOD = 0 V OUT Figure 6. Propagation Delay Input to Output 1/fO 1/fO tjit(pp) = | tc(n) – 1/fO | A. All input pulses are supplied by an Agilent 81250 Stimulus System. B. The measurement is made with the AgilentParBert measurement software. Figure 7. Driver Jitter Measurement Waveforms DC Block DC Block Pattern D+ Generator Coax SMA DC Block D– Coax SMA 400-mVPP Differential
SN65LVCP204RGZT 价格&库存

很抱歉,暂时无法提供与“SN65LVCP204RGZT”相匹配的价格&库存,您可以联系我们找货

免费人工找货