0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74HC534N

SN74HC534N

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    DIP20

  • 描述:

    IC FF D-TYPE SNGL 8BIT 20DIP

  • 数据手册
  • 价格&库存
SN74HC534N 数据手册
SN54HC534, SN74HC534 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS311A – JANUARY 1996 – REVISED MAY 1997 D SN54HC534 . . . J OR W PACKAGE SN74HC534 . . . DW OR N PACKAGE (TOP VIEW) High-Current 3-State Inverting Outputs Can Drive up to 15 LSTTL Loads Package Options Include Plastic Small-Outline (DW) and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs OE 1Q 1D 2D 2Q 3Q 3D 4D 4Q GND description These 8-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 VCC 8Q 8D 7D 7Q 6Q 6D 5D 5Q CLK SN54HC534 . . . FK PACKAGE (TOP VIEW) 1D 1Q OE VCC The eight flip-flops of the ’HC534 are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the complement of the logic states that were set up at the data (D) inputs. The ’HC534 are functionally equivalent to the ’HC374, but the ’HC534 have inverted outputs. 2D 2Q 3Q 3D 4D 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 8D 7D 7Q 6Q 6D 4Q GND CLK 5Q 5D An output-enable (OE) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. 8Q D OE does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are off. The SN54HC534 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74HC534 is characterized for operation from –40°C to 85°C. FUNCTION TABLE (each flip-flop) INPUTS OE CLK D OUTPUT Q L ↑ H L L ↑ L H L H or L X Q0 H X X Z Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  1997, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN54HC534, SN74HC534 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS311A – JANUARY 1996 – REVISED MAY 1997 logic symbol† 1 OE CLK 1D 2D 3D 4D 5D 6D 7D 8D 11 3 EN C1 2 1D 4 5 7 6 8 9 13 12 14 15 17 16 18 19 1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. logic diagram (positive logic) OE CLK 1 11 C1 1D 3 2 1D 1Q To Seven Other Channels absolute maximum ratings over operating free-air temperature range‡ Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±35 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±70 mA Package thermal impedance, θJA (see Note 2): DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C ‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN54HC534, SN74HC534 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS311A – JANUARY 1996 – REVISED MAY 1997 recommended operating conditions SN54HC534 VCC VIH Supply voltage VCC = 2 V VCC = 4.5 V High-level input voltage VCC = 6 V VCC = 2 V VIL VI VO Low-level input voltage Input voltage Output voltage Input transition (rise and fall) time TA Operating free-air temperature NOM MAX 2 5 6 VCC = 2 V VCC = 4.5 V VCC = 6 V MIN NOM MAX 2 5 6 1.5 1.5 3.15 3.15 4.2 VCC = 4.5 V VCC = 6 V tt SN74HC534 MIN UNIT V V 4.2 0 0.5 0 0.5 0 1.35 0 1.35 0 1.8 0 1.8 0 0 0 VCC VCC 0 VCC VCC 0 1000 0 1000 0 500 0 500 0 400 0 400 –55 125 –40 85 V V V ns °C electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VOH VOL TEST CONDITIONS VI = VCC or 0, SN54HC534 MIN MAX SN74HC534 MIN MAX UNIT 2V 1.9 1.998 1.9 1.9 4.4 4.499 4.4 4.4 6V 5.9 5.999 5.9 5.9 IOH = –6 mA IOH = –7.8 mA 4.5 V 3.98 4.3 3.7 3.84 6V 5.48 5.8 5.2 5.34 2V 0.002 0.1 0.1 0.1 IOL = 20 µA 4.5 V 0.001 0.1 0.1 0.1 6V 0.001 0.1 0.1 0.1 4.5 V 0.17 0.26 0.4 0.33 6V 0.15 0.26 0.4 0.33 6V ±0.1 ±100 ±1000 ±1000 nA 6V ±0.01 ±0.5 ±10 ±5 µA 8 160 80 µA 10 10 10 pF IOL = 6 mA IOL = 7.8 mA ICC Ci TA = 25°C TYP MAX 4.5 V VI = VIH or VIL VI = VCC or 0 VO = VCC or 0, MIN IOH = –20 µA VI = VIH or VIL II IOZ VCC VI = VIH or VIL IO = 0 6V 2 V to 6 V POST OFFICE BOX 655303 3 • DALLAS, TEXAS 75265 V V 3 SN54HC534, SN74HC534 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS311A – JANUARY 1996 – REVISED MAY 1997 timing requirements over recommended operating free-air temperature range (unless otherwise noted) VCC fclock Clock frequency tw Pulse duration, CLK high or low Setup time, data before CLK↑ ↑ tsu Hold time, data after CLK↑ ↑ th TA = 25°C MIN MAX SN54HC534 SN74HC534 MIN MAX MIN MAX 2V 0 6 0 4.2 0 5 4.5 V 0 31 0 21 0 25 6V 0 36 0 25 0 29 2V 80 120 100 4.5 V 16 24 20 6V 14 20 17 2V 100 150 125 4.5 V 20 30 25 6V 17 26 21 2V 5 5 5 4.5 V 5 5 5 6V 5 5 5 UNIT MHz ns ns ns switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) fmax tpd ten tdis tt 4 CLK OE OE Any Q Any Q Any Q Any Q VCC TA = 25°C MIN TYP MAX SN54HC534 MIN MAX SN74HC534 MIN 2V 6 11 4.2 5 4.5 V 31 36 21 25 6V 36 40 25 MAX MHz 29 2V 88 180 270 225 4.5 V 28 36 54 45 6V 24 31 46 38 2V 77 150 225 190 4.5 V 26 30 45 38 6V 23 26 38 32 2V 51 150 225 190 4.5 V 25 30 45 38 6V 23 26 38 32 2V 28 60 90 75 4.5 V 8 12 18 15 6V 6 10 15 13 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT ns ns ns ns SN54HC534, SN74HC534 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS311A – JANUARY 1996 – REVISED MAY 1997 switching characteristics over recommended operating free-air temperature range, CL = 150 pF (unless otherwise noted) (see Figure 1) PARAMETER tpd ten tt FROM (INPUT) CLK OE TO (OUTPUT) Any Q Any Q Any Q VCC MIN TA = 25°C TYP MAX SN54HC534 MIN MAX SN74HC534 MIN MAX 2V 105 230 345 290 4.5 V 35 46 69 58 6V 31 39 58 49 2V 95 200 300 250 4.5 V 32 40 60 50 6V 29 34 51 43 2V 60 210 315 265 4.5 V 17 42 63 53 6V 14 36 53 45 UNIT ns ns ns operating characteristics, TA = 25°C PARAMETER Cpd Power dissipation capacitance per flip-flop POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TEST CONDITIONS TYP UNIT No load 100 pF 5 SN54HC534, SN74HC534 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS311A – JANUARY 1996 – REVISED MAY 1997 PARAMETER MEASUREMENT INFORMATION VCC From Output Under Test CL (see Note A) PARAMETER S1 Test Point tPZH ten RL 1 kΩ tPZL tPHZ tdis S2 RL 1 kΩ Data Input VCC 50% 10% 50% 50% 0V In-Phase Output 50% 10% tPHL 90% 90% tr tPHL Out-ofPhase Output 90% tf Closed Closed Open Open Open VCC th 90% 90% VCC 50% 10% 0 V tf 50% 10% Output Control (Low-Level Enabling) VCC 50% 50% 0V tPZL VOH 50% 10% V OL tf Output Waveform 1 (See Note B) tPLZ ≈ VCC ≈ VCC 50% 10% VOL tPZH tPLH 50% 10% Open VOLTAGE WAVEFORMS SETUP AND HOLD AND INPUT RISE AND FALL TIMES VCC tPLH Open tr VOLTAGE WAVEFORMS PULSE DURATIONS 50% Closed 0V 0V Input Closed tsu 0V 50% Open 50% 50% tw Low-Level Pulse 50 pF or 150 pF 50 pF or 150 pF –– Reference Input VCC S2 50 pF LOAD CIRCUIT 50% S1 tPLZ tpd or tt High-Level Pulse CL 90% VOH VOL Output Waveform 2 (See Note B) tr VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT TRANSITION TIMES 50% 90% VOH ≈0V tPHZ VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS NOTES: A. CL includes probe and test-fixture capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns. D. For clock inputs, fmax is measured when the input duty cycle is 50%. E. The outputs are measured one at a time with one input transition per measurement. F. tPLZ and tPHZ are the same as tdis. G. tPZL and tPZH are the same as ten. H. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 11-Apr-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Top-Side Markings (3) (4) SN74HC534DW OBSOLETE SOIC DW 20 TBD Call TI Call TI -40 to 85 SN74HC534DWR OBSOLETE SOIC DW 20 TBD Call TI Call TI -40 to 85 SN74HC534N OBSOLETE PDIP N 20 TBD Call TI Call TI -40 to 85 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 Samples PACKAGE OUTLINE DW0020A SOIC - 2.65 mm max height SCALE 1.200 SOIC C 10.63 TYP 9.97 SEATING PLANE PIN 1 ID AREA A 0.1 C 20 1 13.0 12.6 NOTE 3 18X 1.27 2X 11.43 10 11 B 7.6 7.4 NOTE 4 20X 0.51 0.31 0.25 C A B 2.65 MAX 0.33 TYP 0.10 SEE DETAIL A 0.25 GAGE PLANE 0 -8 0.3 0.1 1.27 0.40 DETAIL A TYPICAL 4220724/A 05/2016 NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side. 5. Reference JEDEC registration MS-013. www.ti.com EXAMPLE BOARD LAYOUT DW0020A SOIC - 2.65 mm max height SOIC 20X (2) SYMM 1 20 20X (0.6) 18X (1.27) SYMM (R0.05) TYP 10 11 (9.3) LAND PATTERN EXAMPLE SCALE:6X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.07 MAX ALL AROUND 0.07 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS 4220724/A 05/2016 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN DW0020A SOIC - 2.65 mm max height SOIC 20X (2) SYMM 1 20 20X (0.6) 18X (1.27) SYMM 11 10 (9.3) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:6X 4220724/A 05/2016 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated
SN74HC534N 价格&库存

很抱歉,暂时无法提供与“SN74HC534N”相匹配的价格&库存,您可以联系我们找货

免费人工找货