0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV75533PDBVR

TLV75533PDBVR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-5

  • 描述:

    IC REG LINEAR 3.3V 500MA SOT23-5

  • 数据手册
  • 价格&库存
TLV75533PDBVR 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 TLV755P 500mA、 、低 IQ、小型低压降稳压器 1 特性 • • • 1 • • • • • • • 3 说明 输入电压范围:1.45V 至 5.5V 低 IQ:25µA(典型值) 低压降: – 在 500mA 下为 238mV(最大值)(VOUT 为 3.3V) 输出精度:1%(85°C 时达到最大) 内置软启动功能,具有单调 VOUT上升 折返电流限制 有源输出放电 高 PSRR:100kHz 时为 46dB 与 1µF 陶瓷输出电容器搭配使用时可保持稳定 封装: – 2.9mm × 1.6mm SOT-23-5 – 1mm x 1mm X2SON-4 – 2mm × 2mm WSON-6 2 应用 • • • • • • • 机顶盒、电视和游戏机 便携式和电池供电类设备 台式机、笔记本和超级本 平板电脑和遥控器 白色家电和电器 电网基础设施和保护继电器 摄像头模块和图像传感器 TLV755P 是一款超小型低静态电流、低压差稳压器 (LDO),可提供 500mA 拉电流,具有良好的线路和负 载瞬态性能。TLV755P 经过优化,支持 1.45V 至 5.5V 的输入电压 范围, 因此适用于各种应用。为最大 程度地降低成本和解决方案尺寸,该器件可在 0.6V 至 5V 范围内提供固定输出电压,以支持现代微控制器 (MCU) 更低的内核电压。此外,TLV755P 具备带有使 能功能的低 IQ,从而可将待机功耗降至最低。该器件 具有 内部软启动功能,旨在降低浪涌电流,因此可为 负载提供受控电压并在启动过程中最大程度地降低输入 电压压降。关断时,该器件可主动降低输出以快速释放 输出并确保已知的启动状态。 TLV755P 在与支持小尺寸总体解决方案的小型陶瓷输 出电容器搭配使用时,可保持稳定。高精度带隙与误差 放大器支持 1% 的典型精度。所有器件版本均具有集 成的热关断保护、电流限制和低压锁定 (UVLO) 功能。 TLV755P 具有内部折返电流限制,有助于在发生短路 时减少热耗散。 器件信息(1) 器件型号 封装 TLV755P 封装尺寸(标称值) X2SON (4) 1.00mm x 1.00mm SOT-23 (5) 2.90mm × 1.60mm SON (6) 2.00mm × 2.00mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 典型应用 启动波形 7 EN ON OFF GND VIN VEN IOUT 6 150 5 125 4 100 3 75 2 50 1 25 COUT 0 Output Current (mA) TLV755P CIN 175 VOUT OUT Voltage (V) IN 0 0 0.2 0.4 0.6 0.8 1 1.2 Time (ms) 1.4 1.6 1.8 2 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. English Data Sheet: SBVS320 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 7 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information ................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description ............................................ 12 7.1 Overview ................................................................. 12 7.2 Functional Block Diagram ....................................... 12 7.3 Feature Description................................................. 12 7.4 Device Functional Modes........................................ 14 8 Application and Implementation ........................ 15 8.1 Application Information............................................ 15 8.2 Typical Application ................................................. 19 9 Power Supply Recommendations...................... 20 10 Layout................................................................... 21 10.1 Layout Guidelines ................................................. 21 10.2 Layout Examples................................................... 21 11 器件和文档支持 ..................................................... 22 11.1 11.2 11.3 11.4 11.5 11.6 器件支持................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... 术语表 ................................................................... 22 22 22 22 22 22 12 机械、封装和可订购信息 ....................................... 22 4 修订历史记录 Changes from Original (November 2017) to Revision A Page • 已发布至生产 .......................................................................................................................................................................... 1 2 Copyright © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 5 Pin Configuration and Functions DQN Package 4-Pin X2SON Top View OUT 1 DBV Package 5-Pin SOT-23 Top View 4 IN 5 GND 2 3 IN 1 GND 2 EN 3 EN Not to scale 5 OUT 4 NC Not to scale DRV Package 6-Pin WSON With Exposed Thermal Pad Top View OUT 1 NC GND 6 IN 2 Thermal 5 Pad NC 3 EN 4 Not to scale NC = no internal connection. Pin Functions PIN NAME I/O DESCRIPTION DQN DBV DRV EN 3 3 4 I GND 2 2 3 — IN 4 1 6 I NC — 4 2, 5 — No internal connection. OUT 1 5 1 O Regulated output voltage pin. A capacitor with a value of 1 µF or larger is required from this pin to ground (1). See the Input and Output Capacitor Selection section for more information. Pad — Pad — Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND. Thermal pad (1) Enable pin. Drive EN greater than VHI to turn on the regulator. Drive EN less than VLO to place the LDO into shutdown mode. Ground pin. Input pin. A capacitor with a value of 1 µF or larger is required from this pin to ground (1). See the Input and Output Capacitor Selection section for more information. The nominal input and output capacitance must be greater than 0.47 µF; throughout this document the nominal derating on these capacitors is 50%. Make sure that the effective capacitance at the pin is greater than 0.47 µF. Copyright © 2017–2018, Texas Instruments Incorporated 3 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT Supply voltage, VIN -0.3 6.0 V Enable voltage, VEN -0.3 6.0 V Output voltage, VOUT -0.3 VIN + 0.3 (2) V Operating junction temperature range, TJ -40 150 °C Storage temperature, Tstg -65 150 °C (1) (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The absolute maximum rating is VIN + 0.3 V or 6.0 V, whichever is smaller 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22C101 (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN VIN Input voltage VOUT VEN NOM MAX UNIT 1.45 5.5 V Output voltage 0.6 5.0 V Enable voltage 0 5.5 V IOUT Output current 0 500 mA CIN Input capacitor 1 COUT Output capacitor 1 fEN Enable toggle frequency TJ Junction temperature μF –40 200 μF 10 kHz 125 °C 6.4 Thermal Information TLV755 THERMAL METRIC (1) DQN (X2SON) DBV (SOT-235) DRV (SON) 4 PINS 5 PINS 6 PINS UNIT RθJA Junction-to-ambient thermal resistance 168.4 231.1 100.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 139.1 118.4 108.5 °C/W RθJB Junction-to-board thermal resistance 101.4 64.4 64.3 °C/W ψJT Junction-to-top characterization parameter 5.6 28.4 10.4 °C/W ψJB Junction-to-board characterization parameter 101.7 63.8 64.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance 88.4 N/A 34.7 °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 6.5 Electrical Characteristics at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 μF, unless otherwise noted. All typical values at TJ = 25°C. PARAMETER VIN Input voltage VOUT Output voltage TEST CONDITIONS -40°C ≤ TJ ≤ +85°C, DBV and DRV package VOUT ≥ 1.0 V, DQN package Output accuracy -40°C ≤ TJ ≤ +85°C; 0.6 V ≤ VOUT < 1.0 V VOUT ≥ 1 V 0.6 V ≤ VOUT < 1 V (ΔVOUT) Line regulation ΔVIN VOUT + 0.5 V ≤ VIN ≤ 5.5 V, VOUT > 1.5 V ΔVOUT/ ΔIOUT 0.1 mA ≤ IOUT ≤ 500 mA Load regulation Ground current -1.2% 1.2% -10 10 -1.5% 1.5% -15 15 2 0.044 14 25 40 Short circuit current limit VOUT = 0 V IOUT = 500mA, -40°C ≤ TJ ≤ +85°C Dropout voltage IOUT = 500mA, -40°C ≤ TJ ≤ +125°C 0.1 1 VOUT = VOUT - 0.2 V, VOUT ≤ 1.5V 560 720 865 VOUT = 0.9 x VOUT, 1.5V < VOUT ≤ 4.5V 560 720 865 355 675 1080 0.8 V ≤ VOUT < 1.0V 600 930 1.0 V ≤ VOUT < 1.2 V 550 780 1.2 V ≤ VOUT < 1.5 V 500 630 1.5 V ≤ VOUT < 1.8 V 350 400 1.8 V ≤ VOUT < 2.5 V 325 380 2.5 V ≤ VOUT < 3.3 V 250 300 3.3 V ≤ VOUT < 5.0 V 150 1140 0.8 V ≤ VOUT < 1.0 V 985 1.0 V ≤ VOUT < 1.2 V 825 1.2 V ≤ VOUT < 1.5 V 665 1.5 V ≤ VOUT < 1.8 V 425 1.8 V ≤ VOUT < 2.5 V 400 2.5 V ≤ VOUT < 3.3 V 325 52 f = 100 kHz, VIN = VOUT + 1 V, IOUT = 50 mA 46 f = 1 MHz, VIN = VOUT + 1 V, IOUT = 50 mA 52 BW = 10 Hz to 100 kHz; VOUT = 1.2 V, IOUT = 500 mA VUVLO Undervoltage lockout VIN rising VUVLO,HY Undervoltage lockout hysteresis ST VIN falling Startup time EN pin high voltage (enabled) Copyright © 2017–2018, Texas Instruments Incorporated µA mA mV 238 f = 1 kHz, VIN = VOUT + 1 V, IOUT = 50 mA Output noise voltage VHI 215 0.6 V ≤ VOUT < 0.8 V VN µA mA 0.6 V ≤ VOUT < 0.8 V 3.3 V ≤ VOUT < 5.0 V tSTR 31 33 ISC mV V/A -40°C ≤ TJ ≤ +125°C, IOUT = 0 mA Output current limit mV mV -40°C ≤ TJ ≤ +85°C, IOUT = 0 mA ICL Power-supply rejection ratio V 5.0 DRV package VIN = VOUT+ VDO(MAX) + 0.25 V PSRR V 1% 0.060 UNIT 5.5 0.6 0.036 VEN ≤ 0.4 V, 1.4 V ≤ VIN ≤ 5.5 V, -40°C ≤ TJ ≤ +125°C VDO MAX -1% DBV package Shutdown current ISHDN TYP DQN package TJ = 25°C, IOUT = 0 mA IGND MIN 1.45 dB 71.5 1.21 1 1.3 µVRMS 1.44 V 40 mV 550 µs V 5 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn Electrical Characteristics (continued) at operating temperature range (TJ = –40°C to 125°C), VIN = VOUT(NOM) + 0.5 V or 2.0 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 μF, unless otherwise noted. All typical values at TJ = 25°C. PARAMETER VLO EN pin low voltage (enabled) IEN Enable pin current TSD Thermal shutdown RPULLDO Pulldown resistance WN 6 TEST CONDITIONS MIN TYP MAX 0.3 EN = 5.5V 10 Shutdown, temperature increasing 165 Reset, temperature decreasing 155 VIN = 5.5V 120 UNIT V nA °C Ω 版权 © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 6.6 Typical Characteristics at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 100 Power Supply Rejection Ratio (dB) Power Supply Rejection Ratio (dB) 100 80 60 40 20 0 10 IOUT = 10 mA IOUT = 50 mA IOUT = 100 mA IOUT = 500 mA 100 1k 10k 100k Frequency (Hz) 1M 80 60 40 VIN 3.8 V 4V 4.3 V 4.5 V 5V 20 0 10 10M 100 VIN = 4.3 V, VOUT = 3.3 V, COUT = 1 µF 图 1. PSRR vs Frequency and IOUT Noise (PV/—Hz) Power Supply Rejection Ratio (dB) 40 2 1 0.5 COUT = 1 PF COUT = 10 PF COUT = 22 PF COUT = 100 PF 100 1k 10k 100k Frequency (Hz) 1M 10M 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 10 VIN = 4.3 V, VOUT = 3.3 V, IOUT = 500 mA 100 1k 10k 100k Frequency (Hz) 1M 10M 图 4. Output Spectral Noise Density vs Frequency and COUT 10 5 220 200 2 1 0.5 Output Noise Voltage (PVRMS) Noise (PV/—Hz) COUT 1 PF, 143 PVRMS 10 PF, 150 PVRMS 22 PF, 149 PVRMS 100 PF, 146 PVRMS VOUT = 3.3 V, VRMS BW = 10 Hz to 100 kHz 图 3. PSRR vs Frequency and COUT 0.2 0.1 0.05 0.002 0.001 10 10M 图 2. PSRR vs Frequency and VIN 60 0.02 0.01 0.005 1M 10 5 80 0 10 10k 100k Frequency (Hz) VOUT = 3.3 V, COUT = 1 µF, IOUT = 500 mA 100 20 1k IOUT 10 mA, 140 PVRMS 50 mA, 142 PVRMS 100 mA, 142 PVRMS 500 mA, 143 PVRMS 100 1k 10k 100k Frequency (Hz) 160 140 120 100 80 60 1M 10M VOUT = 3.3 V, IOUT = 500 mA, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz 图 5. Output Spectral Noise Density vs Frequency and IOUT 版权 © 2017–2018, Texas Instruments Incorporated 180 40 0.5 1 1.5 2 2.5 3 3.5 Output Voltage (V) 4 4.5 5 IOUT = 500 mA, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz 图 6. Output Noise Voltage vs VOUT 7 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn Typical Characteristics (接 接下页) at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 3.328 VIN VOUT 3.312 3 3.304 2 3.296 1 3.288 0 0 20 Time (ms) 3.35 480 3.325 400 3.3 320 3.275 240 3.25 160 3.225 80 0 0 VOUT = 3.3 V, COUT = 1 µF, VIN slew rate = 1 V/µs 40 图 7. Line Transient 图 8. 3.3-V, 1-mA to 500-mA Load Transient 6 VIN VOUT 5 VIN VOUT 5 4 4 Voltage (V) Voltage (V) 80 120 160 200 240 280 320 360 400 440 480 Time (Ps) VIN = 5 V, VOUT = 3.3 V, COUT = 1 µF, IOUT slew rate = 1 A/µs 6 3 3 2 2 1 1 0 0 0 0.5 1 1.5 2 2.5 3 Time (ms) 3.5 4 4.5 5 0 1 2 图 9. VIN = VEN Power-Up 175 10 6 150 5 5 125 4 100 3 75 2 50 1 25 -25 0 -30 VEN 0 0.2 0.4 0.6 0.8 1 1.2 Time (ms) 1.4 1.6 4 5 6 Time (ms) 7 8 IOUT 1.8 2 Output Voltage (mV) VIN Output Current (mA) Voltage (V) VOUT 3 9 10 图 10. VIN = VEN Shutdown 7 0 560 3.2 3.28 50 40 Output Voltage (V) 4 640 VOUT IOUT 3.375 3.32 Output Voltage (V) Input Voltage (V) 5 3.4 Output Current (A) 6 -40°C 0°C 25°C 85°C 125°C 0 -5 -10 -15 -20 0 50 100 150 200 250 300 350 Output Current (mA) 400 450 500 VIN = 5 V, IOUT = 100 mA, VEN slew rate = 1 V/µs, VOUT = 3.3 V 图 11. EN Startup 8 图 12. Load Regulation vs IOUT 版权 © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 Typical Characteristics (接 接下页) at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 200 200 -40qC 0qC 25qC -40qC 0qC 25qC 160 150 Dropout Voltage (mV) Dropout Voltage (mV) 175 85qC 125qC 125 100 75 50 85qC 125qC 120 80 40 25 0 0 0 50 100 150 200 250 300 350 Output Current (mA) 400 450 500 0 图 13. 3.3-V Dropout Voltage vs IOUT 100 -40qC 0qC 25qC 85qC 125qC -40qC 0qC 0.75 400 450 500 25qC 85qC 125qC 0.5 Accuracy (%) 0.5 0.25 0 -0.25 0.25 0 -0.25 -0.5 -0.5 -0.75 -0.75 -1 3.5 -1 3.75 4 4.25 4.5 4.75 Input Voltage (V) 5 5.25 5.5 5 5.1 VOUT = 3.3 V, IOUT = 1 mA 600 500 400 300 -40°C 0°C 25°C 85°C 125°C 200 100 0 150 200 250 300 350 Output Current (mA) 400 450 500 GND Pin Current (PA) 700 100 5.4 5.5 图 16. 5.0-V Accuracy vs VIN (Line Regulation) 800 50 5.2 5.3 Input Voltage (V) IOUT = 1 mA, VOUT = 5 V 图 15. 3.3-V Regulation vs VIN (Line Regulation) GND Pin Current (ɥA) 200 250 300 350 Output Current (mA) 1 0.75 0 150 图 14. 5.0-V Dropout Voltage vs IOUT 1 Accuracy (%) 50 650 600 550 500 450 400 350 300 250 200 150 100 50 0 -40qC 0qC 25qC 85qC 125qC 0 1 2 3 4 Input Voltage (V) 5 6 VOUT = 3.3 V, IOUT = 1 mA 图 17. IGND vs IOUT 版权 © 2017–2018, Texas Instruments Incorporated 图 18. IGND vs VIN 9 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn Typical Characteristics (接 接下页) at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 350 300 -40qC 0qC 25qC 85qC 125qC 200 Shutdown Current (nA) Quiescent Current (PA) 250 -40qC 0qC 25qC 85qC 125qC 300 150 100 50 250 200 150 100 50 0 0 0 1 2 3 4 Input Voltage (V) 5 6 0 1 2 VOUT = 3.3 V, IOUT = 0 mA 3 4 Input Voltage (V) 5 6 VEN = 0 V 图 19. IQ vs VIN 图 20. ISHDN vs VIN 180 800 160 Enable Threshold (mV) Shutdown Current (nA) 750 140 120 100 80 60 40 700 650 600 550 20 EN Negative 0 -40 -20 0 20 40 60 80 Temperature (qC) 100 120 500 -50 140 -25 0 EN Positive 25 50 Temperature (qC) 75 100 125 VEN = 0 V 图 21. ISHDN vs Temperature 图 22. Enable Threshold vs Temperature 250 1.4 -40qC 0qC 25qC 85qC 125qC 1.36 UVLO Threshold (V) Enable Current (PA) 200 150 100 1.32 1.28 1.24 50 UVLO Negative 0 0 1 2 3 4 Input Voltage (V) 5 6 1.2 -50 -25 0 UVLO Positive 25 50 Temperature (qC) 75 100 125 VEN = 5.5 V 图 23. IEN vs VIN 10 图 24. UVLO Threshold vs Temperature 版权 © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 Typical Characteristics (接 接下页) at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 600 3.5 -40qC 0qC 25qC 550 3 450 Output Voltage (mV) Output Voltage (mV) 500 85qC 125qC 400 350 300 250 200 150 100 2.5 2 1.5 -40°C 0°C 25°C 85°C 125°C 1 0.5 50 0 0 0 1 2 3 Output Current (mA) 4 图 25. VOUT vs IOUT Pulldown Resistor 版权 © 2017–2018, Texas Instruments Incorporated 5 0 100 200 300 400 500 Output Current (mA) 600 700 800 图 26. 3.3-V Foldback Current Limit, VOUT vs IOUT 11 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn 7 Detailed Description 7.1 Overview The TLV755P belongs to a family of next-generation, low-dropout regulators (LDOs). This device consumes low quiescent current and delivers excellent line and load transient performance. The TLV755P is optimized for a wide variety of applications by supporting an input voltage range from 1.45 V to 5.5 V. To minimize cost and solution size, the device is offered in fixed output voltages ranging from 0.6 V to 5 V to support the lower core voltages of modern microcontrollers (MCUs). This regulator offers foldback current limit, shutdown, and thermal protection. The operating junction temperature is –40°C to +125°C. 7.2 Functional Block Diagram OUT IN Current Limit R1 ± + Thermal Shutdown UVLO 120 Ÿ R2 EN Bandgap GND Logic NOTE: R2 = 550 kΩ, R1 = adjustable. 7.3 Feature Description 7.3.1 Undervoltage Lockout (UVLO) An undervoltage lockout (UVLO) circuit disables the output until the input voltage is greater than the rising UVLO voltage (VUVLO). This circuit ensures that the device does not exhibit any unpredictable behavior when the supply voltage is lower than the operational range of the internal circuitry. When VIN is less than VUVLO, the output is connected to ground with a 120-Ω pulldown resistor. 7.3.2 Enable (EN) The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VHI. Turn off the device by forcing the EN pin below VLO. If shutdown capability is not required, connect EN to IN. The device has an internal pulldown that connects a 120-Ω resistor to ground when the device is disabled. The discharge time after disabling depends on the output capacitance (COUT) and the load resistance (RL) in parallel with the 120-Ω pulldown resistor. 公式 1 calculates the time constant τ: 120 · RL t= · COUT 120 + RL (1) 12 版权 © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 Feature Description (接 接下页) The EN pin is independent of the input pin (IN), but if the EN pin is driven to a higher voltage than VIN, the current into the EN pin increases. This effect is illustrated in 图 23. When the EN voltage is higher than the input voltage there is an increased current flow into the EN pin. If this increased flow causes problems in the application, sequence the EN pin after VIN is high, or to tie EN to VIN to prevent this flow increase from happening. If EN is driven to a higher voltage than VIN, limit the frequency on EN to below 10 kHz. 7.3.3 Internal Foldback Current Limit The TLV755P has an internal current limit that protects the regulator during fault conditions. The current limit is a hybrid scheme with brick wall until the output voltage is less than 0.4 V × VOUT(NOM). When the voltage drops below 0.4 V × VOUT(NOM), a foldback current limit is implemented that scales back the current as the output voltage approaches GND. When the output shorts, the LDO supplies a typical current of ISC. The output voltage is not regulated when the device is in current limit. In this condition, the output voltage is the product of the regulated current and the load resistance. When the device output shorts, the PMOS pass transistor dissipates power [(VIN – VOUT) × ISC] until thermal shutdown is triggered and the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the fault condition continues, the device cycles between current limit and thermal shutdown. The foldback current-limit circuit limits the current that is allowed through the device to current levels lower than the minimum current limit at nominal VOUT current limit (ICL) during start up. See 图 26 for typical current limit values. If the output is loaded by a constant-current load during start up, or if the output voltage is negative when the device is enabled, then the load current demanded by the load may exceed the foldback current limit and the device may not rise to the full output voltage. For constant-current loads, disable the output load until the output has risen to the nominal voltage. Excess inductance can cause the current limit to oscillate. Minimize the inductance to keep the current limit from oscillating during a fault condition. 7.3.4 Thermal Shutdown Thermal shutdown protection disables the output when the junction temperature rises to approximately 165°C. Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the junction temperature cools to approximately 155°C, the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation that protects the circuit from damage as a result of overheating. Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product of the (VIN – VOUT) voltage and the load current. For reliable operation, limit junction temperature to a maximum of 125°C. To estimate the margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. The internal protection circuitry protects against overload conditions but is not intended to be activated in normal operation. Continuously running the device into thermal shutdown degrades device reliability. 版权 © 2017–2018, Texas Instruments Incorporated 13 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn 7.4 Device Functional Modes 表 1 lists a comparison between the normal, dropout, and disabled modes of operation. 表 1. Device Functional Modes Comparison PARAMETER OPERATING MODE (1) (2) VIN EN IOUT TJ Normal (1) VIN > VOUT(NOM) + VDO VEN > VHI IOUT < ICL TJ < TSD Dropout (1) VIN < VOUT(NOM) + VDO VEN > VHI — TJ < TSD Disabled (2) VIN < VUVLO VEN < VLO — TJ > TSD All table conditions must be met. The device is disabled when any condition is met. 7.4.1 Normal Operation The device regulates to the nominal output voltage when all of the following conditions are met. • The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(NOM) + VDO) • The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased below the enable falling threshold • The output current is less than the current limit (IOUT < ICL) • The device junction temperature is less than the thermal shutdown temperature (TJ < TSD) 7.4.2 Dropout Operation If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout. In this mode, the output voltage tracks the input voltage. During this mode, the transient performance of the device degrades because the pass device is in a triode state and no longer controls the output voltage of the LDO. Line or load transients in dropout can result in large output-voltage deviations. When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO, right after being in a normal regulation state, but not during startup), the pass-FET is driven as hard as possible when the control loop is out of balance. During the normal time required for the device to regain regulation, VIN ≥ VOUT(NOM) + VDO, VOUT can overshoot VOUT(NOM) during fast transients. 7.4.3 Disabled The output is shut down by forcing the enable pin below VLO. When disabled, the pass device is turned off, internal circuits are shut down, and the output voltage is actively discharged to ground by an internal switch from the output to ground. The active pulldown is on when sufficient input voltage is provided. 14 版权 © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information 8.1.1 Input and Output Capacitor Selection The TLV755P requires an output capacitance of 0.47 µF or larger for stability. Use X5R- and X7R-type ceramic capacitors because these capacitors have minimal variation in capacitance value and equivalent series resistance (ESR) over temperature. When selecting a capacitor for a specific application, consider the DC bias characteristics for the capacitor. Higher output voltages cause a significant derating of the capacitor. As a general rule, ceramic capacitors must be derated by 50%. For best performance, TI recommends a maximum output capacitance value of 200 µF. Place a 1 µF or greater capacitor on the input pin of the LDO. Some input supplies have a high impedance. Placing a capacitor on the input supply reduces the input impedance. The input capacitor counteracts reactive input sources and improves transient response and PSRR. If the input supply has a high impedance over a large range of frequencies, several input capacitors are used in parallel to lower the impedance over frequency. Use a higher-value capacitor if large, fast, rise-time load transients are expected, or if the device is located several inches from the input power source. 8.1.2 Dropout Voltage The TLV755P uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the RDS(ON) of the PMOS pass element. VDO scales linearly with the output current because the PMOS device functions like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as (VIN – VOUT) approaches dropout operation. See 图 13 and 图 14 for typical dropout values. 8.1.3 Exiting Dropout Some applications have transients that place the LDO into dropout, such as slower ramps on VIN during start-up. As with other LDOs, the output may overshoot on recovery from these conditions. A ramping input supply causes an LDO to overshoot on start-up when the slew rate and voltage levels are in the correct range; see 图 27. Use an enable signal to avoid this condition. 版权 © 2017–2018, Texas Instruments Incorporated 15 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn Application Information (接 接下页) Input Voltage Response time for LDO to get back into regulation. Load current discharges output voltage. VIN = VOUT(nom) + VDO Voltage Output Voltage Dropout VOUT = VIN - VDO Output Voltage in normal regulation. Time 图 27. Startup Into Dropout Line transients out of dropout can also cause overshoot on the output of the regulator. These overshoots are caused by the error amplifier having to drive the gate capacitance of the pass element and bring the gate back to the correct voltage for proper regulation. 图 28 illustrates what is happening internally with the gate voltage and how overshoot can be caused during operation. When the LDO is placed in dropout, the gate voltage (VGS) is pulled all the way down to ground to give the pass device the lowest on-resistance as possible. However, if a line transient occurs while the device is in dropout, the loop is not in regulation and can cause the output to overshoot until the loop responds and the output current pulls the output voltage back down into regulation. If these transients are not acceptable, then continue to add input capacitance in the system until the transient is slow enough to reduce the overshoot. 16 版权 © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 Application Information (接 接下页) Transient response time of the LDO Input Voltage Load current discharges output voltage VDO Voltage Output Voltage Output Voltage in normal regulation Dropout VOUT = VIN - VDO VGS voltage (pass device fully off) Input Voltage VGS voltage for normal operation VGS voltage for normal operation Gate Voltage VGS voltage in dropout (pass device fully on) Time 图 28. Line Transients From Dropout 8.1.4 Reverse Current As with most LDOs, excessive reverse current can damage this device. Reverse current flows through the body diode on the pass element instead of the normal conducting channel. At high magnitudes, this current flow degrades the long-term reliability of the device, as a result of one of the following conditions: • Degradation caused by electromigration • Excessive heat dissipation • Potential for a latch-up condition Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute maximum rating of VOUT > VIN + 0.3 V: • If the device has a large COUT and the input supply collapses with little or no load current • The output is biased when the input supply is not established • The output is biased above the input supply 版权 © 2017–2018, Texas Instruments Incorporated 17 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn Application Information (接 接下页) If reverse current flow is expected in the application, external protection must be used to protect the device. 图 29 shows one approach of protecting the device. Schottky Diode IN CIN Internal Body Diode Device OUT COUT GND 图 29. Example Circuit for Reverse Current Protection Using a Schottky Diode 8.1.5 Power Dissipation (PD) Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must be as free of other heat-generating devices as possible that cause added thermal stresses. As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference and load conditions. Use 公式 2 to approximate PD: PD = (VIN – VOUT) × IOUT (2) Power dissipation must be minimized to achieve greater efficiency. This minimizing process is achieved by selecting the correct system voltage rails. Proper selection helps obtain the minimum input-to-output voltage differential. The low dropout of the device allows for maximum efficiency across a wide range of output voltages. The main heat-conduction path for the device is through the thermal pad on the package. As such, the thermal pad must be soldered to a copper pad area under the device. This pad area contains an array of plated vias that conduct heat to inner plane areas or to a bottom-side copper plane. The maximum allowable junction temperature (TJ) determines the maximum power dissipation for the device. According to 公式 3, power dissipation and junction temperature are most often related by the junction-toambient thermal resistance (RθJA) of the combined PCB, device package, and the temperature of the ambient air (TA). TJ = TA + RθJA × PD (3) Unfortunately, this thermal resistance (RθJA) is dependent on the heat-spreading capability built into the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The RθJA value is only used as a relative measure of package thermal performance. RθJA is the sum of the package junction-to-case (bottom) thermal resistance (RθJCbot) plus the thermal resistance contribution by the PCB copper. 18 版权 © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 Application Information (接 接下页) 8.1.5.1 Estimating Junction Temperature The JEDEC standard recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of the LDO when in-circuit on a typical PCB board application. These metrics are not thermal resistances, but offer practical and relative means of estimating junction temperatures. These psi metrics are independent of the copper-spreading area. The key thermal metrics (ΨJT and ΨJB) are used in accordance with 公式 4 and are described in the table. YJT: TJ = TT + YJT ´ PD YJB: TJ = TB + YJB ´ PD where: • • • PD is the power dissipated as shown in 公式 2 TT is the temperature at the center-top of the device package TB is the PCB surface temperature measured 1 mm from the device package and centered on the package edge (4) 8.2 Typical Application IN OUT 1 …F DC/DC Converter 1 …F TLV755P EN Load GND ON OFF 图 30. TLV755P Typical Application 8.2.1 Design Requirements 表 2 lists the design requirements for this application. 表 2. Design Parameters PARAMETER DESIGN REQUIREMENT Input voltage 4.3 V Output voltage 3.3 V Input current 500 mA (maximum) Output load 250-mA DC Maximum ambient temperature 70°C 版权 © 2017–2018, Texas Instruments Incorporated 19 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn 8.2.2 Detailed Design Procedure 8.2.2.1 Input Current During normal operation, the input current to the LDO is approximately equal to the output current of the LDO. During startup, the input current is higher as a result of the inrush current charging the output capacitor. Use 公式 5 to calculate the current through the input. VOUT(t) COUT ´ dVOUT(t) IOUT(t) = + RLOAD dt where: • • • VOUT(t) is the instantaneous output voltage of the turn-on ramp dVOUT(t) / dt is the slope of the VOUT ramp RLOAD is the resistive load impedance (5) 8.2.2.2 Thermal Dissipation The junction temperature can be determined using the junction-to-ambient thermal resistance (RθJA) and the total power dissipation (PD). Use 公式 6 to calculate the power dissipation. Multiply PD by RθJA as 公式 7 shows and add the ambient temperature (TA) to calculate the junction temperature (TJ). PD = (IGND+ IOUT) × (VIN – VOUT) TJ = RθJA × PD + TA (6) (7) Calculate the maximum ambient temperature as 公式 8 shows if the (TJ(MAX)) value does not exceed 125°C. 公式 9 calculates the maximum ambient temperature with a value of 99.95°C. TA(MAX) = TJ(MAX) – RθJA × PD TA(MAX) = 125°C – 100.2°C/W × (4.3 V – 3.3 V) × (0.25 A) = 99.95°C (8) (9) 8.2.3 Application Curve Power Supply Rejection Ratio (dB) 100 80 60 40 20 0 10 IOUT = 10 mA IOUT = 50 mA IOUT = 100 mA IOUT = 500 mA 100 1k 10k 100k Frequency (Hz) 1M 10M VIN = 4.3 V, VOUT = 3.3 V 图 31. PSRR vs Frequency (4.3 V to 3.3 V) 9 Power Supply Recommendations Connect a low output impedance power supply directly to the IN pin of the TLV755P. If the input source is reactive, consider using multiple input capacitors in parallel with the 1-µF input capacitor to lower the input supply impedance over frequency. 20 版权 © 2017–2018, Texas Instruments Incorporated TLV755P www.ti.com.cn ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 10 Layout 10.1 Layout Guidelines • • • Place input and output capacitors as close as possible to the device. Use copper planes for device connections to optimize thermal performance. Place thermal vias around the device to distribute the heat. 10.2 Layout Examples OUT IN 1 4 COUT CIN EN 3 2 GND PLANE Represents via used for application specific connections 图 32. Layout Example for the DQN Package VOUT VIN 1 CIN 5 COUT 2 3 4 EN GND PLANE Represents via used for application specific connections 图 33. Layout Example for the DBV Package VIN VOUT COUT 1 6 2 5 3 4 CIN EN GND PLANE Represents via used for application specific connections 图 34. Layout Example for the DRV Package 版权 © 2017–2018, Texas Instruments Incorporated 21 TLV755P ZHCSI89A – NOVEMBER 2017 – REVISED MAY 2018 www.ti.com.cn 11 器件和文档支持 11.1 器件支持 11.1.1 器件命名规则 表 3. 器件命名规则 (1) (2) (1) (2) 产品 VOUT TLV755xx(x)Pyyyz xx(x) 为标称输出电压。对于分辨率为 100mV 的输出电压,订货编号中使用两位数字;否则,使用三位数 字(例如,28 = 2.8V;125 = 1.25V)。 P 表示有源输出放电功能。TLV755P 系列的所有产品在器件处于禁用状态时都可以对输出进行主动放电。 yyy 为封装标识符。 z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。 要获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。 可提供 0.6V 至 5V 范围内的输出电压(以 50mV 为单位增加)。有关器件的详细信息和供货情况,请联系制造商。 11.2 接收文档更新通知 要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.3 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 11.4 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.5 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.6 术语表 SLYZ022 — TI 术语表。 这份术语表列出并解释术语、缩写和定义。 12 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。 22 版权 © 2017–2018, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV75507PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KD TLV75507PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KD TLV75509PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green Level-1-260C-UNLIM -40 to 125 1HAF TLV75509PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AX TLV75509PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AX TLV75509PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1HDH TLV75510PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1FPF TLV75510PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KE TLV75510PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KE TLV75510PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1GUH TLV75511PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 E8 TLV75512PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1FQF TLV75512PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AG TLV75512PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AG TLV75512PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1GVH TLV75515PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1FRF TLV75515PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KF TLV75515PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KF TLV75515PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1GWH TLV755185PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 EZ NIPDAU | SN Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material NIPDAU | SN MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV75518PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green Level-1-260C-UNLIM -40 to 125 1FSF TLV75518PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AI TLV75518PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AI TLV75518PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1GXH TLV75519PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1HBF TLV75519PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 B5 TLV75519PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 B5 TLV75519PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1HEH TLV75525PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1FTF TLV75525PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AJ TLV75525PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AJ TLV75525PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1GZH TLV75528PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1FUF TLV75528PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KG TLV75528PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KG TLV75528PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1H1H TLV75529PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1HCF TLV75529PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1HFH TLV75530PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1FVF TLV75530PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KI TLV75530PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 KI Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV75530PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1H2H TLV75533PDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 1FWF TLV75533PDQNR ACTIVE X2SON DQN 4 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AN TLV75533PDQNT ACTIVE X2SON DQN 4 250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 AN TLV75533PDRVR ACTIVE WSON DRV 6 3000 RoHS & Green Level-1-260C-UNLIM -40 to 125 1H3H NIPDAU (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV75533PDBVR 价格&库存

很抱歉,暂时无法提供与“TLV75533PDBVR”相匹配的价格&库存,您可以联系我们找货

免费人工找货