0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV320AIC3263IYZFR

TLV320AIC3263IYZFR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    DSBGA81

  • 描述:

    Audio Interface 12 b I²C, SPI 81-DSBGA (4.81x4.81)

  • 数据手册
  • 价格&库存
TLV320AIC3263IYZFR 数据手册
TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Ultra Low Power Stereo Audio Codec With miniDSP, DirectPath Headphone, and Class-D Speaker Amplifier Check for Samples: TLV320AIC3263 FEATURES 1 • • • • • • 2 • • • • • • • • • Stereo Audio DAC with 101dB SNR 2.7mW Stereo 48kHz DAC Playback Stereo Audio ADC with 93dB SNR 6.1mW Stereo 48kHz ADC Record 8-192kHz Playback and Record 30mW DirectPathTM Headphone Driver Eliminates Large Output DC-Blocking Capacitors 128mW Differential Receiver Output Driver Class-D Speaker Driver – 1.7 W (8Ω , 5.5V, 10% THDN) – 1.4 W (8Ω , 5.5V, 1% THDN) Stereo Line Outputs PowerTune™ - Adjusts Power versus SNR Extensive Signal Processing Options Eight Single-Ended or 4 Fully-Differential Analog Inputs Analog Microphone Inputs, and Up to 4 Simultaneous Digital Microphone Channels Low Power Analog Bypass Mode Fully-programmable Enhanced miniDSP with PurePathTM Studio Support – Extensive Algorithm Support for Voice and Audio Applications • • • • • Three Independent Digital Audio Serial Interfaces with Separate I/O Power Voltages – TDM and mono PCM support on all Audio Serial Interfaces – 8-channel Input and Output on Audio Serial Interface 1 Programmable PLL, plus Low-Frequency Clocking Programmable 12-Bit SAR ADC SPI and I2C Control Interfaces 4.81 mm x 4.81 mm x 0.625 mm 81-Ball WCSP (DSBGA) Package AIC3262 APPLICATIONS • • • • • • • • • Mobile Handsets Tablets, eBooks Portable Navigation Devices (PND) Portable Media Player (PMP) Portable Gaming Systems Portable Computing Active Noise Cancellation (ANC) Speaker Protection Advanced DSP algorithms 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerTune is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2013, Texas Instruments Incorporated TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com DESCRIPTION The TLV320AIC3263 (also referred to as the AIC3263) is a flexible, highly-integrated, low-power, low-voltage stereo audio codec. The AIC3263 features four digital microphone inputs, plus programmable outputs, PowerTune capabilities, enhanced fully-programmable miniDSP, predefined and parameterizable signal processing blocks, integrated PLL, and flexible digital audio interfaces. Extensive register-based control of power, input and output channel configuration, gains, effects, pin-multiplexing and clocks are included, allowing the device to be precisely targeted to its application. LOL VBAT TEMP SENSOR VBAT IN1L/AUX1 IN1R/AUX2 TEMP -6...29dB (1-dB Steps) -78...0dB Int. Ref. VREF_SAR IN1L RECP -78...0dB SAR ADC RECM LOR -78...0dB 6...30dB (6-dB Steps) IN1R -78...0dB SPKP -6dB SPKM -12, -6, 0dB IN1L/AUX1 IN2L IN3L IN4L LOL RIGHT_ CH_IN -78...0dB –12, –6, 0dB LOR -78...0dB –12, –6, 0dB Vol. Ctrl. AGC DRC ADC Signal Proc. DAC Signal Proc. -6...14dB (1-dB Steps) –12, –6, 0dB Left ADC –6 dB 0=47.5dB (0.5-dB Steps) tPL HPL Left + DAC – -78...0dB Gain Adj. –36...0dB MAL LOL miniDSP Dig Mixer Volume –36...0dB miniDSP ASRC Dig Mixer Volume Audio Interface HPVSS_SENSE MAR 0=47.5dB (0.5-dB Steps) IN4R IN3R IN2R IN1R/AUX2 LOR Gain Adj. Right ADC –6 dB tPR –12, –6, 0dB –12, –6, 0dB -78...0dB ADC Signal Proc. DAC Signal Proc. AGC DRC Right – DAC + HPR Vol. Ctrl. -6...14dB (1-dB Steps) -12, -6, 0dB –12, –6, 0dB -6dB Low Freq Clocking SPI_SELECT SPI / I2C Control Block RESET Digital Interrupt Mic. (x4) Ctrl Primary Tertiary Secondary Audio IF Audio IF Audio Interface Detection Supplies BCLK1 DIN1 WCLK1 DOUT1 BCLK2 DIN2 WCLK2 GPIO3 GPIO4 DOUT2 BCLK3 WCLK3 Pin Muxing / Clock Routing GPIO6 DOUT3 DIN3 Charge Pump GPIO2 GPIO5 Ref MCLK VREF_AUDIO GPIO1 Mic Bias VNEG CPFCM CPFCP CPVSS CPVDD_18 SVDD SPK_V MICBIAS_VDD RECVDD_33 IOVDD1 IOVDD2 IOVDD3 AVDD1_18 AVDD2_18 AVDD4_18 AVDD_18 HVDD_18 DVDD SVSS RECVSS IOVSS AVSS AVSS1 AVSS2 AVSS3 AVSS4 DVSS MICBIAS MICBIAS_EXT SCL SDA I2C_ADDR_ SCLK GPO1 MICDET PLL Figure 1. Simplified Block Diagram 2 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. DESCRIPTION (CONTINUED) The TLV320AIC3263 features two fully-programmable miniDSP cores that support application-specific algorithms in the record and/or the playback path of the device. The miniDSP cores are fully software programmable. Targeted miniDSP algorithms, such as active noise cancellation, acoustic echo cancellation or advanced DSP filtering are loaded into the device after power-up. Combined with the advanced PowerTune technology, the device can execute operations from 8kHz mono voice playback to stereo 192kHz DAC playback, making it ideal for portable battery-powered audio and telephony applications. The record path of the TLV320AIC3263 covers operations from 8kHz mono to 192kHz stereo recording, and contains programmable input channel configurations which cover single-ended and differential setups, as well as floating or mixing input signals. It also provides a digitally-controlled stereo microphone preamplifier and integrated microphone bias. One application of the digital signal processing blocks is removable of audible noise that may be introduced by mechanical coupling, such as optical zooming in a digital camera. The record path can also be configured for up to two stereo (such as up to 4) simultaneous digital microphone Pulse Density Modulation (PDM) interfaces typically used at 64Fs or 128Fs. The playback path offers signal processing blocks for filtering and effects; headphone, line, receiver, and Class-D speaker output; flexible mixing of DAC; and analog input signals as well as programmable volume controls. The playback path contains two high-power DirectPathTM headphone output drivers which eliminate the need for ac coupling capacitors. A built in charge pump generates the negative supply for the ground centered headphone drivers. These headphone output drivers can be configured in multiple ways, including stereo, and mono BTL. In addition, playback audio can be routed to an integrated Class-D speaker driver or a differential receiver amplifier. The integrated PowerTune technology allows the device to be tuned to just the right power-performance tradeoff. Mobile applications frequently have multiple use cases requiring very low-power operation while being used in a mobile environment. When used in a docked environment power consumption typically is less of a concern while lowest possible noise is important. With PowerTune the TLV320AIC3263 can address both cases. The required internal clock of the TLV320AIC3263 can be derived from multiple sources, including the MCLK pin, the BCLK1 pin, the BCLK2 pin, several general purpose I/O pins or the output of the internal PLL, where the input to the PLL again can be derived from similar pins. Although using the internal fractional PLL ensures the availability of a suitable clock signal, it is not recommended for the lowest power settings. The PLL is highly programmable and can accept available input clocks in the range of 512kHz to 50MHz. To enable even lower clock frequencies, an integrated low-frequency clock multiplier can also be used as an input to the PLL. The TLV320AIC3263 has a 12-bit SAR ADC converter that supports system voltage measurements. These system voltage measurements can be sourced from three dedicated analog inputs (IN1L/AUX1, IN1R/AUX2, or VBAT pins), or, alternatively, an on-chip temperature sensor that can be read by the SAR ADC. The device also features three full Digital Audio Serial Interfaces, each supporting I2S, DSP/TDM, RJF, LJF, and mono PCM formats. This enables three simultaneous digital playback and record paths to three independent digital audio buses or chips. Additionally, the general purpose interrupt pins can be used to connect to a fourth digital audio bus, allowing the end system to easily switch in this fourth audio bus to one of the three Digital Audio Serial Interfaces. Each of the three Digital Audio Serial Interfaces can be run using separate power voltages to enable easy integration with separate chips with different I/O voltages. The device is available in the 4.81 mm x 4.81 mm x 0.625 mm 81-Ball WCSP (DSBGA) Package. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 3 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Package and Signal Descriptions Packaging/Ordering Information (1) PRODUCT (1) PACKAGE PACKAGE DESIGNATOR OPERATING TEMPERATURE RANGE TLV320AIC3263 WCSP-81 (DSBGA) YZF –40°C to 85°C ORDERING NUMBER TRANSPORT MEDIA, QUANTITY TLV320AIC3263 I YZFT Tape and Reel, 250 TLV320AIC3263 I YZFR Tape and Reel, 3000 For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder on www.ti.com. Pin Assignments space space WCSP Package (Top View) J DVDD WCLK 2 WCLK 3 BCLK3 SDA IOVSS DVDD WCLK 1 DIN1 H IOVDD2 DIN2 DIN3 IOVDD 3 GPIO5 SCL IOVDD 1 DOUT 1 BCLK 1 G BCLK2 IOVSS DOUT 3 GPO 1 GPIO 6 RESET GPIO 2 GPIO1 MCLK F DVSS GPIO4 GPIO3 SPI_ SELECT DVSS AVDD _18 IN2R IN 2L E DVSS DOUT2 DVDD AVSS 2 AVSS 1 AVSS IN 3L IN3R D DVSS VBAT LOR HPVSS_ SENSE IN4R IN1R/ AUX2 IN1L/ AUX1 VREF _ SAR VREF _ AUDIO C SPK _V SPKM AVDD 4 _18 LOL AVDD 2 _18 MICBIAS MICBIAS _ EXT AVDD 1 _18 IN4L B SVSS SVDD CPFCP CPVSS HPL HVDD _ 18 RECM RECP MICDET A SPKP AVSS4 CPVDD _ 18 CPFCM VNEG HPR 9 8 7 6 5 4 I2C_ ADDR _ SCLK AVSS 3 RECVDD RECVSS MICBIAS _ VDD _ 33 3 2 1 Figure 2. WCSP-81 (DSBGA) (YZF) Package Ball Assignments, Top View 4 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Table 1. TERMINAL FUNCTIONS – 81 Ball WCSP (YZF) Package WCSP (YZF) BALL LOCATION NAME I/O/P POWER DOMAIN A1 MICBIAS_VDD P Analog Power Supply for Micbias A2 RECVSS P Analog Receiver Driver Ground A3 RECVDD_33 P Analog 3.3V Power Supply for Receiver Driver DESCRIPTION A4 HPR O Analog Right Headphone Output A5 VNEG I/O Analog Charge Pump Negative Supply A6 CPFCM I/O Analog Charge Pump Flying Capacitor M terminal A7 CPVDD_18 P Analog Power Supply Input for Charge Pump A8 AVSS4 P Analog Analog Ground for Class-D A9 SPKP O Speaker B1 MICDET I/O Analog Headset Detection Pin B2 RECP O Analog Receiver Driver P side Output B3 RECM O Analog Receiver Driver M side Output B4 HVDD_18 P Analog Headphone Amp Power Supply B5 HPL O Analog Left Headphone Output B6 CPVSS P Analog Charge Pump Ground B7 CPFCP I/O Analog Charge Pump Flying Capacitor P Terminal B8 SVDD P Speaker Class-D Output Stage Power Supply B9 SVSS P Speaker Class-D Output Stage Ground C1 IN4L I Analog Analog Input 4 Left C2 AVDD1_18 P Analog 1.8V Analog Power Supply C3 MICBIAS_EXT O Analog Output Bias Voltage for Headset Microphone. C4 MICBIAS O Analog Output Bias Voltage for Microphone to be used for on-board Microphones C5 AVDD2_18 P Analog 1.8V Analog Power Supply C6 LOL O Analog Left Line Output C7 AVDD4_18 P Analog 1.8V Analog Power Supply for Class-D C8 SPKM O Speaker M side Class-D Output Class-D Output Stage Power Supply (Connect to SVDD through a Resistor) Left Channel P side Class-D Output C9 SPK_V P Speaker D1 VREF_AUDIO O Analog Analog Reference Filter Output D2 VREF_SAR I/O Analog SAR ADC Voltage Reference Input or Internal SAR ADC Voltage Reference Bypass Capacitor Pin D3 IN1L/AUX1 I Analog Analog Input 1 Left, Auxiliary 1 Input to SAR ADC (Special Function: Left Channel High Impedance Input for Capacitive Sensor Measurement) D4 IN1R/AUX2 I Analog Analog Input 1 Right, Auxiliary 2 Input to SAR ADC (Special Function: Right Channel High Impedance Input for Capacitive Sensor Measurement) D5 IN4R I Analog Analog Input 4 Right D6 HPVSS_SENSE I Analog Headphone Ground Sense Terminal D7 LOR O Analog Right Line Output D8 VBAT I Speaker D9 DVSS P Digital Digital Ground E1 IN3R I Analog Analog Input 3 Right E2 IN3L I Analog Analog Input 3 Left E3 AVSS P Analog Analog Ground E4 AVSS1 P Analog Analog Ground E5 AVSS3 P Analog Analog Ground E6 AVSS2 P Analog Analog Ground E7 DVDD P Digital 1.8V Digital Power Supply Battery Monitor Voltage Input Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 5 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 1. TERMINAL FUNCTIONS – 81 Ball WCSP (YZF) Package (continued) WCSP (YZF) BALL LOCATION NAME I/O/P POWER DOMAIN DESCRIPTION Primary: Audio Serial Data Bus 2 Data Output E8 DOUT2 O IOVDD2 E9 DVSS P Digital Digital Ground F1 IN2L I Analog Analog Input 2 Left Secondary: See Table 8 F2 IN2R I Analog Analog Input 2 Right F3 AVDD_18 P Analog 1.8V Analog Power Supply F4 DVSS P Digital Digital Ground Primary: (SPI_SELECT = 1) F5 I2C_ADDR_SCLK I IOVDD1 SPI Serial Clock Secondary: (SPI_SELECT = 0) I2C Address Bit (I2C_ADDR) F6 SPI_SELECT I IOVDD1 F7 GPIO3 I/O IOVDD2 F8 GPIO4 I/O IOVDD2 F9 DVSS P Digital G1 MCLK I IOVDD1 G2 GPIO1 I/O IOVDD1 G3 GPIO2 I/O IOVDD1 G4 RESET I IOVDD1 G5 GPIO6 I/O IOVDD1 Control Interface Select SPI_SELECT = ‘1’: SPI Interface selected SPI_SELECT = ‘0’: I2C Interface selected Multi Function Digital IO 3 See Table 9 Multi Function Digital IO 4 See Table 9 Digital Ground Master Clock Input Multi Function Digital IO 1 See Table 9 Multi Function Digital IO 2 See Table 9 Active Low Reset Multi Function Digital IO 6 See Table 9 Multifunction Digital Output 1 Primary: (SPI_SELECT = 1) G6 GPO1 O IOVDD1 Serial Data Output Secondary: (SPI_SELECT = 0) See Table 9 Primary: G7 DOUT3 O IOVDD3 P Common for all IO Domains Audio Serial Data Bus 3 Data Output Secondary: See Table 9 G8 IOVSS Digital I/O Buffer Ground Primary: G9 BCLK2 I/O IOVDD2 Audio Serial Data Bus 2 Bit Clock Secondary: See Table 8 6 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Table 1. TERMINAL FUNCTIONS – 81 Ball WCSP (YZF) Package (continued) WCSP (YZF) BALL LOCATION NAME I/O/P POWER DOMAIN DESCRIPTION Primary: H1 BCLK1 I/O IOVDD1 Audio Serial Data Bus 1 Bit Clock Secondary: See Table 8 Primary: Audio Serial Data Bus 1 Data Output H2 DOUT1 O IOVDD1 H3 IOVDD1 P IOVDD1 Digital I/O Buffer Supply 1 H4 SCL I/O IOVDD1 I2C Interface Serial Clock (SPI_SELECT = 0) SPI interface mode chip-select signal (SPI_SELECT = 1) H5 GPIO5 I/O IOVDD1 H6 IOVDD3 P IOVDD3 Secondary: See Table 8 Multifunction Digital IO 5 See Table 8 Digital I/O Buffer Supply 3 Primary: H7 DIN3 I IOVDD3 Audio Serial Data Bus 3 Data Input Secondary: See Table 9 Primary: H8 DIN2 I IOVDD2 Audio Serial Data Bus 2 Data Input Secondary: See Table 8 H9 IOVDD2 P IOVDD2 Digital I/O Buffer Supply 2 Primary: J1 DIN1 I IOVDD1 Audio Serial Data Bus 1 Data Input Secondary: See Table 8 Primary: J2 WCLK1 I/O IOVDD1 J3 DVDD P Digital J4 IOVSS P Common for all IO Domains J5 SDA I/O IOVDD1 Audio Serial Data Bus 1 Word Clock Secondary: See Table 8 1.8V Digital Power Supply Digital I/O Buffer Ground I2C interface mode serial data input (SPI_SELECT = 0) SPI interface mode serial data input (SPI_SELECT = 1) Primary: J6 BCLK3 I/O IOVDD3 Audio Serial Data Bus 3 Bit Clock Secondary: See Table 9 Primary: J7 WCLK3 I/O IOVDD3 Audio Serial Data Bus 3 Word Clock Secondary: See Table 9 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 7 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 1. TERMINAL FUNCTIONS – 81 Ball WCSP (YZF) Package (continued) WCSP (YZF) BALL LOCATION NAME I/O/P POWER DOMAIN DESCRIPTION Primary: J8 WCLK2 I/O IOVDD2 J9 DVDD P Digital Audio Serial Data Bus 2 Word Clock Seccondary: See Table 8 8 1.8V Digital Power Supply Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Electrical Characteristics Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) VALUE UNIT AVDD1_18, AVDD2_18, AVDD4_18, AVDD_18 to AVSS1, AVSS2, AVSS4, AVSS respectively (2) –0.3 to 2.2 V RECVDD_33 to RECVSS –0.3 to 3.9 V DVDD to DVSS –0.3 to 2.2 V IOVDDx to IOVSS –0.3 to 3.9 V HVDD_18 to AVSS –0.3 to 2.2 V CPVDD_18 to CPVSS –0.3 to 2.2 V SVDD to SVSS, SPK_V to SVSS, and MICBIAS_VDD to AVSS3 (3) –0.3 to 6.0 V Digital Input voltage to ground IOVSS – 0.3 to IOVDDx + 0.3 V Analog input voltage to ground AVSS – 0.3 to AVDDx_18 + 0.3 V –0.3 to 6 V Operating temperature range –40 to 85 °C Storage temperature range –55 to 125 °C 105 °C VBAT Junction temperature (TJ Max) Power dissipation (TJ Max – TA)/ θJA W 39.1 °C/W θJA Junction-to-ambient thermal resistance WCSP-81 (DSBGA) package (YZF) (1) (2) (3) θJCtop Junction-to-case (top) thermal resistance 0.1 θJB Junction-to-board thermal resistance 12.0 PsiJT Junction-to-top characterization parameter 0.7 PsiJB Junction-to-board characterization parameter 11.5 Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. It's recommended to keep all AVDDx_18 supplies within ± 50 mV of each other. It's recommended to keep SVDD and SPK_V supplies within ± 50 mV of each other. Recommended Operating Conditions AVDD1_18, AVDD2_18, AVDD4_18, AVDD_18 Power Supply Voltage Range RECVDD_33 IOVDD1, IOVDD2, IOVDD3 MIN NOM MAX UNIT (2) 1.8 1.95 V Referenced to RECVSS 1.65 (3) 3.3 3.6 (1) 1.1 Referenced to AVSS1, AVSS2, AVSS4, AVSS respectively (1) It is recommended to connect each of these supplies to a single supply rail. Referenced to IOVSS DVDD (4) Power Supply Voltage Range Referenced to DVSS (1) CPVDD_18 Power Supply Voltage Range Referenced to CPVSS HVDD_18 Referenced to AVSS (1) (1) Ground-centered Configuration Unipolar Configuration (1) (2) (3) (4) 1.5 3.6 1.26 1.8 1.95 1.26 1.8 1.95 1.5 (3) 1.8 1.95 1.65 (3) V 1.95 All grounds on board are tied together, so they should not differ in voltage by more than 0.1V max, for any combination of ground signals. AVDDx_18 are within +/- 0.05 V of each other. SVDD and SPK_V are within +/- 0.05 V of each other. For optimal performance with CM=0.9V, min AVDD = 1.8V. Minimum voltage for HVDD_18 should be greater than or equal to AVDD2_18. At DVDD values lower than 1.65V, the PLL and SAR ADC do not function. Please see table in SLAU475, Maximum TLV320AIC3263 Clock Frequencies for details on maximum clock frequencies. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 9 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Recommended Operating Conditions (continued) MIN NOM MAX UNIT SVDD (1) Power Supply Voltage Range Referenced to SVSS (1) 2.7 5.5 V SPK_V (1) Power Supply Voltage Range Referenced to SVSS (1) 2.7 5.5 V MICBIAS_VD Power Supply Voltage Range D Referenced to AVSS3 (1) 2.7 5.5 V VREF_SAR External voltage reference for SAR Referenced to AVSS AVDDx_18 V PLL Input Frequency (5) Clock divider uses fractional divide (D > 0), P=1, PLL_CLKIN_DIV=1, DVDD ≥ 1.65V (Refer to table in SLAU475, Maximum TLV320AIC3263 Clock Frequencies) 10 20 MHz Clock divider uses integer divide (D = 0), P=1, PLL_CLKIN_DIV=1, DVDD ≥ 1.65V (Refer to table in SLAU475, Maximum TLV320AIC3263 Clock Frequencies) 0.512 20 MHz 50 MHz 1.8 MCLK; Master Clock Frequency; IOVDD ≥ 1.65V MCLK Master Clock Frequency SCL SCL Clock Frequency LOL, LOR Stereo line output load resistance HPL, HPR Stereo headphone output load Single-ended configuration resistance SPKP-SPKM Speaker output load resistance MCLK; Master Clock Frequency; IOVDD ≥ 1.1V 33 400 kHz 0.6 10 kΩ 14.4 16 Ω Differential 7.2 8 Ω Differential 24.4 32 Ω CIN Charge pump input capacitor (CPVDD to CPVSS terminals) 10 µF CO Charge pump output capacitor Type X7R (VNEG terminal) 2.2 µF CF Charge pump flying capacitor (CPFCP to CPFCM terminals) 2.2 µF TOPR Operating Temperature Range RECP-RECM Receiver output resistance (5) 10 Type X7R –40 85 °C The PLL Input Frequency refers to clock frequency after PLL_CLKIN_DIV divider. Frequencies higher than 20MHz can be sent as an input to this PLL_CLKIN_DIV and reduced in frequency prior to input to the PLL. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Electrical Characteristics, SAR ADC TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SAR ADC Inputs Analog Input Input voltage range Input impedance 0 Input leakage current VBAT Input voltage range VBAT Input impedance VBAT Input capacitance V 1 ÷ (f×CSAR_IN) (1) IN1L/AUX1 or IN1R/AUX2 Selected Input capacitance, CSAR_IN Battery Input VREF_SAR pF 1 µA 2.2 VBAT (Battery measurement) selected (2) kΩ 25 5.5 V 5 VBAT Input leakage current kΩ 25 pF 1 µA SAR ADC Conversion IN1L/ AUX1 Resolution Programmable: 8-bit, 10-bit, 12-bit No missing codes 12-bit resolution Integral linearity Offset error Gain error VBAT 12-bit resolution, SAR ADC clock = Internal Oscillator Clock, Conversion clock = Internal Oscillator / 4, External Reference = 1.8V (3) Noise DC voltage applied to IN1L/AUX1 = 1 V, SAR ADC clock = Internal Oscillator Clock, Conversion clock = Internal Oscillator / 4, External Reference = 1.8V (4) (3) Accuracy 12-bit resolution, SAR ADC clock = Internal Oscillator Clock, Conversion clock = Internal Oscillator / 4, Internal Reference = 1.25V Offset error Gain error Noise 8 12 Bits 11 Bits ±1 LSB ±1 LSB -0.09 % ±1 DC voltage applied to VBAT = 3.6 V, 12bit resolution, SAR ADC clock = Internal Oscillator Clock, Conversion clock = Internal Oscillator / 4, Internal Reference = 1.25V LSB 2 % ±2 LSB 1.5 % ±0.5 LSB Conversion Rate Normal conversion operation 12-bit resolution, SAR ADC clock = 12 MHz External Clock, Conversion clock = External Clock / 4, External Reference = 1.8V (3). With Fast SPI reading of data. 119 kHz High-speed conversion operation 8-bit resolution,SAR ADC clock = 12 MHz External Clock, Internal Conversion clock = External Clock (Conversion accuracy is reduced.), External Reference = 1.8V (3). With Fast SPI reading of data. 250 kHz Voltage Reference - VREF_SAR Voltage range Internal VREF_SAR External VREF_SAR Reference Noise 1.25±0.05 1.25 CM=0.9V, Cref = 1μF Decoupling Capacitor (1) (2) (3) (4) V AVDDx_18 V 46 μVRMS 1 μF SAR input impedance is dependent on the sampling frequency (f designated in Hz), and the sampling capacitor is CSAR_IN = 25pF. When VBAT is not being sampled/converted. When VBAT is being sampled, effective input impedance to GND is 5.24kΩ. When utilizing External SAR reference, this external reference should be restricted VEXT_SAR_REF≤AVDD_18 and AVDD2_18. Noise from external reference voltage is excluded from this measurement. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 11 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Electrical Characteristics, ADC TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER AUDIO ADC (CM = 0.9V) TEST CONDITIONS MIN TYP MAX UNIT (1) (2) Input signal level (0dB) Single-ended, CM = 0.9V 0.5 Device Setup 1kHz sine wave input, Single-ended Configuration IN2R to Right ADC and IN2L to Left ADC, Rin = 20kΩ, fs = 48kHz, AOSR = 128, MCLK = 256*fs, PLL Disabled; AGC = OFF, Channel Gain = 0dB, Processing Block = PRB_R1, Power Tune = PTM_R4 Inputs ac-shorted to ground 85 VRMS 94 SNR Signal-to-noise ratio, Aweighted (1) (2) IN1R, IN3R, IN4R each exclusively routed in separate tests to Right ADC and ac-shorted to ground IN1L, IN3L, IN4L each exclusively routed in separate tests to Left ADC and ac-shorted to ground DR Dynamic range Aweighted (1) (2) –60dB full-scale, 1-kHz input signal 94 –3 dB full-scale, 1-kHz input signal –89 IN1R,IN3R, IN4R each exclusively routed in separate tests to Right ADC IN1L, IN3L, IN4L each exclusively routed in separate tests to Left ADC –3dB full-scale, 1-kHz input signal –88 1kHz sine wave input at -3dBFS, Single-ended configuration Rin = 20K fs = 48kHz, AOSR=128, MCLK = 256* fs, PLL Disabled AGC = OFF, Channel Gain=0dB, Processing Block = PRB_R1, Power Tune = PTM_R4, CM=0.9V 0.02 dB Gain Error Input Channel Separation 1kHz sine wave input at -3dBFS, Single-ended configuration IN1L routed to Left ADC, IN1R routed to Right ADC, Rin = 20K AGC = OFF, AOSR = 128, Channel Gain=0dB, CM=0.9V 110 dB Input Pin Crosstalk 1kHz sine wave input at –3dBFS on IN2L, IN2L internally not routed. IN1L routed to Left ADC, ac-coupled to ground 112 dB 59 dB THD+N Total Harmonic Distortion plus Noise 94 dB dB –75 dB 1kHz sine wave input at –3dBFS on IN2R, IN2R internally not routed. IN1R routed to Right ADC, ac-coupled to ground Single-ended configuration Rin = 20kΩ, AOSR=128 Channel Gain=0dB, CM=0.9V PSRR (1) (2) 12 217Hz, 100mVpp signal on AVDD_18, AVDDx_18 Single-ended configuration, Rin=20kΩ, Channel Gain=0dB; CM=0.9V Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. All performance measurements done with pre-analyzer 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Electrical Characteristics, ADC (continued) TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT AUDIO ADC (CM = 0.75V) SNR Input signal level (0dB) Single-ended, CM=0.75V, AVDD_18, AVDDx_18 = 1.5V 0.375 Device Setup 1kHz sine wave input, Single-ended Configuration IN2R to Right ADC and IN2L to Left ADC, Rin = 20K, fs = 48kHz, AOSR = 128, MCLK = 256*fs, PLL Disabled; AGC = OFF, Channel Gain = 0dB, Processing Block = PRB_R1, Power Tune = PTM_R4 VRMS Signal-to-noise ratio, Aweighted (3) (4) Inputs ac-shorted to ground 91 dB IN1R, IN3R, IN4R each exclusively routed in separate tests to Right ADC and ac-shorted to ground IN1L, IN3L, IN4L each exclusively routed in separate tests to Left ADC and ac-shorted to ground 91 dB DR Dynamic range Aweighted (3) (4) –60dB full-scale, 1-kHz input signal 92 dB THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1-kHz input signal –85 dB (3) (4) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. All performance measurements done with pre-analyzer 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 13 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Electrical Characteristics, ADC (continued) TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT AUDIO ADC (Differential Input, CM = 0.9V) Input signal level (0dB) Differential, CM=0.9V, AVDD_18, AVDDx_18 = 1.8V Device Setup 1kHz sine wave input, Differential Configuration IN1L, IN1R Routed to Right ADC, IN2L, IN2R Routed to Left ADC Rin = 20kΩ, fs = 48kHz, AOSR=128, MCLK = 256* fs, PLL Disabled, AGC = OFF, Channel Gain = 0dB, Processing Block = PRB_R1, Power Tune = PTM_R4 1 VRMS SNR Signal-to-noise ratio, Aweighted (5) (6) Inputs ac-shorted to ground 94 dB DR Dynamic range Aweighted (5) (6) –60dB full-scale, 1-kHz input signal 95 dB THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1-kHz input signal –89 dB 0.04 dB Gain Error 1kHz sine wave input at -3dBFS, Differential configuration Rin = 20kΩ, fs = 48kHz, AOSR=128, MCLK = 256* fs, PLL Disabled AGC = OFF, Channel Gain=0dB, Processing Block = PRB_R1, Power Tune = PTM_R4, CM=0.9V 1kHz sine wave input at -3dBFS, Differential configuration IN1L/IN1R differential signal routed to Right ADC, IN2L/IN2R differential signal routed to Left ADC, Rin = 20kΩ AGC = OFF, AOSR = 128, Channel Gain=0dB, CM=0.9V 108 dB Input Channel Separation 1kHz sine wave input at –3dBFS on IN2L/IN2R, IN2L/IN2R internally not routed. IN1L/IN1R differentially routed to Right ADC, ac-coupled to ground 110 dB Input Pin Crosstalk 52 dB 1kHz sine wave input at –3dBFS on IN2L/IN2R, IN2L/IN2R internally not routed. IN3L/IN3R differentially routed to Left ADC, ac-coupled to ground Differential configuration Rin = 20kΩ, AOSR=128 Channel Gain=0dB, CM=0.9V PSRR 217Hz, 100mVpp signal on AVDD_18, AVDDx_18 Differential configuration, Rin=20K, Channel Gain=0dB; CM=0.9V AUDIO ADC IN1 - IN3, Single-Ended, Rin = 10K, PGA gain set to 0dB 0 dB 47.5 dB –6 dB ADC programmable gain IN1 - IN3, Single-Ended, Rin = 20K, PGA gain set to 47.5dB amplifier gain IN1 - IN3, Single-Ended, Rin = 40K, PGA gain set to 0dB 41.5 dB –12 dB IN1 - IN3, Single-Ended, Rin = 40K, PGA gain set to 47.5dB 35.5 dB –6 dB 41.5 dB 0.5 dB IN1 - IN3, Single-Ended, Rin = 10K, PGA gain set to 47.5dB IN1 - IN3, Single-Ended, Rin = 20K, PGA gain set to 0dB IN4, Single-Ended, Rin = 20K, PGA gain set to 0dB IN4, Single-Ended, Rin = 20K, PGA gain set to 47.5dB ADC programmable gain 1-kHz tone amplifier step size (5) (6) 14 Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. All performance measurements done with pre-analyzer 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Electrical Characteristics, Bypass Outputs TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ANALOG BYPASS TO RECEIVER AMPLIFIER, DIRECT MODE Device Setup Load = 32Ω (differential), 56pF; Input CM=0.9V; Output CM=1.65V; IN1L routed to RECP and IN1R routed to RECM; Channel Gain=0dB Full scale differential input voltage (0dB) THD+N 1 Gain Error 707mVrms (-3dBFS), 1-kHz input signal Noise, A-weighted (1) Idle Channel, IN1L and IN1R ac-shorted to ground Total Harmonic Distortion plus Noise 707mVrms (-3dBFS), 1-kHz input signal VRMS –0.7 dB 12 μVRMS –89 dB 0.5 VRMS ANALOG BYPASS TO HEADPHONE AMPLIFIER, PGA MODE Device Setup Load = 16Ω (single-ended), 56pF; HVDD_18 = 3.3V Input CM=0.9V; Output CM=1.65V IN1L routed to ADCPGA_L, ADCPGA_L routed through MAL to HPL; and IN1R routed to ADCPGA_R, ADCPGA_R routed through MAR to HPR; Rin = 20K; Channel Gain = 0dB Full scale differential input voltage (0dB) THD+N Gain Error 446mVrms (-1dBFS), 1-kHz input signal -1.1 Noise, A-weighted (1) dB Idle Channel, IN1L and IN1R ac-shorted to ground 6.0 μVRMS Total Harmonic Distortion plus Noise 446mVrms (-1dBFS), 1-kHz input signal -83 dB ANALOG BYPASS TO HEADPHONE AMPLIFIER (GROUND-CENTERED CIRCUIT CONFIGURATION), PGA MODE Device Setup Load = 16Ω (single-ended), 56pF; Input CM=0.9V; IN1L routed to ADCPGA_L, ADCPGA_L routed through MAL to HPL; and IN1R routed to ADCPGA_R, ADCPGA_R routed through MAR to HPR; Rin = 20K; Channel Gain = 0dB Full scale input voltage (0dB) THD+N (1) 0.5 Gain Error 446mVrms (-1dBFS), 1-kHz input signal Noise, A-weighted (1) Idle Channel, IN1L and IN1R ac-shorted to ground Total Harmonic Distortion plus Noise 446mVrms (-1dBFS), 1-kHz input signal VRMS –1.0 dB 11 μVRMS -71 dB All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 15 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Electrical Characteristics, Bypass Outputs (continued) TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ANALOG BYPASS TO LINE-OUT AMPLIFIER, PGA MODE Load = 10KOhm (single-ended), 56pF; Input and Output CM=0.9V; IN1L routed to ADCPGA_L and IN1R routed to ADCPGA_R; Rin = 20k ADCPGA_L routed through MAL to LOL and ADCPGA_R routed through MAR to LOR; Channel Gain = 0dB Device Setup Full scale input voltage (0dB) Gain Error Noise, A-weighted 0.5 VRMS –0.9 dB Idle Channel, IN1L and IN1R ac-shorted to ground 5.9 μVRMS Channel Gain=40dB, Inputs ac-shorted to ground, Input Referred 3.0 μVRMS 0.5 VRMS 446mVrms (-1dBFS), 1-kHz input signal (2) ANALOG BYPASS TO LINE-OUT AMPLIFIER, DIRECT MODE Device Setup Load = 10KOhm (single-ended), 56pF; Input and Output CM=0.9V; IN1L routed to LOL and IN1R routed to LOR; Channel Gain = 0dB Full scale input voltage (0dB) (2) 16 Gain Error 446mVrms (-1dBFS), 1-kHz input signal Noise, A-weighted (2) Idle Channel, IN1L and IN1R ac-shorted to ground –0.4 dB 3.0 μVRMS All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Electrical Characteristics, Microphone Interface TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT MICROPHONE BIAS (MICBIAS or MICBIAS_EXT) Bias voltage CM=0.9V, MICBIAS_VDD = 3.3V Micbias Mode 0 1.80 V Micbias Mode 1 2.00 V Micbias Mode 2 2.15 V Micbias Mode 3 2.49 V Micbias Mode 4 (1) 2.85 V Micbias Mode 5 (1) 3.00 V Micbias Mode 0 1.50 V Micbias Mode 1 1.67 V Micbias Mode 2 1.79 V Micbias Mode 3 2.08 V Micbias Mode 4 2.37 V Micbias Mode 5 2.50 V 10.04 μVRMS 70.99 nV/√Hz CM=0.75V, MICBIAS_VDD = 3.3V Output Noise Current Sourcing Micbias Mode 0, 1, 2, 3, 4, or 5 (CM=0.9V) Maximum Line Capacitance Micbias Mode 0, 1, 2, 3, 4, or 5 (CM=0.9V) (2) PSRR (1) (2) CM=0.9V, Micbias Mode 2, A-weighted, 20Hz to 20kHz bandwidth, Current load = 0mA. 8 mA 10 217Hz, 100mVpp signal on AVDDx_18, DVDD, IOVDDx, MICBIAS_VDD=3.6V, CM=0.75V 48 217Hz, 100mVpp signal on MICBIAS_VDD, MICBIAS_VDD=3.6V, CM=0.75V 90 1kHz, 100mVpp signal on AVDDx_18, DVDD, IOVDDx, MICBIAS_VDD=3.6V, CM=0.75V 47 1kHz, 100mVpp signal on MICBIAS_VDD, MICBIAS_VDD=3.6V 85 pF dB dB dB dB With Common Mode voltage of 0.9V, the MICBIAS_VDD voltage must be at minimum 3.05V to utilize Micbias Mode 4, and minimum of 3.2V to utilize Micbias Mode 5. An explicit external capacitor should not be placed on MICBIAS or MICBIAS_EXT lines. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 17 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Electrical Characteristics, Audio DAC Outputs TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 0.5 VRMS 85 101 dB –60dB 1kHz input full-scale signal, Word length=20 bits 102 dB AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT Load = 10 kΩ (single-ended), 56pF Input and Output CM=0.9V DOSR = 128, MCLK=256* fs, Channel Gain = 0dB, Processing Block = PRB_P1, Power Tune = PTM_P4 Device Setup Full scale output voltage (0dB) SNR Signal-to-noise ratio A-weighted (1) (2) (1) (2) All zeros fed to DAC input DR Dynamic range, A-weighted THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1-kHz input signal –92 DAC Gain Error –3dB full-scale, 1-kHz input signal 0.1 dB DAC Mute Attenuation Mute 125 dB DAC channel separation –1 dB, 1kHz signal, between left and right Line out 108 dB 100mVpp, 1kHz signal applied to AVDD_18, AVDDx_18 81 dB 100mVpp, 217Hz signal applied to AVDD_18, AVDDx_18 79 dB DAC PSRR –70 dB AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT Load = 10 kΩ (single-ended), 56pF Input and Output CM=0.75V; AVDD_18, AVDDx_18, HVDD_18=1.5V DOSR = 128 MCLK=256* fs Channel Gain = 0dB Processing Block = PRB_P1 Power Tune = PTM_P4 Device Setup Full scale output voltage (0dB) SNR DR (2) 18 0.375 (1) (2) Dynamic range, A-weighted THD+N (1) Signal-to-noise ratio, A-weighted (1) (2) Total Harmonic Distortion plus Noise All zeros fed to DAC input –60dB 1 kHz input full-scale signal, Word length=20 bits –3 dB full-scale, 1-kHz input signal VRMS 100 dB 99 dB -90 dB Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer. All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Electrical Characteristics, Audio DAC Outputs (continued) TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT AUDIO DAC – MONO DIFFERENTIAL LINE OUTPUT Load = 10 kΩ (differential), 56pF Input and Output CM=0.9V, LOL signal routed to LOR amplifier DOSR = 128, MCLK=256* fs, Channel Gain = 0dB, Processing Block = PRB_P1, Power Tune = PTM_P4 Device Setup Full scale output voltage (0dB) 1 SNR Signal-to-noise ratio A-weighted (3) DR Dynamic range, A-weighted THD+N Total Harmonic Distortion plus Noise DAC Gain Error DAC Mute Attenuation Mute (3) (4) DAC PSRR (3) (4) (4) VRMS All zeros fed to DAC input 101 dB –60dB 1kHz input full-scale signal, 101 dB –3dB full-scale, 1-kHz input signal -91 dB –3dB full-scale, 1-kHz input signal -0.03 dB 124 dB 100mVpp, 1kHz signal applied to AVDD_18, AVDDx_18 63 dB 100mVpp, 217Hz signal applied to AVDD_18, AVDDx_18 63 dB Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer. All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 19 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Electrical Characteristics, Audio DAC Outputs (continued) TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (GROUND-CENTERED CIRCUIT CONFIGURATION) Load = 16Ω (single-ended), 56pF, Input CM=0.9V; DOSR = 128, MCLK=256* fs, Channel Gain = 0dB, Processing Block = PRB_P1, Power Tune = PTM_P3, Headphone Output Strength=100% Device Setup Output 1 Output voltage SNR Signal-to-noise ratio, A-weighted DR Dynamic range, A-weighted –60dB 1 kHz input full-scale signal 94 THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1-kHz input signal -75 DAC Gain Error –3dB, 1kHz input full scale signal 0.03 dB DAC Mute Attenuation Mute 130 dB DAC channel separation –3dB, 1kHz signal, between left and right HP out 80 dB 100mVpp, 1kHz signal applied to AVDD_18, AVDD1x_18 59 dB 100mVpp, 217Hz signal applied to AVDD_18, AVDD1x_18 63 dB THDN ≤ -40dB, Load = 16Ω 22 mW Load = 16Ω (single-ended), Channel Gain = 5dB 0.8 VRMS All zeros fed to DAC input, Load = 16Ω 95 dB THDN ≤ -40dB, Load = 16Ω 25 mW Load = 32Ω (single-ended), Channel Gain = 5dB 0.9 VRMS All zeros fed to DAC input, Load = 32Ω 97 dB THDN ≤ -40dB, Load = 32Ω 22 mW (5) All zeros fed to DAC input (6) (5) (6) DAC PSRR Power Delivered Output 2 Output voltage SNR Signal-to-noise ratio, A-weighted (5) (6) Power Delivered Output 3 Output voltage SNR Signal-to-noise ratio, A-weighted (5) Power Delivered (5) (6) 20 (6) 83 0.5 VRMS 94 dB dB -60 dB Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer. All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Electrical Characteristics, Audio DAC Outputs (continued) TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (UNIPOLAR CIRCUIT CONFIGURATION) Load = 16Ω (single-ended), 56pF Input and Output CM=0.9V, DOSR = 128, MCLK=256* fs, Channel Gain=0dB Processing Block = PRB_P1 Power Tune = PTM_P4 Headphone Output Control = 100% Device Setup Full scale output voltage (0dB) (7) (8) 0.5 VRMS All zeros fed to DAC input 99 dB –60dB 1kHz input full-scale signal, Power Tune = PTM_P4 99 dB SNR Signal-to-noise ratio, A-weighted DR Dynamic range, A-weighted THD+N Total Harmonic Distortion plus Noise –3dB full-scale, 1-kHz input signal DAC Gain Error –3dB, 1kHz input full scale signal DAC Mute Attenuation DAC channel separation (7) (8) DAC PSRR Power Delivered (7) (8) -89 -65 dB -0.16 dB Mute 126 dB –1dB, 1kHz signal, between left and right HP out 119 dB 100mVpp, 1kHz signal applied to AVDD_18, AVDD1x_18 65 dB 100mVpp, 217Hz signal applied to AVDD_18, AVDD1x_18 78 dB RL=16Ω THDN ≤ -40dB, Input CM=0.9V, Output CM=0.9V 16 mW Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer. All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 21 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Electrical Characteristics, Audio DAC Outputs (continued) TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (UNIPOLAR CIRCUIT CONFIGURATION) Load = 16Ω (single-ended), 56pF, Input and Output CM=0.75V; AVDD_18, AVDDx_18, HVDD_18=1.5V, DOSR = 128, MCLK=256* fs, Channel Gain = 0dB, Processing Block = PRB_P1, Power Tune = PTM_P4 Headphone Output Control = 100% Device Setup Full scale output voltage (0dB) 0.375 SNR Signal-to-noise ratio, A-weighted (9) DR Dynamic range, A-weighted THD+N Total Harmonic Distortion plus Noise (10) (9) (10) All zeros fed to DAC input VRMS 99 dB -60dB 1 kHz input full-scale signal 99 dB –3dB full-scale, 1-kHz input signal -90 dB AUDIO DAC – MONO DIFFERENTIAL RECEIVER OUTPUT Load = 32 Ω (differential), 56pF, Output CM=1.65V, AVDDx_18=1.8V, DOSR = 128 MCLK=256* fs, Left DAC routed to RECP, RECM, Channel (Receiver Driver) Gain = 6dB for full scale output signal, Processing Block = PRB_P4, Power Tune = PTM_P4 Device Setup Full scale output voltage (0dB) 2 (9) SNR Signal-to-noise ratio, A-weighted DR Dynamic range, A-weighted THD+N Total Harmonic Distortion plus Noise (10) (9) (10) DAC PSRR Power Delivered All zeros fed to DAC input 87 VRMS 102 dB –60dB 1kHz input full-scale signal 102 dB –3dB full-scale, 1-kHz input signal -91 –70 dB 100mVpp, 1kHz signal applied to AVDD_18, AVDD1x_18 64 dB 100mVpp, 217Hz signal applied to AVDD_18, AVDD1x_18 64 dB 123 mW RL=32Ω THDN ≤ -40dB, Input CM=0.9V, Output CM=1.65V (9) Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer. (10) All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. 22 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Electrical Characteristics, Class-D Outputs TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DAC OUTPUT to CLASS-D SPEAKER OUTPUT; Load = 8Ω (Differential), 56pF+33µH Output voltage SVDD=3.6, BTL measurement, DAC input = 0dBFS, class-D gain = 12dB, THD+N ≤ –20dB, CM=0.9V SNR Signal-to-noise ratio SVDD=3.6V, BTL measurement, class-D gain = 6dB, measured as idle-channel noise, A-weighted (with respect to full-scale output value of 2 Vrms) (1) (2), CM=0.9V 91 dB THD Total harmonic distortion SVDD=3.6V, BTL measurement, DAC input = 0dBFS, class-D gain = 6dB, CM=0.9V -70 dB THD+N Total harmonic distortion + noise SVDD=3.6V, BTL measurement, DAC input = 0dBFS, class-D gain = 6dB, CM=0.9V -70 dB SVDD=3.6V, BTL measurement, ripple on SVDD = 200 mVp-p at 1 kHz, CM=0.9V 64 dB PSRR Power-supply rejection ratio SVDD=3.6V, BTL measurement, ripple on SVDD = 200 mVp-p at 217 Hz, CM=0.9V 64 dB 92 dB Mute attenuation Analog Mute Only THD+N = 10%, f = 1 kHz, Class-D Gain = 12 dB, CM = 0.9 V, RL = 8 Ω PO Maximum output power THD+N = 1%, f = 1 kHz, Class-D Gain = 12 dB, CM = 0.9 V, RL = 8 Ω 2.64 SVDD = 3.6 V 0.72 SVDD = 4.2 V 0.99 SVDD = 5.5 V 1.68 SVDD = 3.6 V 0.58 SVDD = 4.2 V 0.79 SVDD = 5.5 V 1.36 VRMS W DAC OUTPUT to CLASS-D SPEAKER OUTPUT; Load = 8 Ω (Differential), 56pF+33µH Output voltage SVDD=5.0V, BTL measurement, DAC input = 0dBFS, class-D gain = 12dB, THD+N ≤ –20dB, CM=0.9V SNR Signal-to-noise ratio SVDD=5.0V, BTL measurement, class-D gain = 6dB, measured as idle-channel noise, A-weighted (with respect to full-scale output value of 2 Vrms) (1) (2) , CM=0.9V 92 THD Total harmonic distortion SVDD=5.0V, BTL measurement, DAC input = 0dBFS, class-D gain = 6dB, CM=0.9V -72 THD+N Total harmonic distortion + noise SVDD=5.0V, BTL measurement, DAC input = 0dBFS, class-D gain = 6dB, CM=0.9V -72 PSRR Power-supply rejection ratio PO (1) (2) 3.40 VRMS SVDD=5.0V, BTL measurement, ripple on SVDD = 200mVp-p at 1kHz, CM=0.9V 60 SVDD=5.0V, BTL measurement, ripple on SVDD = 200 mVp-p at 217 Hz, CM=0.9V 60 Mute attenuation Analog Mute Only 93 dB Maximum output power THD+N = 10%, f = 1 kHz, Class-D Gain = 12 dB, CM = 0.9 V, RL = 8 Ω 1.40 W SVDD = 5.0 V Ratio of output level with 1kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20Hz to 20kHz bandwidth using an audio analyzer. All performance measurements done with 20kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 23 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Electrical Characteristics, Misc. TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT REFERENCE - VREF_AUDIO Reference Voltage Settings Reference Noise CMMode = 0 (0.9V) 0.9 CMMode = 1 (0.75V) 0.75 CM=0.9V, A-weighted, 20Hz to 20kHz bandwidth, Cref = 1μF 1.62 Decoupling Capacitor V μVRMS μF 1 miniDSP (1) miniDSP clock frequency - ADC DVDD = 1.26V 37.5 MHz miniDSP clock frequency - DAC DVDD = 1.26V 35.0 MHz miniDSP clock frequency - ADC DVDD = 1.65V 63 MHz miniDSP clock frequency - DAC DVDD = 1.65V 59.0 MHz miniDSP clock frequency - ADC DVDD = 1.71V 69 MHz miniDSP clock frequency - DAC DVDD = 1.71V 62.5 MHz Shutdown Power Coarse AVdd supply turned off, All External analog supplies powered and set available, No external digital input is toggled, register values are retained. Device Setup P(total) (2) Sum of all supply currents, all supplies at 1.8 V except for SVDD = SPK_V = MICBIAS_VDD = 3.6 V and RECVDD_33 = 3.3 V μW 2.6 μA I(IOVDD1, IOVDD2, IOVDD3) 0.15 μA I(AVDD1_18, AVDD2_18, AVDD4_18, AVDD_18, HVDD_18, CPVDD_18) 1.15 μA I(RECVDD_33) 0.15 μA 0.5 μA I(DVDD) I(SVDD, SPK_V, MICBIAS_VDD) (1) (2) 9.8 miniDSP clock speed is specified by design and not tested in production. For further details on playback and recording power consumption, refer to PowerTune section in SLAU475. Electrical Characteristics, Logic Levels, IOVDDx TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDDx = 1.8V; RECVDD_33 = 3.3V; SVDD, SPK_V, MICBIAS_VDD = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 20 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted. PARAMETER TEST CONDITIONS MIN LOGIC FAMILY VIH Logic Level 0.7 × IOVDDx V 0.9 × IOVDDx V IOVDDx V –0.3 IIL = 5μA, 1.2V ≤ IOVDDx 1.65V 0.8 × IOVDDx IOH = 1mA load, IOVDDx < 1.65V 0.8 × IOVDDx 0.3 × IOVDDx V 0.1 × IOVDDx V 0 V V V IOL = 3mA load, IOVDDx > 1.65V 0.1 × IOVDDx V IOL = 1mA load, IOVDDx < 1.65V 0.1 × IOVDDx V Capacitive Load 24 UNIT IIH = 5μA, 1.2V ≤ IOVDDx 1.65V VOH MAX IIH = 5 μA, IOVDDx > 1.65V IIH = 5μA, IOVDDx < 1.2V VIL TYP CMOS 10 Submit Documentation Feedback pF Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Interface Timing Note: All timing specifications are measured at characterization but not tested at final test. The audio serial interface timing specifications are applied to Audio Serial Interface 1, Audio Serial Interface 2 and Audio Serial Interface 3. Typical Timing Characteristics — Audio Data Serial Interface Timing (I2S) WCLK represents WCLK1 pin for Audio Serial Interface 1 BCLK represents BCLK1 pin for Audio Serial Interface 1 DOUT represents DOUT1 pin for Audio Serial Interface 1 DIN represents DIN1 pin for Audio Serial Interface 1 Specifications are at 25° C with DVDD = 1.8V and IOVDDx = 1.8 V. WCLK td(WS) BCLK td(DO-WS) td(DO-BCLK) DOUT th(DI) tS(DI) DIN Figure 3. I2S/LJF/RJF Timing in Master Mode Table 2. I2S/LJF/RJF Timing in Master Mode (see Figure 3) PARAMETER IOVDDx=1.8V MIN IOVDDx=3.3V MAX MIN UNITS MAX td(WS) WCLK delay 22 20 ns td (DO-WS) WCLK to DOUT delay (For LJF Mode only) 22 20 ns td (DO-BCLK) BCLK to DOUT delay 22 20 ns ts(DI) DIN setup 4 4 th(DI) DIN hold 4 4 tr BCLK Rise time 10 8 ns tf BCLK Fall time 10 8 ns ns ns Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 25 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com WCLK th(WS) tL(BCLK) BCLK tH(BCLK) ts(WS) td(DO-WS) td(DO-BCLK) DOUT th(DI) ts(DI) DIN Figure 4. I2S/LJF/RJF Timing in Slave Mode Table 3. I2S/LJF/RJF Timing in Slave Mode (see Figure 4) PARAMETER IOVDDx=1.8V MIN IOVDDx=3.3V MAX MIN tH (BCLK) BCLK high period 30 30 tL (BCLK) BCLK low period 30 30 ts (WS) WCLK setup 4 4 th (WS) WCLK hold 4 td (DO-WS) WCLK to DOUT delay (For LJF mode only) td (DO-BCLK) BCLK to DOUT delay ts(DI) DIN setup 4 4 th(DI) DIN hold 4 4 tr BCLK Rise time 5 4 tf BCLK Fall time 5 4 26 ns 4 22 20 22 Submit Documentation Feedback UNITS MAX 20 Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Typical DSP Timing Characteristics Specifications are at 25° C with DVDD = 1.8 V. WCLK td(WS) td(WS) BCLK td(DO-BCLK) DOUT th(DI) ts(DI) DIN Figure 5. DSP/Mono PCM Timing in Master Mode Table 4. DSP/Mono PCM Timing in Master Mode (see Figure 5) PARAMETER IOVDDx=1.8V MIN IOVDDx=3.3V MAX MIN UNITS MAX td (WS) WCLK delay 22 20 ns td (DO-BCLK) BCLK to DOUT delay 22 20 ns ts(DI) DIN setup 4 4 th(DI) DIN hold 4 4 tr BCLK Rise time 10 8 ns tf BCLK Fall time 10 8 ns ns ns WCLK th(ws) BCLK ts(ws) th(ws) th(ws) tL(BCLK) tH(BCLK) td(DO-BCLK) DOUT th(DI) ts(DI) DIN Figure 6. DSP/Mono PCM Timing in Slave Mode Table 5. DSP/Mono PCM Timing in Slave Mode (see Figure 6) PARAMETER IOVDDx=1.8V MIN IOVDDx=3.3V MAX MIN UNITS MAX tH (BCLK) BCLK high period 30 30 ns tL (BCLK) BCLK low period 30 30 ns ts(WS) WCLK setup 4 4 ns th(WS) WCLK hold 4 4 ns td (DO-BCLK) BCLK to DOUT delay ts(DI) DIN setup 5 5 ns th(DI) DIN hold 5 5 ns tr BCLK Rise time 5 4 ns tf BCLK Fall time 5 4 ns 22 20 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 ns 27 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com I2C Interface Timing Figure 7. I2C Interface Timing Diagram Table 6. I2C Interface Timing (see Figure 7) PARAMETER TEST CONDITION Standard-Mode MIN TYP UNITS MAX SCL clock frequency Hold time (repeated) START condition. After this period, the first clock pulse is generated. 4.0 0.8 μs tLOW LOW period of the SCL clock 4.7 1.3 μs tHIGH HIGH period of the SCL clock 4.0 0.6 μs tSU;STA Setup time for a repeated START condition 4.7 0.8 μs tHD;DAT Data hold time: For I2C bus devices tSU;DAT Data set-up time tr SDA and SCL Rise Time tf SDA and SCL Fall Time tSU;STO Set-up time for STOP condition 4.0 0.8 μs tBUF Bus free time between a STOP and START condition 4.7 1.3 μs Cb Capacitive load for each bus line 3.45 250 0 400 0.9 100 kHz μs ns 1000 20 + 0.1Cb 300 300 20 + 0.1Cb 300 400 Submit Documentation Feedback 0 TYP tHD;STA 0 100 MIN fSCL 28 0 Fast-Mode MAX 400 ns ns pF Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 SPI Interface Timing SS = SCL pin, SCLK = I2C_ADDR_SCLK pin, MISO = GPO1 pin, and MOSI = SDA pin. Specifications are at 25° C with DVDD = 1.8V. SS S t t Lead t t Lag td sck SCLK tf t sckl tr t sckh t v(DOUT) t dis MISO MSB OUT BIT 6 . . . 1 LSB OUT ta MOSI t hi t su MSB IN BIT 6 . . . 1 LSB IN Figure 8. SPI Interface Timing Diagram Timing Requirements (See Figure 8) Specifications are at 25° C with DVDD = 1.8 V. Table 7. SPI Interface Timing PARAMETER TEST CONDITION IOVDD1=1.8V MIN IOVDD1=3.3V TYP MAX MIN TYP UNITS MAX tsck SCLK Period (1) 50 40 ns tsckh SCLK Pulse width High 25 20 ns tsckl SCLK Pulse width Low 25 20 ns tlead Enable Lead Time 25 20 ns ttrail Enable Trail Time 25 20 ns td;seqxfr Sequential Transfer Delay 25 20 ns ta Slave DOUT (MISO) access time 25 20 ns tdis Slave DOUT (MISO) disable time 25 20 ns tsu DIN (MOSI) data setup time 8 th;DIN DIN (MOSI) data hold time 8 tv;DOUT DOUT (MISO) data valid time tr tf (1) 8 ns 8 ns 20 14 ns SCLK Rise Time 4 4 ns SCLK Fall Time 4 4 ns These parameters are based on characterization and are not tested in production. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 29 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Typical Characteristics Device Power Consumption Device power consumption largely depends on PowerTune configuration. For information on device power consumption, see the TLV320AIC3263 Application Reference Guide, literature number SLAU475. Typical Performance Audio ADC Performance ADC SNR vs CHANNEL GAIN Input-Referred ADC SINGLE ENDED INPUT TO ADC FFT @ -3dBr vs FREQUENCY 0 Rin = 10k, DE SNR (dB) 105 Rin = 20k, DE −20 Rin = 40k, DE Amplitude (dBFS) 110 100 Rin = 10k, SE 95 Rin = 20k, SE 90 Rin = 40k, SE −40 −60 −80 −100 −120 85 −10 0 10 20 30 Channel Gain (dB) 40 −140 0.02 50 0.1 1 Frequency (kHz) G001 Figure 9. 10 20 G002 Figure 10. ADC DIFFERENTIAL INPUT TO ADC FFT @ -3dBr vs FREQUENCY 0 Amplitude (dBFS) −20 −40 −60 −80 −100 −120 −140 0.02 0.1 1 Frequency (kHz) 10 20 G003 Figure 11. Audio DAC Performance 30 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 DAC TO HEADPHONE OUTPUT (GCHP) FFT AMPLITUDE @ -3dBFS vs FREQUENCY 16Ω Load 0 0 −20 −20 −40 −40 Amplitude (dBr) Amplitude (dBr) DAC TO LINE OUTPUT FFT AMPLITUDE @ -3dBFS vs FREQUENCY 10kΩ Load −60 −80 −60 −80 −100 −100 −120 −120 −140 0.02 0.1 1 Frequency (kHz) 10 −140 0.02 20 0.1 G004 Figure 12. 20 G005 DAC DIRECT TO DIFFERENTIAL RECEIVER OUTPUT FFT AMPLITUDE @ -3dBFS - NEW ROUTING COMPARED TO AIC3262 vs FREQUENCY 32Ω Load 0 20 −20 0 −20 −40 Amplitude (dBr) Amplitude (dBr) 10 Figure 13. DAC TO HEADPHONE OUTPUT (GCHP) FFT AMPLITUDE @ -3dBFS vs FREQUENCY 32Ω Load −60 −80 −100 −40 −60 −80 −100 −120 −120 −140 0.02 0.1 1 Frequency (kHz) 10 −140 0.02 20 0.1 G006 Figure 14. 10 20 G007 TOTAL HARMONIC DISTORTION+NOISE vs DIFFERENTIAL RECEIVER OUTPUT POWER 32Ω Load - DAC DIRECT PATH 0 0 CM=0.75v,32Ohm, HVDD=CPVDD=1.5V −10 1 Frequency (kHz) Figure 15. TOTAL HARMONIC DISTORTION+NOISE vs HEADPHONE (GCHP) OUTPUT POWER 9dB Gain Cm=0.75V,Gain=6dB RECVDD=1.65 −10 CM=0.9V,Gain=6dB RECVDD=1.8V −20 −20 −30 −30 THD_N (dB) THDN−Total Harmonic Distortion+Noise (dB) 1 Frequency (kHz) CM=0.9v,16Ohm, HVDD=CPVDD=1.8V −40 −50 CM=0.9v,32Ohm, HVDD=CPVDD=1.8V −60 −50 −90 −90 −100 10 20 30 40 50 Output Power (mW) 60 CM=1.25V,Gain=6dB, RECVDD=2.5V −80 −80 0 CM=1.65V,Gain=9dB RECVDD=3.3V −60 −70 CM=0.75v,16Ohm, HVDD=CPVDD=1.5V −70 CM=1.5V,Gain=6dB RECVDD=3V −40 70 0 20 G008 Figure 16. 40 60 80 100 120 140 160 180 200 220 240 250 Output Power (mW) G009 Figure 17. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 31 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com DIFFERENTIAL RECEIVER SNR AND OUTPUT POWER (DAC DIRECT PATH) vs OUTPUT COMMON MODE SETTING 32Ω Load 150 125 110 SNR 100 100 90 75 Output Power 80 50 25 70 60 Power delivered (mW) SNR − Signal To Noise Ratioi (dB) 120 0.8 1.0 1.2 1.4 Output Common Mode Setting (V) 1.6 0 G010 Figure 18. Class-D Driver Performance 0 −10 −20 24dB −30 −40 12dB −50 18dB 30dB −60 −70 −80 6dB 0 200 400 600 800 Output Power (mW) 1000 1200 TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER Different SVDD/SPK_V Supplies, 8Ω Load, 12dB Gain THDN−Total Harmonic Distortion+Noise (dB) THDN−Total Harmonic Distortion+Noise (dB) TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER Different Gain Settings, 8Ω Load, SVDD=SPK_V=3.6V 10 Gain =12dB 12dB 12dB 12dB 18dB SVDD=2.7V 3.6V 4.2V 5.0V 5.5V 0 −10 −20 −30 −40 −50 −60 −70 −80 0 500 G011 Figure 19. 2500 G012 Efficiency vs Output Power Different SVDD/SPK_V, 8Ω Load, 12dB Gain −40 100 4.2V 3.6V 90 −50 80 −60 Efficiency (%) THDN−Total Harmonic Distortion+Noise (dB) 2000 Figure 20. TOTAL HARMONIC DISTORTION + NOISE vs Frequency Different SVDD/SPK_V Supplies, 8Ω Load, Output Power = 500mW −70 −80 5.0V 70 60 50 40 30 5.5V 20 −90 10 −100 0.02 0.1 1 Frequency (kHz) 10 20 G013 0 0 100 200 300 400 500 600 700 800 900 1000 Ouput power (mW) G014 Figure 21. 32 1000 1500 Output Power (mW) Figure 22. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 MICBIAS Performance Micbias Voltage (V) MICBIAS MODE 1,2,3,4,5, CM = 0.9V, MICBIAS_VDD=3.6V vs MICBIAS LOAD CURRENT 4 3.5 3 2.5 2 1.5 1 0.5 0 −0.5 −1 −1.5 −2 0 1.8V 2.0V 5 10 2.16V 15 2.5V 2.85V 3.0V 20 25 30 35 Micbias load (mA) 40 45 50 G015 Figure 23. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 33 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Application Overview Typical Circuit Configuration Figure 24 shows a typical circuit configuration for a system utilizing TLV320AIC3263. Note that while this circuit configuration shows all three Audio Serial Interfaces connected to a single Host Processor, it is also quite common for these Audio Serial Interfaces to connect to separate devices (such as Host Processor on Audio Serial Interface 1, and modems and/or Bluetooth devices on the other audio serial interfaces). Note: VBAT is used for voltage measurement. System Battery HOST PROCESSOR BATT_VDD Audio Interface 1 1 F Audio Interface 2 Audio Interface 3 1 F 1 F Analog_In1 MCLK GPIO5 BCLK1 WCLK1 DIN1 DOUT1 RESET GPIO1 GPIO2 BCLK2 WCLK2 DIN2 DOUT2 BCLK3 WCLK3 DIN3 DOUT3 VREF_AUDIO GPIO6 I2C_ADDR_SCLK GPO1 SDA SCL GPIO3 GPIO4 VREF_SAR 1 F SPI_SELECT VBAT 1 F +1.8VA 0.1 F IN1R/AUX2 CPVSS IN2L 2.2 F X7R Type CPFCM VNEG IN2R 2.2 F X7R Type 1 F Analog_In4 IN3L 1 F Analog_In5 32 RECP RECM IN3R 1 F Analog_In6 MICDET IN4R 1 F Analog_In7 Receiver 2.2k MICBIAS_EXT 0.1 F IN4L IN1L/AUX1 To Internal Mic BATT_VDD 1 F 10 F CPFCP 1 F Analog_In3 Lineout 1 F LOR CPVDD_18 1 F Analog_In2 LOL MICBIAS HPL MICBIAS_VDD HPR 0.1 F Headset HPVSS_SENSE AVSS3 AGND at Connector RECVSS 8 1 F SPKP SPKM RECVDD_33 0.1 F SPK_V AVDD_18 1 F AVSS1 AVSS2 AVSS4 AVSS SVSS AVDD4_18 AVDD2_18 HVDD_18 0.1 F IOVDD3 DVDD IOVDD2 DVSS IOVSS 10 F IOVDD1 +3.3VA AVDD1_18 0.1 F SVDD 2 0.1 F 10 F +1.8VD1 0.1 F 1 F 1 F 0.1 F 1 F +1.8VD2 0.1 F 10 F 0.1 F 0.1 F 0.1 F 0.1 F +1.8VD3 BATT_VDD +1.8VA Figure 24. Typical Circuit Configuration Device Connections Digital Pins Only a small number of digital pins are dedicated to a single function; whenever possible, the digital pins have a default function, and also can be reprogrammed to cover alternative functions for various applications. 34 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 The fixed-function pins are hardware-control pins RESET and SPI_SELECT pin. Depending on the state of SPI_SELECT, four pins SCL, SDA, GPO1, and I2C_ADDR_SCLK are configured for either I2C or SPI protocol. Only in I2C mode, I2C_ADDR_SCLK provide two possible I2C addresses for the TLV320AIC3263, while this pin receives the SPI SCLK when the device is set to SPI mode. Other digital IO pins can be configured for various functions via register control. Analog Pins Analog functions can also be configured to a large degree. For minimum power consumption, analog blocks are powered down by default. The blocks can be powered up with fine granularity according to the application needs. The possible analog routings of analog input pins to ADCs and output amplifiers as well as the routing from DACs to output amplifiers can be seen in the Analog Routing Diagram. Multifunction Pins Table 8 show the possible allocation of pins for specific functions. The PLL input, for example, can be programmed to be any of 9 pins (MCLK, BCLK1, DIN1, BCLK2, BCLK3, GPIO1, GPIO2, GPIO3, GPIO6). Table 8. Multifunction Pin Assignments for Pins MCLK, GPIO5, WCLK1, BCLK1, DIN1, DOUT1, WCLK2, BCLK2, DIN2, and DOUT2 Pin Function 1 2 3 4 5 6 7 8 9 10 MCLK GPIO5 WCLK1 BCLK1 DIN1 DOUT1 WCLK2 BCLK2 DIN2 DOUT2 A INT1 Output E E E E B INT2 Output E E E E D CLOCKOUT Output E E E E ADC_MOD_CLOCK Output E E E F Single DOUT for ASI1 (All Channels) E F Single DOUT for ASI2 E F Single DOUT for ASI3 E G Multiple DOUTs for ASI1 (L1, R1) G Multiple DOUTs for ASI1 (L2, R2) G Multiple DOUTs for ASI1 (L3, R3) G Multiple DOUTs for ASI1 (L4, R4) I General Purpose Output (via Reg) F Single DIN for ASI1 (All Channels) F Single DIN for ASI2 F Single DIN for ASI3 H Multiple DINs for ASI1 (L1, R1) H Multiple DINs for ASI1 (L2, R2) H Multiple DINs for ASI1 (L3, R3) E H Multiple DINs for ASI1 (L4, R4) E J Digital Mic Data E (1) (2) E E E, D E, D E E E E E (1) E E E E, D (2) E, D E E E E E E E: The pin is exclusively used for this function, no other function can be implemented with the same pin (such as if DOUT1 has been allocated for General Purpose Output, it cannot be used as the INT1 output at the same time) D: Default Function Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 35 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 8. Multifunction Pin Assignments for Pins MCLK, GPIO5, WCLK1, BCLK1, DIN1, DOUT1, WCLK2, BCLK2, DIN2, and DOUT2 (continued) K L 1 2 3 4 5 6 7 8 9 10 Pin Function MCLK GPIO5 WCLK1 BCLK1 DIN1 DOUT1 WCLK2 BCLK2 DIN2 DOUT2 Input to PLL_CLKIN S (3), D S (4) S (3) Input to ADC_CLKIN S ,D (3) S M Input to DAC_CLKIN S ,D S N Input to CDIV_CLKIN S (3), D S (3) O Input to LFR_CLKIN P Input to HF_CLK S (3) Q Input to REF_1MHz_CLK S (3) R General Purpose Input (via Reg) S ISR Interrupt for miniDSP (via Reg) T WCLK Output for ASI1 U WCLK Input for ASI1 V BCLK Output for ASI1 W BCLK Input for ASI1 X WCLK Output for ASI2 Y WCLK Input for ASI2 Z BCLK Output for ASI2 AA BCLK Input for ASI2 BB WCLK Output for ASI3 CC WCLK Input for ASI3 DD BCLK Output for ASI3 EE BCLK Input for ASI3 (3) (4) S ,D S S (4) S (4) S (4) S S S (4) (4) S S S E E S S S E E E E E S, D E (4) S ,D E S, D E S (4), D S(3): The MCLK pin could be chosen to drive the PLL, ADC Clock, DAC Clock, CDIV Clock, LFR Clock, HF Clock, and REF_1MHz_CLK inputs simultaneously S(4): The BCLK1 or BCLK2 pins could be chosen to drive the PLL, ADC Clock, DAC Clock, and audio interface bit clock inputs simultaneously Table 9. Multifunction Pin Assignments for Pins WCLK3, BCLK3, DIN3, DOUT3, GPIO1, GPIO2, GPO1, I2C_ADDR_SCL, GPIO6, GPIO3, and GPIO4 11 Pin Function 12 WCLK3 BCLK3 13 14 15 16 17 18 19 20 21 DIN3 DOUT3 GPIO1 GPIO2 GPO1/ MISO (1) I2C_ADD R_SCL GPIO6 GPIO3 GPIO4 E E A INT1 Output E E E B INT2 Output E E E D CLOCKOUT Output E E E E ADC_MOD_CLOCK Output E E E E F Single DOUT for ASI1 (All Channels) E E F Single DOUT for ASI2 F Single DOUT for ASI3 G Multiple DOUTs for ASI1 (L1, R1) G Multiple DOUTs for ASI1 (L2, R2) G Multiple DOUTs for ASI1 (L3, R3) (1) 36 E E, D E E E E E E E E GPO1 can only be utilized for functions defined in this table when part utilizes I2C for control. In SPI mode, this pin serves as MISO. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Table 9. Multifunction Pin Assignments for Pins WCLK3, BCLK3, DIN3, DOUT3, GPIO1, GPIO2, GPO1, I2C_ADDR_SCL, GPIO6, GPIO3, and GPIO4 (continued) 11 Pin Function 12 WCLK3 BCLK3 13 14 15 16 17 18 19 20 21 DIN3 DOUT3 GPIO1 GPIO2 GPO1/ MISO (1) I2C_ADD R_SCL GPIO6 GPIO3 GPIO4 E E E E E E G Multiple DOUTs for ASI1 (L4, R4) E I General Purpose Output (via Reg) F Single DIN for ASI1 (All Channels) E F Single DIN for ASI2 E F Single DIN for ASI3 H Multiple DINs for ASI1 (L1, R1) H Multiple DINs for ASI1 (L2, R2) H Multiple DINs for ASI1 (L3, R3) H Multiple DINs for ASI1 (L4, R4) J Digital Mic Data E (2) E E E, D E E E E E (3) E E E E E E E E E E E E E E E S Input to ADC_CLKIN S (3) S (3) S (3) S (3) S (3) M Input to DAC_CLKIN (3) (3) (3) (3) S (3) N Input to CDIV_CLKIN O Input to LFR_CLKIN P Input to HF_CLK Q Input to REF_1MHz_CLK R General Purpose Input (via Reg) S ISR Interrupt for miniDSP (via Reg) T WCLK Output for ASI1 U WCLK Input for ASI1 V BCLK Output for ASI1 W BCLK Input for ASI1 X WCLK Output for ASI2 E Y WCLK Input for ASI2 E Z BCLK Output for ASI2 AA BCLK Input for ASI2 BB WCLK Output for ASI3 CC WCLK Input for ASI3 DD BCLK Output for ASI3 EE BCLK Input for ASI3 FF ADC BCLK Input for ASI1 (2) (3) (4) S S E E E E S S S S S S S S E E E E E E (3) Input to PLL_CLKIN S S (3) L S S (3) K S S (3) E E E E E E E E E E S, D (4) E E E S, D E E E E E E E: The pin is exclusively used for this function, no other function can be implemented with the same pin (such as if WCLK3 has been allocated for General Purpose Output, it cannot be used as the ASI3 WCLK output at the same time) S(4): The GPIO1, GPIO2, GPIO3, or GPIO6 pins could be chosen to drive the PLL, ADC Clock, and DAC Clock inputs simultaneously D: Default Function Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 37 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 9. Multifunction Pin Assignments for Pins WCLK3, BCLK3, DIN3, DOUT3, GPIO1, GPIO2, GPO1, I2C_ADDR_SCL, GPIO6, GPIO3, and GPIO4 (continued) 11 13 14 15 16 17 18 19 20 21 DIN3 DOUT3 GPIO1 GPIO2 GPO1/ MISO (1) I2C_ADD R_SCL GPIO6 GPIO3 GPIO4 GG ADC WCLK Input for ASI1 E E E E E HH ADC BCLK Output for ASI1 E E II ADC WCLK Output for ASI1 E E JJ ADC BCLK Input for ASI2 E E E E E KK ADC WCLK Input for ASI2 E E E E E LL ADC BCLK Output for ASI2 E E MM ADC WCLK Output for ASI2 E E NN ADC BCLK Input for ASI3 E E E E E OO ADC WCLK Input for ASI3 E E E E E PP E E QQ ADC WCLK Output for ASI3 E E RR Bit Bang Input E E E E E SS Bit Bang Output E E E E E Pin Function 38 12 WCLK3 BCLK3 ADC BCLK Output for ASI3 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Analog Audio I/O P1_R45_D1=Power P1_R48_D[6:4]=Gain -12, -6, 0dB P1_R23_D[4:3] IN1L-B IN1L 10/20/40K P1_R52_D[7:6] 20K SPKP MAL P1_R45_D7 LOL P1_R46_D[6:0] IN1L P1_R45_D2 RIGHT_CH_IN -78dB to 0dB P1_R46_D[6:0] 10/20/40K P1_R52_D[5:4] P1_R18_D[5:0] 10/20/40K P1_R52_D[3:2] IN4L 20K 10/20/40K P1_R52_D[1:0] IN2R 10/20/40K P1_R54_D[5:4] MAL Mixer Amp Left LOR MAR -36dB to 0dB P1_R18_D[5:0] P1_R53_D5 IN1R -78dB to 0dB P1_R47_D[6:0] P1_R47_D[6:0] IN1L P1_R17_D5 IN3L P IN3R P1_R45_D6 0 to +47.5 dB P1_R59 P P1_R27_D1=Power P1_R31_D[5:0]=Gain Left DAC Left ADC Mic PGA Left M M P1_R27_D7 MAL P1_R27_D5 LDACP LOL-B1 P1_R28_D[6:0] 10/20/40K P1_R54_D[3:2] 20K IN4R Left Channel Input Options: Single Ended: IN1L or IN2L or IN3L or IN1R or IN4L Differential: IN2L (P) and IN2R (M) or IN3L (P) and IN3R (M) or IN4L (P) and IN4R (M) P1_R23_D7 MAL IN1L-B P1_R23_D[4:3] Note (For All Inputs to Mic PGA): PGA Input = 0 dB for Singled Ended Input with RIN = 10K PGA Input = +6 dB for Differential Input with RIN= 10K PGA Input = -6 dB for Singled Ended Input with RIN= 20K PGA Input = 0 dB for Differential Input with RIN= 20K PGA Input = -12 dB for Singled Ended Input with RIN= 40K PGA Input = -6 dB for Differential Input with RIN= 40K CM2L CM1L CM1R CM CM2R LDACM P1_R22_D7 -78dB to 0dB P1_R36_D[6:0] 10/20/40K P1_R57_D[1:0] 10/20/40K P1_R57_D[7:6] IN1L LDACP LDACM IN1R Right Channel Input Options: Single Ended: IN1R or IN2R or IN3R or IN2L or IN4R Differential: IN1R (P) and IN1L (M) or IN3R (P) and IN3L (M) or IN4R (P) and IN4L (M) IN1L 10/20/40K P1_R57_D[5:4] M IN2L10/20/40K P1_R55_D[1:0] IN2R 0 to +47.5 dB P1_R60 Right DAC Right ADC Mic PGA Right P1_R40_D[5:0]=Gain RECP P1_R40_D7=Power RECP RECP Receiver Amplifier -6db to +29dB RECM 2 P1_R41_D[5:0]=Gain RECM P1_R40_D6=Power RECM -78dB to 0dB P1_R37_D[6:0] P1_R23_D6 1 P1_R22_D0=Power LOR Lineout Amplifier Right IN1R-B P1_R23_D[1:0] P1_R19_D[5:0] -36d to 0dB 10/20/40K P1_R55_D[3:2] -78dB to 0dB P1_R29_D[6:0] P1_R17_D2=Power P1_R19_D[5:0] Mixer Amp Right P1_R17_D4 MAR P1_R27_D0=Power P1_R32_D[5:0]=Gain LOR-B1 P1_R29_D[6:0] P1_R27_D2 LDACM RDACP P1_R27_D4 P1_R27_D6 MAR IN1R IN1R P1_R39_D[6:0] LOR-B2 P1_R37_D[6:0] LOL P1_R22_D2 P1_R22_D6 RDACM MAR P1_R56_D5 10/20/40K P1_R55_D[5:4] LOL P1_R38_D[6:0] P P 20K M LOL-B2 P1_R36_D[6:0] P1_R42_D6 P1_R42_D5 -78dB to 0dB P1_R39_D[6:0] P1_R56_D4 IN3L 10/20/40K P1_R57_D[3:2] P1_R22_D1=Power Lineout Amplifier Left RDACP P1_R22_D5 -78dB to 0dB P1_R38_D[6:0] 20K HPL -78dB to 0dB P1_R28_D[6:0] 10/20/40K P1_R54_D[1:0] IN4L Headphone Amplifier Left -6dB to14dB P1_R53_D4 10/20/40K P1_R54_D[7:6] IN3R SPKM P1_R17_D3=Power IN2L IN4R Class-D Speaker Amp L 6, 12, 18, 24, 30 dB 10/20/40K P1_R55_D[7:6] 20K IN1R Headphone Amplifier Right -6dB to +14dB HPR -12, -6, 0dB P1_R23_D[1:0] IN1R-B Figure 25. Analog Routing Diagram For more detailed information see the TLV320AIC3263 Application Reference GuideSLAU475. Analog Low Power Bypass The TLV320AIC3263 offers two analog-bypass modes. In either of the modes, an analog input signal can be routed from an analog input pin to an amplifier driving an analog output pin. Neither the ADC nor the DAC resources are required for such operation; this supports low-power operation during analog-bypass mode. In analog low-power bypass mode, line-level signals can be routed directly from the analog inputs IN1L to the left lineout amplifier (LOL) and IN1R to LOR. Additionally, line-level signals can be routed directly from these analog inputs to the amplifier, which outputs on RECP and RECM. ADC Bypass Using Mixer Amplifiers In addition to the low-power bypass mode, there is a bypass mode that uses the programmable gain amplifiers of the input stage in conjunction with a mixer amplifier. With this mode, microphone-level signals can be amplified and routed to the line, speaker, or headphone outputs, fully bypassing the ADC and DAC. To enable this mode, the mixer amplifiers are powered on via software command. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 39 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Headphone Outputs The stereo headphone drivers on pins HPL and HPR can drive loads with impedances down to 16Ω in singleended DC-coupled headphone configurations. An integral charge pump generates the negative supply required to operate the headphone drivers in dc-coupled mode, where the common mode of the output signal is made equal to the ground of the headphone load using a ground-sense circuit. Operation of headphone drivers in dccoupled (ground centered mode) eliminates the need for large dc-blocking capacitors. HPL HPR HPVSS_SENSE Figure 26. TLV320AIC3263 Ground-Centered Headphone Output Alternatively the headphone amplifier can also be operated in a unipolar circuit configuration using DC blocking capacitors. Stereo Line Outputs The stereo line level drivers on LOL and LOR pins can drive a wide range of line level resistive impedances in the range of 600Ω to 10kΩ. The output common mode of line level drivers can be configured to equal the analog input common-mode setting, either 0.75V or 0.9V. The line-level drivers can drive out a mixed combination of DAC signal and attenuated ADC PGA signal, and signal mixing is register-programmable. Differential Receiver Output The differential receiver amplifier output spans the RECP and RECM pins and can drive a 32Ω receiver driver. With output common-mode setting of 1.65V and RECVDD_33 supply at 3.3V, the receiver driver can drive up to a 1Vrms output signal. With the RECVDD_33 supply at 3.3V, the receiver driver can deliver greater than 128mW into a 32Ω BTL load. If desired, the RECVDD_33 supply can be set to 1.8V, at which the driver can deliver about 40mW into the 32Ω BTL load. Class-D Speaker Output The integrated Class-D speaker driver (SPKP/SPKN) is capable of driving an 8Ω differential load. The speaker driver can be powered directly from the power supply (2.7V to 5.5V) on the SVDD pin, however the voltage (including spike voltage) must be limited below the Absolute Maximum Voltage of 6.0V. The speaker driver is capable of supplying 720 mW at 10% THD+N with a 3.6-V power supply and 1.40W at 10% THD+N with a 5.0V power supply. Separate left and right channels can be sent to the Class-D driver through the Lineout signal path, or from the mixer amplifiers in the ADC bypass. Additionally, the analog mixer before the Speaker amplifier can sum the left and right audio signals for monophonic playback. ADC / Digital Microphone Interface The TLV320AIC3263 includes a stereo audio ADC, which uses a delta-sigma modulator with a programmable oversampling ratio, followed by a digital decimation filter and a programmable miniDSP. The ADC supports sampling rates from 8kHz to 192kHz. In order to provide optimal system power management, the stereo recording path can be powered up one channel at a time, to support the case where only mono record capability is required. 40 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 The ADC path of the TLV320AIC3263 features a large set of options for signal conditioning as well as signal routing: • 2 ADCs • 8 analog inputs which can be mixed and/or multiplexed in single-ended and/or differential configuration • 2 programmable gain amplifiers (PGA) with a range of 0 to +47.5dB • 2 mixer amplifiers for analog bypass • 2 low power analog bypass channels • Fine gain adjust of digital channels with 0.1 dB step size • Digital volume control with a range of -12 to +20dB • Mute function • Automatic gain control (AGC) In addition to the standard set of ADC features the TLV320AIC3263 also offers the following special functions: • Built in microphone biases • Four-channel digital microphone interface – Allows 4 total microphones – Up to 4 digital microphones – Up to 2 analog microphones • Channel-to-channel phase adjustment • Fast charge of ac-coupling capacitors • Anti thump • Adaptive filter mode ADC Processing Blocks — Overview The TLV320AIC3263 ADC channel includes a built-in digital decimation filter to process the oversampled data from the to generate digital data at Nyquist sampling rate with high dynamic range. The decimation filter can be chosen from three different types, depending on the required frequency response, group delay and sampling rate. ADC Processing Blocks The TLV320AIC3263 offers a range of processing blocks which implement various signal processing capabilities along with decimation filtering. These processing blocks give users the choice of how much and what type of signal processing they may use and which decimation filter is applied. The choice between these processing blocks is part of the PowerTune strategy to balance power conservation and signal-processing flexibility. Decreasing the use of signal-processing capabilities reduces the power consumed by the device. Table 10 gives an overview of the available processing blocks of the ADC channel and their properties. The Resource Class Column (RC) gives an approximate indication of power consumption. The signal processing blocks available are: • First-order IIR • Scalable number of biquad filters • Variable-tap FIR filter • AGC The processing blocks are tuned for common cases and can achieve high anti-alias filtering or low-group delay in combination with various signal processing effects such as audio effects and frequency shaping. The available first order IIR, BiQuad and FIR filters have fully user programmable coefficients. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 41 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 10. ADC Processing Blocks Processing Blocks Channel Decimation Filter 1st Order IIR Available Number BiQuads FIR Required AOSR Value Resource Class PRB_R1 (1) Stereo A Yes 0 No 128,64,32,16,8,4 7 PRB_R2 Stereo A Yes 2 No 128,64,32,16,8,4 8 PRB_R3 Stereo A Yes 0 17-Tap 128,64,32,16,8,4 8 PRB_R4 Left A Yes 0 No 128,64,32,16,8,4 4 PRB_R5 Left A Yes 5 No 128,64,32,16,8,4 5 PRB_R6 Left A Yes 0 25-Tap 128,64,32,16,8,4 5 PRB_R7 Stereo B Yes 0 No 64,32,16,8,4,2 4 PRB_R8 Stereo B Yes 3 No 64,32,16,8,4,2 5 PRB_R9 Stereo B Yes 0 17-Tap 64,32,16,8,4,2 5 PRB_R10 Left B Yes 0 No 64,32,16,8,4,2 2 PRB_R11 Left B Yes 3 No 64,32,16,8,4,2 3 PRB_R12 Left B Yes 0 17-Tap 64,32,16,8,4,2 3 PRB_R13 Stereo C Yes 0 No 32,16,8,4,2,1 4 PRB_R14 Stereo C Yes 5 No 32,16,8,4,2,1 5 PRB_R15 Stereo C Yes 0 25-Tap 32,16,8,4,2,1 5 PRB_R16 Left C Yes 0 No 32,16,8,4,2,1 2 PRB_R17 Left C Yes 5 No 32,16,8,4,2,1 3 PRB_R18 Left C Yes 0 25-Tap 32,16,8,4,2,1 3 PRB_R19 Stereo A Yes 5 No 128,64,32,16,8,4 9 PRB_R20 Stereo A Yes 0 25-Tap 128,64,32,16,8,4 9 (1) Default For more detailed information see the TLV320AIC3263 Application Reference Guide. 42 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 DAC The TLV320AIC3263 includes a stereo audio DAC supporting data rates from 8kHz to 192kHz. Each channel of the stereo audio DAC consists of a signal-processing engine with fixed processing blocks, a digital interpolation filter, multi-bit digital delta-sigma modulator, and an analog reconstruction filter. The DAC is designed to provide enhanced performance at low sampling rates through increased oversampling and image filtering, thereby keeping quantization noise generated within the delta-sigma modulator and signal images strongly suppressed within the audio band to beyond 20kHz. To handle multiple input rates and optimize power dissipation and performance, the TLV320AIC3263 allows the system designer to program the oversampling rates over a wide range from 1 to 1024. The system designer can choose higher oversampling ratios for lower input data rates and lower oversampling ratios for higher input data rates. The TLV320AIC3263 DAC channel includes a built-in digital interpolation filter to generate oversampled data for the sigma-delta modulator. The interpolation filter can be chosen from three different types depending on required frequency response, group delay and sampling rate. The DAC path of the TLV320AIC3263 features many options for signal conditioning and signal routing: • 2 headphone amplifiers – Usable in single-ended stereo or differential mono mode – Analog volume setting with a range of -6 to +14 dB • 2 line-out amplifiers – Usable in single-ended stereo or differential mono mode • Class-D speaker amplifier – Usable with left, right, or monophonic mix modes – Analog volume control with a settings of +6, +12, +18, +24, and +30 dB • 1 Receiver amplifier – Usable in mono differential mode – Analog volume setting with a range of -6 to +29 dB • Digital volume control with a range of -63.5 to +24dB • Mute function • Dynamic range compression (DRC) In • • • • addition to the standard set of DAC features the TLV320AIC3263 also offers the following special features: Built in sine wave generation (beep generator) Digital auto mute Adaptive filter mode Asynchronous Sample Rate Conversion DAC Processing Blocks — Overview The TLV320AIC3263 implements signal processing capabilities and interpolation filtering via processing blocks. These fixed processing blocks give users the choice of how much and what type of signal processing they may use and which interpolation filter is applied. The choice between these processing blocks is part of the PowerTune strategy balancing power conservation and signal processing flexibility. Less signal processing capability will result in less power consumed by the device. The Table 11 gives an overview over all available processing blocks of the DAC channel and their properties. The Resource Class Column (RC) gives an approximate indication of power consumption. The signal processing blocks available are: • First-order IIR • Scalable number of biquad filters • 3D – Effect • Beep Generator The processing blocks are tuned for common cases and can achieve high image rejection or low group delay in combination with various signal processing effects such as audio effects and frequency shaping. The available first-order IIR and biquad filters have fully user-programmable coefficients. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 43 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 11. Overview – DAC Predefined Processing Blocks (1) Processing Block No. Interpolation Filter Channel 1st Order IIR Available Num. of Biquads DRC 3D Beep Generator RC Class PRB_P1 (1) A Stereo No 2 No No No 8 PRB_P2 A Stereo Yes 6 Yes No No 12 PRB_P3 A Stereo Yes 6 No No No 10 PRB_P4 A Left No 2 No No No 4 PRB_P5 A Left Yes 6 Yes No No 6 PRB_P6 A Left Yes 6 No No No 5 PRB_P7 B Stereo Yes 0 No No No 6 PRB_P8 B Stereo No 4 Yes No No 8 PRB_P9 B Stereo No 4 No No No 7 PRB_P10 B Stereo Yes 6 Yes No No 10 PRB_P11 B Stereo Yes 6 No No No 8 PRB_P12 B Left Yes 0 No No No 3 PRB_P13 B Left No 4 Yes No No 5 PRB_P14 B Left No 4 No No No 4 PRB_P15 B Left Yes 6 Yes No No 5 PRB_P16 B Left Yes 6 No No No 4 PRB_P17 C Stereo Yes 0 No No No 3 PRB_P18 C Stereo Yes 4 Yes No No 7 PRB_P19 C Stereo Yes 4 No No No 5 PRB_P20 C Left Yes 0 No No No 2 PRB_P21 C Left Yes 4 Yes No No 4 PRB_P22 C Left Yes 4 No No No 3 PRB_P23 A Stereo No 1 No Yes No 8 PRB_P24 A Stereo Yes 3 Yes Yes No 12 PRB_P25 A Stereo Yes 1 Yes Yes Yes 12 PRB_P26 D Stereo No 0 No No No 1 PRB_P27 A Stereo Yes 3 Yes Yes Yes 13 Default For more detailed information see the TLV320AIC3263 Application Reference Guide. PowerTune The TLV320AIC3263 features PowerTune, a mechanism to balance power-versus-performance trade-offs at the time of device configuration. The device can be tuned to minimize power dissipation, to maximize performance, or to an operating point between the two extremes to best fit the application. For more detailed information see the TLV320AIC3263 Application Reference Guide. Clock Generation and PLL To minimize power consumption, the system ideally provides a master clock that is a suitable integer multiple of the desired sampling frequencies. In such cases, internal dividers can be programmed to set up the required internal clock signals at very low power consumption. For cases where such master clocks are not available, the built-in PLL can be used to generate a clock signal that serves as an internal master clock. In fact, this master clock can also be routed to an output pin and may be used elsewhere in the system. The clock system is flexible enough that it even allows the internal clocks to be derived directly from an external clock source, while the PLL is used to generate some other clock that is only used outside the TLV320AIC3263. 44 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 The TLV320AIC3263 supports a wide range of options for generating clocks for the ADC and DAC sections as well as interface and other control blocks. The clocks for ADC and DAC require source reference clocks, and these clocks can be from a single source or from two separate sources. They can be provided on a variety of device pins such as MCLK, BCLK1, BCLK2, BCLK3, or GPIOx pins. The clocks, ADC_CLKIN and DAC_CLKIN, can then be routed through highly-flexible clock dividers to generate the various clocks required for ADC, DAC and the miniDSP sections. In the event that the desired audio or miniDSP clocks cannot be generated from the reference clocks on MCLK, BCLK1, BCLK2, BCLK3, or GPIOx, the codec also provides the option of using the on-chip PLL which supports a wide range of fractional multiplication values to generate the required clocks. The ADC_CLKIN and DAC_CLKIN can then be routed through highly-flexible clock dividers to generate the various clocks required for ADC, DAC and the miniDSP sections. For more detailed information see the TLV320AIC3263 Application Reference Guide. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 45 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Interfaces Control Interfaces The TLV320AIC3263 control interface supports SPI or I2C communication protocols. For SPI, the SPI_SELECT pin should be tied high; for I2C, SPI_SELECT should be tied low. It is not recommended to change the state of SPI_SELECT during device operation. I2C Control The TLV320AIC3263 supports the I2C control protocol, and will respond by default (I2C_ADDR_SCLK grounded) to the 7-bit I2C address of 0011000. With the one I2C address pin, I2C_ADDR_SCLK, the device can be configured to respond to one of two 7-bit I2C addresses, 0011000 or 0011001. The full 8-bit I2C address can be calculated as: 8-Bit I2C Address = "001100" + I2C_ADDR_SCLK + R/W Example: to write to the TLV320AIC3263 with I2C_ADDR_SCLK = 1 the 8-Bit I2C Address is "001100" + I2C_ADDR_SCLK + R/W = "00110010" = 0x32 I2C is a two-wire, open-drain interface supporting multiple devices and masters on a single bus. Devices on the I2C bus only drive the bus lines LOW by connecting them to ground; they never drive the bus lines HIGH. Instead, the bus wires are pulled HIGH by pullup resistors, so the bus wires are HIGH when no device is driving them LOW. This way, two devices cannot conflict; if two devices drive the bus simultaneously, there is no driver contention. SPI Control In the SPI control mode, the TLV320AIC3263 uses the pins SCL as SS, I2C_ADDR_SCLK as SCLK, GPO1 as MISO, SDA as MOSI; a standard SPI port with clock polarity setting of 0 (typical microprocessor SPI control bit CPOL = 0) and clock phase setting of 1 (typical microprocessor SPI control bit CPHA = 1). The SPI port allows full-duplex, synchronous, serial communication between a host processor (the master) and peripheral devices (slaves). The SPI master (in this case, the host processor) generates the synchronizing clock (driven onto SCLK) and initiates transmissions. The SPI slave devices (such as the TLV320AIC3263) depend on a master to start and synchronize transmissions. A transmission begins when initiated by an SPI master. The byte from the SPI master begins shifting in on the slave MOSI pin under the control of the master serial clock (driven onto SCLK). As the byte shifts in on the MOSI pin, a byte shifts out on the MISO pin to the master shift register. For more detailed information see the TLV320AIC3263 Application Reference Guide. Digital Audio Interfaces The TLV320AIC3263 features three digital audio data serial interfaces, or audio buses. These three interfaces can be run simultaneously, thereby enabling reception and transmission of digital audio from/to three separate devices. A common example of this scenario would be individual connections to an application processor, a communication baseband processor, and a Bluetooth chipset. By utilizing the TLV320AIC3263 as the center of the audio processing in a portable audio system, mixing of voice and music audio is greatly simplified. In addition, the miniDSP can be utilized to greatly enhance the portable device experience by providing advanced audio processing to both communication and media audio streams simultaneously. In addition to the three simultaneous digital audio interfaces, a fourth set of digital audio pins can be muxed into Audio Serial Interface 1. In other words, four separate 4-wire digital audio buses can be connected to the TLV320AIC3263, with up to three of these 4-wire buses receiving and sending digital audio data. 46 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Audio Serial Interfaces GPIO5 GPIO6 GPIO2 DOUT GPIO1 DIN DOUT3 BCLK DIN3 WCLK BCLK3 DOUT WCLK3 DIN DIN2 BCLK AUDIO SERIAL INTERFACE 3 DOUT2 WCLK BCLK2 DOUT AUDIO SERIAL INTERFACE 2 WCLK2 DIN DOUT1 BCLK BCLK1 WCLK1 WCLK DIN1 AUDIO SERIAL INTERFACE 1 Figure 27. Typical Multiple Connections to Three Audio Serial Interfaces Each audio bus on the TLV320AIC3263 is very flexible, including left or right-justified data options, support for I2S or PCM protocols, programmable data length options, a TDM mode for multichannel operation, very flexible master/slave configurability for each bus clock line, and the ability to communicate with multiple devices within a system directly. Each of the three audio buses of the TLV320AIC3263 can be configured for left or right-justified, I2S, DSP, or TDM modes of operation, where communication with PCM interfaces is supported within the TDM mode. These modes are all MSB-first, with data width programmable as 16, 20, 24, or 32 bits. In addition, the word clock and bit clock can be independently configured in either Master or Slave mode, for flexible connectivity to a wide variety of processors. The word clock is used to define the beginning of a frame, and may be programmed as either a pulse or a square-wave signal. The frequency of this clock corresponds to the maximum of the selected ADC and DAC sampling frequencies. When configuring an audio interface for six-wire mode, the ADC and DAC paths can operate based on separate word clocks. The bit clock is used to clock in and clock out the digital audio data across the serial bus. When in Master mode, this signal can be programmed to generate variable clock pulses by controlling the bit-clock divider. The number of bit-clock pulses in a frame may need adjustment to accommodate various word-lengths as well as to support the case when multiple TLV320AIC3263s may share the same audio bus. When configuring an audio interface for six-wire mode, the ADC and DAC paths can operate based on separate bit clocks. The TLV320AIC3263 also includes a feature to offset the position of start of data transfer with respect to the word-clock. This offset can be controlled in terms of number of bit-clocks. The TLV320AIC3263 also has the feature of inverting the polarity of the bit-clock used for transferring the audio data as compared to the default clock polarity used. This feature can be used independently of the mode of audio interface chosen. The TLV320AIC3263 further includes programmability to 3-state the DOUT line during all bit clocks when valid data is not being sent. By combining this capability with the ability to program at what bit clock in a frame the audio data begins, time-division multiplexing (TDM) can be accomplished, enabling the use of multiple codecs on a single audio serial data bus. When the audio serial data bus is powered down while configured in master mode, the pins associated with the interface are put into a 3-state output condition. By default, when the word-clocks and bit-clocks are generated by the TLV320AIC3263, these clocks are active only when the codec (ADC, DAC or both) are powered up within the device. This is done to save power. However, it also supports a feature when both the word clocks and bit-clocks can be active even when the codec is powered down. This is useful when using the TDM mode with multiple codecs on the same bus, or when wordclock or bit-clocks are used in the system as general-purpose clocks. For more detailed information see the TLV320AIC3263 Application Reference Guide. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 47 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com miniDSP The TLV320AIC3263 features two fully programmable miniDSP cores. The first miniDSP core is tightly coupled to the ADC, the second miniDSP core is tightly coupled to the DAC. The algorithms for the miniDSP must be loaded into the device after power up. The miniDSPs have direct access to the digital stereo audio stream on the ADC and on the DAC side, offering the possibility for advanced, very-low group delay DSP algorithms. Each miniDSP can run up to 1145 instructions on every audio sample at a 48kHz sample rate. The two cores can run fully synchronized and can exchange data. The TLV320AIC3263 features the ability to process a multitude of algorithms simultaneously. For example, the miniDSPs enable simultaneous noise cancellation, acoustic echo cancellation, sidetone, equalization filtering, dynamic range compression, conversation recording, user-interface sound mixing, and other voice enhancement processing at voice-band sampling rates (such as 8kHz) and highdefintion voice sampling rates (such as 16kHz). The TLV320AIC3263 miniDSPs also enable advanced DSP sound enhancement algorithms for an enhanced media experience on a portable audio device. Software Software development for the TLV320AIC3263 is supported through TI's comprehensive PurePath Studio Development Environment. A powerful, easy-to-use tool designed specifically to simplify software development on the TLV320AIC3xxx miniDSP audio platform. The Graphical Development Environment consists of a library of common audio functions that can be dragged-and-dropped into an audio signal flow and graphically connected together. The DSP code can then be assembled from the graphical signal flow with the click of a mouse. For more detailed information see the TLV320AIC3263 Application Reference Guide. Asynchronous Sample Rate Conversion (ASRC) For playing back audio/speech signals at various sampling rates, AIC3263 provides an efficient asynchronous sampling rate conversion with the combination of a dedicated ASRC coefficient calculator and the DAC miniDSP engine. The coefficient calculator estimates the audio/speech data input rate versus the DAC playback rate and feeds the calculated coefficients to the miniDSP, with which it converts the audio/speech data to the DAC playback rate. The whole process can be configured automatically without the need of any input sampling rate related information. The input sampling rates as well as the DAC playback rate are not limited to the typical audio/speech sampling rates. A reliable and efficient handshaking is involved between the . For more detailed information see the TLV320AIC3263 Application Reference Guide. Power Supply The TLV320AIC3263 integrates a large amount of digital and analog functionality, and each of these blocks can be powered separately to enable the system to select appropriate power supplies for desired performance and power consumption. The device has separate power domains for digital IO (including three separate digital IO supplies for three separate IOVDD domains), digital core, analog core, analog input, receiver driver, chargepump input, headphone driver, and speaker driver. If desired, all of the supplies (except for the battery-direct supply for speaker driver and microphone bias) can be connected together and be supplied from one source in the range of 1.65 to 1.95V. Individually, each of the three IOVDD voltages can be supplied in the range of 1.1V to 3.6V. For improved power efficiency, the digital core power supply can range from 1.26V to 1.95V. The analog core voltages (AVDD1_18, AVDD2_18, AVDD4_18, and AVDD_18) can range from 1.5V to 1.95V. The receiver driver supply (RECVDD_33) voltages can range from 1.65V to 3.6V. The charge-pump input voltage (CPVDD_18) can range from 1.26V to 1.95V, and the headphone driver supply (HVDD_18) voltage can range from 1.5V to 1.95V. The speaker driver voltage (SVDD and SPK_V) and microphone bias voltage (MICBIAS_VDD, which is then internally filtered for optimal performance) can range from 2.7V to 5.5V. For more detailed information see the TLV320AIC3263 Application Reference Guide. Device Special Functions The following special functions are available to support advanced system requirements: • SAR ADC • Headset detection • Interrupt generation • Flexible pin multiplexing For more detailed information see the TLV320AIC3263 Application Reference Guide. 48 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Register Map Summary Table 12. Summary of Register Map Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 0 0 0 0x00 0x00 0x00 Page Select Register 0 0 1 0x00 0x00 0x01 Software Reset Register 0 0 2-3 0x00 0x00 0x020x03 Reserved Registers 0 0 4 0x00 0x00 0x04 Clock Control Register 1, Clock Input Multiplexers 0 0 5 0x00 0x00 0x05 Clock Control Register 2, PLL Input Multiplexer 0 0 6 0x00 0x00 0x06 Clock Control Register 3, PLL P and R Values 0 0 7 0x00 0x00 0x07 Clock Control Register 4, PLL J Value 0 0 8 0x00 0x00 0x08 Clock Control Register 5, PLL D Values (MSB) 0 0 9 0x00 0x00 0x09 Clock Control Register 6, PLL D Values (LSB) 0 0 10 0x00 0x00 0x0A Clock Control Register 7, PLL_CLKIN Divider 0 0 11 0x00 0x00 0x0B Clock Control Register 8, NDAC Divider Values 0 0 12 0x00 0x00 0x0C Clock Control Register 9, MDAC Divider Values 0 0 13 0x00 0x00 0x0D DAC OSR Control Register 1, MSB Value 0 0 14 0x00 0x00 0x0E DAC OSR Control Register 2, LSB Value 0 0 15-17 0x00 0x00 0x0F0x11 Reserved Registers 0 0 18 0x00 0x00 0x12 Clock Control Register 10, NADC Values 0 0 19 0x00 0x00 0x13 Clock Control Register 11, MADC Values 0 0 20 0x00 0x00 0x14 ADC Oversampling (AOSR) Register 0 0 21 0x00 0x00 0x15 CLKOUT MUX 0 0 22 0x00 0x00 0x16 Clock Control Register 12, CLKOUT M Divider Value 0 0 23 0x00 0x00 0x17 Timer clock 0 0 24 0x00 0x00 0x18 Low Frequency Clock Generation Control 0 0 25 0x00 0x00 0x19 High Frequency Clock Generation Control 1 0 0 26 0x00 0x00 0x1A High Frequency Clock Generation Control 2 0 0 27 0x00 0x00 0x1B High Frequency Clock Generation Control 3 0 0 28 0x00 0x00 0x1C High Frequency Clock Generation Control 4 0 0 29 0x00 0x00 0x1D High Frequency Clock Trim Control 1 0 0 30 0x00 0x00 0x1E High Frequency Clock Trim Control 2 0 0 31 0x00 0x00 0x1F High Frequency Clock Trim Control 3 0 0 32 0x00 0x00 0x20 High Frequency Clock Trim Control 4 0 0 33-35 0x00 0x00 0x210x23 Reserved Registers 0 0 36 0x00 0x00 0x24 ADC Flag Register 0 0 37 0x00 0x00 0x25 DAC Flag Register 0 0 38 0x00 0x00 0x26 DAC Flag Register 0 0 39-41 0x00 0x00 0x270x29 Reserved Registers 0 0 42 0x00 0x00 0x2A Sticky Flag Register 1 0 0 43 0x00 0x00 0x2B Interrupt Flag Register 1 0 0 44 0x00 0x00 0x2C Sticky Flag Register 2 0 0 45 0x00 0x00 0x2D Sticky Flag Register 3 0 0 46 0x00 0x00 0x2E Interrupt Flag Register 2 0 0 47 0x00 0x00 0x2F Interrupt Flag Register 3 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 49 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 0 0 48 0x00 0x00 0x30 INT1 Interrupt Control 0 0 49 0x00 0x00 0x31 INT2 Interrupt Control 0 0 50 0x00 0x00 0x32 SAR Control 1 0 0 51 0x00 0x00 0x33 Interrupt Format Control Register 0 0 52-59 0x00 0x00 0x340x3B Reserved Registers 0 0 60 0x00 0x00 0x3C DAC Processing Block and miniDSP Power Control 0 0 61 0x00 0x00 0x3D ADC Processing Block Control 0 0 62 0x00 0x00 0x3E Reserved Register 0 0 63 0x00 0x00 0x3F Primary DAC Power and Soft-Stepping Control 0 0 64 0x00 0x00 0x40 Primary DAC Master Volume Configuration 0 0 65 0x00 0x00 0x41 Primary DAC Left Volume Control Setting 0 0 66 0x00 0x00 0x42 Primary DAC Right Volume Control Setting 0 0 67 0x00 0x00 0x43 Headset Detection 0 0 68 0x00 0x00 0x44 DRC Control Register 1 0 0 69 0x00 0x00 0x45 DRC Control Register 2 0 0 70 0x00 0x00 0x46 DRC Control Register 3 0 0 71 0x00 0x00 0x47 Beep Generator Register 1 0 0 72 0x00 0x00 0x48 Beep Generator Register 2 0 0 73 0x00 0x00 0x49 Beep Generator Register 3 0 0 74 0x00 0x00 0x4A Beep Generator Register 4 0 0 75 0x00 0x00 0x4B Beep Generator Register 5 0 0 76 0x00 0x00 0x4C Beep Sin(x) MSB 0 0 77 0x00 0x00 0x4D Beep Sin(x) LSB 0 0 78 0x00 0x00 0x4E Beep Cos(x) MSB 0 0 79 0x00 0x00 0x4F Beep Cos(x) LSB 0 0 80 0x00 0x00 0x50 Reserved Register 0 0 81 0x00 0x00 0x51 ADC Channel Power Control 0 0 82 0x00 0x00 0x52 ADC Fine Gain Volume Control 0 0 83 0x00 0x00 0x53 Left ADC Volume Control 0 0 84 0x00 0x00 0x54 Right ADC Volume Control 0 0 85 0x00 0x00 0x55 ADC Phase Control 0 0 86 0x00 0x00 0x56 Left AGC Control 1 0 0 87 0x00 0x00 0x57 Left AGC Control 2 0 0 88 0x00 0x00 0x58 Left AGC Control 3 0 0 89 0x00 0x00 0x59 Left AGC Attack Time 0 0 90 0x00 0x00 0x5A Left AGC Decay Time 0 0 91 0x00 0x00 0x5B Left AGC Noise Debounce 0 0 92 0x00 0x00 0x5C Left AGC Signal Debounce 0 0 93 0x00 0x00 0x5D Left AGC Gain 0 0 94 0x00 0x00 0x5E Right AGC Control 1 0 0 95 0x00 0x00 0x5F Right AGC Control 2 0 0 96 0x00 0x00 0x60 Right AGC Control 3 0 0 97 0x00 0x00 0x61 Right AGC Attack Time 0 0 98 0x00 0x00 0x62 Right AGC Decay Time 0 0 99 0x00 0x00 0x63 Right AGC Noise Debounce 50 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 0 0 100 0x00 0x00 0x64 Right AGC Signal Debounce 0 0 101 0x00 0x00 0x65 Right AGC Gain 0 0 102 0x00 0x00 0x66 ADC DC Measurement Control Register 1 0 0 103 0x00 0x00 0x67 ADC DC Measurement Control Register 2 0 0 104 0x00 0x00 0x68 Left Channel DC Measurement Output Register 1 (MSB Byte) 0 0 105 0x00 0x00 0x69 Left Channel DC Measurement Output Register 2 (Middle Byte) 0 0 106 0x00 0x00 0x6A Left Channel DC Measurement Output Register 3 (LSB Byte) 0 0 107 0x00 0x00 0x6B Right Channel DC Measurement Output Register 1 (MSB Byte) 0 0 108 0x00 0x00 0x6C Right Channel DC Measurement Output Register 2 (Middle Byte) 0 0 109 0x00 0x00 0x6D Right Channel DC Measurement Output Register 3 (LSB Byte) 0 0 110-111 0x00 0x00 0x6E0x6F Reserved Registers 0 0 112 0x00 0x00 0x70 Digital Microphone 2 Control 0 0 113-114 0x00 0x00 0x710x72 Reserved Registers 0 0 115 0x00 0x00 0x73 I2C Interface Miscellaneous Control 0 0 116-118 0x00 0x00 0x740x76 Reserved Registers 0 0 119 0x00 0x00 0x77 miniDSP Control Register 1, Register Access Control 0 0 120 0x00 0x00 0x78 miniDSP Control Register 2, Register Access Control 0 0 121 0x00 0x00 0x79 miniDSP Control Register 3, Register Access Control 0 0 122-126 0x00 0x00 0x7A0x7E Reserved Registers 0 0 127 0x00 0x00 0x7F Book Selection Register 0 1 0 0x00 0x01 0x00 Page Select Register 0 1 1 0x00 0x01 0x01 Power Configuration Register 0 1 2 0x00 0x01 0x02 Reserved Register 0 1 3 0x00 0x01 0x03 Left DAC PowerTune Configuration Register 0 1 4 0x00 0x01 0x04 Right DAC PowerTune Configuration Register 0 1 5-7 0x00 0x01 0x050x07 Reserved Registers 0 1 8 0x00 0x01 0x08 Common Mode Register 0 1 9 0x00 0x01 0x09 Headphone Output Driver Control 0 1 10 0x00 0x01 0x0A Receiver Output Driver Control 0 1 11 0x00 0x01 0x0B Headphone Output Driver De-pop Control 0 1 12 0x00 0x01 0x0C Receiver Output Driver De-Pop Control 0 1 13-16 0x00 0x01 0x0D0x10 Reserved Registers 0 1 17 0x00 0x01 0x11 Mixer Amplifier Control 0 1 18 0x00 0x01 0x12 Left ADC PGA to Left Mixer Amplifier (MAL) Volume Control 0 1 19 0x00 0x01 0x13 Right ADC PGA to Right Mixer Amplifier (MAR) Volume Control 0 1 20-21 0x00 0x01 0x140x15 Reserved Registers 0 1 22 0x00 0x01 0x16 Lineout Amplifier Control 1 0 1 23 0x00 0x01 0x17 Lineout Amplifier Control 2 0 1 24-26 0x00 0x01 0x180x1A Reserved 0 1 27 0x00 0x01 0x1B Headphone Amplifier Control 1 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 51 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 0 1 28 0x00 0x01 0x1C Headphone Amplifier Control 2 0 1 29 0x00 0x01 0x1D Headphone Amplifier Control 3 0 1 30 0x00 0x01 0x1E Reserved Register 0 1 31 0x00 0x01 0x1F HPL Driver Volume Control 0 1 32 0x00 0x01 0x20 HPR Driver Volume Control 0 1 33 0x00 0x01 0x21 Charge Pump Control 1 0 1 34 0x00 0x01 0x22 Charge Pump Control 2 0 1 35 0x00 0x01 0x23 Charge Pump Control 3 0 1 36 0x00 0x01 0x24 Receiver Amplifier Control 1 0 1 37 0x00 0x01 0x25 Receiver Amplifier Control 2 0 1 38 0x00 0x01 0x26 Receiver Amplifier Control 3 0 1 39 0x00 0x01 0x27 Receiver Amplifier Control 4 0 1 40 0x00 0x01 0x28 Receiver Amplifier Control 5 0 1 41 0x00 0x01 0x29 Receiver Amplifier Control 6 0 1 42 0x00 0x01 0x2A Receiver Amplifier Control 7 0 1 43-44 0x00 0x01 0x2B0x2C Reserved Registers 0 1 45 0x00 0x01 0x2D Speaker Amplifier Control 1 0 1 46 0x00 0x01 0x2E Speaker Amplifier Control 2 0 1 47 0x00 0x01 0x2F Speaker Amplifier Control 3 0 1 48 0x00 0x01 0x30 Speaker Amplifier Volume Controls 0 1 49-50 0x00 0x01 0x310x32 Reserved Registers 0 1 51 0x00 0x01 0x33 Microphone Bias Control 0 1 52 0x00 0x01 0x34 Input Select 1 for Left Microphone PGA P-Terminal 0 1 53 0x00 0x01 0x35 Input Select 2 for Left Microphone PGA P-Terminal 0 1 54 0x00 0x01 0x36 Input Select for Left Microphone PGA M-Terminal 0 1 55 0x00 0x01 0x37 Input Select 1 for Right Microphone PGA P-Terminal 0 1 56 0x00 0x01 0x38 Input Select 2 for Right Microphone PGA P-Terminal 0 1 57 0x00 0x01 0x39 Input Select for Right Microphone PGA M-Terminal 0 1 58 0x00 0x01 0x3A Input Common Mode Control 0 1 59 0x00 0x01 0x3B Left Microphone PGA Control 0 1 60 0x00 0x01 0x3C Right Microphone PGA Control 0 1 61 0x00 0x01 0x3D ADC PowerTune Configuration Register 0 1 62 0x00 0x01 0x3E ADC Analog PGA Gain Flag Register 0 1 63 0x00 0x01 0x3F DAC Analog Gain Flags Register 1 0 1 64 0x00 0x01 0x40 DAC Analog Gain Flags Register 2 0 1 65 0x00 0x01 0x41 Analog Bypass Gain Flags Register 0 1 66 0x00 0x01 0x42 Driver Power-Up Flags Register 0 1 67-118 0x00 0x01 0x430x76 Reserved Registers 0 1 119 0x00 0x01 0x77 Headset Detection Tuning Register 1 0 1 120 0x00 0x01 0x78 Headset Detection Tuning Register 2 0 1 121 0x00 0x01 0x79 Microphone PGA Power-Up Control Register 0 1 122 0x00 0x01 0x7A Reference Powerup Delay Register 0 1 123-127 0x00 0x01 0x7B0x7F Reserved Registers 52 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 0 3 0 0x00 0x03 0x00 Page Select Register 0 3 1 0x00 0x03 0x01 Reserved Register 0 3 2 0x00 0x03 0x02 Primary SAR ADC Control 0 3 3 0x00 0x03 0x03 Primary SAR ADC Conversion Mode 0 3 4-5 0x00 0x03 0x040x05 Reserved Registers 0 3 6 0x00 0x03 0x06 SAR Reference Control 0 3 7-8 0x00 0x03 0x070x08 Reserved Registers 0 3 9 0x00 0x03 0x09 SAR ADC Flags Register 1 0 3 10 0x00 0x03 0x0A SAR ADC Flags Register 2 0 3 11-12 0x00 0x03 0x0B0x0C Reserved Registers 0 3 13 0x00 0x03 0x0D SAR ADC Buffer Mode Control 0 3 14 0x00 0x03 0x0E Reserved Register 0 3 15 0x00 0x03 0x0F Scan Mode Timer Control 0 3 16 0x00 0x03 0x10 Reserved Register 0 3 17 0x00 0x03 0x11 SAR ADC Clock Control 0 3 18 0x00 0x03 0x12 SAR ADC Buffer Mode Data Read Control 0 3 19 0x00 0x03 0x13 SAR ADC Measurement Control 0 3 20 0x00 0x03 0x14 Reserved Register 0 3 21 0x00 0x03 0x15 SAR ADC Measurement Threshold Flags 0 3 22 0x00 0x03 0x16 IN1L Max Threshold Check Control 1 0 3 23 0x00 0x03 0x17 IN1L Max Threshold Check Control 2 0 3 24 0x00 0x03 0x18 IN1L Min Threshold Check Control 1 0 3 25 0x00 0x03 0x19 IN1L Min Threshold Check Control 2 0 3 26 0x00 0x03 0x1A IN1R Max Threshold Check Control 1 0 3 27 0x00 0x03 0x1B IN1R Max Threshold Check Control 2 0 3 28 0x00 0x03 0x1C IN1R Min Threshold Check Control 1 0 3 29 0x00 0x03 0x1D IN1R Min Threshold Check Control 2 0 3 30 0x00 0x03 0x1E TEMP Max Threshold Check Control 1 0 3 31 0x00 0x03 0x1F TEMP Max Threshold Check Control 2 0 3 32 0x00 0x03 0x20 TEMP Min Threshold Check Control 1 0 3 33 0x00 0x03 0x21 TEMP Min Threshold Check Control 2 0 3 34-53 0x00 0x03 0x220x35 Reserved Registers 0 3 54 0x00 0x03 0x36 IN1L Measurement Data (MSB) 0 3 55 0x00 0x03 0x37 IN1L Measurement Data (LSB) 0 3 56 0x00 0x03 0x38 IN1R Measurement Data (MSB) 0 3 57 0x00 0x03 0x39 IN1R Measurement Data (LSB) 0 3 58 0x00 0x03 0x3A VBAT Measurement Data (MSB) 0 3 59 0x00 0x03 0x3B VBAT Measurement Data (LSB) 0 3 60-65 0x00 0x03 0x3C0x41 Reserved Registers 0 3 66 0x00 0x03 0x42 TEMP1 Measurement Data (MSB) 0 3 67 0x00 0x03 0x43 TEMP1 Measurement Data (LSB) 0 3 68 0x00 0x03 0x44 TEMP2 Measurement Data (MSB) Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 53 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 0 3 69 0x00 0x03 0x45 TEMP2 Measurement Data (LSB) 0 3 70-127 0x00 0x03 0x460x7F Reserved Registers 0 4 0 0x00 0x04 0x00 Page Select Register 0 4 1 0x00 0x04 0x01 Audio Serial Interface 1, Audio Bus Format Control Register 0 4 2 0x00 0x04 0x02 Audio Serial Interface 1, Left Ch_Offset_1 Control Register 0 4 3 0x00 0x04 0x03 Audio Serial Interface 1, Right Ch_Offset_2 Control Register 0 4 4 0x00 0x04 0x04 Audio Serial Interface 1, Channel Setup Register 0 4 5 0x00 0x04 0x05 Audio Serial Interface 1, ADC Audio Bus Format Control Register 0 4 6 0x00 0x04 0x06 Audio Serial Interface 1, Multi-Channel Setup Register 2 0 4 7 0x00 0x04 0x07 Audio Serial Interface 1, ADC Input Control 0 4 8 0x00 0x04 0x08 Audio Serial Interface 1, DAC Output Control 0 4 9 0x00 0x04 0x09 Audio Serial Interface 1, Control Register 9, ADC Slot Tristate Control 0 4 10 0x00 0x04 0x0A Audio Serial Interface 1, WCLK and BCLK Control Register 0 4 11 0x00 0x04 0x0B Audio Serial Interface 1, Bit Clock N Divider Input Control 0 4 12 0x00 0x04 0x0C Audio Serial Interface 1, Bit Clock N Divider 0 4 13 0x00 0x04 0x0D Audio Serial Interface 1, Word Clock N Divider 0 4 14 0x00 0x04 0x0E Audio Serial Interface 1, BCLK and WCLK Output 0 4 15 0x00 0x04 0x0F Audio Serial Interface 1, Data Output 0 4 16 0x00 0x04 0x10 Audio Serial Interface 1, ADC WCLK and BCLK Control 0 4 17 0x00 0x04 0x11 Audio Serial Interface 2, Audio Bus Format Control Register 0 4 18 0x00 0x04 0x12 Audio Serial Interface 2, Data Offset Control Register 0 4 19-20 0x00 0x04 0x130x14 Reserved Registers 0 4 21 0x00 0x04 0x15 Audio Serial Interface 2, ADC Audio Bus Format Control Register 0 4 22 0x00 0x04 0x16 Reserved Register 0 4 23 0x00 0x04 0x17 Audio Serial Interface 2, ADC Input Control 0 4 24 0x00 0x04 0x18 Audio Serial Interface 2, DAC Output Control 0 4 25 0x00 0x04 0x19 Reserved Register 0 4 26 0x00 0x04 0x1A Audio Serial Interface 2, WCLK and BCLK Control Register 0 4 27 0x00 0x04 0x1B Audio Serial Interface 2, Bit Clock N Divider Input Control 0 4 28 0x00 0x04 0x1C Audio Serial Interface 2, Bit Clock N Divider 0 4 29 0x00 0x04 0x1D Audio Serial Interface 2, Word Clock N Divider 0 4 30 0x00 0x04 0x1E Audio Serial Interface 2, BCLK and WCLK Output 0 4 31 0x00 0x04 0x1F Audio Serial Interface 2, Data Output 0 4 32 0x00 0x04 0x20 Audio Serial Interface 2, ADC WCLK and BCLK Control 0 4 33 0x00 0x04 0x21 Audio Serial Interface 3, Audio Bus Format Control Register 0 4 34 0x00 0x04 0x22 Audio Serial Interface 3, Data Offset Control Register 0 4 35-36 0x00 0x04 0x230x24 Reserved Registers 0 4 37 0x00 0x04 0x25 Audio Serial Interface 3, ADC Audio Bus Format Control Register 0 4 38 0x00 0x04 0x26 Reserved Register 0 4 39 0x00 0x04 0x27 Audio Serial Interface 3, ADC Input Control 0 4 40 0x00 0x04 0x28 Audio Serial Interface 3, DAC Output Control 0 4 41 0x00 0x04 0x29 Reserved Register 0 4 42 0x00 0x04 0x2A Audio Serial Interface 3, WCLK and BCLK Control Register 54 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 0 4 43 0x00 0x04 0x2B Audio Serial Interface 3, Bit Clock N Divider Input Control 0 4 44 0x00 0x04 0x2C Audio Serial Interface 3, Bit Clock N Divider 0 4 45 0x00 0x04 0x2D Audio Serial Interface 3, Word Clock N Divider 0 4 46 0x00 0x04 0x2E Audio Serial Interface 3, BCLK and WCLK Output 0 4 47 0x00 0x04 0x2F Audio Serial Interface 3, Data Output 0 4 48 0x00 0x04 0x30 Audio Serial Interface 3, ADC WCLK and BCLK Control 0 4 49 0x00 0x04 0x31 Audio Serial Interface 1, L1/R1 Input Control 0 4 50 0x00 0x04 0x32 Audio Serial Interface 1, L2/R2 Input Control 0 4 51 0x00 0x04 0x33 Audio Serial Interface 1, L3/R3 Input Control 0 4 52 0x00 0x04 0x34 Audio Serial Interface 1, L4/R4 Input Control 0 4 53 0x00 0x04 0x35 Audio Serial Interface 2, WCLK and BCLK Input Multiplexers Control 0 4 54 0x00 0x04 0x36 Audio Serial Interface 2, DIN Input Multiplexer Control 0 4 55 0x00 0x04 0x37 Audio Serial Interface 3, WCLK and BCLK Input Multiplexers Control 0 4 56 0x00 0x04 0x38 Audio Serial Interface 3, DIN Input Multiplexer Control 0 4 57-64 0x00 0x04 0x390x40 Reserved Registers 0 4 65 0x00 0x04 0x41 WCLK1 (Input/Output) Pin Control 0 4 66 0x00 0x04 0x42 Reserved Register 0 4 67 0x00 0x04 0x43 DOUT1 (Output) Pin Control 0 4 68 0x00 0x04 0x44 DIN1 (Input) Pin Control 0 4 69 0x00 0x04 0x45 WCLK2 (Input/Output) Pin Control 0 4 70 0x00 0x04 0x46 BCLK2 (Input/Output) Pin Control 0 4 71 0x00 0x04 0x47 DOUT2 (Output) Pin Control 0 4 72 0x00 0x04 0x48 DIN2 (Input) Pin Control 0 4 73 0x00 0x04 0x49 WCLK3 (Input/Output) Pin Control 0 4 74 0x00 0x04 0x4A BCLK3 (Input/Output) Pin Control 0 4 75 0x00 0x04 0x4B DOUT3 (Output) Pin Control 0 4 76 0x00 0x04 0x4C DIN3 (Input) Pin Control 0 4 77-85 0x00 0x04 0x4D0x55 Reserved Registers 0 4 86 0x00 0x04 0x56 GPIO1 (Input/Output) Pin Control 0 4 87 0x00 0x04 0x57 GPIO2 (Input/Output) Pin Control 0 4 88 0x00 0x04 0x58 GPIO3 (Input/Output) Pin Control 0 4 89 0x00 0x04 0x59 GPIO4 (Input/Output) Pin Control 0 4 90 0x00 0x04 0x5A GPIO5 (Input/Output) Pin Control 0 4 91 0x00 0x04 0x5B GPIO6 (Input/Output) Pin Control 0 4 92-95 0x00 0x04 0x5C0x5F Reserved Registers 0 4 96 0x00 0x04 0x60 GPO1 (Output) Pin Control 0 4 97-99 0x00 0x04 0x610x63 Reserved Registers 0 4 100 0x00 0x04 0x64 Digital Microphone Clock Control 0 4 101 0x00 0x04 0x65 Digital Microphone 1 Input Pin Control 0 4 102 0x00 0x04 0x66 Digital Microphone 2 Input Pin Control 0 4 103 0x00 0x04 0x67 Reserved Register 0 4 104 0x00 0x04 0x68 Bit-Bang Output Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 55 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 0 4 105-106 0x00 0x04 0x690x6A Reserved Registers 0 4 107 0x00 0x04 0x6B Bit-Bang Input 0 4 108-112 0x00 0x04 0x6C0x70 Reserved Registers 0 4 113 0x00 0x04 0x71 Bit-Bang miniDSP Output Control 0 4 114 0x00 0x04 0x72 Reserved Register 0 4 115 0x00 0x04 0x73 Audio Serial Interface 1, ADC BCLK and ADC WCLK Output 0 4 116 0x00 0x04 0x74 Audio Serial Interface 2, ADC BCLK and ADC WCLK Output 0 4 117 0x00 0x04 0x75 Audio Serial Interface 3, ADC BCLK and ADC WCLK Output 0 4 118 0x00 0x04 0x76 miniDSP Data Port Control 0 4 119 0x00 0x04 0x77 Digital Audio Engine Synchronization Control 0 4 120-127 0x00 0x04 0x780x7F Reserved Registers 0 252 0 0x00 0xFC 0x00 Page Select Register 0 252 1 0x00 0xFC 0x01 SAR Buffer Mode Data (MSB) and Buffer Flags 0 252 2 0x00 0xFC 0x02 SAR Buffer Mode Data (LSB) 0 252 3-127 0x00 0xFC 0x030x7F Reserved Registers 20 0 0 0x14 0x00 0x00 Page Select Register 20 0 1-126 0x14 0x00 0x010x7E Reserved Registers 20 0 127 0x14 0x00 0x7F Book Selection Register 20 1-26 0 0x14 0x010x1A 0x00 Page Select Register 20 1-26 1-7 0x14 0x010x1A 0x010x07 Reserved Registers 20 1-26 8-127 0x14 0x010x1A 0x080x7F ADC Fixed Coefficients C(0:767) 40 0 0 0x28 0x00 0x00 Page Select Register 40 0 1 0x28 0x00 0x01 ADC Adaptive CRAM Configuration Register 40 0 2-126 0x28 0x00 0x020x7E Reserved Registers 40 0 127 0x28 0x00 0x7F Book Selection Register 40 1-17 0 0x28 0x010x11 0x00 Page Select Register 40 1-17 1-7 0x28 0x010x11 0x010x07 Reserved Registers 40 1-17 8-127 0x28 0x010x11 0x080x7F ADC Adaptive Coefficients C(0:509) 40 18 0 0x28 0x12 0x00 Page Select Register 40 18 1-7 0x28 0x12 0x010x07 Reserved Registers 40 18 8-15 0x28 0x12 0x080x0F ADC Adaptive Coefficients C(510:511) 40 18 16-127 0x28 0x12 0x100x7F Reserved Registers 60 0 0 0x3C 0x00 0x00 Page Select Register 60 0 1-126 0x3C 0x00 0x010x7E Reserved Registers 60 0 127 0x3C 0x00 0x7F Book Selection Register 56 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 TLV320AIC3263 www.ti.com SLAS923 – JUNE 2013 Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 60 1-35 0 0x3C 0x010x23 0x00 Page Select Register 60 1-35 1-7 0x3C 0x010x23 0x010x07 Reserved Registers 60 1-35 8-127 0x3C 0x010x23 0x080x7F DAC Fixed Coefficients C(0:1023) 80 0 0 0x50 0x00 0x00 Page Select Register 80 0 1 0x50 0x00 0x01 DAC Adaptive Coefficient Bank #1 Configuration Register 80 0 2-126 0x50 0x00 0x020x7E Reserved Registers 80 0 127 0x50 0x00 0x7F Book Selection Register 80 1-17 0 0x50 0x010x11 0x00 Page Select Register 80 1-17 1-7 0x50 0x010x11 0x010x07 Reserved Registers 80 1-17 8-127 0x50 0x010x11 0x080x7F DAC Adaptive Coefficient Bank #1 C(0:509) 80 18 0 0x50 0x12 0x00 Page Select Register 80 18 1-7 0x50 0x12 0x010x07 Reserved Registers 80 18 8-15 0x50 0x12 0x080x0F DAC Adaptive Coefficient Bank #1 C(510:511) 80 18 16-127 0x50 0x12 0x100x7F Reserved Registers 82 0 0 0x52 0x00 0x00 Page Select Register 82 0 1 0x52 0x00 0x01 DAC Adaptive Coefficient Bank #2 Configuration Register 82 0 2-126 0x52 0x00 0x020x7E Reserved Registers 82 0 127 0x52 0x00 0x7F Book Selection Register 82 1-17 0 0x52 0x010x11 0x00 Page Select Register 82 1-17 1-7 0x52 0x010x11 0x010x07 Reserved Registers 82 1-17 8-127 0x52 0x010x11 0x080x7F DAC Adaptive Coefficient Bank #2 C(0:509) 82 18 0 0x52 0x12 0x00 Page Select Register 82 18 1-7 0x52 0x12 0x010x07 Reserved Registers 82 18 8-15 0x52 0x12 0x080x0F DAC Adaptive Coefficient Bank #2 C(510:511) 82 18 16-127 0x52 0x12 0x100x7F Reserved Registers 100 0 0 0x64 0x00 0x00 Page Select Register 100 0 1-46 0x64 0x00 0x010x2E Reserved Registers 100 0 47 0x64 0x00 0x2F Non-Programmable Override Options 100 0 48 0x64 0x00 0x30 ADC miniDSP_A Instruction Control Register 1 100 0 49 0x64 0x00 0x31 ADC miniDSP_A Instruction Control Register 2 100 0 50 0x64 0x00 0x32 ADC miniDSP_A CIC Input and Decimation Ratio Control Register 100 0 51-56 0x64 0x00 0x330x38 Reserved Registers 100 0 57 0x64 0x00 0x39 ADC miniDSP_A Instruction Control Register 3 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 57 TLV320AIC3263 SLAS923 – JUNE 2013 www.ti.com Table 12. Summary of Register Map (continued) Decimal Hex DESCRIPTION BOOK NO. PAGE NO. REG. NO. BOOK NO. PAGE NO. REG. NO. 100 0 58 0x64 0x00 0x3A ADC miniDSP_A ISR Interrupt Control 100 0 59 0x64 0x00 0x3B Reserved Registers 100 0 60 0x64 0x00 0x3C ADC miniDSP_A Secondary CIC Input Control 100 0 61 0x64 0x00 0x3D miniDSP_A to Audio Serial Interface Handoff Control 100 0 62-126 0x64 0x00 0x3E0x7E Reserved Registers 100 0 127 0x64 0x00 0x7F Book Selection Register 100 1-52 0 0x64 0x010x34 0x00 Page Select Register 100 1-52 1-7 0x64 0x010x34 0x010x07 Reserved Registers 100 1-52 8-127 0x64 0x010x34 0x080x7F miniDSP_A Instructions 120 0 0 0x78 0x00 0x00 Page Select Register 120 0 1-46 0x78 0x00 0x010x2E Reserved Registers 120 0 47 0x78 0x00 0x2F Non-Programmable Override Options 120 0 48 0x78 0x00 0x30 DAC miniDSP_D Instruction Control Register 1 120 0 49 0x78 0x00 0x31 DAC miniDSP_D Instruction Control Register 2 120 0 50 0x78 0x00 0x32 DAC miniDSP_D Interpolation Factor Control Register 120 0 51-56 0x78 0x00 0x330x38 Reserved Registers 120 0 57 0x78 0x00 0x39 DAC miniDSP_D Instruction Control Register 3 120 0 58 0x78 0x00 0x3A DAC miniDSP_D ISR Interrupt Control 120 0 59-126 0x78 0x00 0x3B0x7E Reserved Registers 120 0 127 0x78 0x00 0x7F Book Selection Register 120 1-103 0 0x78 0x010x67 0x00 Page Select Register 120 1-103 1-7 0x78 0x010x67 0x010x07 Reserved Registers 120 1-103 8-127 0x78 0x010x67 0x080x7F miniDSP_D Instructions 58 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: TLV320AIC3263 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV320AIC3263IYZFR ACTIVE DSBGA YZF 81 2500 RoHS & Green SNAGCU Level-1-260C-UNLIM -40 to 85 AIC32AA TLV320AIC3263IYZFT ACTIVE DSBGA YZF 81 250 RoHS & Green SNAGCU Level-1-260C-UNLIM -40 to 85 AIC32AA (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV320AIC3263IYZFR 价格&库存

很抱歉,暂时无法提供与“TLV320AIC3263IYZFR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV320AIC3263IYZFR
    •  国内价格
    • 1000+45.98000

    库存:9980