0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLV803EA29RDBZR

TLV803EA29RDBZR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT-23

  • 描述:

    IC SUPERVISOR 1 CHANNEL SOT23-3

  • 数据手册
  • 价格&库存
TLV803EA29RDBZR 数据手册
TLV803E, TLV809E, TLV810E SLVSES2J – AUGUST 2018 – REVISED MAY 2021 TLV803E, TLV809E, TLV810E Low Power 250-nA IQ and Small Size Supply Voltage Supervisors 1 Features 3 Description • • The TLV803E, TLV809E, and TLV810E are enhanced alternatives to the TLV803, TLV853, TLV809, LM809, TPS3809 and TLV810. TLV80xE and TLV81xE offer low quiescent current IQ, higher accuracy, wider temperature range, and lower power-on-reset (VPOR) for increased system reliability. • • • • • • Ensured RESET/RESET for VDD = 0.7 V to 6 V Fixed time delay: 40 µs, 10 ms, 50 ms, 100 ms, 200 ms, 400 ms Supply current (IDD): 250 nA (typical) – 1 µA (maximum for VDD = 3.3 V) Output topology: – TLV809E: push-pull, active-low – TLV803E: open-drain, active-low – TLV810E: push-pull, active-high Under voltage detection: – High accuracy: ±0.5% (typical) – (VIT–): 1.7 V, 1.8 V, 1.9 V, 2.25V, 2.4 V, 2.64 V, 2.93 V, 3.08 V, 3.3V, 4.2V, 4.38 V, 4.55V, 4.63 V Package: – SOT23-3 (DBZ) (with pin 1 = GND) – SOT23-3 (DBZ) (with pin 1 = RESET/RESET) – SOT23-3 (DBZ) (with pin 3 = GND) – SC-70 (DCK) – X2SON-5 (DPW) Temperature range:  –40°C to +125°C Pin-to-pin compatible with MAX803/809/810, APX803/809/810 The TLV80xE and TLV81xE family are low IQ (250 nA typical, 1 µA max), voltage supervisory circuits (reset IC) that monitor VDD voltage level. These devices initiate a reset signal whenever supply voltage VDD drops below the factory programmed falling threshold voltage, VIT–. The reset output remains low for a fixed reset time delay tD after the VDD voltage rises above the rising voltage threshold (VIT+) which is equivalent to the falling threshold voltage (VIT-) plus hysteresis (VHYS). These devices have integrated glitch immunity to ignore fast transients on the VDD pin. The low IQ and high accuracy (±0.5% typical) makes these voltage supervisors ideal for use in low-power and portable applications. The TLV80xE and TLV81xE devices are specified to have the defined output logic state for supply voltages down to VPOR = 0.7 V. The TLV80xE and TLV81xE devices are available in industry standard 3-pin SOT23 (DBZ) and SC70 (DCK) packages and very compact X2SON (DPW) package. 2 Applications • • • • • • Electricity meters Factory Automation Portable, battery-powered equipment Set-top boxes and TVs Building automation Notebook/desktop computers, servers Device Information (1) PART NUMBER TLV803E, TLV809E, TLV810E (1) IN OUT TLV803E RESET VDD BODY SIZE (NOM) 2.90 mm × 1.30 mm SC-70 (3) 2.00 mm × 1.25 mm X2SON (5) 0.8 mm x 0.8 mm For all available packages, see the orderable addendum at the end of the data sheet. *Rpu ll-up LDO PACKAGE SOT-23 (3) GND VDD FPGA, ASIC, DSP RESET GND *Pull-up resistor no t requir ed for TLV809E, TLV810E Typical Application An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA. TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Device Comparison......................................................... 3 6 Pin Configuration and Functions...................................4 7 Specifications.................................................................. 6 7.1 Absolute Maximum Ratings ....................................... 6 7.2 ESD Ratings .............................................................. 6 7.3 Recommended Operating Conditions ........................6 7.4 Thermal Information ...................................................7 7.5 Electrical Characteristics ............................................8 7.6 Timing Requirements ................................................. 9 7.7 Timing Diagrams....................................................... 10 7.8 Typical Characteristics.............................................. 11 8 Detailed Description......................................................16 8.1 Overview................................................................... 16 8.2 Functional Block Diagram......................................... 16 8.3 Feature Description...................................................16 8.4 Device Functional Modes..........................................19 9 Application and Implementation.................................. 20 9.1 Application Information............................................. 20 9.2 Typical Application - Voltage Rail Monitoring............ 20 9.3 Typical Application - Overvoltage Monitoring............22 10 Power Supply Recommendations..............................23 11 Layout........................................................................... 24 11.1 Layout Guidelines................................................... 24 11.2 Layout Example...................................................... 24 12 Device and Documentation Support..........................26 12.1 Device Support....................................................... 26 12.2 Documentation Support.......................................... 27 12.3 Receiving Notification of Documentation Updates..27 12.4 Support Resources................................................. 27 12.5 Trademarks............................................................. 27 12.6 Electrostatic Discharge Caution..............................27 12.7 Glossary..................................................................27 13 Mechanical, Packaging, and Orderable Information.................................................................... 27 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision I (Feb 2021) to Revision J (May 2021) Page • Updated Device Naming Nomenclature figure by adding Pinout Indicator (DBZ Package Only) from Pinout Indicator ............................................................................................................................................................. 3 • Updated pin numbering of Figure 6-5 (X2SON) package and updated Pin Functions Table............................. 4 • Updated X2SON (DPW) Layout Example........................................................................................................ 24 Changes from Revision H (December 2020) to Revision I (February 2021) Page • Remove duplicate package.............................................................................................................................. 27 Changes from Revision G (October 2020) to Revision H (December 2020) Page • Added Reset time delay variant F specification..................................................................................................9 Changes from Revision F (June 2020) to Revision G (October 2020) Page • Updated the numbering format for tables, figures and cross-references throughout the document...................1 • Added additional threshold voltages (VIT-) and new package information .........................................................1 • Updated Device Naming Nomenclature figure to include (DBZ) V pinout option .............................................. 3 • Added new (DBZ) package option (Pin 3 = GND, V pinout) and updated Pin Functions Table..........................4 • Added layout example for (DBZ) V pinout package..........................................................................................24 • Modified Device Naming Convention table to include additional threshold voltages (VIT-), reset time delay options and pinout indicator options................................................................................................................. 26 Changes from Revision E (April 2020) to Revision F (June 2020) Page • Changed DPW package from Advanced Information to Production Data.......................................................... 1 • Changed DPW package Information ................................................................................................................. 4 Changes from Revision D (February 2020) to Revision E (April 2020) Page • Added X2SON (DPW) package option .............................................................................................................. 3 2 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 Changes from Revision C (November 2019) to Revision D (February 2020) Page • Added device nomenclature figure .................................................................................................................... 3 • Added timing diagram for TLV810E .................................................................................................................10 • Added Figure 6, Figure 23, Figure 24 .............................................................................................................. 11 • Added typical application for TLV810E ............................................................................................................ 22 Changes from Revision B (July 2019) to Revision C (November 2019) Page • Changed device status from Advance Information to Production Data.............................................................. 1 5 Device Comparison Figure 5-1 shows the device naming nomenclature to compare the difference device variants. See Table 12-1 for a more detailed explanation. TLV XXXX X XX X XXX OUTPUT TYPE 803E: Open-Drain Acve-Low 809E: Push-Pull Ac ve-Low 810E: Push-Pull Acve-High DELAY OPTIONS A: 200 ms B: 40 µs C: 10 ms D: 50 ms E: 100 ms F: 400 ms THRESHOLD VOLTAGE 17: 1.7 V ... 46: 4.63 V PINOUT INDICATOR (DBZ PACKAGE ONLY) R: Pin 1 = RESET, Pin 2 = GND V: Pin 1 = RESET, Pin 3 = GND Package DBZ: SOT23 DCK: SC70 DPW: X2SON Figure 5-1. Device Naming Nomenclature Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 3 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 6 Pin Configuration and Functions GND 1 GND 3 RESET RESET VDD 3 2 RESET RESET 1 3 GND VDD 2 Figure 6-2. DCK Package 3-Pin SC-70 Top View (TLV810E) Figure 6-1. DBZ Package (Pin 1 = GND) 3-Pin SOT-23 Top View RESET 1 1 VDD 3 2 VDD Figure 6-3. DBZ Package (Pin 1 = RESET, R pinout) 3-Pin SOT-23 Top View GND 2 Figure 6-4. DBZ Package (Pin 3 = GND, V pinout) 3-Pin SOT-23 Top View RESET RESET 1 5 VDD 4 GND (TLV810E) PAD 3 MR 2 Top View Figure 6-5. DPW Package 5-Pin X2SON See Table 6-1 Top View 4 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 Table 6-1. Pin Functions PIN NAME GND RESET DCK, DBZ DBZ (V PINOUT) DBZ (R PINOUT) DPW 1 3 2 4 2 1 1 1 I/O DESCRIPTION — Ground O Active-low output reset signal: This pin is driven low logic when VDD voltage falls below the negative voltage threshold (VIT–). RESET remains low (asserted) for the delay time period (tD) after VDD voltage rise above VIT+. RESET 2 1 1 1 O Active-High output reset signal (TLV810E only): This pin is driven high logic when VDD voltage falls below the negative voltage threshold (VIT–). RESET remains high (asserted) for the delay time period (tD) after VDD voltage rise above VIT+. VDD 3 2 3 5 I Input supply voltage. TLV803E, TLV809E, TLV810E monitor VDD voltage. MR N/A N/A N/A 2 I Active-low manual reset input. Pull this pin to a logic low (VMR_L) to assert a reset signal in the output pin. After the MR pin is left floating or pulled to VMR_H the output goes to the nominal state after the reset delay time (tD) expires. MR can be left floating when not in use. PAD N/A N/A N/A 3 — No Connection. Thermal pad helps with thermal dissipation. PAD does not need to be soldered down. PAD can be connected to GND. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 5 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range, unless otherwise noted(1) MIN Voltage MAX UNIT VDD pin –0.3 6.5 V RESET (TLV809E), RESET (TLV810E) –0.3 VDD + 0.3 (2) V RESET (TLV803E) –0.3 6.5 V Voltage MR –0.3 VDD + 0.3(2) V Current Output sink and source current -20 20 Operating ambient, TA –40 125 Storage, Tstg –65 150 Temperature(3) (1) (2) (3) mA °C Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions (above the Recommended Operating Conditions) for extended periods may affect device reliability. The absolute maximum rating is (VDD + 0.3) V or 6.5 V, whichever is smaller. As a result of the low dissipated power in this device, the junction temperature is assumed to be equal to the ambient temperature. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ± 2000 Charged device model (CDM), per JEDEC specification JESD22-C101(2) ± 500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN 6 1.7 NOM MAX Input supply voltage VRESET, VRESET RESET pin and RESET pin voltage 0 6 V IRESET, IRESET RESET pin and RESET pin current 0 ±5 mA TJ Junction temperature (free air temperature) –40 125 °C VMR Manual reset pin voltage 0 VDD V Submit Document Feedback 6 UNIT VDD V Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.4 Thermal Information TLV803E, TLV809E, TLV810E THERMAL METRIC(1) DPW (X2SON) DCK (SC70-3) DBZ (SOT23-3) 5 PINS 3 PINS 3 PINS UNIT RθJA Junction-to-ambient thermal resistance 457.1 300.5 254.8 °C/W RθJC(top) Junction-to-case (top) thermal resistance 201.6 178.2 150.5 °C/W RθJB Junction-to-board thermal resistance 320.4 166.5 140.1 °C/W ψJT Junction-to-top characterization parameter 22.8 70 48.1 °C/W ψJB Junction-to-board characterization parameter 318.8 165.2 139.1 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A N/A °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 7 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.5 Electrical Characteristics over operating range (TA = –40℃ to 125℃), 1.7 V ≤ VDD ≤ 6 V, Rpull-up = 10 kΩ to 6 V, 10 pF load at RESET pin, unless otherwise noted. Typical values are at 25℃, VDD = 3.3V and VIT– = 2.93 V. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT COMMON PARAMETERS VDD Input supply voltage 1.7 6 V VIT– Input threshold voltage accuracy TA= –40℃ to 125℃ –2 0.5 2 % VHYS Hysteresis voltage Hysteresis from VIT– 0.9 1.2 1.5 % IDD Supply current into VDD pin 0.25 1 µA 0.4 1.2 µA RMR Manual reset pin internal pull-up resistance VMR_L Manual reset pin logic low input VMR_H Manual reset pin logic high input VDD = 3.3 V; VDD > VIT+ (1) VDD = 6 V 100 X2SON (DPW) package only kΩ 0.4 0.8VDD V V TLV809E (Push-Pull Active-Low) Power on reset voltage (2) VPOR Low level output voltage VOL High level output voltage VOH VOL ≤ 300 mV, IOUT(Sink) = 15 µA 700 mV VDD = 1.7 V, VDD < VIT–, IOUT(Sink) = 500 µA 300 mV VDD = 3.3 V, VDD < VIT–, IOUT(Sink) = 2 mA 300 mV VDD = 6 V, VDD > VIT+, IOUT(Source) = 4 mA 0.8VDD V VDD = 3.3 V, VDD > VIT+, IOUT(Source) = 2 mA 0.8VDD V TLV803E (Open-Drain Active-Low) VPOR VOL Power on reset voltage (2) VOL ≤ 300 mV, IOUT(Sink) = 15 µA 700 mV Low level output voltage VDD = 1.7 V, VDD < VIT–, IOUT(Sink) = 500 µA 300 mV 300 mV Open drain output leakage current VDD = VPULLUP = 6 V, VDD > VIT+ 350 nA VDD = 3.3 V, VDD < VIT–, IOUT(Sink) = 2 mA Ilkg(OD) 100 TLV810E (Push-Pull Active-High) VOH VPOR VOL (1) (2) 8 High level output voltage Power on Reset Voltage Low level output voltage VDD = 3.3 V, VDD < VIT–, IOUT(Source) = 2 mA 0.8VDD VDD = 1.7 V, VDD < VIT–, IOUT(Source) = 500 µA 0.8VDD V V VOH ≥ 720 mV, IOUT(Source) = 15 µA 900 mV VDD = 6 V, VDD > VIT+, IOUT(Sink) = 2 mA 300 mV VDD = 3.3 V, VDD > VIT+, IOUT(Sink) = 500 µA 300 mV VIT+ = VIT– + VHYS Minimum VDD voltage for a controlled output state. Below VPOR, the output cannot be determined. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.6 Timing Requirements over operating range (TA = –40℃ to 125℃), 1.7 V ≤ VDD ≤ 6 V, Rpull-up = 10 kΩ to 6 V (Open Drain only), 10 pF load at RESET pin, Overdrive = 10%, unless otherwise noted. Typical values are at 25℃, VDD = 3.3 V and VIT– = 2.93 V. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tGI Glitch immunity 5 % Overdrive(1) 10 tPD_HL Propagation delay from VDD falling below VIT– to RESET VDD = (VIT+ + 30%) to (VIT– – 10%) 30 50 µs 200 270 ms 45 90 µs 40 80 µs 6.5 10 13.5 ms 33 50 67 ms 260 400 540 ms Reset time delay variant A (2) 130 Reset time delay variant B (2); RUP = 100 kΩ, CL = 100 pF, 30% Overdrive (3) tD Release time or reset timeout period Reset time delay variant B (2) Reset time delay variant C (2) Reset time delay variant D (2) Reset time delay variant F (2) tMR_PW (4) MR pin pulse duration to initiate RESET, RESET tMR_RES (4) Propagation delay from MR low to RESET, RESET VDD = 4.5 V, VMR : VMR_H to VMR_L tMR_tD (4) Delay from release MR to deasert RESET, RESET VDD = 4.5 V, VMR : VMR_L to VMR_H (1) (2) (3) (4) tD_MIN µs 500 ns 700 ns tD_TYP tD_MAX ms Overdrive = [(VDD/ VIT–) - 1] × 100%. Refer to section on VDD glitch immunity Refer to Device nomenclature table. VDD: (VIT--10%) to (VIT+ + 10%) Specified by design X2SON Package only Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 9 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.7 Timing Diagrams VIT+ VIT- VHYS VDD(MIN) VDD VPOR tPD_HL tPD_HL tD RESET Undefined output VDD < VPOR Diagram not to scale Figure 7-1. TLV803E, TLV809E Timing Diagram VIT+ VIT- VDD VHYS VDD(MIN) VPOR tD tPD_HL tD tPD_HL RESET Undefined output VDD < VPOR Diagram not to scale Figure 7-2. TLV810E Timing Diagram 10 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.8 Typical Characteristics Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted. 0.45 0.4 0.5 25°C -40°C 125°C 0.45 25°C -40°C 125°C 0.4 0.35 IDD (µA) IDD (µA) 0.35 0.3 0.25 0.3 0.25 0.2 0.2 0.15 0.1 1.5 2 2.5 3 3.5 4 VDD (V) 4.5 5 5.5 0.1 1.5 6 2 2.5 3 IDD_ 3.5 4 VDD (V) 4.5 5 5.5 6 IDD_ Figure 7-3. Supply Current Versus Supply Voltage for TLV803EA29 Figure 7-4. Supply Current Versus Supply Voltage for TLV809EA29 0.45 0.32 0.4 0.35 25°C -40°C 125°C 0.31 TLV803EA29 0.3 0.29 0.3 0.28 0.25 0.27 IDD (µA) IDD (µA) 0.15 0.2 0.26 0.25 0.15 0.24 0.1 0.23 0.22 0.05 0.21 0 1.5 2 2.5 3 3.5 4 VDD (V) 4.5 5 5.5 0.2 -40 6 Figure 7-5. Supply Current Versus Supply Voltage for TLV810EA29 27 40 60 80 Temperature (°C) 100 120 140 IDD_ TLV803EA29 24 0.29 0.28 21 0.27 18 ILKG (nA) IDD (µA) 20 30 TLV809EA29 0.3 0.26 0.25 0.24 15 12 9 0.23 6 0.22 0.21 0.2 -40 0 Figure 7-6. Supply Current Verses Temperature for TLV803EA29, VDD = 3.3 V 0.32 0.31 -20 IDDv 3 -20 0 20 40 60 80 Temperature (°C) 100 120 140 Figure 7-7. Supply Current Verses Temperature for TLV809EA29, VDD = 3.3 V 0 -40 -20 0 IDD_ 20 40 60 80 Temperature (°C) 100 120 140 ILKG Figure 7-8. Leakage Current Verses Temperature for TLV803EA29 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 11 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.8 Typical Characteristics (continued) Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted. 1 1.3 TLV803EA29 0.92 1.1 1 0.76 VIT- Accuracy (%) VIT- Accuracy (%) 0.84 0.68 0.6 0.52 0.44 0.9 0.8 0.7 0.6 0.5 0.4 0.36 0.3 0.28 0.2 0.2 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 0.1 -40 140 20 40 60 80 Temperature (°C) 100 120 140 VIT- 0.55 -40°C -20°C 85°C 105°C 125°C 0.64 0.56 -40°C -20°C 85°C 105°C 125°C 0.5 0.45 0.4 0.35 VOL (V) 0.48 0.4 0.32 0.3 0.25 0.2 0.24 0.15 0.16 0.1 0.08 0.05 0 0 0 0.002 0.004 0.006 IRESET (A) 0.008 0.01 0 0.004 0.006 IRESET (A) 0.008 0.01 VOLx Figure 7-12. Low Voltage Output Versus Output Current for TLV809EA29, VDD = 1.7 V 25 25 TLV803EA29 TLV809EA29 24.5 24 24 23.5 23.5 VOL (mV) 24.5 23 22.5 23 22.5 22 22 21.5 21.5 21 -40 0.002 VOLx Figure 7-11. Low Voltage Output Versus Output Current for TLV803EA29, VDD = 1.7 V VOL (mV) 0 Figure 7-10. Voltage Threshold Accuracy Verses Temperature for TLV809EA29 0.8 0.72 -20 0 20 40 60 80 Temperature (qC) 100 120 140 21 -40 -20 0 VOLx Figure 7-13. Low Voltage Output Verses Temperature for TLV803EA29, VDD = 1.7 V 12 -20 VIT- Figure 7-9. Voltage Threshold Accuracy Verses Temperature for TLV803EA29 VOL (V) TLV809EA29 1.2 20 40 60 80 Temperature (qC) 100 120 140 VOLx Figure 7-14. Low Voltage Output Verses Temperature for TLV809EA29, VDD = 1.7 V Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.8 Typical Characteristics (continued) Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted. 6 3.12 -40°C -20°C 25°C 85°C 105°C 125°C 5.9 5.8 5.6 3.11 3.105 3.1 VOH (V) VOH (V) 5.7 TLV809EA29 3.115 5.5 5.4 3.095 3.09 3.085 5.3 3.08 5.2 3.075 3.07 5.1 3.065 -40 5 0 0.002 0.004 0.006 IRESET (A) 0.008 0.01 VOHx Figure 7-15. High Voltage Output Versus Output Current for TLV809EA29, VDD = 6 V 0 20 40 60 80 Temperature (qC) 100 120 140 VOHx Figure 7-16. High Voltage Output Verses Temperature for TLV809EA29, VDD = 3.3 V 6 0.12 TLV803EA29 5.5 -20 25°C 5 0.1 4.5 0.08 VRESET (V) VRESET (V) 4 3.5 3 2.5 0.06 0.04 2 1.5 0.02 1 0.5 0 0 0 0.5 1 1.5 2 2.5 3 3.5 VDD (V) 4 4.5 5 5.5 0 6 0.1 0.2 0.3 VCC_ Figure 7-17. Reset Voltage Output Versus Voltage Input for TLV803EA29, Vpull-up = VDD, Rpull-up = 10 kΩ 0.4 0.5 0.6 VDD (V) 0.7 0.8 0.9 1 Vpor Figure 7-18. Reset Voltage Output Versus Voltage Input for TLV803EA29, Rpull-up = 10 kΩ 173 2 TLV803EA29 VDD RESET 172 1.6 tD (ms) Voltage (V) 171 1.2 170 0.8 169 0.4 168 0 0 6 12 18 Time (µs) 24 30 VRES Figure 7-19. Transient Power-on-Reset Voltage for TLV809EA30, IRESET = 15 µA 167 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 140 Rese Figure 7-20. Reset Delay Time Verses Temperature for TLV803EA29 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 13 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.8 Typical Characteristics (continued) Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted. 171.5 TLV809EA29 171 170.5 170 tD (µs) tD (ms) 169.5 169 168.5 168 167.5 167 166.5 166 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 140 16.25 16.2 16.15 16.1 16.05 16 15.95 15.9 15.85 15.8 15.75 15.7 15.65 15.6 -40 TLV803EB29 -20 0 20 tD__ Figure 7-21. Reset Delay Time Verses Temperature for TLV809EA29 40 60 80 Temperature (°C) 100 120 140 Rese Figure 7-22. Reset Delay Time Verses Temperature for TLV803EB29 9 25 TLV803EC29 TLV803EA29 24.75 8.8 24.5 8.6 tPHL (µs) tD (ms) 24.25 8.4 24 23.75 23.5 23.25 23 8.2 22.75 8 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 22.5 -40 140 Rese 0 20 40 60 80 Temperature (°C) 100 120 140 tPHL Figure 7-24. High-to-Low Propagation Delay Verses Temperature for TLV803EA29 Figure 7-23. Reset Delay Time Verses Temperature for TLV803EC29 26 13 TLV809EA29 25°C -40°C 125°C 12 25.5 11 Glitch Immunity (µs) 25 tPHL (µs) -20 24.5 24 23.5 23 10 9 8 7 6 5 22.5 22 -40 4 -20 0 20 40 60 80 Temperature (°C) 100 120 140 Figure 7-25. High-to-Low Propagation Delay Verses Temperature for TLV809EA29 14 3 5 10 15 tPHL 20 25 30 35 Overdrive (%) 40 45 50 tGI_ Figure 7-26. Glitch Immunity Versus Overdrive for TLV803EA29 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 7.8 Typical Characteristics (continued) Typical characteristics show the typical performance of the TLV803E, TLV809E, and TLV810E devices. Test conditions are TA = 25°C, VDD = 3.3 V, VIT- = 2.93 V, Rpull-up = 10 kΩ to 6 V, CLoad = 50 pF, unless otherwise noted. 13 25°C -40°C 125°C 12 Glitch Immunity (µs) 11 10 9 8 7 6 5 4 3 5 10 15 20 25 30 35 Overdrive (%) 40 45 50 tGI_ Figure 7-27. Glitch Immunity Versus Overdrive for TLV809EA29 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 15 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 8 Detailed Description 8.1 Overview The TLV803E, TLV809E, TLV810E is a family of easy to implement low power, small size voltage supervisors (Reset ICs) with fixed threshold voltage and fixed reset delay. The TLV803E has open-drain active-low output topology which requires an external pull-up resistor, TLV809E has push-pull active-low output topology and TLV810E has push-pull active-high output topology. This family of devices features include integrated resistor divider threshold with hysteresis and a glitch immunity filter. These devices are available in SOT-23 (3) and SC70 (3) industry standard package and pinout as well as a very small X2SON (5) package. 8.2 Functional Block Diagram VDD RMR MR Push-pull TLV809E, TLV810E variants DPW package only VDD + VDD Reference Voltage RESET LOGIC TIMER ± RESET (TLV803E, TLV809E) RESET (TLV810E) GND GND 8.3 Feature Description 8.3.1 Input Voltage (VDD) VDD pin is monitored by the internal comparator with integrated reference to indicate when VDD falls below the fixed threshold voltage. VDD also functions as the supply for the following: • • • • • Internal bandgap (reference voltage) Internal regulator State machine Buffers Other control logic blocks Good design practice involves placing a 0.1-µF to 1-µF bypass capacitor at VDD input for noisy applications and to ensure enough charge is available for the device to power up correctly. The reset output is undefined when VDD is below VPOR. 16 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 8.3.2 VDD Hysteresis The internal comparator has built-in hysteresis to avoid erroneous output reset release. If the voltage at the VDD pin falls below the falling voltage threshold VIT–, the output reset is asserted. When the voltage at the VDD pin rises above the rising voltage threshold (VIT+) equivalent to VIT– plus hysteresis (VHYS), the output reset is deasserted after tD reset time delay. 8.3.3 VDD Glitch Immunity These devices are immune to quick voltage transient or excursion on VDD. Sensitivity to transients depends on both pulse duration (tGI) found in Section 7.6 and transient overdrive. Overdrive is defined by how much VDD exceeds the specified threshold. Threshold overdrive is calculated as a percent of the threshold in question, as shown in Equation 1. Overdrive = | (VDD / (VIT– – 1)) × 100% | (1) where • • VIT– is the threshold voltage VDD is the input voltage crossing VIT– VDD VIT+ VITOverdrive Pulse Duration Figure 8-1. Overdrive Versus Pulse Duration TLV803E, TLV809E, and TLV810E devices have built-in glitch immunity (tGI) of 10 µs typical as shown in Section 7.6. Figure 8-2 shows that VDD must fall below VIT- for tGI, otherwise the faling transistion is ignored. When VDD falls below VIT- for tGI, RESET transitions low to indicate a fault condition after the propagation delay high-to-low (t PDHL). When VDD rises above VIT+, RESET only deasserts to logic high indicating there is no more fault condition only if VDD remains above VIT+ for longer than the reset delay (tD). VDD remains above VIT+ for only 199 ms VDD RESET VIT+ VIT- VDD drops below VIT- so RESET transitions low after Propagation Delay (tPDHL) VDD transition to above VIT+ ignored when less than Reset Delay (tD) so RESET remains unchanged Figure 8-2. Glitch Immunity when VDD Rises Above VIT+ for Less than RESET Delay (TLV803EA29) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 17 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 8.3.4 Manual Reset (MR) Input for X2SON (DPW) Package Only The manual reset (MR) input allows a processor GPIO or other logic circuits to initiate a reset. A logic low on MR with pulse duration longer than tMR_RES will cause reset output to assert. After MR returns to a logic high (VMR_H) and VDD is above VIT+, reset is deasserted after the user programmed reset time delay (tD) expires. If MR is not controlled externally, then MR can be left disconnected. MR is internally connected to VDD through a pull-up resistor RMR shown in Section 8.2. If the logic signal controlling MR is less than VDD, then additional current flows from VDD into MR internally. For minimum current consumption, drive MR to either VDD or GND. VMR should not be higher than VDD voltage. VDD VIT+ VIT+ VHYS VIT- VHYS VIT- tP_HL tD tMR_tD RESET tMR_RES MR (2) VMR_H VMR_L (1) tMR_PW Time (1) MR pulse width too small to assert RESET (2) MR voltage not low enough to assert RESET Figure 8-3. Timing Diagram MR and RESET for X2SON (DPW) Package 8.3.5 Output Logic 8.3.5.1 RESET Output, Active-Low RESET remains high (deasserted) as long as VDD is above the negative threshold (VIT–). If VDD falls below the negative threshold (VIT–), then reset is asserted and RESET transistions to logic low (VOL). When VDD rises above VIT+, the delay circuit holds RESET active and logic low for the specified reset delay period (tD). When the reset delay has elapsed, the RESET pin transistions to high voltage (VOH). The open-drain version requires an external pull-up resistor to hold the RESET pin high because the internal MOSFET turns off causing RESET output to pull-up to the pull-up voltage. Connect the pull-up resistor to the desired interface voltage logic. RESET can be pulled up to any voltage up to maximum voltage independent of the VDD voltage. To ensure proper voltage levels, take care when choosing the pull-up resistor values. The pull-up resistor value is determined by VOL, the output capacitive loading, and the output leakage current (Ilkg(OD)). The push-pull variant does not require an external pull-up resistor. 18 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 8.3.5.2 RESET Output, Active-High RESET remains logic low (deasserted) as long as VDD is above the positive threshold (VIT+). If VDD falls below the negative threshold (VIT–), then reset is asserted and RESET transistions to logic high (VOH). When VDD rises above VIT+, the delay circuit holds RESET active and logic high for the specified reset delay period (tD). When the reset delay has elapsed the RESET pin transistions to low voltage (VOL). 8.4 Device Functional Modes Table 8-1 summarizes the various functional modes of the device. Table 8-1. Truth Table VDD (1) MR (X2SON package only) RESET (Active-High) RESET(Active-Low) VDD < VPOR N/A Undefined Undefined VPOR < VDD < VIT– (1) N/A H L VDD ≥ VIT– L H L VDD ≥ VIT– H L H When VDD falls below VDD(MIN), output reset is held asserted until VDD falls below VPOR. 8.4.1 Normal Operation (VDD > VDD(min)) When VDD voltage is greater than VDD(min), the reset signal is determined by the voltage on the VDD pin with respect to the trip point (VIT–) and the MR pin voltage (X2SON package only). 8.4.2 VDD Between VPOR and VDD(min) When the voltage on VDD is less than the VDD(min) voltage and greater than the power-on-reset voltage (VPOR), the reset signal is asserted. 8.4.3 Below Power-On-Reset (VDD < VPOR) When the voltage on VDD is lower than VPOR, the device does not have enough bias voltage to internally pull the asserted output low or high and reset voltage level is undefined. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 19 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 9 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 Application Information The TLV803E, TLV809E, and TLV810E devices are used for voltage monitoring. These devices have only three pins: VDD, GND, and RESET (or RESET for TLV810E). There are at the most two external components: a capacitor on the VDD pin and a pull-up resistor on the RESET/RESET to VDD or another pull-up voltage for the open-drain variants. The design involves choosing the device with the desired voltage threshold and output topology and adding these components, if needed, as explained in the following sections. 9.2 Typical Application - Voltage Rail Monitoring A typical application for TLV803E, TLV809E, and TLV810E devices is voltage rail monitoring. This rail can be the input power supply or the output of an LDO or DC/DC converter. Figure 9-1 shows the TLV803EA29 monitoring the supply rail for a DSP, FPGA, or ASIC. This rail is at 3.3 V and generated by an LDO with an input power supply of 5 V. The supervisor is needed to make sure that the supply to the MCU/ASIC/FPGA/DSP is above a certain voltage threshold. If the supply voltage drops below a certain threshold, supervisor generates a reset output to indicate to the MCU that the supply is going down so that the MCU can take actions to save register data before supply enters brown-out conditions. LDO 5V IN 3.3 V OUT 10 kŸ VDD RESET TLV803E GND VDD FPGA, ASIC, DSP RESET GND Figure 9-1. The Output of LDO Powering the MCU is Monitored by the TLV803EA29 9.2.1 Design Requirements This design monitors a 3.3-V rail and flags an undervoltage fault at the RESET output when supply rail falls approximately 12% below the nominal rail voltage. The TLV803E device has an open-drain output topology so an external pull-up resistor is required and is calculated to ensure that VOL does not exceed max limit given the IRESET/RESET spec of ±5 mA is not violated at the expected supply voltage. Section 7.5 table provides 500 µA Isink for 1.7 V VDD, which is the closest voltage to this design example. Using 500 µA of Isink and 300 mV max VOL, gives us 5.36kΩ for the external pull-up resistor. Any value greater than 5.36kΩ would ensure that VOL will not exceed 300 mV max specification. If you are using the TLV809E device variant, no pull-up resistor is required because TLV809E has push-pull output topology. 20 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 9.2.2 Detailed Design Procedure Select the TLV803EA29DBZR to satisfy the voltage threshold requirement for 3.3-V rail monitoring. As mentioned in Table 12-1, the TLV803EA29DBZR triggers an undervoltage fault at the RESET output when VDD falls below VIT- which is 2.93 V for this device variant. Place a pull-up resistor on RESET to VDD to satisfy the output logic requirement while not violating the IRESET recommended limit. 9.2.3 Application Curves Figure 9-2 and Figure 9-3 show the TLV803EA29 functionality. In Figure 9-2, the VDD supply voltage drops from 30% above VIT- = 3.8 V to 10% below VIT- = 2.6 V with a 0.1-µF capacitor on VDD. The RESET output is connected to VDD through the pull-up resistor so when the VDD supply voltage drops. The RESET output discharges down to the VDD supply voltage through the pull-up resistor and RESET pin capacitance. Once the high-to-low propagation delay tPD_HL expires, the internal MOSFET turns on and asserts RESET to logic low. Note that tPD_HL varies with VDD specifically on how much VDD drops and how quickly in addition to the VDD and RESET pin capacitances. In Figure 9-3, VDD rises from 2 V to 4 V and the RESET output deasserts to logic high after the reset delay time (tD) expires. VDD VDD Propagation Delay from VDD falling below VIT- to Reset (tPD_HL) = 25 µs Reset Delay (tD) = 200 ms RESET RESET Figure 9-2. Propagation Delay when Fault Occurs after VDD Falls Below VIT- (TLV803EA29 No Load) (1) (2) Figure 9-3. RESET Delay when Returning from Fault after VDD Rises Above VIT+ (TLV803EA29) 1. Typical tPD_HL= 30 µs for VDD falling from (VIT+ + 30%) to (VIT- - 10%). 2. VDD does not fall all the way to 0 V so RESET momentarily discharges to VDD until tPD_HL expires. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 21 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 9.3 Typical Application - Overvoltage Monitoring A typical use case for the push-pull active-high device variant TLV810E is overvoltage monitoring. The TLV810E can monitor a power supply, a MCU power rail, or a battery during charging for example. The VDD pin monitors the voltage rail and once VDD rises above VIT+, the RESET output deactivates to logic low after the reset delay time tD. If VDD falls below VIT-, the RESET output activates to logic high after the propagation delay (tPD_HL). The voiltage thresholds and the reset delay time depends on the device variant. See Section 5 for device variant naming nomenclature. VDD 3V Battery Charger VDD RESET TLV810EA29 ENABLE GND GND Figure 9-4. TLV810E Overvoltage Monitor Circuit for Battery Charger 9.3.1 Design Requirements In this application design, the TLV810E device is monitoring a 3 V battery connected to a battery charger. The battery charger turns on when the battery voltage is below 2.93 V and turns off once the battery charges to 2.96 V and remains above 2.96 V for at least 200 ms. The design must be low power and not consume more than 500 nA typical. 9.3.2 Detailed Design Procedure Select the TLV810EA29 to accomplish this design. The TLV810EA29 is a push-pull active-high device with a VIT- = 2.9 V and VIT+ = 2.9 + 1.2% = 2.93 V. Because the device is a push-pull output and the device threshold meets the design requirements, no external resistors are needed. The TLV810EA29 device variant comes with 200 ms reset delay time meaning VDD must be above VIT+ for at least 200 ms for the RESET output to transistion to logic low to turn off the battery charger. This device meets the low power requirement because the TLV810E only consumes 250 nA typical. 22 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 10 Power Supply Recommendations These devices are designed to operate from an input supply range of 1.7 V to 6 V. An input supply capacitor is recommended between the VDD pin and GND pin. If the voltage supply that provides power to VDD is susceptible to any large voltage transient that can exceed VDD maximum, the user must take additional precautions. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 23 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 11 Layout 11.1 Layout Guidelines Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends placing a minimum 0.1-µF ceramic capacitor as close to the VDD pin as possible. A pull-up resistor is required for the open-drain output. Place the pull-up resistor on the RESET pin as close to the pin as possible. 11.2 Layout Example GND 1 GND CIN VDD RESET RESET 2 RESET RESET 3 VDD (TLV803E, TLV809E) (TLV810E) R pull-up Figure 11-1. TLV803E, TLV809E, and TLV810E SOT23 (DBZ) Layout Example Pull-up resistor required for Open-Drain output Pinout Option V RESET RESET 1 RESET (TLV803E, TLV809E) RESET (TLV810E) GND Rpull-up 2 3 VDD CIN Pull-up resistor required for Open-Drain output Figure 11-2. TLV803E, TLV809E, and TLV810E SOT23 (DBZ) V pinout Layout Example 24 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 Rpull-up RESET 1 5 VDD CIN TIPAD Gray 3 GND MR 2 4 Top View Pull-up resistor required for Open-Drain output Connection between PAD and GND is optional Figure 11-3. TLV803E, TLV809E, and TLV810E X2SON (DPW) Layout Example Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 25 TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 12 Device and Documentation Support 12.1 Device Support 12.1.1 Device Nomenclature Table 12-1 shows how to decode the function of the device based on its part number. For example: TLV803EA29DBZR is open-drain, active-low, 200 ms reset delay, 2.93 V threshold voltage, Pin 1 = GND, SOT23-3 pin package, and large reel option. Table 12-1 shows all the possible variants of the TLV80xE and TLV81xE. Refer to the orderable device information table for the options available to order. Contact Texas Instruments for the details and availability of devices not in the orderable device information table. Table 12-1. Device Naming Convention DESCRIPTION Part Number Reset Time Delay Option Threshold Voltage Option Pinout Indicator (DBZ Package Only) Package Option Reel 26 NOMENCLATURE VALUE TLV803E Open-Drain, Active-Low TLV809E Push-Pull, Active-Low TLV810E Push-Pull, Active-High A 200 ms B 40 µs C 10 ms D 50 ms F 400 ms 17 1.7 V 18 1.8 V 19 1.9 V 22 2.25 V 24 2.4 V 26 2.64 V 29 2.93 V 30 3.08 V 33 3.3 V 42 4.2 V 43 4.38 V 45 4.55 V 46 4.63 V R Pin 1 = RESET, Pin 2 = GND, Pin 3 = VDD V Pin 1 = RESET, Pin 2 = VDD, Pin 3 = GND DBZ SOT23-3 pin DCK SC70-3 pin DPW X2SON-5 pin R Large reel Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E TLV803E, TLV809E, TLV810E www.ti.com SLVSES2J – AUGUST 2018 – REVISED MAY 2021 12.2 Documentation Support 12.2.1 Related Documentation For related documentation see the following: • Texas Instruments, TLV803EA29EVM User Guide • Texas Instruments, Voltage Supervisors (Reset ICs): Frequenctly Asked Questions (FAQs) 12.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 12.4 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 12.5 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TLV803E TLV809E TLV810E 27 PACKAGE OPTION ADDENDUM www.ti.com 5-Nov-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV803EA17DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 IT TLV803EA18DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 IV TLV803EA22DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 322A TLV803EA24DCKR ACTIVE SC70 DCK 3 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 34A TLV803EA26DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 326A TLV803EA26DCKR ACTIVE SC70 DCK 3 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 32A TLV803EA26DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 IW TLV803EA26RDBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 36AR TLV803EA29DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 329A TLV803EA29DCKR ACTIVE SC70 DCK 3 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 39A TLV803EA29DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 IX TLV803EA29RDBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 39AR TLV803EA30DCKR ACTIVE SC70 DCK 3 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 30A TLV803EA42RDBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 3DAR TLV803EA43DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 343A TLV803EA43RDBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 34AR TLV803EA43VDBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 34AV TLV803EB26RDBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 36BR TLV803EB29DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 329B TLV803EB33VDBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 3CBV Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 5-Nov-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV803EB42VDBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 3DBV TLV803EB46DCKR ACTIVE SC70 DCK 3 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 36B TLV803EC29DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 329C TLV803EC30DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 330C TLV803EC43DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 343C TLV803ED17DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 IS TLV803ED18DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 IU TLV803ED29DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 329D TLV803EF26DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 326F TLV803EF29DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 329F TLV809EA22DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 922A TLV809EA26DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 926A TLV809EA26DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 IZ TLV809EA29DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 929A TLV809EA29DCKR ACTIVE SC70 DCK 3 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 99A TLV809EA29DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 J1 TLV809EA30DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 930A TLV809EA43DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 943A TLV809EA45DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 945A TLV809EA46DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 946A TLV809EA46DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 J2 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 5-Nov-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TLV809EC26DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 926C TLV809EC46DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 946C TLV809ED29DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 929D TLV809EF30DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 930F TLV810EA29DBZR ACTIVE SOT-23 DBZ 3 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 029A TLV810EA29DPWR ACTIVE X2SON DPW 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 J3 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TLV803EA29RDBZR 价格&库存

很抱歉,暂时无法提供与“TLV803EA29RDBZR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLV803EA29RDBZR
  •  国内价格 香港价格
  • 1+4.034901+0.48660
  • 10+3.2303010+0.38950
  • 100+2.40230100+0.28970
  • 500+2.02910500+0.24470
  • 1000+1.574301000+0.18990
  • 3000+1.224503000+0.14770
  • 9000+1.212809000+0.14630
  • 24000+1.1778024000+0.14210
  • 45000+1.1498045000+0.13870

库存:5396

TLV803EA29RDBZR
    •  国内价格
    • 1000+1.21000

    库存:1334974