0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPA2015D1YZHR

TPA2015D1YZHR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    DSBGA16

  • 描述:

    Amplifier IC 1-Channel (Mono) Class D 16-DSBGA (2x2)

  • 数据手册
  • 价格&库存
TPA2015D1YZHR 数据手册
TPA2015D1 SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 TPA2015D1 2-W Constant Output Power Class-D Audio Amplifier With Adaptive Boost Converter and Battery Tracking Speakerguard™ AGC 1 Features • • • • • • • • • • SpeakerGuardTM Built-In Automatic Gain Control (AGC) with Enhanced Battery Tracking – Limits Battery Current Consumption – Prevents Audio Clipping 2 W into 8 Ω Load From 3.6 V Supply (6% THD) Integrated Adaptive Boost Converter – Increases Efficiency at Low Output Power Low Quiescent Current of 1.7 mA from 3.6 V Operates From 2.5 V to 5.2 V Thermal and Short-Circuit Protection with Auto Recovery Three Gain Settings: 6 dB, 15.5 dB, and 20 dB Independent Control for Boost and Class-D Pin-to-Pin Compatible with TPA2013D1 Available in 1.954 mm × 1.954 mm 16-ball DSBGA Package 2 Applications • • Cell Phones, PDA, GPS Portable Electronics and Speakers 3 Description The TPA2015D1 is a high efficiency Class-D audio power amplifier with battery-tracking SpeakerGuard™ AGC technology and an integrated adaptive boost converter that enhances efficiency at low output power. It drives up to 2 W into an 8 Ω speaker (6% THD). With 85% typical efficiency, the TPA2015D1 helps extend battery life when playing audio. The built-in boost converter generates a 5.5 V supply voltage for the Class-D amplifier. This provides a louder audio output than a stand-alone amplifier directly connected to the battery. The SpeakerGuardTM AGC adjusts the Class-D gain to limit battery current and prevent heavy clipping. The TPA2015D1 has an integrated low-pass filter to improve the RF rejection and reduce DAC out-of-band noise, increasing the signal to noise ratio (SNR). The TPA2015D1 is available in a space saving 1.954 mm × 1.954 mm, 0.5 mm pitch DSBGA package (YZH). Device Information(1) PART NUMBER PACKAGE BODY SIZE (NOM) TPA2015D1 DSBGA (16) 2.0 mm × 2.0 mm SN012020 DSBGA (16) 2.0 mm x 2.0 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. 2.2 mH Connected to Supply 6.8 mF - 22 mF VBAT 2.2 mF - 10 mF Differential Audio Inputs SW PVOUT PVDD ININ+ OUT+ Gain Control GAIN AGC Control AGC Boost Enable ENB Class-D Enable END TPA2015D1 OUT- GND Simplified Application Schematic An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Device Comparison Table...............................................3 6 Pin Configuration and Functions...................................3 7 Specifications.................................................................. 4 7.1 Absolute Maximum Ratings........................................ 4 7.2 ESD Ratings............................................................... 4 7.3 Recommended Operating Conditions.........................4 7.4 Thermal Information....................................................4 7.5 Electrical Characteristics.............................................5 7.6 Operating Characteristics........................................... 5 7.7 Typical Characteristics................................................ 7 8 Parameter Measurement Information.......................... 10 9 Detailed Description...................................................... 11 9.1 Overview................................................................... 11 9.2 Functional Block Diagram......................................... 11 9.3 Feature Description...................................................11 9.4 Device Functional Modes..........................................17 10 Application and Implementation................................ 19 10.1 Application Information........................................... 19 10.2 Typical Applications................................................ 19 11 Power Supply Recommendations..............................23 11.1 Power Supply Decoupling Capacitors.....................23 12 Layout...........................................................................24 12.1 Layout Guidelines................................................... 24 12.2 Layout Example...................................................... 25 13 Device and Documentation Support..........................26 13.1 Device Support....................................................... 26 13.2 Community Resources............................................27 13.3 Trademarks............................................................. 27 14 Mechanical, Packaging, and Orderable Information.................................................................... 28 14.1 Package Option Addendum.................................... 29 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision B (October 2015) to Revision C (June 2022) Page • Added SN012020 device to data sheet.............................................................................................................. 1 Changes from Revision A (November 2011) to Revision B (October 2015) Page • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section................................................................................................................................................................ 1 Changes from Revision * (May 2010) to Revision A (November 2011) Page • Changed the Boost Converter, PVOUT entry in the Operating Conditions Table...............................................5 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 5 Device Comparison Table DEVICE NUMBER SPEAKER CHANNELS SPEAKER AMP TYPE OUTPUT POWER (W) PSRR (dB) TPA2012D2 Stereo Class D 2.1 71 TPA2015D1 Mono Class D 2 85 TPA2026D2 Stereo Class D 3.2 80 TPA2028D1 Mono Class D 3 80 6 Pin Configuration and Functions PVDD PVOUT SW GND A1 A2 A3 A4 OUT+ GAIN AGC VBAT B1 B2 B3 B4 OUT- GND END GND C1 C2 C3 C4 GND IN+ IN- ENB D1 D2 D3 D4 Figure 6-1. YZH Package 16-Pin DSBGA Top View Table 6-1. Pin Functions PIN NAME NO. TYPE(1) DESCRIPTION AGC B3 I Enable and select AGC. ENB D4 I Enable for the boost converter; set to logic high to enable. END C3 I Enable for the Class-D amplifier; set to logic high to enable. GAIN B2 I Gain selection pin. GND A4, C2, C4, D1 P Ground; all ground balls must be connected for proper functionality. IN– D3 I Negative audio input. IN+ D2 I Positive audio input. OUT– C1 O Negative audio output. OUT+ B1 O Positive audio output. PVDD A1 I Class-D power stage supply voltage. PVOUT A2 O Boost converter output. SW A3 I Boost and rectifying switch input. VBAT B4 P Supply voltage. (1) I = Input, O = Output, P = Power Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 3 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN MAX UNIT Supply voltage VBAT –0.3 6 V Input Voltage, VI IN+, IN– –0.3 VBAT + 0.3 V Output continuous total power dissipation See the Section 7.4 Minimum load impedance 6 Ω Operating free-air temperature, TA –40 85 °C Operating junction temperature, TJ –40 150 °C Storage temperature, Tstg –65 150 °C (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22C101(2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions MIN Supply voltage, VBAT 2.5 VIH High–level input voltage, END, ENB 1.3 VIL Low–level input voltage, END, ENB TA Operating free-air temperature TJ Operating junction temperature NOM MAX UNIT 5.2 V V 0.6 V –40 85 °C –40 150 °C 7.4 Thermal Information TPA2015D1 THERMAL METRIC(1) YZH (DSBGA) UNIT 16 PINS RθJA Junction-to-ambient thermal resistance 75 °C/W RθJC(top) Junction-to-case (top) thermal resistance 22 °C/W RθJB Junction-to-board thermal resistance 26 °C/W ψJT Junction-to-top characterization parameter 0.5 °C/W ψJB Junction-to-board characterization parameter 25 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 7.5 Electrical Characteristics VBAT= 3.6 V, Gain = 6 dB, RAGC = Float, TA = 25°C, RL = 8 Ω + 33 μH (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT END = 0 V, ENB = VBAT 2.5 5.2 VBAT supply voltage range END = VBAT, ENB = VBAT, AGC options 1, 2, and 3 2.5 5.2 END = VBAT, ENB = VBAT, AGC option 0 2.8 5.2 END = ENB = VBAT, boost converter active 5.2 5.8 V END = VBAT, ENB = 0 V 3.1 5.25 V Class-D supply voltage range V VBAT = 2.5 V to 5.2 V, END = ENB = VBAT 85 VBAT = 2.5 V to 5.2 V, END = VBAT, ENB = 0 V (pass through mode) 75 Operating quiescent current END = 0 V, ENB = VBAT 0.5 END = ENB = VBAT 1.7 2.2 mA Shutdown quiescent current VBAT = 2.5 V to 5.2 V, END = ENB = GND 0.2 3 μA Power supply ripple rejection Gain = 6 dB (connect to GND) Gain control pin voltage Gain = 15.5 dB (float) Gain = 20 dB (connect to VBAT) 0.25 × VBAT 0.4 × VBAT 0.6 × VBAT 2 AGC option 1 (inflection = 3.55 V), R(AGC) = 39 kΩ (±5%) 1.36 1.75 AGC option 2 (inflection = 3.78 V) , R(AGC) = 27 kΩ (±5%) 0.94 1.2 AGC option 3 (inflection = 3.96 V) , R(AGC) = 18 kΩ (±5%) 0 0.825 37.6 IN+, IN– Start-up time V 0.75 × VBAT AGC control pin output current Input common-mode voltage range mA 0 AGC with no inflection point, R(AGC) = Open AGC control pin voltage dB 40 0.6 V 42.4 μA 1.3 V Boost converter followed by Class-D amplifier 6 10 Boost converter only 1 4 Class-D amplifier only 5 6 ms 7.6 Operating Characteristics VBAT = 3.6 V, TA = 25°C, RL = 8 Ω + 33 μH (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BOOST CONVERTER V(PVOUT) IL Boost converter output voltage range Boost converter input current limit I(BOOST) = 0 mA I(BOOST) = 700 mA Boost converter efficiency fBOOST Boost converter frequency 6 5.4 V Power supply current 1500 mA 450 mA END = 0 V, I(PVOUT) = 100 mA constant 88% Boost converter start-up current limit η 5.4 1.2 MHz CLASS-D AMPLIFIER PO VO Output power Output peak voltage THD = 1%, VBAT = 2.5 V, f = 1 kHz 1200 THD = 1%, VBAT = 3 V, f = 1 kHz 1500 THD = 1%, VBAT = 3.6 V, f = 1 kHz 1700 THD = 1%, VBAT = 3 V, f = 1 kHz, 6 dB crest factor sine burst, no clipping 5.2 mW V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 5 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 VBAT = 3.6 V, TA = 25°C, RL = 8 Ω + 33 μH (unless otherwise noted) PARAMETER TEST CONDITIONS MIN GAIN < 0.25 × VBAT AV Closed-loop voltage gain Gain accuracy VOOS Output offset voltage 0.4 × VBAT < GAIN < 0.6 × VBAT (or float) 15.5 AV = 6 dB 27.8 AV = 15.5 dB 14.9 AV = 20 dB 10.1 Input impedance in shutdown (per input pin) END = 0 V 88.4 ZO Output impedance in shutdown END = 0 V fCLASS-D Switching frequency EN Noise output voltage Input impedance (per input pin) AC PSRR Total harmonic distortion plus noise(1) AC-Power supply ripple rejection (output referred) Audio frequency passband ripple dB 0.5 dB 10 mV kΩ kΩ 2 560 600 A-weighted, GAIN = 6 dB 24.8 A-weighted, GAIN = 15.5 dB 33.4 A-weighted, GAIN = 20 dB THD+N UNIT 20 –0.5 RIN MAX 6 GAIN > 0.75 × VBAT ΔAV TYP kΩ 640 kHz μVRMS 42.4 PO = 100 mW, f = 1 kHz 0.06% PO = 500 mW, f = 1 kHz 0.07% 200 mVPP ripple, f = 217 Hz 75 200 mVPP ripple, f = 4 kHz 70 dB fAUDIO = 20 Hz, CIN = 1 μF –0.2 –0.1 0 fAUDIO = 16 kHz, CIN = 1 μF –0.2 –0.1 0 dB AUTOMATIC GAIN CONTROL AGC gain range 0 AGC gain step size 6 dB dB AGC attack time (gain decrease) 0.026 ms/dB AGC release time (gain increase) 1600 ms/dB Limiter threshold voltage VBAT > inflection point 6.15 VBAT vs. Limiter slope VBAT < inflection point 3 AGC inflection point (1) 20 0.5 AGC option 1, R(AGC) = 39 kΩ (±5%) 3.55 AGC option 2, R(AGC) = 27 kΩ (±5%) 3.78 AGC option 3, R(AGC) = 18 kΩ (±5%) 3.96 V V/V V A-weighted Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 7.7 Typical Characteristics VBAT = 3.6 V, Gain = 6 dB, CI = 1 µF, CBOOST = 22 µF, LBOOST = 2.2 µH, AGC = Float, ENB = END = VBAT, and Load = 8 Ω + 33 µH unless otherwise specified. SPACER −80 10m Gain = 20 dB AGC = Float RL = 8 Ω + 33 µH No Input Signal −90 −100 Amplitude − dBV Supply Current − A 8m Gain = 20 dB AGC = Float RL = 8 Ω + 33 µH 6m 4m −110 −120 −130 2m −140 0 2.3 −150 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5.0 0 2k 4k 6k 8k VBAT − V Figure 7-1. Quiescent Supply Current vs Supply Voltage Figure 7-2. A-Weighted Output Noise vs Frequency 6 1.0 Gain = 20 dB RL = 8 Ω + 33 µH f = 1 kHz RAGC = Float 0.6 0.4 0.2 VBAT = 3.0 V VBAT = 3.6 V VBAT = 4.2 V 0.0 0.0 0.5 Gain = 20 dB RL = 8 Ω + 33 µH RAGC = 27 kΩ 5 VOUT − Output Voltage − Vp IVBAT − Supply Current − A 0.8 1.0 1.5 2.0 4 3 VBAT = 2.5 V VBAT = 2.7 V VBAT = 3.0 V VBAT = 3.3 V VBAT = 3.6 V VBAT = 4.2 V VBAT = 5.0 V 2 1 0 0.0 2.5 0.5 1.0 1.5 100 Efficiency – % 80 60 Boosted 40 VBAT VBAT VBAT VBAT VBAT Gain = 20 dB RL = 8 W + 33 mH f = 1 kHz 0 0.01 0.1 2.5 3.0 3.5 4.0 4.5 1 = 2.7 V = 3.0 V = 3.6 V = 4.2 V = 5.0 V 2 Figure 7-4. Peak Output Voltage vs Peak Input Voltage THD+N − Total Harmonic Distortion + Noise − % Figure 7-3. Supply Current vs Output Power Auto Pass Through 2.0 VIN − Input Voltage − Vp PO − Output Power − W 20 10k 12k 14k 16k 18k 20k 22k 24k Frequency − Hz 100 10 VBAT = 2.8 V VBAT = 3.0 V VBAT = 3.6 V VBAT = 4.2 V VBAT = 5.0 V RL = 8 Ω + 33 µH RAGC = Float, Boost Enabled Gain = 6 dB, f = 1 kHz 1 0.1 0.01 1m PO – Output Power – W 10m 100m 1 4 PO − Output Power − W Figure 7-5. Total Efficiency vs Output Power Figure 7-6. Total Harmonic Distortion + Noise vs Output Power Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 7 TPA2015D1 www.ti.com VOUT − Maximum Output Voltage − Vp 6.0 5.0 4.0 RL = 8 Ω + 33 µH VIN = 0.45 VRMS f = 1 kHz Gain = 20 dB 3.0 RAGC = Float RAGC = 39 kΩ RAGC = 27 kΩ RAGC = 18 kΩ 2.0 1.0 2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 THD+N − Total Harmonic Distortion + Noise − % SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 10 VBAT = 2.5 V RL = 8 Ω + 33 µH RAGC = Float Gain = 6 dB 1 0.1 0.01 0.001 5.0 20 100 VBAT − Supply Voltage − V 2.5 PO − Output Power − W 2.0 1.5 RL = 8 Ω + 33 µH VIN = 0.45 VRMS f = 1 kHz Gain = 20 dB 1.0 RAGC = Float RAGC = 39 kΩ RAGC = 27 kΩ RAGC = 18 kΩ 0.5 0.0 2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 VBAT = 3.6 V RL = 8 Ω + 33 µH RAGC = Float Gain = 6 dB 1 IVBAT − Supply Current − A 0.8 0.6 0.4 RAGC = Float RAGC = 39 kΩ RAGC = 27 kΩ RAGC = 18 kΩ 0.2 0.0 2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5.0 0.001 100 8 1k f − Frequency − Hz 10k 20k Figure 7-10. Total Harmonic Distortion + Noise vs Frequency 10 VBAT = 4.2 V RL = 8 Ω + 33 µH RAGC = Float Gain = 6 dB 1 Po = 100 mW Po = 500 mW Po = 1W 0.1 0.01 0.001 20 VBAT − Supply Voltage − V Figure 7-11. Supply Current vs Supply Voltage Po = 50 mW Po = 250 mW Po = 500 mW 0.01 20 THD+N − Total Harmonic Distortion + Noise − % RL = 8 Ω + 33 µH VIN = 0.45 VRMS f = 1 kHz Gain = 20 dB 20k 0.1 VBAT − Supply Voltage − V 1.0 10k 10 5.0 Figure 7-9. Output Power vs Supply Voltage 1k f − Frequency − Hz Figure 7-8. Total Harmonic Distortion + Noise vs Frequency THD+N − Total Harmonic Distortion + Noise − % Figure 7-7. Maximum Output Voltage vs Supply Voltage Po = 25 mW Po = 125 mW Po = 200 mW 100 1k f − Frequency − Hz 10k 20k Figure 7-12. Total Harmonic Distortion + Noise vs Frequency Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 40k RL = 8 Ω + 33 µH Input Level = 0.2 VPP Gain = 6 dB Output Referred −20 VBAT = 2.5 V VBAT = 3.6 V VBAT = 4.2 V VBAT = 5.0 V −40 −60 −80 RL = 8 Ω + 33 µH RIN − Input Impedance Per Leg − Ω Supply Ripple Rejection − dB 0 −100 30k 25k 20k 15k 10k 5k 20 100 1k f − Frequency − Hz 10k 20k Figure 7-13. Supply Ripple Rejection vs Frequency 0 2 4 6 8 10 12 Gain − dB 14 16 18 20 Figure 7-14. Input Impedance (Per Input) vs Gain 6 6 VBAT = 3.6 V Gain = 6 dB POUT = 100mW @ 1kHz RL = 8 Ω + 33 µH VBAT = 3.6 V Gain = 6 dB POUT = 100 mW @ 1kHz RL = 8 Ω + 33 µH ENB and END VOUT+ − VOUT− 4 V − Voltage − V 4 V − Voltage − V 35k 2 0 ENB and END VOUT+ − VOUT− 2 0 −2 −2 0 5m 10m t − Time − s 15m 20m 0 2m 4m 6m t − Time − s 8m 10m Figure 7-15. Startup Timing Figure 7-16. Shutdown Timing Figure 7-17. Emc Performance PO = 50 mW With 2 Inch Speaker Cable Figure 7-18. Emc Performance PO = 750 mW With 2 Inch Speaker Cable Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 9 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 8 Parameter Measurement Information All parameters are measured according to the conditions described in the Section 7 section. Figure 8-1 shows the setup used to test the device's typical characteristics. 1 mF + TPA2015D1 IN+ OUT+ Measurement Output Load – IN– OUT– 30 kHz Low-Pass Filter + Measurement Input – 1 mF SW PVDD PVOUT GND VBAT 22 mF 2.2 mH 10 mF + Supply – A. B. C. The 1 µF input capacitors (CI) were shorted for input common-mode voltage measurements. A 33 μH inductor was placed in series with the load resistor to emulate a small speaker for efficiency measurements. The 30 kHz low-pass filter is required even if the analyzer has an internal low-pass filter. An R-C low pass filter (100 Ω, 47 nF) is used on each output for the data sheet graphs. Figure 8-1. Test Setup for Typical Characteristics Graphs 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 9 Detailed Description 9.1 Overview The TPA2015D1 is a high efficiency Class-D audio power amplifier with battery-tracking SpeakerGuard™ AGC technology. It drives up to 2 W into an 8 Ω speaker. The built-in boost converter generates a 5.5 V supply voltage for the Class-D amplifier. The SpeakerGuard™ AGC adjusts the Class-D gain to limit battery current and prevent heavy clipping. The TPA2015D1 has an integrated low-pass filter to improve the RF rejection and reduce DAC out-of-band noise, increasing the signal to noise ratio (SNR). See Section 13.1.1.1 for a list of terms and definitions used throughout the following sections. 9.2 Functional Block Diagram VBAT ENB END Bias & Control Battery Monitor IN- Boost Converter PVOUT Oscillator AGC IN+ SW +20 dB +15.5 dB +6 dB PVDD PVDD Gain Select: + AGC PWM – AGND HBridge OUT+ OUTGND GAIN GND 9.3 Feature Description 9.3.1 SpeakerGuard™ Theory of Operation SpeakerGuard™ protects speakers, improves loudness, and limits peak supply current. If the output audio signal exceeds the limiter level, then SpeakerGuard™ decreases amplifier gain. The rate of gain decrease, the attack time, is fixed at 0.026 ms/dB. SpeakerGuard™ increases the gain once the output audio signal is below the limiter level. The rate of gain increase, the release time, is fixed at 1600 ms/dB. Figure 9-1 shows this relationship. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 11 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 INPUT SIGNAL Release Time Attack Time GAIN Gain Step LIMITER LEVEL OUTPUT SIGNAL Figure 9-1. SpeakerGuard™ Attack and Release Times 9.3.1.1 SpeakerGuard™ With Varying Input Levels SpeakerGuard™ protects speakers by decreasing gain during large output transients. Figure 9-2 shows the maximum output voltage at different input voltage levels. The load is 8 Ω and the gain is 15.5 dB (6 V/V). SPACE VOUT − Maximum Output Voltage − Vp 6.0 5.0 RL = 8 Ω + 33 µH RAGC = 27 kΩ f = 1 kHz Gain = 15.5 dB 4.0 3.0 2.0 1.0 2.3 VIN = 0.707 VRMS VIN = 0.564 VRMS VIN = 0.475 VRMS 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5.0 VBAT − Supply Voltage − V Figure 9-2. Maximum Output Voltage vs Supply Voltage A 0.707 VRMS sine-wave input signal forces the output voltage to 4.242 VRMS, or 6.0 VPEAK. Above 3.9 V supply, the boost converter voltage sags due to high output current, resulting in a peak Class-D output voltage of about 5.4 V. As the supply voltage decreases below 3.9 V, the limiter level decreases. This causes the gain to decrease, and the peak Class-D output voltage lowers. 12 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 With a 0.564 VRMS input signal, the peak Class-D output voltage is 4.78 V. When the supply voltage is above 3.45 V, the output voltage remains below the limiter level, and the gain stays at 15.5 dB. Once the supply drops below 3.45 V, the limiter level decreases below 4.78 V, and SpeakerGuard™ decreases the gain. The same rationale applies to the 0.475 VRMS input signal. Although the supply voltage may be below the inflection point, audio gain does not decrease until the Class-D output voltage is above the limiter level. 9.3.1.2 Battery Tracking SpeakerGuard™ The TPA2015D1 monitors the battery voltage and the audio signal, automatically decreasing gain when battery voltage is low and audio output power is high. It finds the optimal gain to maximize loudness and minimize battery current, providing louder audio and preventing early shutdown at end-of-charge battery voltages. SpeakerGuard™ decreases amplifier gain when the audio signal exceeds the limiter level. The limiter level automatically decreases when the supply voltage (VBAT) is below the inflection point. Figure 9-3 shows a plot of the limiter level as a function of the supply voltage. Limiter Level Limiter Level (VBAT > inflection point) Inflection point Limiter Level (VBAT = inflection point) Supply Voltage Figure 9-3. Limiter Level vs Supply Voltage The limiter level decreases within 60 µs of the supply voltage dropping below the inflection point. Although this is slightly slower than the 26 µs/dB SpeakerGuard™ attack time, the difference is audibly imperceptible. Connect a resistor between the AGC pin and ground to set the inflection point, as shown in Table 9-1. Leave the AGC pin floating to disable the inflection point, keeping the limiter level constant over all supply voltages. The maximum limiter level is fixed, as is the slope of the limiter level versus supply voltage. If different values for maximum limiter level and slope are required, contact your local Texas Instruments representative. Table 9-1. AGC Function Table FUNCTION RESISTOR ON AGC PIN INFLECTION POINT Constant limiter level; battery track OFF Floating or connected to VBAT disabled AGC battery track option 1 39 kΩ 3.55 V AGC battery track option 2 27 kΩ 3.78 V AGC battery track option 3 18 kΩ 3.96 V The audio signal is not affected by the SpeakerGuard™ function unless the peak audio output voltage exceeds the limiter level. Figure 9-7 shows the relationship between the audio signal, the limiter level, the supply voltage, and the supply current. When VBAT is greater than the inflection point, the limiter level allows the output signal to slightly clip to roughly 6% THD at 2 W into 8 Ω. This is an acceptable peak distortion level for most small-sized portable speakers, while ensuring maximum loudness from the speaker. 9.3.2 Fully Differential Class-D Amplifier The TPA2015D1 uses a fully differential amplifier with differential inputs and outputs. The differential output voltage equals the differential input multiplied by the amplifier gain. The TPA2015D1 can also be used with a single-ended input. However, using differential input signals when in a noisy environment, like a wireless handset, ensures maximum system noise rejection. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 13 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 9.3.2.1 Advantages of Fully Differential Amplifiers • • • Mid-supply bypass capacitor, CBYPASS, not required: – The fully differential amplifier does not require a mid-supply bypass capacitor. Any shift in the mid-supply affects both positive and negative channels equally and cancels at the differential output. Improved RF-immunity: – GSM handsets save power by turning on and shutting off the RF transmitter at a rate of 217 Hz. This 217 Hz burst often couples to audio amplifier input and output traces causing frame-rate noise. Fully differential amplifiers cancel frame-rate noise better than non-differential amplifiers. Input-coupling capacitors not required, but recommended: – The fully differential amplifier allows the inputs to be biased at voltages other than mid-supply (PVDD/2). The TPA2015D1 inputs can be biased anywhere within the common mode input voltage range, as listed in the Section 7.6 table. If the inputs are biased outside of that range, then input-coupling capacitors are required. – Note that without input coupling capacitors, any dc offset from the audio source will be modulated by the AGC. This could cause artifacts in the audio output signal. Perform listening tests to determine if direct input coupling is acceptable. 9.3.2.2 Improved Class-D Efficiency The TPA2015D1 output stage uses a modulation technique that modulates the PWM output only on one side of the differential output, leaving the other side held at ground. Although the differential output voltage is undistorted, each output appears as a half-wave rectified signal. This technique reduces output switching losses and improves overall amplifier efficiency. Figure 9-4 shows how OUT+, OUT-, and the differential output voltages appear on an oscilloscope. C1(YELLOW) is OUT+ C2(PINK) is OUT– C3(CYAN) is OUT+ - OUT– Figure 9-4. Filtered Output Waveforms 9.3.3 Adaptive Boost Converter The TPA2015D1 consists of an adaptive boost converter and a Class-D amplifier. The boost converter takes the supply voltage, VBAT, and increases it to a higher output voltage, PVOUT. PVOUT drives the supply voltage of the Class-D amplifier, PVDD. This improves loudness over non-boosted solutions. The boost converter is adaptive and activates automatically depending on the output audio signal amplitude. When the peak output audio signal exceeds a preset voltage threshold, the boost converter is enabled, and the voltage at PVOUT is 5.5 V. When the audio output voltage is lower than the threshold voltage, the boost deactivates automatically. The boost activation threshold voltage is not user programmable. It is optimized to prevent clipping while maximizing system efficiency. The boost converter can be forcibly deactivated by setting the ENB pin to logic-low. When the boost is deactivated, PVOUT is equal to the supply voltage (VBAT) minus the I x R drop across the inductor and boost converter pass transistor. 14 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 A timer prevents the input signal from modulating the PVOUT voltage within the audio frequency range, eliminating the potential for audible artifacts on the Class-D output. Figure 9-5 shows how the adaptive boost modulates with a typical audio signal. By automatically deactivating the boost converter and passing VBAT to PVOUT, the TPA2015D1 efficiency is improved at low output power. 12 10 V − Voltage − V 8 VBAT = 3.6 V Gain = 20 dB AGC = Float RL = 8 Ω + 33 µH PVOUT VOUT+ − VOUT− 6 4 2 0 −2 −4 −6 0.0 0.5 1.0 t − Time − s 1.5 2.0 Figure 9-5. Adaptive Boost Converter With Typical Music Playback The primary external components for the boost converter are the inductor and the boost capacitor. The inductor stores current, and the boost capacitor stores charge. As the Class-D amplifier depletes the charge in the boost capacitor, the boost inductor replenishes charge with its stored current. The cycle of charge and discharge occurs frequently enough to keep PVOUT within its minimum and maximum voltage specification. The boost converter design is optimized for driving the integrated Class-D amplifier only. It lacks protection circuitry recommended for driving loads other than the integrated Class-D amplifier. 9.3.3.1 Boost Converter Overvoltage Protection The TPA2015D1 internal boost converter operates in a discontinuous mode to improve the efficiency at light loads. The boost converter has overvoltage protection that disables the boost converter if the output voltage exceeds 5.8 V. If current is forced into the PVOUT terminal, the voltage clamp will sink up to 10 mA. If more than 10 mA is forced into PVOUT, then the PVOUT voltage will increase. Refer to the Section 9.3.6 section for details. See Section 13.1.1.2 for a list of terms and definitions used in the boost equations. 9.3.4 Operation With DACs and CODECs Large ripple voltages can be present at the output of ΔΣ DACs and CODECs, just above the audio frequency (for example: 80 kHz with a 300 mVPP). This out-of-band noise is due to the noise shaping of the delta-sigma modulator in the DAC. Some Class-D amplifiers have higher output noise when used in combination with these DACs and CODECs. This is because out-of-band noise from the CODEC/DAC mixes with the Class-D switching frequencies in the audio amplifier input stage. The TPA2015D1 has a built-in low-pass filter that reduces the out-of-band noise and RF noise, filtering out-ofband frequencies that could degrade in-band noise performance. The TPA2015D1 AGC calculates gain based on input signal amplitude only. If driving the TPA2015D1 input with 4th-order or higher ΔΣ DACs or CODECs, add an R-C low pass filter at each of the audio inputs (IN+ and IN-) of the TPA2015D1 to ensure best performance. The recommended resistor value is 100 Ω and the capacitor value of 47 nF. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 15 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 Connected to Supply 2.2 mH 2.2 mF – 10 mF 6.8 mF – 22 mF VDD Differential Audio Inputs SW PVOUT PVDD IN100 W IN+ OUT+ 47 nF Gain Control GAIN AGC Control AGC Boost Enable ENB Class-D Enable END TPA2015D1 OUT- GND Figure 9-6. Reducing Out-of-Band DAC Noise With External Input Filter 9.3.5 Filter Free Operation and Ferrite Bead Filters The TPA2015D1 is designed to minimize RF emissions. For more information about RF emissions and filtering requirements, see SLOA145. 9.3.6 Speaker Load Limitation Speakers are non-linear loads with varying impedance (magnitude and phase) over the audio frequency. A portion of speaker load current can flow back into the boost converter output via the Class-D output H-bridge high-side device. This is dependent on the speaker's phase change over frequency, and the audio signal amplitude and frequency content. Most portable speakers have limited phase change at the resonant frequency, typically no more than 40 or 50 degrees. To avoid excess flow-back current, use speakers with limited phase change. Otherwise, flow-back current could exceed the 10 mA rating of the boost converter voltage clamp and drive the PVOUT voltage above the absolute maximum recommended operational voltage. Confirm proper operation by connecting the speaker to the TPA2015D1 and driving it at maximum output swing. Observe the PVOUT voltage with an oscilloscope. In the unlikely event the PVOUT voltage exceeds 6.5 V, add a 6.8 V Zener diode between PVOUT and ground to ensure the TPA2015D1 operates properly. The amplifier has thermal overload protection and decatives if the die temperature exceeds 150°C. It automatically reactivates once die temperature returns below 150°C. Built-in output over-current protection deactivates the amplifier if the speaker load becomes short-circuited. The amplifier automatically restarts within 200 ms after the over-current event. Although the TPA2015D1 Class-D output can withstand a short between OUT+ and OUT-, do not connect either output directly to GND, PVDD, or VBAT as this could damage the device. CAUTION Do not connect OUT+ or OUT- directly to GND, PVDD, or VBAT as this could damage the Class-D output stage. 9.3.7 Fixed Gain Setting The TPA2015D1 has 3 selectable fixed-gains: 6 dB, 15.5 dB, and 20 dB. Connect the GAIN pin as shown in Table 9-2. 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 Table 9-2. Amplifier Fixed-Gain CONNECT GAIN PIN TO AMPLIFIER GAIN GND 6 dB No Connection (Floating) 15.5 dB VBAT 20 dB 9.4 Device Functional Modes 9.4.1 Shutdown Mode The TPA2025D1 can be put in shutdown mode when asserting ENB and END pins to a logic LOW. While in shutdown mode, the device output stage is turned off and the current consumption is very low. The device exits shutdown mode when a HIGH logic level is applied to ENB and END pins. 9.4.2 Battery Tracking SpeakerGuard™ Operation Phase 1 Battery discharging normally; supply voltage is above inflection point; audio output remains below limiter level. The limiter level remains constant because the supply voltage is greater than the inflection point. Amplifier gain is constant at fixed-gain as set by the GAIN pin. The audio output remains at a constant loudness. The boost converter allows the audio output to swing above the battery supply voltage. Battery supply current increases as supply voltage decreases. Phase 2 Battery continues to discharge normally; supply voltage decreases below inflection point; limiter level decreases below audio output. The limiter level decreases as the battery supply voltage continues to decrease. SpeakerGuard™ lowers amplifier gain, reducing the audio output below the new limiter level. The supply current decreases due to reduced output power. Phase 3 Battery supply voltage is constant; audio output remains below limiter level. The audio output, limiter level, and supply current remain constant as well. Phase 4 Phone plugged in and battery re-charges; supply voltage increases. The limiter level increases as the supply voltage increases. SpeakerGuard™ increases amplifier gain slowly, increasing audio output. Because the TPA2015D1 supply current is proportional to the PVOUT-to-VBAT ratio, the supply current decreases as battery supply voltage increases. Phase 5 Battery supply voltage is constant; audio output is below limiter level. SpeakerGuard™ continues to increase amplifier gain to the fixed-gain as set by the GAIN pin. The audio output signal increases (slowly due to release time) to original value. Phase 6 Battery supply voltage is constant; audio output remains below limiter level. Amplifier gain equal to fixed-gain as set by the GAIN pin. Audio output signal does not change. Supply current remains constant. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 17 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 Supply Current Limiter Level Class-D Voltage Supply Voltage Audio Signal Phase 1 Phase 2 Phase 3 Phase 5 Phase 4 Phase 6 Inflection point Figure 9-7. Relationship Between Supply Voltage, Current, Limiter Level, and Output Audio Signal 18 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 10 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Application Information These typical connection diagrams highlight the required external components and system level connections for proper operation of the device. Each of these configurations can be realized using the Evaluation Modules (EVMs) for the device. These flexible modules allow full evaluation of the device in the most common modes of operation. Any design variation can be supported by TI through schematic and layout reviews. Visit e2e.ti.com for design assistance and join the audio amplifier discussion forum for additional information. 10.2 Typical Applications 10.2.1 TPA2015D1 With Differential Input Signals 2.2 mH Connected to Supply 6.8 mF - 22 mF VBAT 2.2 mF - 10 mF SW PVOUT PVDD IN- Differential Audio Inputs IN+ OUT+ Gain Control GAIN AGC Control AGC Boost Enable ENB Class-D Enable END TPA2015D1 OUT- GND Figure 10-1. Schematic with Differential Input Signals 10.2.1.1 Design Requirements For this design example, use the parameters listed in Table 10-1. Table 10-1. Design Parameters DESIGN PARAMETER EXAMPLE VALUE Power Supply 5V High > 1.3 V Enable Inputs Low < 0.6 V Speaker 8Ω 10.2.1.2 Detailed Design Procedure 10.2.1.2.1 Boost Converter Inductor Selection Working inductance decreases as inductor current and temperature increases. If the drop in working inductance is severe enough, it may cause the boost converter to become unstable, or cause the TPA2015D1 to reach its current limit at a lower output voltage than expected. Inductor vendors specify currents at which inductor values Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 19 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 decrease by a specific percentage. This can vary by 10% to 35%. Inductance is also affected by dc current and temperature. 10.2.1.2.1.1 Inductor Equations Inductor current rating is determined by the requirements of the load. The inductance is determined by two factors: the minimum value required for stability and the maximum ripple current permitted in the application. Use Equation 1 to determine the required current rating. Equation 1 shows the approximate relationship between the average inductor current, IL, to the load current, load voltage, and input voltage (IPVDD, PVDD, and VBAT, respectively). Insert IPVDD, PVDD, and VBAT into Equation 1 and solve for IL. The inductor must maintain at least 90% of its initial inductance value at this current. PVDD æ ö IL = IPVDD ´ ç ÷ è VBAT ´ 0.8 ø (1) CAUTION Use a minimum working inductance of 1.3 μH. Lower values may damage the inductor. Use a minimum working inductance of 1.3 μH. Lower values may damage the inductor. Ripple current, ΔIL, is peak-to-peak variation in inductor current. Smaller ripple current reduces core losses in the inductor and reduces the potential for EMI. Use Equation 2 to determine the value of the inductor, L. Equation 2 shows the relationship between inductance L, VBAT, PVDD, the switching frequency, fBOOST, and ΔIL. Insert the maximum acceptable ripple current into Equation 2 and solve for L. L= VBAT ´ (PVDD - VBAT) DIL ´ ¦BOOST ´ PVDD (2) ΔIL is inversely proportional to L. Minimize ΔIL as much as is necessary for a specific application. Increase the inductance to reduce the ripple current. Do not use greater than 4.7 μH, as this prevents the boost converter from responding to fast output current changes properly. If using above 3.3 µH, then use at least 10 µF capacitance on PVOUT to ensure boost converter stability. The typical inductor value range for the TPA2015D1 is 2.2 μH to 3.3 µH. Select an inductor with less than 0.5 Ω dc resistance, DCR. Higher DCR reduces total efficiency due to an increase in voltage drop across the inductor. Table 10-2. Sample Inductors L (μH) SUPPLIER COMPONENT CODE SIZE (L×W×H mm) DCR TYP (mΩ) ISAT MAX (A) 2.2 Chilisin Electronics Corp. CLCN252012T-2R2M-N 2.5 x 2.0 x 1.2 105 1.2 2.2 Toko 1239AS-H-2R2N=P2 2.5 × 2.0 × 1.2 96 2.3 2.2 Coilcraft XFL4020-222MEC 4.0 x 4.0 x 2.15 22 3.5 3.3 Toko 1239AS-H-3R3N=P2 2.5 × 2.0 × 1.2 160 2.0 3.3 Coilcraft XFL4020-332MEC 4.0 x 4.0 x 2.15 35 2.8 C RANGE 4.7 – 22 µF / 16 V 6.8 – 22 µF / 10 V 10 – 22 µF / 10 V 10.2.1.2.2 Boost Converter Capacitor Selection The value of the boost capacitor is determined by the minimum value of working capacitance required for stability and the maximum voltage ripple allowed on PVDD in the application. Working capacitance refers to the available capacitance after derating the capacitor value for DC bias, temperature, and aging. Do not use any component with a working capacitance less than 4.7 μF. This corresponds to a 4.7 µF / 16 V capacitor, or a 6.8 µF / 10 V capacitor. Do not use above 22 µF capacitance as it will reduce the boost converter response time to large output current transients. 20 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 Equation 3 shows the relationship between the boost capacitance, C, to load current, load voltage, ripple voltage, input voltage, and switching frequency (IPVDD, PVDD, ΔV, VBAT, and fBOOST respectively). Insert the maximum allowed ripple voltage into Equation 3 and solve for C. The 1.5 multiplier accounts for capacitance loss due to applied dc voltage and temperature for X5R and X7R ceramic capacitors. I ´ (PVDD - VBAT) C = 1.5 ´ PVDD DV ´ ¦BOOST ´ PVDD (3) 10.2.1.2.3 Components Location and Selection 10.2.1.2.3.1 Decoupling Capacitors The TPA2015D1 is a high-performance Class-D audio amplifier that requires adequate power supply decoupling. Adequate power supply decoupling to ensures that the efficiency is high and total harmonic distortion (THD) is low. Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1 μF, within 2 mm of the VBAT ball. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. Additionally, placing this decoupling capacitor close to the TPA2015D1 is important, as any parasitic resistance or inductance between the device and the capacitor causes efficiency loss. In addition to the 0.1 µF ceramic capacitor, place a 2.2 μF to 10 μF capacitor on the VBAT supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage. 10.2.1.2.3.2 Input Capacitors Input audio DC decoupling capacitors are recommended. The input audio DC decoupling capacitors prevents the AGC from changing the gain due to audio DAC output offset. The input capacitors and TPA2015D1 input impedance form a high-pass filter with the corner frequency, fC, determined in Equation 4. Any mismatch in capacitance between the two inputs will cause a mismatch in the corner frequencies. Severe mismatch may also cause turn-on pop noise. Choose capacitors with a tolerance of ±10% or better. fc = 1 (2 x p x RICI ) (4) 10.2.1.3 Application Curves For application curves, see the figures listed in Table 10-3. Table 10-3. Table of Graphs DESCRIPTION FIGURE NUMBER Supply Current vs Output Power Figure 7-3 Peak Output Voltage vs Peak Input Voltage Figure 7-4 Total Efficiency vs Output Power Figure 7-5 Output Power vs Supply Voltage Figure 7-9 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 21 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 10.2.2 TPA2015D1 with Single-Ended Input Signals 2.2 mH Connected to Supply 6.8 mF - 22 mF VDD 2.2 mF - 10 mF Single-Ended Audio Inputs SW PVOUT PVDD ININ+ OUT+ Gain Control GAIN AGC Control AGC Boost Enable ENB Class-D Enable END TPA2015D1 OUT- GND Figure 10-2. Typical Application Schematic with Single-Ended Input Signals 10.2.2.1 Design Requirements For this design example, use the parameters listed in Table 10-1. 10.2.2.2 Detailed Design Procedure For the design procedure see Section 10.2.1.2 from the previous section. 10.2.2.3 Application Curves For application curves, see the figures listed in Table 10-3. 22 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 11 Power Supply Recommendations The TPA2015D1 is designed to operate from an input voltage supply range between 2.5-V and 5.2-V. Therefore the output voltage range of the power supply should be within this range. The current capability of upper power should not exceed the maximum current limit of the power switch. 11.1 Power Supply Decoupling Capacitors The TPA2015D1 requires adequate power supply decoupling to ensure a high efficiency operation with low total harmonic distortion (THD). Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1 µF, within 2 mm of the PVDD/PVOUT pin. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. In addition to the 0.1 μF ceramic capacitor, is recommended to place a 2.2 µF to 10 µF capacitor on the VDD supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 23 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 12 Layout 12.1 Layout Guidelines 12.1.1 Component Placement Place all the external components close to the TPA2015D1 device. Placing the decoupling capacitors as close as possible to the device is important for the efficiency of the class-D amplifier. Any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency. 12.1.2 Trace Width Recommended trace width at the solder balls is 75 μm to 100 μm to prevent solder wicking onto wider PCB traces. For high current pins (SW, GND, OUT+, OUT–, PVOUT, and PVDD) of the TPA2015D1, use 100 μm trace widths at the solder balls and at least 500 μm PCB traces to ensure proper performance and output power for the device. For low current pins (IN–, IN+, END, ENB, GAIN, AGC, VBAT) of the TPA2015D1, use 75 μm to 100 μm trace widths at the solder balls. Run IN- and IN+ traces side-by-side (and if possible, same length) to maximize common-mode noise cancellation. 12.1.3 Pad Size In making the pad size for the DSBGA balls, TI recommends that the layout use nonsolder mask defined (NSMD) land. With this method, the solder mask opening is made larger than the desired land area, and the opening size is defined by the copper pad width. Figure 12-1 and Table 12-1 show the appropriate diameters for a DSBGA layout. Copper Trace Width Solder Mask Opening Solder Mask Thickness Solder Pad Width Copper Trace Thickness Figure 12-1. Land Pattern Dimensions Table 12-1. Land Pattern Dimensions(1) (3) (2) (4) SOLDER PAD DEFINITIONS COPPER PAD SOLDER MASK (5) OPENING COPPER THICKNESS STENCIL (6) (7) OPENING STENCIL THICKNESS Nonsolder mask defined (NSMD) 275 μm (+0.0, -25 μm) 375 μm (+0.0, -25 μm) 1 oz max (32 μm) 275 μm x 275 μm Sq. (rounded corners) 125 μm thick (1) (2) (3) (4) (5) (6) (7) 24 Circuit traces from NSMD defined PWB lands should be 75 μm to 100 μm wide in the exposed area inside the solder mask opening. Wider trace widths reduce device stand off and impact reliability. Recommend solder paste is Type 3 or Type 4. Best reliability results are achieved when the PWB laminate glass transition temperature is above the operating the range of the intended application. For a PWB using a Ni/Au surface finish, the gold thickness should be less 0.5 mm to avoid a reduction in thermal fatigue performance. Solder mask thickness should be less than 20 μm on top of the copper circuit pattern Best solder stencil performance is achieved using laser cut stencils with electro polishing. Use of chemically etched stencils results in inferior solder paste volume control. Trace routing away from DSBGA device should be balanced in X and Y directions to avoid unintentional component movement due to solder wetting forces. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 12.2 Layout Example Input capacitors placed as close as possible to the device IN - IN + Differential Routing of input and output signals is recommended xxxxx xx xxxxxxxx xxxxx xx xx xx xxxxxxxx xxxx xx xx xxxx xx xxxxxxxx xxxx xxx xx xxxxxxx xx xx xx xxx xx xxxxxxx xxxx ENB END D4 D3 D2 D1 C4 C3 C2 C1 B4 B3 B2 B1 A4 A3 A2 A1 OUT - AGC OUT + GAIN Decoupling capacitor placed as close as possible to the device TPA2015D1 0.1µF 10µF Decoupling capacitor placed as close as possible to the device 10µF OUT + 2.2µH Top Layer Ground Plane xx xx xx xx Top Layer Traces Pad to Top Layer Ground Plane Bottom Layer Traces Via to Ground Plane Via to Bottom Layer Via to Power Supply Plane Figure 12-2. TPA2015D1 Layout Example Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 25 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 13 Device and Documentation Support 13.1 Device Support 13.1.1 Device Nomenclature 13.1.1.1 TPA2015D1 Glossary Limiter level The maximum output voltage allowed before amplifier gain is automatically reduced. SpeakerGuard™ TI's trademark name for the automatic gain control technology. It protects speakers by limiting maximum output power. Inflection point The battery voltage threshold for reducing the limiter level. If the battery voltage drops below the inflection point, the limiter level automatically reduces. Although it lowers the maximum output power, it prevents high battery currents at end-of-charge low battery voltages. Battery track The name for the continuous limiter level reduction at battery voltages below the inflection point. AGC Automatic gain control. VBAT The battery supply voltage to the TPA2015D1. The VBAT pin is the input to the boost converter. Fixed-gain The nominal audio gain as set by the GAIN pin. If the audio output voltage remains below the limiter level, the amplifier gain will return to the fixed-gain. Attack time The rate of AGC gain decrease. The attack time is constant at 0.026 ms/dB. Release time The rate of AGC gain increase. The release time is constant at 1600 ms/dB. 13.1.1.2 Boost Terms C Minimum boost capacitance required for a given ripple voltage on PVOUT. L Boost inductor. fBOOST Switching frequency of the boost converter. IPVDD Current pulled by the Class-D amplifier from the boost converter. IL Average current through the boost inductor. PVDD (PVOUT) Supply voltage for the Class-D amplifier. (Voltage generated by the boost converter output.) VBAT Supply voltage to the IC. ΔIL Ripple current through the inductor. ΔV Ripple voltage on PVOUT. 26 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 13.2 Community Resources 13.3 Trademarks SpeakerGuard™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 27 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 28 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 14.1 Package Option Addendum Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 29 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 14.1.1 Packaging Information (1) (2) (3) (4) (5) (6) Status Packag e Pins Drawing (1) Packag e Type SN012020YZHR ACTIV E DSBGA YZH 16 SN012020YZHT ACTIV E DSBGA YZH 16 Orderable Device Packag e Qty Eco Plan (2) Lead/Ball Finish(4) MSL Peak Temp (3) Op Temp (°C) Device Marking(5) (6) 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260CUNLIM –40 to 85 1D8 250 Green (RoHS & no Sb/Br) SNAGCU Level-1-260CUNLIM –40 to 85 1D8 The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. space Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) space MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. space Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. space There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device space Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. 30 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 14.1.2 Tape and Reel Information REEL DIMENSIONS TAPE DIMENSIONS K0 P1 B0 W Reel Diameter Cavity A0 B0 K0 W P1 A0 Dimension designed to accommodate the component width Dimension designed to accommodate the component length Dimension designed to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers Reel Width (W1) QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Sprocket Holes Q1 Q2 Q1 Q2 Q3 Q4 Q3 Q4 User Direction of Feed Pocket Quadrants Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant SN012020YZHR DSBGA YZH 16 3000 180.0 8.4 2.07 2.07 0.81 4.0 8.0 Q1 SN012020YZHT DSBGA YZH 16 250 180.0 8.4 2.07 2.07 0.81 4.0 8.0 Q1 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 31 TPA2015D1 www.ti.com SLOS638C – NOVEMBER 2011 – REVISED JUNE 2022 TAPE AND REEL BOX DIMENSIONS Width (mm) L W 32 H Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN012020YZHR DSBGA YZH 16 3000 182.0 182.0 20.0 SN012020YZHT DSBGA YZH 16 250 182.0 182.0 20.0 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: TPA2015D1 PACKAGE OPTION ADDENDUM www.ti.com 29-Jun-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) SN012020YZHR ACTIVE DSBGA YZH 16 3000 RoHS & Green SNAGCU Level-1-260C-UNLIM -40 to 85 1D8 Samples TPA2015D1YZHR ACTIVE DSBGA YZH 16 3000 RoHS & Green SNAGCU Level-1-260C-UNLIM -40 to 85 OEN Samples TPA2015D1YZHT ACTIVE DSBGA YZH 16 250 RoHS & Green SNAGCU Level-1-260C-UNLIM -40 to 85 OEN Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TPA2015D1YZHR 价格&库存

很抱歉,暂时无法提供与“TPA2015D1YZHR”相匹配的价格&库存,您可以联系我们找货

免费人工找货