0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV342AIDR

TLV342AIDR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC-8

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8SOIC

  • 数据手册
  • 价格&库存
TLV342AIDR 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 TLV34xx Low-Voltage Rail-to-Rail Output CMOS Operational Amplifiers With Shutdown 1 Features 3 Description • • The TLV34xx devices are single and dual CMOS operational amplifiers, respectively, with low-voltage, low-power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input bias current of 1 pA (typical) and an offset voltage of 0.3 mV (typical). For applications requiring excellent dc precision, the A grade (TLV34xA) has a low offset voltage of 1.25 mV (maximum) at 25°C. 1 • • • • • • • • • • • 1.8-V and 5-V Performance Low Offset (A Grade) – 1.25 mV Maximum (25°C) – 1.7 mV Maximum (–40°C to 125°C) Rail-to-Rail Output Swing Wide Common-Mode Input Voltage Range: –0.2 V to (V+ – 0.5 V) Input Bias Current: 1 pA (Typical) Input Offset Voltage: 0.3 mV (Typical) Low Supply Current: 70 μA/Channel Low Shutdown Current: 10 pA (Typical) Per Channel Gain Bandwidth: 2.3 MHz (Typical) Slew Rate: 0.9 V/μs (Typical) Turnon Time From Shutdown: 5 μs (Typical) Input Referred Voltage Noise (at 10 kHz): 20 nV/√Hz ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (HBM) – 750-V Charged-device model (CDM) These single-supply amplifiers are designed specifically for ultra-low-voltage (1.5 V to 5 V) operation, with a common-mode input voltage range that typically extends from –0.2 V to 0.5 V from the positive supply rail. The TLV341 (single) and TLV342 (dual) in the RUG package also offer a shutdown (SHDN) pin that can be used to disable the device. In shutdown mode, the supply current is reduced to 45 pA (typical). Offered in both the SOT-23 and smaller SC70 packages, the TLV341 is suitable for the most space-constrained applications. The dual TLV342 is offered in the standard SOIC, VSSOP, and X2QFN packages. An extended industrial temperature range from –40°C to 125°C makes the TLV34xx suitable in a wide variety of commercial and industrial applications. 2 Applications • • • • • • • • Device Information(1) Cellular Phones Consumer Electronics (Laptops) Audio Preamplifier for Voice Portable and Battery-Powered Electronic Equipment Supply Current Monitoring Battery Monitoring Buffers Filters PART NUMBER TLV341 TLV342 TLV342S PACKAGE BODY SIZE (NOM) SOT-23 (6) 2.90 mm × 1.60 mm SC70 (6) 2.00 mm × 1.25 mm SOT (6) 1.60 mm × 1.20 mm SOIC (8) 4.90 mm × 3.91 mm VSSOP (8) 3.00 mm × 3.00 mm X2QFN (10) 1.50 mm × 2.00 mm X2QFN (10) 1.50 mm × 2.00 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Sample and Hold Circuit Using Two TLV341 V+ V+ − VO − + VI + C = 200 pF Sample Clock Copyright © 2016, Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 4 4 5 5 5 5 6 7 8 8 9 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information: TLV341 ................................... Thermal Information: TLV342 ................................... Thermal Information: TLV342S ................................. Electrical Characteristics: V+ = 1.8 V ........................ Electrical Characteristics: V+ = 5 V ........................... Shutdown Characteristics: V+ = 1.8 V....................... Shutdown Characteristics: V+ = 5 V........................ Typical Characteristics ............................................ Detailed Description ............................................ 15 7.1 7.2 7.3 7.4 8 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 15 15 15 15 Application and Implementation ........................ 16 8.1 Application Information............................................ 16 8.2 Typical Application ................................................. 16 9 Power Supply Recommendations...................... 17 10 Layout................................................................... 18 10.1 Layout Guidelines ................................................. 18 10.2 Layout Example .................................................... 18 11 Device and Documentation Support ................. 19 11.1 11.2 11.3 11.4 11.5 Related Links ........................................................ Community Resource............................................ Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 19 19 19 19 19 12 Mechanical, Packaging, and Orderable Information ........................................................... 19 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision C (November 2007) to Revision D Page • Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ................................................................................................. 1 • Removed DPK package and TLV344 part from the Pin Configuration and Functions table ................................................ 3 2 Submit Documentation Feedback Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 5 Pin Configuration and Functions TLV341 DBV or DCK Package 6-Pin SOT-23 or SC70 Top View IN+ GND IN− 1 6 2 5 3 4 TLV341 DRL Package 6-Pin SOT Top View V+ SHDN OUT GND IN+ IN− 1 6 2 5 3 4 V+ SHDN OUT Pin Functions: TLV341 PIN NAME I/O DESCRIPTION SOT-23, SC70 SOT 1IN+ 1 2 I Noninverting input on channel 1 1IN– 3 3 I Inverting input on channel 1 1OUT 4 4 O Output on channel 1 GND 2 1 — Ground SHDN 5 5 I Shutdown active low V+ 6 6 — Positive power supply TLV342 D or DGK Package 10-Pin SOIC or VSSOP Top View 1OUT 1IN− 1IN+ GND 1 8 2 7 3 6 4 5 TLV342 RUG Package 10-Pin X2QFN Top View 1IN− V+ 2OUT 2IN− 2IN+ 10 1IN+ 1 GND 2 8 NC NC 3 7 V+ 2IN+ 4 5 9 1OUT 6 2OUT 2IN− Pin Functions: TLV342 PIN NAME SOIC, VSSOP X2QFN I/O DESCRIPTION 1IN+ 3 1 I Noninverting input on channel 1 1IN– 2 10 I Inverting input on channel 1 1OUT 1 9 O Output on channel 1 2IN+ 5 4 I Noninverting input on channel 2 2IN– 6 5 I Inverting input on channel 2 2OUT 7 6 O Output on channel 2 GND 4 2 — Ground NC (1) — 3, 8 — Not connected V+ 8 7 — Positive power supply (1) NC – No internal connection Copyright © 2005–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 3 TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com TLV342S RUG Package 10-Pin X2QFN Top View 1IN− 10 1IN+ 1 GND 2 8 NC SHDN 3 7 V+ 2IN+ 4 5 9 1OUT 6 2OUT 2IN− Pin Functions: TLV342S PIN NAME I/O NO. DESCRIPTION 1IN+ 1 I Noninverting input on channel 1 1IN– 10 I Inverting input on channel 1 1OUT 9 O Output on channel 1 2IN+ 4 I Noninverting input on channel 2 2IN– 5 I Inverting input on channel 2 2OUT 6 O Output on channel 2 GND 2 — Ground NC (1) 8 — Not connected SHDN 3 I Shutdown active low V+ 7 — Positive power supply (1) NC – No internal connection 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN (2) V+ Supply voltage VID Differential input voltage (3) VI Input voltage (either input or shutdown) VO Output voltage TJ Operating virtual-junction temperature Tstg Storage temperature (1) (2) (3) MAX UNIT –0.3 5.5 V ±5.5 V –0.3 5.5 V –0.3 VCC + 0.3 V 150 °C 150 °C –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values (except differential voltages) are with respect to the network GND. Differential voltages are at IN+ with respect to IN−. 6.2 ESD Ratings VALUE V(ESD) (1) (2) 4 Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±2000 ±750 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Documentation Feedback Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 6.3 Recommended Operating Conditions MIN MAX V+ Supply voltage (single-supply operation) 1.5 5.5 UNIT V TA Operating free-air temperature –40 125 °C 6.4 Thermal Information: TLV341 TLV341 THERMAL METRIC (1) DBV (SOT-23) DCK (SC70) DRL (SOT) UNIT 6 PINS 6 PINS 6 PINS RθJA Junction-to-ambient thermal resistance 193.4 196.8 221.1 °C/W RθJC(top) Junction-to-case (top) thermal resistance 145.6 82.4 109.1 °C/W RθJB Junction-to-board thermal resistance 44.1 95.2 111.4 °C/W ψJT Junction-to-top characterization parameter 34.1 1.8 6.2 °C/W ψJB Junction-to-board characterization parameter 43.4 93.2 109.8 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.5 Thermal Information: TLV342 TLV342 THERMAL METRIC (1) D (SOIC) DGK (MSOP) RUG (X2QFN) 10 PINS UNIT 8 PINS 8 PINS RθJA Junction-to-ambient thermal resistance 123.6 192.3 167 °C/W RθJC(top) Junction-to-case (top) thermal resistance 69.8 78.2 56.5 °C/W RθJB Junction-to-board thermal resistance 63.9 112.6 94.3 °C/W ψJT Junction-to-top characterization parameter 24.4 15.2 4.1 °C/W ψJB Junction-to-board characterization parameter 63.4 111.2 94 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.6 Thermal Information: TLV342S TLV342S THERMAL METRIC RUG (X2QFN) (1) UNIT 10 PINS RθJA Junction-to-ambient thermal resistance 158.3 °C/W RθJC(top) Junction-to-case (top) thermal resistance 52.6 °C/W RθJB Junction-to-board thermal resistance 87.9 °C/W ψJT Junction-to-top characterization parameter 1 °C/W ψJB Junction-to-board characterization parameter 87 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Copyright © 2005–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 5 TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com 6.7 Electrical Characteristics: V+ = 1.8 V V+ = 1.8 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted). See Shutdown Characteristics: V+ = 1.8 V. PARAMETER TEST CONDITIONS A grade αVIO IIB Input bias current Input offset current CMRR Common-mode rejection ratio 0 ≤ VICR ≤ 1.2 V kSVR Supply-voltage rejection ratio 1.8 V ≤ V+ ≤ 5 V VICR Common-mode input voltage range CMRR ≥ 60 dB Large-signal voltage gain (2) AV RL = 2 kΩ to 1.35 V Low level RL = 2 kΩ to 1.35 V High level Output swing (delta from supply rails) VO Low level RL = 10 kΩ to 1.35 V High level UNIT 4 4.5 25°C 0.3 1.25 0°C to 125°C 0.3 1.5 –40°C to 125°C 0.3 1.7 Full range 1.9 1 100 375 –40°C to 125°C 3000 6.6 25°C 60 Full range 50 25°C 75 Full range 65 25°C 0 25°C 70 Full range 60 25°C 65 Full range 55 25°C mV μV/°C –40°C to 85°C 25°C RL = 10 kΩ to 1.35 V MAX 0.3 25°C IIO TYP (1) Full range Input offset voltage Average temperature coefficient of input offset voltage MIN 25°C Standard grade VIO TA pA fA 85 dB 95 dB 1.2 V 110 dB 100 22 Full range 50 75 25°C 25 Full range 50 75 25°C 14 Full range 20 mV 25 25°C 7 20 70 150 Full range 25 25°C μA ICC Supply current (per channel) IOS Output short-circuit current SR Slew rate RL = 10 kΩ (3) 25°C 0.9 V/μs GBW Unity-gain bandwidth RL = 10 kΩ, CL = 200 pF 25°C 2.2 MHz φm Phase margin RL = 100 kΩ, CL = 200 pF 25°C 55 ° Gm Gain margin RL = 100 kΩ, CL = 200 pF 25°C 15 dB Vn Equivalent input noise voltage f = 1 kHz 25°C 33 nV/√Hz In Equivalent input noise current f = 1 kHz 25°C 0.001 pA/√Hz Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 Ω, VI = 1 VPP 25°C 0.015% THD (1) (2) (3) 6 Full range Sourcing Sinking 25°C 200 6 12 10 20 mA Typical values represent the most likely parametric norm. GND + 0.2 V ≤ VO ≤ V+ – 0.2 V Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates. Submit Documentation Feedback Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 6.8 Electrical Characteristics: V+ = 5 V V+ = 5 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted). See Shutdown Characteristics: V+ = 5 V. PARAMETER TEST CONDITIONS A grade αVIO IIB Input bias current Input offset current CMRR Common-mode rejection ratio 0 ≤ VICR ≤ 4.4 V kSVR Supply-voltage rejection ratio 1.8 V ≤ V+ ≤ 5 V VICR Common-mode input voltage range CMRR ≥ 70 dB Large-signal voltage gain (2) AV RL = 2 kΩ to 2.5 V Low level RL = 2 kΩ to 2.5 V High level Output swing (delta from supply rails) VO Low level RL = 10 kΩ to 2.5 V High level UNIT 4 4.5 25°C 0.3 1.25 0°C to 125°C 0.3 1.5 –40°C to 125°C 0.3 1.7 Full range 1.9 1 mV μV/°C 200 –40°C to 85°C 375 –40°C to 125°C 3000 25°C RL = 10 kΩ to 2.5 V MAX 0.3 25°C IIO TYP (1) Full range Input offset voltage Average temperature coefficient of input offset voltage MIN 25°C Standard grade VIO TA pA 6.6 25°C 75 Full range 70 25°C 75 Full range 65 25°C 0 25°C 80 Full range 70 25°C 75 Full range 60 25°C fA 90 dB 95 dB 4.4 V 110 dB 105 40 Full range 60 85 25°C 25 Full range 60 85 25°C 18 Full range mV 30 40 25°C 7 15 75 150 Full range 20 25°C μA ICC Supply current (per channel) IOS Output short-circuit current SR Slew rate RL = 10 kΩ (3) 25°C 1 V/μs GBW Unity-gain bandwidth RL = 10 kΩ, CL = 200 pF 25°C 2.3 MHz φm Phase margin RL = 100 kΩ, CL = 200 pF 25°C 55 ° Gm Gain margin RL = 100 kΩ, CL = 200 pF 25°C 15 dB Vn Equivalent input noise voltage f = 1 kHz 25°C 33 nV/√Hz In Equivalent input noise current f = 1 kHz 25°C 0.001 pA/√Hz Total harmonic distortion f = 1 kHz, AV = 1, RL = 600 Ω, VI = 1 VPP 25°C 0.012% THD (1) (2) (3) Full range Sourcing Sinking 200 25°C 60 113 80 115 mA Typical values represent the most likely parametric norm. GND + 0.2 V ≤ VO ≤ V+ – 0.2 V Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates. Copyright © 2005–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 7 TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com 6.9 Shutdown Characteristics: V+ = 1.8 V V+ = 1.8 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted) PARAMETER ICC(SHDN) Supply current in shutdown mode t(on) Amplifier turnon time VSD TEST CONDITIONS VSD = 0 V TA MIN 25°C 0.01 Full range Recommended shutdown pin voltage range Shutdown mode 25°C MAX 1 1.5 25°C On mode TYP UNIT μA μs 5 1.5 1.8 0 0.5 V 6.10 Shutdown Characteristics: V+ = 5 V V+ = 5 V, GND = 0 V, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted) PARAMETER ICC(SHDN) Supply current in shutdown mode t(on) Amplifier turnon time VSD 8 TEST CONDITIONS VSD = 0 V TA MIN 25°C Recommended shutdown pin voltage range Submit Documentation Feedback Shutdown mode MAX 0.01 1 Full range 1.5 25°C On mode TYP 25°C UNIT μA μs 5 4.5 5 0 0.8 V Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 6.11 Typical Characteristics 130 1,000 V+ = 5 V 120 IIB − Input Bias Current − pA ICC − Supply Current − µA 110 125°C 100 90 85°C 80 25°C 70 60 −40°C 50 100 10 1 40 30 1.5 2 2.5 3 3.5 4 4.5 0.1 −40 −20 5 VCC − Supply Voltage − V 7 35 RL = 2 kΩ VO − Output Swing From Supply Voltage − mV VO − Output Swing From Supply Voltage − mV 140 Figure 2. Input Bias Current vs Temperature Figure 1. Supply Current vs Supply Voltage 30 Negative Swing 25 20 Positive Swing 15 10 1.5 2 2.5 3 3.5 4 4.5 RL = 10 kΩ 6.5 6 5 4.5 4 Positive Swing 3.5 3 5 Negative Swing 5.5 1.5 2 2.5 3 3.5 4 4.5 5 VCC − Supply Voltage − V VCC − Supply Voltage − V Figure 3. Output Voltage Swing vs Supply Voltage Figure 4. Output Voltage Swing vs Supply Voltage 1000 1000 V+ = 5 V V+ = 2.7 V IS − Source Current − mA −40°C 25°C 10 85°C 1 125°C 10 25°C 85°C 1 125°C 0.1 0.1 0.01 0.001 −40°C 100 100 IS − Source Current − mA 0 20 40 60 80 100 120 TA − Free-Air Temperature − °C 0.01 0.1 1 10 0.01 0.001 0.01 0.1 1 VO − Output Voltage Referenced to V+ (V) VO − Output Voltage Referenced to V+ (V) Figure 5. Source Current vs Output Voltage Figure 6. Source Current vs Output Voltage Copyright © 2005–2016, Texas Instruments Incorporated 10 Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 9 TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com Typical Characteristics (continued) 1000 V+ = 2.7 V V+ = 5 V 100 100 −40°C −40°C IS − Sink Current − mA IS − Sink Current − mA 1000 10 25°C 85°C 1 125°C 0.1 10 25°C 85°C 1 125°C 0.1 0.01 0.001 0.01 0.1 1 0.01 0.001 10 0.1 Figure 8. Sink Current vs Output Voltage 1 0.5 0 0 VIO − Offset Voltage − mV 0.5 −0.5 −1 125°C −1.5 85°C −2 25°C V+ = 5 V −0.5 −1 125°C 85°C −1.5 25°C −2 −40°C −40°C −2.5 −2.5 −3 −0.2 0.8 1.8 −3 −0.2 2.8 VIC − Common-Mode Voltage − V 0.8 1.8 2.8 3.8 4.8 VIC − Common-Mode Voltage − V Figure 9. Offset Voltage vs Common-Mode Voltage Figure 10. Offset Voltage vs Common-Mode Voltage 300 V+ /GND = ±1.35 V VI − Input Voltage − mV 200 RL = 2 kΩ 100 0 RL = 10 kΩ 200 −200 −200 −1 0 1 2 3 VO − Output Voltage − V Figure 11. Input Voltage vs Output Voltage Submit Documentation Feedback RL = 10 kΩ 0 −100 −2 RL = 2 kΩ 100 −100 −300 −3 5.8 300 V+ /GND = ±2.5 V VI − Input Voltage − µV 10 Figure 7. Sink Current vs Output Voltage V+ = 2.7 V 10 1 VO − Output Voltage Referenced to V− (V) 1 VIO − Offset Voltage − mV 0.01 VO − Output Voltage Referenced to V− (V) −300 −1.5 −1 −0.5 0 0.5 1 1.5 VO − Output Voltage − V Figure 12. Input Voltage vs Output Voltage Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 Typical Characteristics (continued) 2.5 1.9 RL = 10 kΩ AV = 1 VI = 2 VPP V+ = 2.7 V 2.3 Falling Edge 1.7 SR − Slew Rate − V/µs SR − Slew Rate − V/ms 2.1 1.5 1.3 Rising Edge 1.1 0.9 0.5 1.5 2 Falling Edge 1.7 1.5 1.3 Rising Edge 1.1 0.9 RL = 10 kΩ AV = 1 VI = 0.8 VPP for V+ < 2.7 V VI = 2 VPP for V+ > 2.7 V 0.7 1.9 0.7 2.5 3 3.5 4 VCC − Supply Voltage − V 4.5 0.5 −40 −20 5 Figure 13. Slew Rate vs Supply Voltage Figure 14. Slew Rate vs Temperature 2.5 100 RL = 10 kΩ AV = 1 VI = 2 VPP V+ = 5 V 2.3 90 1.9 70 Falling Edge 1.7 1.5 1.3 Rising Edge 60 50 2.7 V 40 1.1 30 0.9 20 0.7 10 0.5 −40 −20 5V 80 Gain − dB SR − Slew Rate − V/µs 2.1 VI = V+ /2 RL = 5 kΩ 0 100 1K 0 20 40 60 80 100 120 140 TA – Free-Air Temperature – °C Figure 15. Slew Rate vs Temperature 100 1M 220 200 VI − Input Voltage Noise − nV/ Hz −PSRR (2.7 V) 80 70 Gain − dB 10K 100K f − Frequency − Hz Figure 16. CMRR vs Frequency +PSRR (2.7 V) 90 60 0 20 40 60 80 100 120 140 TA – Free-Air Temperature – °C −PSRR (5 V) 50 +PSRR (5 V) 40 30 20 10 0 100 160 140 120 100 80 5V 2.7 V 60 40 20 RL = 5 kΩ 1K 180 0 10K 100K f − Frequency − Hz 1M Figure 17. PSRR vs Frequency Copyright © 2005–2016, Texas Instruments Incorporated 10M 10 100 1K 10K f − Frequency − Hz Figure 18. Input Voltage Noise vs Frequency Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 11 TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com 10 RL = 600 Ω VO = 1 VPP for V+ = 2.7 V VO = 2.5 VPP for V+ = 5 V 1 5V AV = 10 2.7 V AV = 10 2.7 V AV = 1 0.01 5V AV = 1 0.001 0.0001 10 100 1K 10K f − Frequency − Hz 100K Figure 19. Total Harmonic Distortion +Noise vs Frequency 100 Gain − dB 140 140 120 120 100 100 80 −40°C Gain 60 80 −40°C 25°C 60 40 125°C 20 125°C 10 1K 5V AV = 1 0.01 0.001 0.01 0.1 1 VO − Output Voltage − VPP 100 60 RL = 100 kΩ RL = 100 kΩ 40 RL = 2 kΩ 20 RL = 600 Ω 10 100 1K f − Frequency − kHz 140 160 V+ = 5 V Closed-Loop Gain = 60 dB Phase RL = 600 Ω Gain RL = 2 kΩ RL = 100 kΩ 80 60 40 RL = 100 kΩ 40 RL = 2 kΩ RL = 600 Ω CL = 0 pF 100 60 40 CL = 500 pF Gain CL = 1000 pF 60 20 0 40 CL = 0 pF 20 −20 0 −40 100 f − Frequency − kHz 1K Figure 23. Frequency Response vs RL 12 Submit Documentation Feedback 10K −20 −40 0 20 CL = 500 pF CL = 1000 pF 10 80 CL = 100 pF 80 Gain − dB 100 80 100 Phase V+ = 5 V RL = 600 Ω Closed-Loop Gain = 60 dB 120 140 120 1 0 10K −20 Phase Margin − Deg Gain − dB 60 40 Figure 22. Frequency Response vs RL 100 −20 80 RL = 2 ΩW Gain 0 10K 140 0 140 120 f − Frequency − kHz 20 160 Phase Figure 21. Frequency Response vs Temperature 60 10 V+ = 2.7 V Closed-Loop Gain = 60 dB 1 120 2.7 V AV = 1 RL = 600 Ω 20 100 0.1 20 0 1 2.7 V AV = 10 80 40 25°C 0 −20 160 Phase Margin − Deg Gain − dB V+ = 5 V RL = 2 kΩ 120 1 Figure 20. Total Harmonic Distortion +Noise vs Output Voltage 140 Phase 5V AV = 10 Phase Margin − Deg 0.1 f = 10 kHz RL = 600 Ω Phase Margin − Deg 10 THD+N − Total Harmonic Distortion + Noise − % THD+N − Total Harmonic Distortion + Noise − % Typical Characteristics (continued) 1 10 100 f − Frequency − kHz −60 CL = 100 pF 1K 10K −80 Figure 24. Frequency Response vs CL Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 Typical Characteristics (continued) 0.1 0.25 TA = −40°C RL = 2 kΩ V+/GND = ±2.5 V −0.05 −0.1 0.05 −0.15 0 VI − Input Voltage − V −0.2 −0.05 5 1 4 0 −1 3 2 TA = −40°C RL = 2 kΩ V+/GND = ±2.5 V 1 −3 0 −4 −5 −1 Output Output −0.25 −0.1 −6 −2 4 µs/div 4 µs/div Figure 25. Small-Signal Noninverting Response Figure 26. Large-Signal Noninverting Response 0.1 0.25 TA = 25°C RL = 2 kΩ V+/GND = ±2.5 V −0.05 −0.1 0.05 −0.15 0 VO − Output Voltage − V VO − Output Voltage − V 0 0.15 VI − Input Voltage − V 0.05 −0.2 −0.05 5 1 4 0 3 2 −1 TA = 25°C RL = 2 kΩ V+/GND = ±2.5 V 1 −3 0 −4 −1 −5 Output Output −2 −0.25 −6 4 µs/div 4 µs/div Figure 27. Small-Signal Noninverting Response Figure 28. Large-Signal Noninverting Response 0.1 0.25 2 6 Input Input TA = 125°C RL = 2 kΩ V+/GND = ±2.5 V 5 1 0 4 0 −0.05 −0.1 0.05 −0.15 0 −0.05 VO − Output Voltage − V 0.15 0.05 VI − Input Voltage − V VO − Output Voltage − V 0.2 0.1 −2 −1 3 2 TA = 125°C RL = 2 kΩ V+/GND = ±2.5 V −2 1 −3 0 −4 −0.2 −5 −1 Output −0.1 VI − Input Voltage − V Input −0.1 2 6 Input 0.2 0.1 −2 VI − Input Voltage − V VO − Output Voltage − V 0 0.15 VO − Output Voltage − V 0.05 VI − Input Voltage − V Input 0.2 0.1 2 6 Input Output −0.25 4 µs/div Figure 29. Small-Signal Noninverting Response Copyright © 2005–2016, Texas Instruments Incorporated −2 4 µs/div −6 Figure 30. Large-Signal Noninverting Response Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 13 TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com Typical Characteristics (continued) 6 0.1 0.25 −0.15 0 −0.2 −0.05 1 4 0 3 2 −1 TA = −40°C RL = 2 kΩ V+/GND = ±2.5 V 1 −3 0 −4 −1 −5 Output Output −2 −0.25 4 µs/div 4 µs/div Figure 32. Large-Signal Inverting Response Figure 31. Small-Signal Noninverting Response 0.1 0.25 2 6 Input Input TA = 25°C RL = 2 kΩ V+/GND = ±2.5 V 5 1 0 4 0 −0.05 −0.1 0.05 −0.15 0 −0.2 −0.05 VO − Output Voltage − V 0.15 0.05 VI − Input Voltage − V VO − Output Voltage − V 0.2 0.1 −1 3 2 TA = 25°C RL = 2 kΩ V+/GND = ±2.5 V −3 0 −4 −5 −1 Output −0.25 −0.1 Figure 33. Small-Signal Inverting Response 2 6 Input Input TA = 125°C RL = 2 kΩ V+/GND = ±2.5 V −0.05 −0.1 0.05 −0.15 0 −0.2 −0.05 VO − Output Voltage − V 0 0.15 VI − Input Voltage − V 0.05 0.2 VO − Output Voltage − V 4 µs/div Figure 34. Large-Signal Inverting Response 0.1 0.25 −6 −2 4 µs/div 5 1 4 0 −1 3 2 TA = 125°C RL = 2 kΩ V+/GND = ±2.5 V −2 1 −3 0 −4 −5 −1 Output Output −0.25 −0.1 −6 −2 4 µs/div 4 µs/div Figure 35. Small-Signal Inverting Response 14 −2 1 Output 0.1 −6 VI − Input Voltage − V −0.1 −2 VI − Input Voltage − V −0.1 5 VI − Input Voltage − V 0.05 −0.05 TA = −40°C RL = 2 kΩ V+/GND = ±2.5 V VO − Output Voltage − V VO − Output Voltage − V 0 0.15 VI − Input Voltage − V 0.05 0.2 0.1 2 Input Input Submit Documentation Feedback Figure 36. Large-Signal Inverting Response Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 7 Detailed Description 7.1 Overview The TLV34xx devices are precision operational amplifiers with CMOS inputs for very low input bias current. Grade A devices offer lower VIO for high accuracy in direct-coupled applications. Output is rail to rail and input common mode includes ground. TLV341 and TLV342S have shutdown mode for very low supply current. 7.2 Functional Block Diagram Copyright © 2016, Texas Instruments Incorporated 7.3 Feature Description 7.3.1 PMOS Input Stage PMOS Input Stage supports a lower input range that includes ground. Upper range limit is VCC – 0.6 V. 7.3.2 CMOS Output Stage The CMOS drain output topology allows rail-to-rail output swing. 7.3.3 Shutdown TLV341 and TLV342S include a shutdown pin. During shutdown, ICC is nearly zero and the output becomes high impedance. The typical turnon time coming out of shutdown is 5 µs. 7.4 Device Functional Modes The TLV34xx devices have two operation modes: • Normal operation when SHDN pin is at V+ level or the SHDN pin is not present • Shutdown mode when SHDN is at GND level; ICC is very low and output is high impedance. Copyright © 2005–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 15 TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The TLV34xx devices have rail-to-rail output and input range from ground to VCC – 0.6 V. CMOS inputs provide very low input current. Shutdown capability is an option in dual amplifier version. Operation from 1.5 V to 5.5 V is possible. 8.2 Typical Application A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT VIN + VsupCopyright © 2016, Texas Instruments Incorporated Figure 37. Application Schematic 8.2.1 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output voltage range. For instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ± 2 V is sufficient to accommodate this application. The supplies can power up in any order; however, neither supply can be of opposite polarity relative to ground at any time; otherwise, a large current can flow though the input ESD diodes. TI highliy recommends adding a series resistor to the grounded input to limit current in such an occurrence. Vsup+ must be more positive than Vsup– at all times; otherwise, a large reverse supply current may flow. 8.2.2 Detailed Design Procedure Determine the gain required by the inverting amplifier using Equation 1 and Equation 2: (1) (2) Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kΩ range is desirable because the amplifier circuit uses currents in the mA range. This ensures the part does not draw too much current. For this example, choose 10 kΩ for RI, which means 36 kΩ is used for RF. This was determined by Equation 3. (3) 16 Submit Documentation Feedback Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 Typical Application (continued) 8.2.3 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 Figure 38. Input and Output Voltages of the Inverting Amplifier 9 Power Supply Recommendations CAUTION Supply voltages larger than 5.5 V for a single supply can permanently damage the device (see the Absolute Maximum Ratings). Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. Copyright © 2005–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 17 TLV341, TLV341A, TLV342, TLV342S SLVS568D – JANUARY 2005 – REVISED APRIL 2016 www.ti.com 10 Layout 10.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds while paying attention to the flow of the ground current. • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. • Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Guidelines. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. 10.2 Layout Example RIN VIN RG + VOUT RF Figure 39. Layout Schematic Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible RF NC NC IN1í VCC+ IN1+ OUT VCCí NC VS+ Use low-ESR, ceramic bypass capacitor RG GND VIN RIN GND Only needed for dual-supply operation GND VS(or GND for single supply) VOUT Ground (GND) plane on another layer Figure 40. Operational Amplifier Schematic for Noninverting Configuration 18 Submit Documentation Feedback Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: TLV341 TLV341A TLV342 TLV342S TLV341, TLV341A, TLV342, TLV342S www.ti.com SLVS568D – JANUARY 2005 – REVISED APRIL 2016 11 Device and Documentation Support 11.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 1. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TLV341 Click here Click here Click here Click here Click here TLV341A Click here Click here Click here Click here Click here TLV342 Click here Click here Click here Click here Click here TLV342S Click here Click here Click here Click here Click here 11.2 Community Resource The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2005–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: TLV341 TLV341A TLV342 TLV342S 19 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) TLV341AIDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 YCGE Samples TLV341AIDBVT ACTIVE SOT-23 DBV 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 YCGE Samples TLV341AIDCKR ACTIVE SC70 DCK 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 Y5E Samples TLV341AIDCKT ACTIVE SC70 DCK 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 Y5E Samples TLV341AIDCKTG4 ACTIVE SC70 DCK 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 Y5E Samples TLV341IDBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 YC9E Samples TLV341IDCKR ACTIVE SC70 DCK 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 Y4E Samples TLV341IDCKT ACTIVE SC70 DCK 6 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 Y4E Samples TLV341IDRLR ACTIVE SOT-5X3 DRL 6 4000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 (Y4A, Y4W) Samples TLV342AID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY342A Samples TLV342AIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY342A Samples TLV342ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY342 Samples TLV342IDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 Y6A Samples TLV342IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 TY342 Samples TLV342IRUGR ACTIVE X2QFN RUG 10 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 Y6E Samples TLV342SIRUGR ACTIVE X2QFN RUG 10 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2YE Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV342AIDR 价格&库存

很抱歉,暂时无法提供与“TLV342AIDR”相匹配的价格&库存,您可以联系我们找货

免费人工找货