0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS22918DBVT

TPS22918DBVT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT-23-6

  • 描述:

    IC PWR SWITCH N-CHAN 1:1 SOT23-6

  • 数据手册
  • 价格&库存
TPS22918DBVT 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 TPS22918 5.5-V, 2-A, 52-mΩ On-Resistance Load Switch 1 Features 3 Description • • The TPS22918 is a single-channel load switch with configurable rise time and configurable quick output discharge. The device contains an N-channel MOSFET that can operate over an input voltage range of 1 V to 5.5 V and can support a maximum continuous current of 2 A. The switch is controlled by an on and off input, which is capable of interfacing directly with low-voltage control signals. 1 • • • • • • • • • Integrated Single Channel Load Switch Ambient Operating Temperature: –40°C to +105°C Input Voltage Range: 1 V to 5.5 V On-Resistance (RON) – RON = 52 mΩ (typical) at VIN = 5 V – RON = 53 mΩ (typical) at VIN = 3.3 V 2-A Maximum Continuous Switch Current Low Quiescent Current – 8.3 µA (typical) at VIN = 3.3 V Low-Control Input-Threshold Enables Use of 1 V or Higher GPIO Adjustable Quick-Output Discharge (QOD) Configurable Rise Time With CT Pin Small SOT23-6 Package (DBV) – 2.90-mm × 2.80-mm, 0.95-mm Pitch, 1.45 mm Height (with leads) ESD Performance Tested per JESD 22 – ±2-kV HBM and ±1-kV CDM The configurable rise time of the device greatly reduces inrush current caused by large bulk load capacitances, thereby reducing or eliminating power supply droop. The TPS22918 features a configurable quick output discharge (QOD) pin, which controls the fall time of the device to allow design flexibility for power down and sequencing. The TPS22918 is available in a small, leaded SOT-23 package (DBV) which allows visual inspection of solder joints. The device is characterized for operation over the free-air temperature range of –40°C to +105°C. Device Information PART NUMBER TPS22918 2 Applications • • • • 100 VOUT CIN RL CL ON ON OFF TPS22918 CT On-Resistance (m:) QOD -40qC 25qC 85qC 105qC 90 REXT GND 2.90 mm × 1.60 mm On-Resistance vs Input Voltage Typical Values Simplified Schematic VIN SOT-23 (6) BODY SIZE (NOM) (1) For all available packages, see the orderable addendum at the end of the datasheet. Industrial Systems Set Top Box Blood Glucose Meters Electronic Point of Sale Power Supply PACKAGE (1) 80 70 60 50 40 30 1 1.5 2 2.5 3 3.5 4 Input Voltage (V) 4.5 5 5.5 D001 IOUT = –200 mA 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 4 4 4 4 5 6 7 9 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Switching Characteristics .......................................... Typical DC Characteristics........................................ Typical AC Characteristics........................................ Parameter Measurement Information ................ 11 Detailed Description ............................................ 12 8.1 Overview ................................................................. 12 8.2 Functional Block Diagram ....................................... 12 8.3 Feature Description................................................. 13 8.4 Device Functional Modes........................................ 15 9 Application and Implementation ........................ 16 9.1 Application Information............................................ 16 9.2 Typical Application ................................................. 16 10 Power Supply Recommendations ..................... 20 11 Layout................................................................... 20 11.1 Layout Guidelines ................................................. 20 11.2 Layout Example .................................................... 21 11.3 Thermal Considerations ........................................ 21 12 Device and Documentation Support ................. 22 12.1 12.2 12.3 12.4 12.5 12.6 Device Support...................................................... Documentation Support ........................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 22 22 22 22 22 22 13 Mechanical, Packaging, and Orderable Information ........................................................... 22 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (March 2016) to Revision B • Updated the constant value in Equation 3 in Adjustable Rise Time (CT) section................................................................ 14 Changes from Revision B (June 2016) to Revision C • 2 Page Updated the Applications Section changed µF to pF in Figure 30, Figure 31, and Section 9.2.2.5 ...................................... 1 Changes from Original (February 2016) to Revision A • Page Page Changed device status from Product Preview to Production Data ........................................................................................ 1 Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 5 Pin Configuration and Functions DBV Package 6-Pin SOT-23 Top View VIN 1 6 VOUT GND 2 5 QOD ON 3 4 CT Pin Functions PIN NO. NAME I/O DESCRIPTION Switch input. Place ceramic bypass capacitor(s) between this pin and GND. See the Detailed Description section for more information. 1 VIN I 2 GND — 3 ON I Active high switch control input. Do not leave floating. 4 CT O Switch slew rate control. Can be left floating. See the Feature Description section for more information. Device ground. 5 QOD O Quick Output Discharge pin. This functionality can be enabled in one of three ways. • Placing an external resistor between VOUT and QOD • Tying QOD directly to VOUT and using the internal resistor value (RPD) • Disabling QOD by leaving pin floating See the Quick Output Discharge (QOD) section for more information. 6 VOUT O Switch output. Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 3 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings Over operating free-air temperature range (unless otherwise noted) (1) (2) MIN MAX UNIT VIN Input voltage –0.3 6 V VOUT Output voltage –0.3 6 V VON ON voltage –0.3 6 V IMAX Maximum continuous switch current, ambient temperature = 70°C 2 A IPLS Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle 2.5 A TJ Maximum junction temperature 125 °C Tstg Storage temperature 150 °C (1) (2) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 Electrostatic discharge (1) UNIT ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) V ±1000 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions Over operating free-air temperature range (unless otherwise noted) MIN MAX VIN Input voltage 0 5.5 V VON ON voltage 0 5.5 V VOUT Output voltage VIN V VIH, ON High-level input voltage, ON VIN = 1 V to 5.5 V 1 5.5 V VIL, ON Low-level input voltage, ON VIN = 1 V to 5.5 V 0 0.5 V 105 °C TA Operating free-air temperature (1) –40 CIN Input Capacitor 1 (1) (2) UNIT (2) µF In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(MAX)], the maximum power dissipation of the device in the application [PD(MAX)], and the junction-to-ambient thermal resistance of the part/package in the application (θJA), as given by the following equation: TA(MAX) = TJ(MAX) – (θJA × PD(MAX)). Refer to Application and Implementation section 6.4 Thermal Information TPS22918 THERMAL METRIC (1) DBV (SOT-23) UNIT 6 PINS RθJA Junction-to-ambient thermal resistance 183.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 151.6 °C/W RθJB Junction-to-board thermal resistance 34.1 °C/W ψJT Junction-to-top characterization parameter 37.2 °C/W ψJB Junction-to-board characterization parameter 33.6 °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 6.5 Electrical Characteristics Unless otherwise noted, the specification in the following table applies over the full ambient operating temperature –40°C ≤ TA ≤ +105°C. Typical values are for TA = 25°C. PARAMETER IQ, VIN ISD, VIN Quiescent current VON = 5 V, IOUT = 0 A Shutdown current VON = 0 V, VOUT = 0 V ON pin input leakage current ION TEST CONDITIONS TYP MAX VIN = 5.5 V 9.2 16 VIN = 5 V 8.7 16 VIN = 3.3 V 8.3 15 10.2 17 VIN = 1.2 V 9.3 16 VIN = 1 V 8.9 15 VIN = 5.5 V 0.5 5 VIN = 5 V 0.5 4.5 0.5 3.5 0.5 2.5 VIN = 1.2 V 0.4 2 VIN = 1 V 0.4 2 VIN = 1.8 V VIN = 3.3 V VIN = 1.8 V VIN = 5.5 V, IOUT = 0 A TA MIN –40°C to +105°C –40°C to +105°C –40°C to +105°C 0.1 25°C VIN = 5.5 V, IOUT = –200 mA 51 71 –40°C to +105°C 78 52 71 –40°C to +105°C 79 VIN = 4.2 V, IOUT = –200 mA 52 71 –40°C to +105°C 79 RON 53 –40°C to +85°C 53 –40°C to +85°C 55 –40°C to +85°C 64 VIN = 5.0 V, VON = 0 V RPD Output pull down resistance (1) VIN = 3.3 V, VON = 0 V VIN = 1.8 V, VON = 0 V (1) 77 –40°C to +85°C 88 –40°C to +105°C 104 25°C ON pin hysteresis VIN = 1 V to 5.5 V mΩ 88 25°C VHYS mΩ 65 79 –40°C to +105°C VIN = 1.0 V, IOUT = –200 mA mΩ 80 25°C VIN = 1.2 V, IOUT = –200 mA mΩ 61 75 –40°C to +105°C VIN = 1.8 V, IOUT = –200 mA mΩ 80 25°C VIN = 2.5 V, IOUT = –200 mA mΩ 59 71 –40°C to +105°C On-Resistance µA 59 –40°C to +85°C 25°C VIN = 3.3 V, IOUT = –200 mA µA 59 –40°C to +85°C 25°C µA 59 –40°C to +85°C 25°C VIN = 5.0 V, IOUT = –200 mA UNIT 71 85 –40°C to +85°C 100 –40°C to +105°C 116 –40°C to +105°C 107 25°C mΩ mΩ mV 24 –40°C to +105°C 30 25°C 25 –40°C to +105°C 35 25°C Ω 45 –40°C to +105°C 60 Output pull down resistance varies with input voltage. Please see Figure 7 for more information. Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 5 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com 6.6 Switching Characteristics Refer to the timing test circuit in Figure 21 (unless otherwise noted) for references to external components used for the test condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up sequence where VIN is already in steady state condition before the ON pin is asserted high. VON = 5 V, TA = 25 °C, QOD = Open. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VIN = 5 V tON Turn-on time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF tOFF Turn-off time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 1950 2 tR VOUT rise time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 2540 tF VOUT fall time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 2 tD Delay time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 690 tON Turn-on time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 1430 tOFF Turn-off time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 2 tR VOUT rise time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 1680 tF VOUT fall time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 2 tD Delay time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 590 tON Turn-on time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 965 tOFF Turn-off time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 2 tR VOUT rise time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 960 tF VOUT fall time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 2 tD Delay time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 480 tON Turn-on time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 725 tOFF Turn-off time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 3 tR VOUT rise time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 560 tF VOUT fall time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 2 tD Delay time RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF 430 µs VIN = 3.3 V µs VIN = 1.8 V µs VIN = 1 V 6 Submit Documentation Feedback µs Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 6.7 Typical DC Characteristics 3 11 -40qC 25qC 85qC 105qC 10.5 2.5 Shutdown Current (PA) Quiescent Current (PA) 10 9.5 9 8.5 8 7.5 -40qC 25qC 85qC 105qC 7 6.5 2 1.5 1 0.5 6 0 1 1.5 2 2.5 3 3.5 4 Input Voltage (V) VON = 5 V 4.5 5 5.5 1 IOUT = 0 A 90 90 80 70 60 50 40 20 -40 VIN = 1.8 V VIN = 2.5 V VIN = 3.3 V VIN = 4.2 V VIN = 5 V VIN = 5.5 V 4.5 5 5.5 D003 IOUT = 0 A -40qC 25qC 85qC 105qC 80 70 60 50 40 0 20 40 Temperature (qC) 60 80 100 1 1.5 2 2.5 D004 IOUT = –200 mA VON = 5 V Figure 3. On-Resistance vs Temperature 3 3.5 4 Input Voltage (V) 4.5 5 5.5 D001 IOUT = –200 mA Figure 4. On-Resistance vs Input Voltage 100 140 90 120 Hysteresis Voltage (mV) 80 On-Resistance (m:) 3 3.5 4 Input Voltage (V) 30 -20 VON = 5 V 70 60 50 40 30 20 VIN= 1 V VIN = 1.2 V VIN = 1.5 V 10 0 0.2 2.5 Figure 2. Shutdown Current vs Input Voltage 100 On-Resistance (m:) On-Resistance (m:) Figure 1. Quiescent Current vs Input Voltage 30 2 VON = 0 V 100 VIN= 1 V VIN = 1.05 V VIN = 1.2 V 1.5 D002 VIN = 1.8 V VIN = 2.5 V VIN = 3.3 V VIN = 4.2 V VIN = 5 V VIN = 5.5 V 100 80 60 40 -40qC 25qC 85qC 105qC 20 0 0.4 VON = 5 V 0.6 0.8 1 1.2 1.4 Output Current (A) 1.6 1.8 2 1 1.5 D005 TA = 25°C 2 2.5 3 3.5 4 Input Voltage (V) 4.5 5 5.5 D008 IOUT = 0 A Figure 5. On-Resistance vs Output Current Figure 6. Hysteresis Voltage vs Input Voltage Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 7 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com Typical DC Characteristics (continued) Output Pull-Down Resistance (:) 275 -40qC 25qC 85qC 105qC 250 225 200 175 150 125 100 75 50 25 0 1 VIN = VOUT 1.5 2 2.5 3 3.5 4 Input Voltage (V) 4.5 5 5.5 D009 VON = 0 V Figure 7. Output Pull-Down Resistance vs Input Voltage 8 Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 3000 800 2500 700 Delay Time (Ps) Rise Time (Ps) 6.8 Typical AC Characteristics 2000 1500 -40qC 25qC 85qC 105qC 1000 600 500 -40qC 25qC 85qC 105qC 400 500 300 1 1.5 2 2.5 3 3.5 4 Input Voltage (V) CIN = 1 µF CT = 1000 pF 4.5 5 5.5 1 RL = 10 Ω CL = 0.1 µF 2 2.5 CIN = 1 µF Figure 8. Rise Time vs Input Voltage 3 3.5 4 Input Voltage (V) 4.5 5 5.5 D011 RL = 10 Ω CL = 0.1 µF Figure 9. Delay Time vs Input Voltage 5 5 -40qC 25qC 85qC 105qC -40qC 25qC 85qC 105qC 4 Turnoff Time (Ps) 4 Fall Time (Ps) 1.5 D010 3 2 3 2 1 1 0 0 1 1.5 CIN = 1 µF 2 2.5 3 3.5 4 Input Voltage (V) RL = 10 Ω 4.5 5 5.5 1 1.5 D012 CL = 0.1 µF QOD = Open CIN = 1 µF Figure 10. Fall Time vs Input Voltage 2 2.5 3 3.5 4 Input Voltage (V) RL = 10 Ω 4.5 5 5.5 D013 CL = 0.1 µF Figure 11. Turnoff Time vs Input Voltage 2150 Turnon Time (Ps) 1850 1550 1250 -40qC 25qC 85qC 105qC 950 650 1 1.5 CIN = 1 µF CT = 1000 pF 2 2.5 3 3.5 4 Input Voltage (V) 4.5 RL = 10 Ω 5 5.5 D014 CL = 0.1 µF VIN = 5 V RL = 10 Ω Figure 12. Turnon Time vs Input Voltage CIN = 1 µF CT = 1000 pF CL = 0.1 µF Figure 13. Rise Time (tR) at VIN = 5 V Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 9 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com Typical AC Characteristics (continued) VIN = 5 V RL = 10 Ω CIN = 1 µF QOD = Open CL = 0.1 µF VIN = 3.3 V RL = 10 Ω Figure 14. Fall Time (tF) at VIN = 5 V VIN = 3.3 V RL = 10 Ω CIN = 1 µF QOD = Open CIN = 1 µF QOD = Open CL = 0.1 µF VIN = 1.8 V RL = 10 Ω CL = 0.1 µF CIN = 1 µF CT = 1000 pF CL = 0.1 µF Figure 17. Rise Time (tR) at VIN = 1.8 V VIN = 1.0 V RL = 10 Ω Figure 18. Fall Time (tF) at VIN = 1.8 V 10 CL = 0.1 µF Figure 15. Rise Time (tR) at VIN = 3.3 V Figure 16. Fall Time (tF) at VIN = 3.3 V VIN = 1.8 V RL = 10 Ω CIN = 1 µF CT = 1000 pF Submit Documentation Feedback CIN = 1 µF CT = 1000 pF CL = 0.1 µF Figure 19. Rise Time (tR) at VIN = 1 V Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 Typical AC Characteristics (continued) VIN = 1.0 V RL = 10 Ω CIN = 1 µF QOD = Open CL = 0.1 µF Figure 20. Fall Time (tF) at VIN = 1 V 7 Parameter Measurement Information (1) Rise and fall times of the control signal are 100 ns (2) Turn-off times and fall times are dependent on the time constant at the load. For TPS22918, the internal pull-down resistance RPD is enabled when the switch is disabled. The time constant is (RQOD || RL) × CL. Figure 21. Test Circuit VON 50% 50% tOFF tON VOUT 50% 50% tF tR 90% VOUT 10% 10% 90% 10% tD Figure 22. Timing Waveforms Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 11 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com 8 Detailed Description 8.1 Overview The TPS22918 is a 5.5-V, 2-A load switch in a 6-pin SOT-23 package. To reduce voltage drop for low voltage and high current rails, the device implements a low resistance N-channel MOSFET which reduces the drop out voltage across the device. The device has a configurable slew rate which helps reduce or eliminate power supply droop because of large inrush currents. Furthermore, the device features a QOD pin, which allows the configuration of the discharge rate of VOUT once the switch is disabled. During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the need for any external components which reduces solution size and bill of materials (BOM) count. 8.2 Functional Block Diagram VIN Charge Pump ON Control Logic CT VOUT QOD GND Copyright © 2016, Texas Instruments Incorporated 12 Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 8.3 Feature Description 8.3.1 On and Off Control The ON pin controls the state of the switch. ON is active high and has a low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1 V or higher GPIO voltage. This pin cannot be left floating and must be driven either high or low for proper functionality. 8.3.2 Quick Output Discharge (QOD) The TPS22918 includes a QOD feature. The QOD pin can be configured in one of three ways: • QOD pin shorted to VOUT pin. Using this method, the discharge rate after the switch becomes disabled is controlled with the value of the internal resistance RPD. The value of this resistance is listed in the Electrical Characteristics table. • QOD pin connected to VOUT pin using an external resistor REXT. After the switch becomes disabled, the discharge rate is controlled by the value of the total resistance of the QOD. To adjust the total QOD resistance, Equation 1 can be used: RQOD = RPD + REXT Where: • • • • RQOD = Total output discharge resistance RPD = Internal pulldown resistance REXT = External resistance placed between the VOUT and QOD pin. (1) QOD pin is unused and left floating. Using this method, there will be no quick output discharge functionality, and the output will remain floating after the switch is disabled. The fall times of the device depend on many factors including the total resistance of the QOD, VIN, and the output capacitance. When QOD is shorted to VOUT, the fall time will change over VIN as the internal RPD varies over VIN. To calculate the approximate fall time of VOUT for a given RQOD, use Equation 2 and Table 1. VCAP = VIN × e-t/τ Where: • • • VCAP = Voltage across the capacitor (V) t = Time since power supply removal (s) τ = Time constant equal to RQOD × CL (2) The fall times' dependency on VIN becomes minimal as the QOD value increases with additional external resistance. See Table 1 for QOD fall times. Table 1. QOD Fall Times (1) FALL TIME (μs) 90% - 10%, CIN = 1 μF, IOUT = 0 A , VON = 0 V VIN (V) (1) TA = 25°C TA = 85°C CL = 1 μF CL = 10 μF CL = 100 μF CL = 1 μF CL = 10 μF CL = 100 μF 5.5 42 190 1880 40 210 2150 5 43 200 1905 45 220 2200 3.3 47 230 2150 50 260 2515 2.5 58 300 2790 60 345 3290 1.8 75 430 4165 80 490 4950 1.2 135 955 9910 135 1035 10980 1 230 1830 19625 210 1800 19270 TYPICAL VALUES WITH QOD SHORTED TO VOUT Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 13 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com 8.3.2.1 QOD when System Power is Removed The adjustable QOD can be used to control the power down sequencing of a system even when the system power supply is removed. When the power is removed, the input capacitor discharges at VIN. Past a certain VIN level, the strength of the RPD will be reduced. If there is still remaining charge on the output capacitor, this will result in longer fall times. For further information regarding this condition, see the Shutdown Sequencing During Unexpected System Power Loss section. 8.3.2.2 Internal QOD Considerations Special considerations must be taken when using the internal RPD by shorting the QOD pin to the VOUT pin. The internal RPD is a pulldown resistance designed to quickly discharge a load after the switch has been disabled. Care must be used to ensure that excessive current does not flow through RPD during discharge so that the maximum TJ of 125°C is not exceeded. When using only the internal RPD to discharge a load, the total capacitive load must not exceed 200 µF. Otherwise, an external resistor, REXT, must be used to ensure the amount of current flowing through RPD is properly limited and the maximum TJ is not exceeded. To ensure the device is not damaged, the remaining charge from CL must decay naturally through the internal QOD resistance and should not be driven. 8.3.3 Adjustable Rise Time (CT) A capacitor to GND on the CT pin sets the slew rate of VOUT. The CT capacitor will charge up until shortly after the switch is turned on and VOUT becomes stable. Once VOUT become stable, the capactior will discharge to ground. An approximate formula for the relationship between CT and the slew rate is shown in Equation 3: SR = 0.55 × CT + 30 where • • • SR = slew rate (in µs/V) CT = the capacitance value on the CT pin (in pF) The units for the constant 30 are µs/V. The units for the constant 0.55 are µs/(V × pF). (3) This equation accounts for 10% to 90% measurement on VOUT and does not apply for CT = 0 pF. Use Table 2 to determine rise times for when CT = 0 pF. Rise time can be calculated by multiplying the input voltage by the slew rate. Table 2 contains rise time values measured on a typical device. Table 2. Rise Time Table RISE TIME (µs) 10% - 90%, CL = 0.1 µF, CIN = 1 µF, RL = 10 Ω (1) CT× (pF) VIN = 5 V (1) VN = 3.3 V VIN = 2.5 V VIN = 1.8 V VIN = 1.5 V VIN = 1.2 V VIN = 1 V 0 135 95 75 60 50 45 40 220 650 455 350 260 220 185 160 470 1260 850 655 480 415 340 300 1000 2540 1680 1300 960 810 660 560 2200 5435 3580 2760 2020 1715 1390 1220 4700 12050 7980 6135 4485 3790 3120 2735 10000 26550 17505 13460 9790 8320 6815 5950 Typical values at 25°C with a 25 V X7R 10% ceramic capacitor on CT. As the voltage across the capacitor approaches the capacitor rated voltage, the effective capacitance reduces. Depending on the dielectric material used, the voltage coefficient changes. See Table 3 for the recommended minimum voltage rating for the CT capacitor. If using VIN = 1.2 V or 4 V, it is recommended to use the higher of the two CT Voltage ratings specified. 14 Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 Table 3. Recommended CT Capacitor Voltage Rating VIN (V) RECOMMENDED CT CAPACITOR VOLTAGE RATING (V) 1 V to 1.2 V 10 1.2 V to 4 V 16 4 V to 5.5 V 20 8.4 Device Functional Modes Table 4 describes the connection of the VOUT pin depending on the state of the ON pin. Table 4. VOUT Connection ON QOD CONFIGURATION TPS22918 VOUT L QOD pin connected to VOUT with REXT GND (via REXT+RPD) L QOD pin tied to VOUT directly GND (via RPD) L QOD pin left open Open H Any valid QOD configuration VIN Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 15 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information This section highlights some of the design considerations when implementing this device in various applications. A PSPICE model for this device is also available in the product page of this device on www.ti.com (See the Device Support section for more information). 9.2 Typical Application This typical application demonstrates how the TPS22918 can be used to power downstream modules. Figure 23. Typical Application Schematic 9.2.1 Design Requirements For this design example, use the values listed in Table 5 as the design parameters: Table 5. Design Parameters 16 DESIGN PARAMETER EXAMPLE VALUE VIN 5V Load Current 2A CL 22 µF Desired Fall Time 4 ms Maximum Acceptable Inrush Current 400 mA Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 9.2.2 Detailed Design Procedure 9.2.2.1 Input Capacitor (CIN) To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1 µF ceramic capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop during high-current application. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop. 9.2.2.2 Output Capacitor (CL) (Optional) Becuase of the integrated body diode in the MOSFET, a CIN greater than CL is highly recommended. A CL greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN dip caused by inrush currents during startup. 9.2.2.3 Shutdown Sequencing During Unexpected System Power Loss Microcontrollers and processors often have a specific shutdown sequence in which power needs to be removed. Using the adjustable Quick Output Discharge function of the TPS22918, adding a load switch to each power rail can be used to manage the power down sequencing in the event of an unexpected system power loss (i.e. battery removal). To determine the QOD values for each load switch, first confirm the power down order of the device you wish to power sequence. Be sure to check if there are voltage or timing margins that must be maintained during power down. Next, consult QOD Fall Time Table in the Quick Output Discharge (QOD) feature description to determine appropriate COUT and RQOD values for each power rail's load switch so that the load switches' fall times correspond to the order in which they need to be powered down. In the above example, we would like this power rail's fall time to be 4 ms. Using Equation 2, to determine the appropriate RQOD to achieve our desired fall time. Because fall times are measured from 90% of VOUT to 10% of VOUT, the equation becomes: .5 V = 4.5 V × e-(4 ms) / (R × (22 µF)) RQOD = 83.333 Ω (4) (5) Refer to Figure 7, RPD at VIN = 5 V is approximately 25 Ω. Using Equation 1, the required external QOD resistance can be calculated: 83.333 Ω = 25 Ω + REXT REXT = 58.333 Ω (6) (7) Figure 24 through Figure 29 are scope shots demonstrating an example of the QOD functionality when power is removed from the device (both ON and VIN are disconnected simultaneously). The input voltage is decaying in all scope shots below. • Initial VIN = 3.3 V • QOD = Open, 500 Ω, or shorted to VOUT • CL = 1 μF, 10 μF • VOUT is left floating NOTE: VIN may appear constant in some figures. This is because the time scale of the scope shot is too small to show the decay of CIN. Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 17 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 VIN = 3.3 V www.ti.com CIN = 1 µF QOD = Open CL = 1 µF VIN = 3.3 V Figure 24. Fall Time (tF) at VIN = 3.3 V VIN = 3.3 V CIN = 1 µF QOD = VOUT CL = 1 µF CIN = 1 µF QOD = 500 Ω VIN = 3.3 V CIN = 1 µF QOD = Open CL = 10 µF Figure 27. Fall Time (tF) at VIN = 3.3 V CL = 10 µF VIN = 3.3 V Figure 28. Fall Time (tF) at VIN = 3.3 V 18 CL = 1 µF Figure 25. Fall Time (tF) at VIN = 3.3 V Figure 26. Fall Time (tF) at VIN = 3.3 V VIN = 3.3 V CIN = 1 µF QOD = 500 Ω Submit Documentation Feedback CIN = 1 µF QOD = VOUT CL = 10 µF Figure 29. Fall Time (tF) at VIN = 3.3 V Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 9.2.2.4 VIN to VOUT Voltage Drop The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The RON of the device depends upon the VIN conditions of the device. Refer to the RON specification of the device in the Electrical Characteristics table of this data sheet. When the RON of the device is determined based upon the VIN conditions, use Equation 8 to calculate the VIN to VOUT voltage drop: ∆V = ILOAD × RON where • • • ΔV = voltage drop from VIN to VOUT ILOAD = load current RON = On-resistance of the device for a specific VIN An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated. (8) 9.2.2.5 Inrush Current Use Equation 9 to determine how much inrush current will be caused by the CL capacitor: dV IINRUSH = CL ´ OUT dt where • • • • IINRUSH = amount of inrush caused by CL CL = capacitance on VOUT dt = Output Voltage rise time during the ramp up of VOUT when the device is enabled dVOUT = change in VOUT during the ramp up of VOUT when the device is enabled (9) The appropriate rise time can be calculated using the design requirements and the inrush current equation. As we are calculating the rise time (measured from 10% to 90% of VOUT), we will account for this in our dVOUT parameter (80% of VOUT = 4 V). 400 mA = 22 pF × 4 V/dt dt = 220 μs (10) (11) To ensure an inrush current of less than 400 mA, choose a CT value that will yield a rise time of more than 220 μs. Consulting Table 2 at VIN = 5 V, CT = 220 pF will provide a typical rise time of 650 μs. Inputting this rise time and voltage into Equation 9, yields: IInrush = 22 pF × 4 V / 650 μs IInrush = 135 mA (12) (13) This inrush current can be seen in the Application Curves section. An appropriate CL value should be placed on VOUT such that the IMAX and IPLS specifications of the device are not violated. Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 19 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com 9.2.3 Application Curves VIN = 5 V CL = 22 pF CT = 0 pF VIN = 5 V Figure 30. TPS22918 Inrush Current CL = 22 pF CT = 220 pF Figure 31. TPS22918 Inrush Current 10 Power Supply Recommendations The device is designed to operate from a VIN range of 1 V to 5.5 V. This supply must be well regulated and placed as close to the device terminal as possible with the recommended 1-µF bypass capacitor. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 1 µF may be sufficient. The TPS22918 operates regardless of power sequencing order. The order in which voltages are applied to VIN and ON will not damage the device as long as the voltages do not exceed the absolute maximum operating conditions. If voltage is applied to ON before VIN, the slew rate of VOUT will not be controlled. 11 Layout 11.1 Layout Guidelines VIN and VOUT traces should be as short and wide as possible to accommodate for high current. The VIN pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor must be placed as close to the device pins as possible. 20 Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 www.ti.com SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 11.2 Layout Example 1 VIN VOUT 6 2 GND QOD 5 3 ON CT 4 VIA to Power Ground Plane Figure 32. Recommended Board Layout 11.3 Thermal Considerations For best performance, all traces must be as short as possible. To be most effective, the input and output capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance. The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use Equation 14: TJ(MAX) - TA PD(MAX) = qJA where • • • • PD(MAX) = maximum allowable power dissipation TJ(MAX) = maximum allowable junction temperature (125°C for the TPS22918) TA = ambient temperature of the device θJA = junction to air thermal impedance. Refer to the Thermal Information table. This parameter is highly dependent upon board layout. (14) Submit Documentation Feedback 21 Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 TPS22918 SLVSD76C – FEBRUARY 2016 – REVISED JULY 2017 www.ti.com 12 Device and Documentation Support 12.1 Device Support 12.1.1 Developmental Support For the TPS22918 PSpice Transient Model, see SLVMBI6. 12.2 Documentation Support 12.2.1 Related Documentation For related documentation see the following: TPS22918 5.5-V, 2-A, 50-mΩ On-Resistance Load Switch Evaluation Module, SLVUAP0. 12.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.4 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.5 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 22 Submit Documentation Feedback Copyright © 2016–2017, Texas Instruments Incorporated Product Folder Links: TPS22918 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TPS22918DBVR ACTIVE SOT-23 DBV 6 3000 RoHS & Green NIPDAU | SN Level-2-260C-1 YEAR -40 to 105 13MW TPS22918DBVT ACTIVE SOT-23 DBV 6 250 RoHS & Green NIPDAU | SN Level-2-260C-1 YEAR -40 to 105 13MW (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TPS22918DBVT 价格&库存

很抱歉,暂时无法提供与“TPS22918DBVT”相匹配的价格&库存,您可以联系我们找货

免费人工找货