0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74ALVCH16646DLR

SN74ALVCH16646DLR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SSOP56_300MIL

  • 描述:

    IC TXRX NON-INVERT 3.6V 56SSOP

  • 数据手册
  • 价格&库存
SN74ALVCH16646DLR 数据手册
www.ti.com FEATURES • • • • • • Member of the Texas Instruments Widebus™ Family EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Latch-Up Performance Exceeds 250 mA Per JESD 17 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages DESCRIPTION This 16-bit bus transceiver and register is designed for 1.65-V to 3.6-V VCC operation. The SN74ALVCH16646 can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the SN74ALVCH16646. SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 DGG, DGV, OR DL PACKAGE (TOP VIEW) 1DIR 1CLKAB 1SAB GND 1A1 1A2 VCC 1A3 1A4 1A5 GND 1A6 1A7 1A8 2A1 2A2 2A3 GND 2A4 2A5 2A6 VCC 2A7 2A8 GND 2SAB 2CLKAB 2DIR 1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32 26 1OE 1CLKBA 1SBA GND 1B1 1B2 VCC 1B3 1B4 1B5 GND 1B6 1B7 1B8 2B1 2B2 2B3 GND 2B4 2B5 2B6 VCC 2B7 2B8 GND 2SBA 2CLKBA 2OE 31 Output-enable (OE) and direction-control (DIR) inputs 27 30 are provided to control the transceiver functions. In 28 29 the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. DIR determines which bus receives data when OE is low. In the isolation mode (OE high), A data may be stored in one register and/or B data may be stored in the other register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. The SN74ALVCH16646 is characterized for operation from -40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus, EPIC are trademarks of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1995–2004, Texas Instruments Incorporated SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 FUNCTION TABLE INPUTS (1) 2 DATA I/Os OPERATION OR FUNCTION OE DIR CLKAB CLKBA SAB SBA A1–A8 B1–B8 X X ↑ X X X Input Unspecified (1) Store A, B unspecified (1) X ↑ X X Unspecified (1) Input Store B, A unspecified (1) X X H X ↑ ↑ X X Input Input Store A and B data H X H or L H or L X X Input disabled Input disabled Isolation, hold storage L L X X X L Output Input Real-time B data to A bus L L X H or L X H Output Input Stored B data to A bus L H X X L X Input Output Real-time A data to B bus L H H or L X H X Input Output Stored A data to B bus The data-output functions may be enabled or disabled by various signals at OE and DIR. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs. SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com OE L DIR L CLKAB CLKBA X X SAB X BUS B BUS A BUS A BUS B SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 SBA L OE L DIR H DIR X X X CLKAB CLKBA X ↑ X ↑ ↑ ↑ SAB X X X STORAGE FROM A, B, OR A AND B SAB L SBA X BUS B BUS A BUS A OE X X H CLKBA X REAL-TIME TRANSFER BUS A TO BUS B BUS B REAL-TIME TRANSFER BUS B TO BUS A CLKAB X SBA X X X OE L L DIR L H CLKAB X H or L CLKBA H or L X SAB X H SBA H X TRANSFER STORED DATA TO A AND/OR B Figure 1. Bus-Management Functions 3 SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 LOGIC SYMBOL(1) 1OE 1DIR 1CLKBA 1SBA 1CLKAB 1SAB 2OE 2DIR 2CLKBA 2SBA 2CLKAB 2SAB 1A1 56 1 55 54 2 3 29 28 30 31 27 26 G3 3 EN1 [BA] 3 EN2 [AB] C4 G5 C6 G7 G10 10 EN8 [BA] 10 EN9 [AB] C11 G12 C13 G14 ≥1 5 1 1A3 1A4 1A5 1A6 1A7 1A8 2A1 6 7 1 2A3 2A4 2A5 2A6 2A7 2A8 ≥1 7 51 49 9 48 10 47 12 45 13 44 14 43 15 16 1B1 2 8 ≥1 8 13D 14 2A2 52 5 1 6D 1A2 4D 5 1 14 12 11D 42 1B2 1B3 1B4 1B5 1B6 1B7 1B8 2B1 12 1 ≥1 9 41 17 40 19 38 20 37 21 36 23 34 24 33 2B2 2B3 2B4 2B5 2B6 2B7 2B8 (1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. 4 SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 LOGIC DIAGRAM (POSITIVE LOGIC) 1OE 1DIR 1CLKBA 1SBA 1CLKAB 1SAB 56 1 55 54 2 3 One of Eight Channels 1D C1 1A1 5 52 1B1 1D C1 To Seven Other Channels 29 2OE 28 2DIR 2CLKBA 2SBA 2CLKAB 2SAB 30 31 27 26 One of Eight Channels 1D C1 2A1 15 42 2B1 1D C1 To Seven Other Channels 5 SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) VCC Supply voltage range MIN MAX -0.5 4.6 Except I/O ports (2) -0.5 4.6 I/O ports (2) (3) -0.5 VCC + 0.5 -0.5 VCC + 0.5 UNIT V VI Input voltage range VO Output voltage range (2) (3) IIK Input clamp current VI < 0 -50 mA IOK Output clamp current VO < 0 -50 mA IO Continuous output current ±50 mA ±100 mA Continuous current through each VCC or GND θJA Package thermal impedance (4) Tstg Storage temperature range DGG package 81 DGV package 86 DL package (1) (2) (3) (4) V V °C/W 74 -65 150 °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. This value is limited to 4.6 V maximum. The package thermal impedance is calculated in accordance with JESD 51. RECOMMENDED OPERATING CONDITIONS (1) VCC Supply voltage VCC = 1.65 V to 1.95 V VIH High-level input voltage MIN MAX 1.65 3.6 Low-level input voltage VI Input voltage VO Output voltage IOH High-level output current IOL Low-level output current ∆t/∆v Input transition rise or fall rate TA Operating free-air temperature (1) 6 V 0.65 × VCC VCC = 2.3 V to 2.7 V 1.7 VCC = 2.7 V to 3.6 V 2 V 0.35 × VCC VCC = 1.65 V to 1.95 V VIL UNIT VCC = 2.3 V to 2.7 V 0.7 VCC = 2.7 V to 3.6 V 0.8 V 0 VCC V 0 VCC V VCC = 1.65 V -4 VCC = 2.3 V -12 VCC = 2.7 V -12 VCC = 3 V -24 VCC = 1.65 V 4 VCC = 2.3 V 12 VCC = 2.7 V 12 VCC = 3 V 24 -40 mA mA 10 ns/V 85 °C All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = -100 µA IOH = -6 mA 2.3 V 2 2.3 V 1.7 2.7 V 2.2 3V 2.4 IOH = -24 mA 3V 2 IOL = 100 µA MAX V 1.65 V to 3.6 V 0.2 1.65 V 0.45 IOL = 6 mA 2.3 V 0.4 2.3 V 0.7 IOL = 24 mA 2.7 V 0.4 3V 0.55 ±5 VI = VCC or GND 3.6 V VI = 0.58 V 1.65 V 25 VI = 1.07 V 1.65 V -25 VI = 0.7 V 2.3 V 45 VI = 1.7 V 2.3 V -45 VI = 0.8 V 3V 75 3V -75 VI = 2 V UNIT 1.2 IOL = 4 mA IOL = 12 mA II(hold) TYP (1) VCC - 0.2 1.65 V IOH = -12 mA II 1.65 V to 3.6 V MIN IOH = -4 mA VOH VOL VCC V µA µA 3.6 V ±500 IOZ (3) VO = VCC or GND 3.6 V ±10 µA ICC VI = VCC or GND, IO = 0 3.6 V 40 µA ∆ICC One input at VCC - 0.6 V, Other inputs at VCC or GND 3 V to 3.6 V 750 µA VI = 0 to 3.6 V (2) Ci Control inputs VI = VCC or GND 3.3 V 3.5 pF Cio A or B ports VO = VCC or GND 3.3 V 8.5 pF (1) (2) (3) All typical values are at VCC = 3.3 V, TA = 25°C. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. For I/O ports, the parameter IOZ includes the input leakage current. 7 SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 TIMING REQUIREMENTS over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2 through Figure 4) VCC = 2.5 V ± 0.2 V VCC = 1.8 V MIN fclock Clock frequency tw Pulse duration MIN MAX (1) MIN MAX 150 VCC = 3.3 V ± 0.3 V MIN UNIT MAX 150 150 MHz CLKAB or CLKBA high or low (1) 3.3 3.3 3.3 ns 1.6 1.7 1.4 ns 0.6 0.4 0.7 ns tsu Setup time A before CLKAB↑ or B before CLKBA↑ (1) th Hold time A after CLKAB↑ or B after CLKBA↑ (1) (1) MAX VCC = 2.7 V This information was not available at the time of publication. SWITCHING CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2 through Figure 4) PARAMETER FROM (INPUT) TO (OUTPUT) VCC = 1.8 V MIN (1) fmax A or B tpd CLKAB or CLKBA SAB or SBA (1) TYP B or A A or B VCC = 2.5 V ± 0.2 V MIN VCC = 3.3 V ± 0.3 V VCC = 2.7 V MAX MIN 150 MAX 150 MIN UNIT MAX 150 MHz (1) 1 4.8 4.5 1 3.9 (1) 1 5.6 5.2 1 4.5 (1) 1 6.8 6.4 1 5.3 ns ten OE A or B (1) 1 6.5 6.2 1 5.1 ns tdis OE A or B (1) 1.6 5.7 5 1.4 4.7 ns 1 7.8 6.2 1 5.1 ns 1.5 6.5 6 1.1 5.3 ns ten DIR A or B (1) tdis DIR A or B (1) This information was not available at the time of publication. OPERATING CHARACTERISTICS TA = 25°C PARAMETER Cpd (1) 8 Power dissipation capacitance TEST CONDITIONS Outputs enabled Outputs disabled CL = 50 pF, f = 10 MHz This information was not available at the time of publication. VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V TYP TYP TYP (1) 39 43 (1) 10 12 UNIT pF SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 1.8 V 2 × VCC S1 1 kΩ From Output Under Test Open TEST tpd tPLZ/tPZL tPHZ/tPZH GND CL = 30 pF (see Note A) 1 kΩ S1 Open 2 × VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ VCC VCC/2 tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 × VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ VCC/2 VOH VOH − 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 2. Load Circuit and Voltage Waveforms 9 SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 2.5 V ± 0.2V 2 × VCC S1 500 Ω From Output Under Test Open TEST tpd tPLZ/tPZL tPHZ/tPZH GND CL = 30 pF (see Note A) 500 Ω S1 Open 2 × VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ VCC VCC/2 tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 × VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ VCC/2 VOH VOH − 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 3. Load Circuit and Voltage Waveforms 10 SN74ALVCH16646 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS www.ti.com SCES032F – JULY 1995 – REVISED SEPTEMBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 2.7 V AND 3.3 V ± 0.3 V 6V S1 500 Ω From Output Under Test Open GND CL = 50 pF (see Note A) 500 Ω TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 6V GND tw LOAD CIRCUIT 2.7 V 2.7 V Timing Input Input 1.5 V 1.5 V 0V 1.5 V 0V tsu VOLTAGE WAVEFORMS PULSE DURATION th 2.7 V Data Input 1.5 V 1.5 V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES Output Control (low-level enabling) 2.7 V 1.5 V 0V tPZL 2.7 V Input 1.5 V 1.5 V 0V tPLH 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ 3V 1.5 V VOL + 0.3 V VOL tPZH VOH Output Output Waveform 1 S1 at 6 V (see Note B) tPHL 1.5 V Output Waveform 2 S1 at GND (see Note B) tPHZ VOH 1.5 V VOH − 0.3 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 4. Load Circuit and Voltage Waveforms 11 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) 74ALVCH16646DGGRG4 ACTIVE TSSOP DGG 56 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 ALVCH16646 SN74ALVCH16646DGGR ACTIVE TSSOP DGG 56 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 ALVCH16646 SN74ALVCH16646DGVR ACTIVE TVSOP DGV 56 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 VH646 SN74ALVCH16646DL ACTIVE SSOP DL 56 20 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 ALVCH16646 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
SN74ALVCH16646DLR 价格&库存

很抱歉,暂时无法提供与“SN74ALVCH16646DLR”相匹配的价格&库存,您可以联系我们找货

免费人工找货