0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS51222RTVT

TPS51222RTVT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    WQFN32_EP

  • 描述:

    IC REG QD BUCK/LINEAR 32QFN

  • 数据手册
  • 价格&库存
TPS51222RTVT 数据手册
TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 Fixed Frequency, 99% Duty Cycle Peak Current Mode Notebook System Power Controller FEATURES 1 • Input Voltage Range: 4.5 V to 32 V • Output Voltage Range: 1 V to 12 V • Selectable Light Load Operation (Continuous / Auto Skip / Out-Of-Audio™ Skip) • Programmable Droop Compensation • Voltage Servo Adjustable Soft Start • 200-kHz to 1-MHz Fixed-Frequency PWM • Current Mode Architecture • 180° Phase Shift Between Channels • Resistor or Inductor DCR Current Sensing • Current Monitor Output for Each Channel • Adaptive Zero Crossing Circuit • Powergood Output for Each Channel • OCL/OVP/UVP/UVLO Protections • Thermal Shutdown (Non-Latch) • Output Discharge Function • Integrated Boot Strap MOSFET Switch • QFN-32 (RTV) Package APPLICATIONS 2 • • Notebook Computer System and I/O Bus Point of Load in LCD TV, MFP DESCRIPTION The TPS51222 is a dual synchronous buck regulator controller with two LDOs. It is optimized for 5-V/3.3-V system controller, enabling designers to cost effectively complete 2-cell to 4-cell notebook system power supply. The TPS51222 supports high efficiency, fast transient response, and 99% duty cycle operation. It supports supply input voltage ranging from 4.5 V to 32 V, and output voltages from 1 V to 12 V. Peak current mode supports stability operation with lower ESR capacitor and output accuracy. The high duty cycle (99%) operation and the wide input/output voltage range supports flexible design for small mobile PCs and a wide variety of other applications. The fixed frequency can be adjusted from 200 kHz to 1 MHz by a resistor, and each channel runs 180° out-of-phase. The TPS51222 can also synchronize to the external clock, and the interleaving ratio can be adjusted by its duty. The TPS51222 is available in the 32-pin 5 × 5 QFN package and is specified from –40°C to 85°C. VBAT 26 25 SW2 RF 27 VBST 3 28 DRVL2 V5SW 29 GND DRVH1 2 30 DRVL1 1 31 VREG5 VO1 32 SW1 VO1 5V VBST1 VBAT VREG5 5 V/ 100 mA VO2 3.3 V DRVH2 24 VIN 23 VBAT VREG3 3.3 V/ 10 mA VREG3 22 EN1 4 EN1 PGOOD1 5 PGOOD1 PGOOD2 20 EN2 21 EN2 PGOOD2 SKIPSEL1 6 SKIPSEL1 SKIPSEL2 19 SKIPSEL2 7 CSP1 8 CSN1 TPS51222RTV EN IMON1 VO1 VFB1 COMP1 IMON1 EN VREF2 IMON2 COMP2 VFB2 CSP2 18 9 10 11 12 13 14 15 16 CSN2 17 IMON2 VO2 UDG-09009 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Out-Of-Audio, PowerPAD are trademarks of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009, Texas Instruments Incorporated TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. FUNCTIONAL BLOCK DIAGRAM VIN EN V5SW 4.7V/ 4.5V + + EN1 OK 1.25V + + 4.7V/ 4.5V V5SW OK VREG5 VREG3 GND + V5OK 4.2V/ 3.8V GND Ready + THOK 150/ 140 Deg-C VREF2 1.25V GND GND CLK2 OSC RF CLK1 GND 1V +5%/ 10% + PGOOD1 Delay + 1V - 5%/ 10% + 1V -30% GND CLK1 UVP + Ready OVP Fault2 SDN2 1V +15% Fault1 Clamp (+) COMP1 Ramp Comp Clamp (-) SDN1 + + PWM VFB1 EN1 IMON1 VREG5 1V + Enable/ Soft-start + Filter VREF2 VBST1 Amp. Ramp Comp + Skip Control Logic DRVH1 CS-AMP CSN1 CSP1 VFB-AMP SW1 + OCP + XCON VREG5 100mV DRVL1 AZC Discharge Control GND GND 100mV VREF2 N-OCP + GND OOA Ctrl GND SKIPSEL1 Channel-1 Switcher shown 2 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) TPS51222 VIN VBST1, VBST2 VBST1, VBST2 Input voltage range –0.3 to 39 (3) –0.3 to 7 SW1, SW2 (2) Output voltage range (2) UNIT –0.3 to 34 –5 to 34 CSN1, CSN2, CSP1, CSP2 –1 to 13.5 EN, EN1, EN2, SKIPSEL1, SKIPSEL2, VFB1, VFB2 –0.3 to 7 V5SW –1 to 7 V5SW (to VREG5) (4) –7 to 7 V DRVH1, DRVH2 –5 to 39 V DRVH1, DRVH2 (3) –0.3 to 7 V COMP1, COMP2, DRVL1, DRVL2, IMON1, IMON2, PGOOD1, PGOOD2, RF, VREF2, VREG5 –0.3 to 7 V –0.3 to 3.6 V TJ Junction temperature VREG3 150 °C Tstg Storage temperature –55 to 150 °C (1) (2) (3) (4) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to the network ground terminal unless otherwise noted. Voltage values are with respect to the corresponding SW terminal. When EN is high and V5SW is grounded, or voltage is applied to V5SW when EN is low. DISSIPATION RATINGS (2 oz. Trace and Copper Pad with Solder) PACKAGE TA < 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 85°C POWER RATING 32-pin RTV 1.7 W 17 mW/°C 0.7 W RECOMMENDED OPERATING CONDITIONS MIN Supply voltage I/O voltage TA VIN TYP MAX 4.5 32 V5SW –0.8 6 VBST1, VBST2 –0.1 37 DRVH1, DRVH2 –4.0 37 DRVH1, DRVH2 (wrt SW1, 2) –0.1 6 SW1, SW2 –4.0 32 CSP1, CSP2, CSN1, CSN2 –0.8 13 COMP1, COMP2, DRVL1, DRVL2, EN, EN1, EN2, IMON1, IMON2, PGOOD1, PGOOD2, RF, SKIPSEL1, SKIPSEL2, VFB1, VFB2, VREF2, VREG5 –0.1 6 VREG3 –0.1 3.5 –40 85 Operating free-air temperature UNIT V V °C ORDERING INFORMATION TA PACKAGE (1) ORDERABLE PART NUMBER TRANSPORT MEDIA QUANTITY ECO PLAN -40°C to 85°C Plastic Quad Flat Pack (32-Pin QFN) TPS51222RTVT Tape and Reel 250 TPS51222RTVR Tape and Reel 3000 Green (RoHS and no Sb/Br) (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 3 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com ELECTRICAL CHARACTERISTICS over operating free-air temperature range, EN = 3.3V, VIN = 12V, V5SW = 5V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 7 15 µA 80 120 µA SUPPLY CURRENT I(VINSDN) VIN shutdown current VIN shutdown current, TA = 25°C, No Load, EN = 0V, V5SW = 0 V I(VINSTBY) VIN Standby Current VIN standby current, TA = 25°C, No Load, EN1 = EN2 = V5SW = 0 V I(VBATSTBY) Vbat Standby Current Vbat standby current, TA = 25°C, No Load SKIPSEL2 = 2V, EN2 = open, EN1 = V5SW = 0V (1) 500 µA I(V5SW) V5SW Supply Current V5SW current, TA = 25°C, No Load, ENx = 5V, VFBx = 1.05 V 0.8 mA VREF2 OUTPUT V(VREF2) VREF2 Output Voltage I(VREF2) < ±10 µA, TA = 25°C 1.98 2.00 2.02 I(VREF2) < ±100 µA, 4.5V < VIN < 32 V 1.97 2.00 2.03 V VREG3 OUTPUT V5SW = 0 V, I(VREG3) = 0 mA, TA = 25°C 3.279 3.313 3.347 V(VREG3) VREG3 Output Voltage V5SW = 0 V, 0 mA < I(VREG3) < 10 mA, 5.5 V < VIN < 32 V 3.135 3.300 3.400 I(VREG3) VREG3 Output Current VREG3 = 3 V 10 15 20 V5SW = 0 V, I(VREG5) = 0 mA, TA = 25°C 4.99 5.04 5.09 V5SW = 0 V, 0 mA < I(VREG5) < 100 mA, 6 V < VIN < 32 V 4.90 5.03 5.15 V5SW = 0 V, 0 mA < I(VREG5) < 100 mA, 5.5 V < VIN < 32 V 4.50 5.03 5.15 V5SW = 0 V, VREG5 = 4.5 V 100 150 200 V5SW = 5 V, VREG5 = 4.5 V 200 300 400 Turning on 4.55 4.7 4.8 Hysteresis 0.15 0.20 0.25 V mA VREG5 OUTPUT V(VREG5) VREG5 Output Voltage V V I(VREG5) VREG5 Output Current mA V(THV5SW) Switchover Threshold td(V5SW) Switchover Delay Turning on 7.7 ms R(V5SW) 5V SW Ron I(VREG5) = 100 mA 0.5 Ω V(VFB) VFB Regulation Voltage Tolerance TA = 25°C, No Load I(VFB) VFB Input Current VFBx = 1.05 V, COMPx = 1.8 V, TA = 25°C R(Dischg) CSNx Discharge Resistance ENx = 0 V, CSNx = 0.5 V, TA = 25°C V OUTPUT TA = –40°C to 85°C , No Load 0.9925 1.000 1.0075 0.990 1.000 1.010 –50 20 V 50 nA 40 Ω VOLTAGE TRANSCONDUCTANCE AMPLIFIER Gmv Gain VID Differential Input Voltage Range I(COMPSINK) COMP Maximum Sink Current COMPx = 1.8 V I(COMPSRC) COMP Maximum Source Current COMPx = 1.8 V VCOMP COMP Clamp Voltage VCOMPN COMP Negative Clamp Voltage (1) 4 TA = 25°C µS 500 –30 30 mV TA = 0 to 85°C 27 33 µA TA = –40 to 85°C 22 33 µA –33 –43 µA 2.18 2.22 2.26 V 1.73 1.77 1.81 V Specified by design. Detail external condition follows application circuit of Figure 52. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 ELECTRICAL CHARACTERISTICS (continued) over operating free-air temperature range, EN = 3.3V, VIN = 12V, V5SW = 5V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT CURRENT AMPLIFIER GC Gain VIC Common mode Input Voltage Range VID Differential Input Voltage Range CSNx = 5V, TA = 25°C (2) 1.667 TA = 25°C 0 13 V –75 75 mV POWERGOOD PG in from lower 92.5% 95% 97.5% PG in from higher 102.5% 105% 107.5% V(THPG) PG threshold I(PG) PG sink Current PGOOD = 0.5 V t(PGDLY) PGOOD Delay Delay for PG in t(SSDYL) Soft Start Delay Delay for Soft Start, ENx = Hi to SS-ramp starts 200 µs t(SS) Soft Start Time Internal Soft Start 960 µs PG hysteresis 5% 5 0.8 1 mA 1.2 ms SOFTSTART FREQUENCY AND DUTY CONTROL f(SW) Switching Frequency V(THRF) RF Threshold f(SYNC) Sync Input Frequency Range (2) tONmin Minimum On Time tOFFmin Minimum Off Time Rf = 330 kΩ 273 303 333 Lo to Hi 0.7 1.3 2 Hysteresis 0.2 200 kHz V V 1000 kHz V(DRVH) = 90% to 10%, No Load, CCM/ OOA (2) 120 V(DRVH) = 90% to 10%, No Load, Auto-skip 160 250 ns V(DRVH) = 10% to 90%, No Load 290 400 ns ns DRVH-off to DRVL-on 10 30 50 ns DRVL-off to DRVH-on 30 40 70 ns tD Dead time V(DTH) DRVH-off threshold DRVH to GND V(DTL) DRVL-off threshold DRVL to GND (2) (2) 1 V 1 V CURRENT SENSE 2 V< VCSNx < 12.6 V V(OCL) Current limit threshold 0.95 V < VCSNx < 12.6 V VZCAJ Auto-Zero cross adjustable offset range 0.95 V < VCSNx < 12.6 V, Auto-skip V(ZC) Zero cross detection comparator Offset 0.95 V < VCSNx < 12.6 V, OOA V(OCLN-LV) Negative current limit threshold 0.95 V < VCSNx < 12.6 V (2) TA = 0 to 85°C 56 60 65 TA = –40 to 85°C 55 60 68 TA = 0 to 85°C 55 60 67 TA = –40 to 85°C 54 60 72 Positive 5 Negative –5 mV mV –4 0 4 TA = 0 to 85°C –50 –60 –73 TA = –40 to 85°C –49 –60 –77 mV Specified by design. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 5 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com ELECTRICAL CHARACTERISTICS (continued) over operating free-air temperature range, EN = 3.3V, VIN = 12V, V5SW = 5V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX 1.7 5 1 3 Source, V(VREG5-DRVL) = 0.1 V 1.3 4 Sink, V(DRVL-GND) = 0.1 V 0.7 2 UNIT OUTPUT DRIVERS R(DRVH) DRVH resistance R(DRVL) DRVL resistance Source, V(VBST-DRVH) = 0.1 V Sink, V(DRVH-SW) = 0.1 V Ω Ω CURRENT MONITOR GIMON Current monitor gain 50 VIMON Current monitor output VCSPx–VCSNx = 60 mV, 0.95 V < VCSNx < 12.6 V, TA = 25°C VIMON-OFF Current monitor output offset VCSPx–VCSNx = 0 mV, 0.95 V < VCSNx < 12.6 V, TA = 25°C 2.75 –200 3.00 3.25 V 200 mV UVP, OVP AND UVLO V(OVP) OVP Trip Threshold t(OVPDLY) OVP Prop Delay V(UVP) UVP Trip Threshold t(UVPDLY) UVP Delay V(UVREF2) VREF2 UVLO Threshold V(UVREG3) VREG3 UVLO Threshold V(UVREG5) VREG5 UVLO Threshold OVP detect 110% 115% 120% µs 1.5 UVP detect 65% 70% 73% 0.8 1 1.2 Wake up 1.7 1.8 1.9 V Hysteresis 75 100 125 mV Wake up Hysteresis Wake up Hysteresis 3 3.1 3.2 0.10 0.15 0.20 ms V 4.1 4.2 4.3 V 0.35 0.40 0.44 V INTERFACE AND LOGIC THRESHOLD V(EN) EN Threshold V(EN12) EN1/EN2 Threshold V(EN12SS) EN1/EN2 SS Start Threshold Wake up 0.8 1 1.2 Hysteresis 0.1 0.2 0.3 0.45 0.50 0.55 0.1 0.2 0.3 Wake up Hysteresis SS-ramp start threshold at external soft start V(EN12SSEND) EN1/EN2 SS End Threshold SS-End threshold at external soft start I(EN12) EN1/EN2 Source Current VEN1/EN2 = 0V 1 (3) 2 Continuous V(SKIPSEL) SKIPSEL1/SKIPSEL2 Setting Voltage SKIPSEL Input Current V 2.4 µA 1.5 Auto Skip 1.9 2.1 OOA Skip (min 1/8 Fsw) 3.2 3.4 OOA Skip (min 1/16 Fsw) I(SKIPSEL) V V 2 1.6 V V 3.8 SKIPSELx = 0 V –0.5 0.5 SKIPSELx = 5 V –0.5 0.5 µA BOOT STRAP SW V(FBST) Forward Voltage VVREG5-VBST, IF = 10 mA, TA = 25°C 0.10 0.20 V I(BSTLK) VBST Leakage Current VVBST = 37 V, VSW = 32 V 0.01 1.5 µA Shutdown temperature (3) 150 THERMAL SHUTDOWN T(SDN) (3) 6 Thermal SDN Threshold Hysteresis (3) 10 °C Specified by design. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 DEVICE INFORMATION PINOUT VBST2 SW2 25 GND DRVL2 27 26 30 DRVH2 VIN 5 6 20 19 7 8 18 17 PGOOD2 SKIPSEL2 CSP2 CSN2 3 4 VFB1 COMP1 IMON1 VREG3 EN2 15 16 TPS51122 9 10 CSN1 24 23 22 21 VREF2 IMON2 COMP2 VFB2 SKIPSEL1 CSP1 1 2 11 12 13 14 V5SW RF EN1 PGOOD1 EN DRVH1 29 28 32 31 SW1 VBST1 DRVL1 VREG5 RTV PACKAGE (TOP VIEW) PIN FUNCTIONS PIN NAME NO. COMP1 10 COMP2 15 CSN1 8 CSN2 17 CSP1 7 CSP2 18 DRVH1 1 DRVH2 24 DRVL1 30 DRVL2 27 EN 12 EN1 4 EN2 21 GND 28 IMON1 11 IMON2 14 PGOOD1 5 PGOOD2 20 RF 3 I/O DESCRIPTION I Loop compensation pin for current mode (error amplifier output). Connect R (and C if required) from this pin to VREF2 for proper loop compensation with current mode operation. I Current sense comparator inputs (–). See the current sensing scheme section. Used as power supply for the current sense circuit for 5 V or higher output voltage setting. Also, used for output discharge terminal. I/O Current sense comparator inputs (+). An RC network with high quality X5R or X7R ceramic capacitor should be used to extract voltage drop across DCR. 0.1-µF is a good value to start the design. See the current sensing scheme section for more details. O High-side MOSFET gate driver outputs. Source 1.7 Ω, sink 1.0 Ω, SW-node referenced floating driver. Drive voltage corresponds to VBST to SW voltage. O Low-side MOSFET gate driver outputs. Source 1.3 Ω, sink 0.7 Ω, and GND referenced driver. I VREF2 and VREG5 linear regulators enable pin. When turning on, apply greater than 1.2 V and less than 6 V. Connect to GND to disable. I Channel 1 and channel 2 SMPS Enable Pins. When turning on, apply greater than 0.55 V and less than 6 V. Connect to GND to disable. Adjustable soft-start capacitance to be attached here. – Ground O Current monitor outputs for channel 1 and channel 2. Adding an RC filter is recommended. O Powergood window comparator outputs for channel 1 and channel 2. The recommended applied voltage should be less than 6 V, and the recommended pull-up resistance value is from 100 kΩ to 1 MΩ. I/O Frequency setting pin. Connect a frequency setting resistor to (signal) GND. Connect to an external clock for synchronization. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 7 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com PIN FUNCTIONS (continued) PIN NAME NO. SKIPSEL1 6 SKIPSEL2 19 SW2 25 SW1 32 V5SW 2 VBST1 31 VBST2 I/O 26 DESCRIPTION Skip mode selection pin. I I/O GND: Continuous conduction mode VREF2: Auto Skip VREG3: OOA Auto Skip, maximum 7 skips (suitable for fsw < 400kHz) VREG5: OOA Auto Skip, maximum 15 skips (suitable for equal to or greater than 400kHz) High-side MOSFET gate driver returns. I VREG5 switchover power supply input pin. When EN1 is high, PGOOD1 indicates GOOD and V5SW voltage is higher than 4.8 V, switch-over function is enabled. Note: When switch-over is enabled, VREG5 output voltage is approximately equal to the V5SW input voltage. I Supply inputs for high-side N-channel FET driver (boot strap terminal). Connect a capacitor (0.1-µF or greater is recommended) from this pin to respective SW terminal. Additional SB diode from VREG5 to this pin is an optional. I SMPS voltage feedback Inputs. Connect the feedback resistors divider, and should be referred to (signal) GND. VFB1 9 VFB2 16 VIN 23 I Supply input for 5-V and 3.3-V linear regulator. Typically connected to VBAT. VREF2 13 O 2-V reference output. Bypass to (signal) GND with 0.22-µF of ceramic capacitance. VREG3 22 O Always alive 3.3 V, 10 mA low dropout linear regulator output. Bypass to (signal) GND with more than 1-µF ceramic capacitance. Runs from VIN supply or from VREG5 when it is switched over to V5SW input. O 5-V, 100-mA low dropout linear regulator output. Bypass to (power) GND using a 10-µF ceramic capacitor. Runs from VIN supply. Internally connected to VBST and DRVL. Shuts off with EN. Switches over to V5SW when 4.8 V or above is provided. Note: When switch-over (see above V5SW) is enabled, VREG5 output voltage is approximately equal to V5SW input voltage. VREG5 8 29 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 TYPICAL CHARACTERISTICS INPUT VOLTAGE SHUTDOWN CURRENT vs INPUT VOLTAGE INPUT VOLTAGE SHUTDOWN CURRENT vs JUNCTION TEMPERATURE 15 15 VI = 12 V IVINSDN -– Shutdown Current – mA IVINSDN -– Shutdown Current – mA TA = 25°C 12 9 6 3 10 15 20 25 9 6 3 0 -50 0 5 12 30 100 TJ – Junction Temperature – °C Figure 1. Figure 2. INPUT VOLTAGE STANDBY CURRENT vs JUNCTION TEMPERATURE INPUT VOLTAGE STANDBY CURRENT vs INPUT VOLTAGE 150 150 TA = 25°C IVINSTBY – Standby Current – mA VI = 12 V IVINSTBY – Standby Current – mA 50 VI – Input Voltage – V 150 120 90 60 30 0 -50 0 120 90 60 30 0 0 50 100 150 5 10 15 20 TJ – Junction Temperature – °C VI – Input Voltage – V Figure 3. Figure 4. 25 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 30 9 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com TYPICAL CHARACTERISTICS (continued) NO LOAD BATTERY CURRENT vs INPUT VOLTAGE NO LOAD BATTERY CURRENT vs INPUT VOLTAGE 1.0 1.0 EN = on EN1 = off EN2 = on 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 5 10 15 20 VI – Input Voltage – V VI – Input Voltage – V Figure 5. Figure 6. BATTERY CURRENT vs INPUT VOLTAGE VREF2 OUTPUT VOLTAGE vs OUTPUT CURRENT 1.0 25 2.02 EN = on EN1 = on EN2 = off 0.8 VI = 12 V VVREF2 – VREF2 Output Voltage – V 0.9 IVBAT – Battery Current – mA EN = on EN1 = on EN2 = on 0.9 IVBAT – Battery Current – mA IVBAT – Battery Current – mA 0.9 2.01 0.7 0.6 0.5 2.00 0.4 0.3 1.99 0.2 0.1 0 5 10 15 20 25 1.98 –100 VI – Input Voltage – V 0 50 100 IVREF2 – VREF2 Output Current – mA Figure 7. 10 –50 Figure 8. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 TYPICAL CHARACTERISTICS (continued) VREG3 OUTPUT VOLTAGE vs OUTPUT CURRENT VREG5 OUTPUT VOLTAGE vs OUTPUT CURRENT 5.10 VVREG5 – 5-V Linear Regulator Output Voltage – V VVREG3 – 3.3-V Linear Regulator Output Voltage – V 3.40 VI = 12 V 5.05 3.35 5.00 3.3 4.95 3.25 4.90 3.20 0 2 4 6 8 0 10 20 40 60 80 100 IREG3 – 3.3-V Linear Regulator Output Current – mA IREG5 – 5-V Linear Regulator Output Current – mA Figure 9. Figure 10. SWITCHING FREQUENCY vs JUNCTION TEMPERATURE FORWARD VOLTAGE OF BOOST SW vs JUNCTION TEMPERATURE 330 VFBST – Forward Voltage Boost Voltage – V 0.25 RRF = 330 kW fSW – Switching Frequency – kHz VI = 12 V 320 0.20 310 0.15 300 0.10 290 0.05 280 270 -50 0 50 100 150 0 -50 0 50 100 TJ – Junction Temperature – °C TJ – Junction Temperature – °C Figure 11. Figure 12. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 150 11 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com TYPICAL CHARACTERISTICS (continued) OVP/UVP THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE VBST LEAKAGE CURRENT vs JUNCTION TEMPERATURE 150 1.5 IBSTLK – VBST Leakage Current – mA Voltage Protection Threshold – % OVP UVP 130 110 90 70 50 -50 0 50 100 0.9 0.6 0.3 0 -50 150 0 50 100 150 TJ – Junction Temperature – °C TJ – Junction Temperature – °C Figure 13. Figure 14. CURRENT LIMIT THRESHOLD vs JUNCTION TEMPERATURE 5-V OUTPUT VOLTAGE vs INPUT VOLTAGE 66 5.2 VCSN (V) 5.1 1 5 12 5.0 64 VO1 – 5-V Output Voltage – V VOCL – Current Limit Threshold – mV 1.2 62 60 58 56 Auto-Skip Mode fSW = 330 kHz 4.9 4.8 4.7 4.6 4.5 IO (A) 4.4 0 4 8 4.3 54 -50 12 0 50 100 150 4.2 4.5 5.0 5.5 6.0 TJ – Junction Temperature – °C VI – Input Voltage – V Figure 15. Figure 16. Submit Documentation Feedback 6.5 7.0 Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 TYPICAL CHARACTERISTICS (continued) 3.3-V OUTPUT VOLTAGE vs INPUT VOLTAGE 5-V EFFICIENCY vs OUTPUT CURRENT 100 3.40 Auto-Skip Auto-Skip Mode fSW = 330 kHz VO2 – 3.3-V Output Voltage – V 80 h – Efficiency – % 3.35 3.30 3.25 IO (A) 5.0 5.5 6.5 6.0 40 0.01 0.1 1 VI – Input Voltage – V IO1 – 5-V Output Current – A Figure 17. Figure 18. 5-V EFFICIENCY vs OUTPUT CURRENT 3.3-V EFFICIENCY vs OUTPUT CURRENT 10 100 VI = 8 V Auto-Skip 80 90 VI = 12 V VI = 20 V h – Efficiency – % h – Efficiency – % Current Mode VI = 12 V RGV = 18 kW 0 0.001 7.0 100 80 70 0.01 0.1 1 60 CCM OOA 40 VI = 12 V Current Mode RGV = 12 kW 5.0-V SMPS: ON 20 Auto-Skip Current Mode RGV = 18 kW 60 50 0.001 CCM OOA 20 0 4 8 3.20 4.5 60 10 0 0.001 0.01 0.1 1 IO1 – 5-V Output Current – A IO2 – 3.3-V Output Current – A Figure 19. Figure 20. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 10 13 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com TYPICAL CHARACTERISTICS (continued) 3.3-V EFFICIENCY vs OUTPUT CURRENT 5-V SWITCHING FREQUENCY vs OUTPUT CURRENT 400 100 CCM VI = 8 V 350 h – Efficiency – % VI = 12 V fSW – Switching Frequency – kHz 90 VI = 20 V 80 70 60 VI = 12 V Current Mode RGV = 12 kW 5.0-V SMPS: ON 50 40 0.001 0.01 0.1 1 300 250 200 150 100 OOA 50 Auto-Skip 0 0.001 10 0.01 0.1 1 IO2 – 3.3-V Output Current – A IO1 – 5-V Output Current – A Figure 21. Figure 22. 3.3-V SWITCHING FREQUENCY vs OUTPUT CURRENT 5-V OUTPUT VOLTAGE vs OUTPUT CURRENT 10 5.10 400 CCM 5.08 5.06 300 5.04 250 5.02 200 5.00 OOA 4.98 150 CCM 4.96 100 OOA 4.94 50 VI = 12 V Current Mode RGV = 18 kW 4.92 0 0.001 14 Auto-Skip VO1 – 5.0-V Output Voltage – V fSW – Switching Frequency – kHz 350 Auto-Skip 0.01 0.1 1 4.90 10 0 1 2 3 4 5 6 IO2 – 3.3-V Output Current – A IO1 – 5-V Output Current – A Figure 23. Figure 24. Submit Documentation Feedback 7 8 Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 TYPICAL CHARACTERISTICS (continued) 3.3-V OUTPUT VOLTAGE vs OUTPUT CURRENT 5-V OUTPUT VOLTAGE vs OUTPUT CURRENT 5.10 3.40 3.38 5.08 Auto-Skip and OOA 3.34 5.06 Auto-Skip and OOA VO1 – 5.0-V Output Voltage – V VO2 – 3.3-V Output Voltage – V 3.36 5.04 5.02 3.32 3.30 5.00 CCM 3.28 4.98 3.26 CCM 4.96 3.24 4.94 VI = 12 V Current Mode RGV = 12 kW 3.22 VI = 12 V Current Mode (Non-droop) RGV = 1 kW C = 1.8 nF 4.92 4.90 3.20 0 1 2 3 4 5 6 7 0 8 1 2 3 4 5 6 7 IO2 – 3.3-V Output Current – A IO1 – 5-V Output Current – A Figure 25. Figure 26. 3.3-V OUTPUT VOLTAGE vs OUTPUT CURRENT 5.0-V BODE-PLOT – GAIN AND PHASE vs FREQUENCY 80 3.40 8 180 3.38 Auto-Skip and OOA VO2 – 3.3-V Output Voltage – V 3.36 Gain – dB 3.34 3.32 3.30 60 135 40 90 20 45 Gain 0 0 –20 3.28 Phase – ° Phase 45 CCM 3.26 3.24 3.22 –90 –40 VI = 12 V Current Mode (Non-droop) RGV = 9.1 kW C = 1.8 nF –60 VO= 5.0 V VI = 12 V IO = 8 A –80 100 3.20 0 1 2 3 4 5 6 7 8 1k –135 10 k 100 k –180 1M f – Frequency – Hz IO2 – 3.3-V Output Current – A Figure 27. Figure 28. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 15 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com TYPICAL CHARACTERISTICS (continued) 3.3-V BODE-PLOT – GAIN AND PHASE vs FREQUENCY 80 5.0-V SWITCH-OVER WAVEFORMS 180 135 40 90 20 45 Gain 0 VREG5 (100 mV/div) Phase – ° Gain – dB Phase 60 0 –20 VO1 (100 mV/div) 45 –90 –40 VO= 3.3 V VI = 12 V IO = 8 A –60 –80 100 1k –135 10 k 2 ms/div –180 1M 100 k f – Frequency – Hz Figure 29. Figure 30. CURRENT MONITOR VOLTAGE vs OUTPUT CURRENT 3.0 VIMONx – Output Voltage – V 2.5 2.0 VIMON1 1.5 1.0 VIMON2 0.5 0 0 2 4 6 8 10 12 IOUTx – Output Current – A Figure 31. 16 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 TYPICAL CHARACTERISTICS 5.0-V START-UP WAVEFORMS 3.3-V START-UP WAVEFORMS EN2 (5V/div) EN1 (5V/div) Vout1 (2V/div) Vout2 (2V/div) PGOOD2 (5V/div) 1msec/div PGOOD1 (5V/div) 1msec/div Figure 32. Figure 33. 5.0-V SOFT-STOP WAVEFORMS 3.3-V SOFT-STOP WAVEFORMS EN2 (5V/div) EN1 (5V/div) Vout1 (2V/div) Vout2 (2V/div) PGOOD2 (5V/div) PGOOD1 (5V/div) 1msec/div 1msec/div Figure 34. Figure 35. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 17 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com TYPICAL CHARACTERISTICS (continued) 5.0-V LOAD TRANSIENT RESPONSE 3.3-V LOAD TRANSIENT RESPONSE VI =12V, Auto-skip VI=12V, Auto-skip VO1 (100mV/div) VO2 (100mV/div) SW1 (10V/div) IO1 (5A/div) 100 100 mms/div s/div SW2 (10V/div) Figure 36. 18 IO2 (5A/div) 100 100 mms/div s/div Figure 37. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 DETAILED DESCRIPTION ENABLE AND SOFT START When EN is Low, the TPS51222 is in the shutdown state. Only the 3.3-V LDO stays alive, and consumes 7 µA (typically). When EN becomes High, the TPS51222 is in the standby state. The 2-V reference and the 5-V LDO become enabled, and consume about 80 µA with no load condition, and are ready to turn on SMPS channels. Each SMPS channel is turned on when ENx becomes High. After ENx is set to high, the TPS51222 begins the softstart sequence, and ramps up the output voltage from zero to the target voltage in 0.96 ms. However, if a slower soft-start is required, an external capacitor can be tied from the ENx pin to GND. In this case, the TPS51222 charges the external capacitor with the integrated 2-µA current source. An approximate external soft-start time would be tEX-SS = CEX / IEN12, which means the time from ENx = 1 V to ENx = 2 V. The recommend capacitance is more than 2.2 nF. 1) Internal Soft-start EN1 Vout1 200ms 960ms EN11V 2) External Soft-start EN1 External Soft-start time Vout1 Figure 38. Enable and Soft-start Timing Table 1. Enable Logic States EN EN1 EN2 VREG3 GND Don’t Care Don’t Care ON Hi Lo Lo ON Hi Hi Lo ON Hi Lo Hi Hi Hi Hi VREF2 VREG5 CH1 CH2 Off Off Off Off ON ON Off Off ON ON ON Off ON ON ON Off ON ON ON ON ON ON 3.3-V, 10-mA LDO (VREG3) A 3.3-V, 10-mA, linear regulator is integrated in the TPS51222. This LDO services some of the analog circuit in the device and provides a handy standby supply for 3.3-V Always On voltage in the notebook system. Apply a 2.2-µF (at least 1-µF), high quality X5R or X7R ceramic capacitor from VREG3 to (signal) GND in adjacent to the device. 2-V, 100-µA Sink/Source Reference (VREF2) This voltage is used for the reference of the loop compensation network. Apply a 0.22-µF (at least 0.1-µF), high-quality X5R or X7R ceramic capacitor from VREF2 to (signal) GND in adjacent to the device. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 19 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com 5.0-V, 100-mA LDO (VREG5) A 5.0-V, 100-mA, linear regulator is integrated in the TPS51222. This LDO services the main analog supply rail and provides the current for gate drivers until switch-over function becomes enable. Apply a 10-µF (at least 4.7-µF), high-quality X5R or X7R ceramic capacitor from VREG5 to (power) GND in adjacent to the device. VREG5 SWITCHOVER When EN1 is high, PGOOD1 indicates GOOD and a voltage of more than 4.8 V is applied to V5SW, the internal 5V-LDO is shut off and the VREG5 is shorted to V5SW by an internal MOSFET after an 7.7-ms delay. When the V5SW voltage becomes lower than 4.65 V, EN1 becomes low, or PGOOD1 indicates BAD, the internal switch is turned off, and the internal 5V-LDO resumes immediately. BASIC PWM OPERATIONS The main control loop of the SMPS is designed as a fixed frequency, peak current mode, pulse width modulation (PWM) controller. It achieves stable operation with any type of output capacitors, including low ESR capacitor(s) such as ceramic or specialty polymer capacitors. The current mode scheme uses the output voltage information and the inductor current information to regulate the output voltage. The output voltage information is sensed by VFBx pin. The signal is compared with the internal 1-V reference and the voltage difference is amplified by a transconductance amplifier (VFB-AMP). The inductor current information is sensed by CSPx and CSNx pins. The voltage difference is amplified by another transconductance amplifier (CS-AMP). The output of the VFB-AMP indicates the target peak inductor current. If the output voltage decreases, the TPS51222 increases the target inductor current to raise the output voltage. Alternatively, if the output voltage rises, the TPS51222 decreases the target inductor current to reduce the output voltage. At the beginning of each clock cycle, the high-side MOSFET is turned on, or becomes ‘ON’ state. The high-side MOSFET is turned off, or becomes OFF state, after the inductor current becomes the target value which is determined by the combination value of the output of the VFB-AMP and a ramp compensation signal. The ramp compensation signal is used to prevent sub-harmonic oscillation of the inductor current control loop. The high-side MOSFET is turned on again at the next clock cycle. By repeating the operation in this manner, the controller regulates the output voltage. The synchronous low-side or the rectifying MOSFET is turned on each OFF state to keep the conduction loss minimum. 20 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 TPS51222 www.ti.com............................................................................................................................................................................................... SLUS908 – JANUARY 2009 PWM FREQUENCY CONTROL The TPS51222 has a fixed frequency control scheme with 180° phase shift. The switching frequency can be determined by an external resistor which is connected between RF pin and GND, and can be calculated using Equation 1. 1 × 105 fsw éëkHz ùû = RF éëkΩ ùû (1) TPS51222 can also synchronize to more than 2.5 V amplitude external clock by applying the signal to the RF pin. The set timing of channel 1 initiates at the raising edge (1.3 V typ) of the clock and channel 2 initiates at the falling edge (1.1 V typ). Therefore, the 50% duty signal makes both channels 180° phase shift. 1000 900 fSW - Frequency - kHz 800 700 600 500 400 300 200 100 0 100 200 300 400 500 RF - Resistance - kW Figure 39. Switching Frequency vs RF LIGHT LOAD OPERATION The TPS51222 automatically reduces switching frequency at light load conditions to maintain high efficiency if Auto Skip or Out-of-Audio™ mode is selected by SKIPSELx. This reduction of frequency is achieved by skipping pulses. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to the point that its peak reaches a predetermined current, ILL(PEAK), which indicates the boundary between heavy-load condditions and light-load conditions. Once the top MOSFET is turned on, the TPS51222 does not allow it to be turned off until it reaches ILL(PEAK). This eventually causes an overvoltage condition to the output and pulse skipping. From the next pulse after zero-crossing is detected, ILL(PEAK) is limited by the ramp-down signal ILL(PEAK)RAMP, which starts from 25% of the overcurrent limit setting (IOCL(PEAK): (see the Current Protection section) toward 5% of IOCL(PEAK) over one switching cycle to prevent causing large ripple. The transition load point to the light load operation ILL(DC) can be calculated in Equation 2. I LL(DC) + I LL(PEAK) * 0.5 I IND(RIPPLE) (2) (V - VOUT ) × VOUT 1 IIND(RIPPLE) = × IN L × fSW VIN (3) where • fSW is the PWM switching frequency which is determined by RF resistor setting or external clock Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s) :TPS51222 21 TPS51222 SLUS908 – JANUARY 2009............................................................................................................................................................................................... www.ti.com ILL(PEAK)RAMP = (0.2 - 0.13 ´ tON ´ fSW )´ t ´ IOCL(PEAK ) (4) Switching frequency versus output current in the light load condition is a function of L, f, VIN and VOUT, but it decreases almost proportionally to the output current from the ILL(DC), as described in Equation 2; while maintaining the switching synchronization with the clock. Due to the synchronization, the switching waveform in boundary load condition (close to ILL(DC)) appears as a sub-harmonic oscillation; however, it is the intended operation. If SKIPSELx is tied to GND, the TPS51222 works on a constant frequency of fSW regardless its load current. Inductor Current ILL(PEAK) ILL(DC) IIND(RIPPLE) 0 Time ILL(peak) – Inductor Current Limit – A Figure 40. Boundary Between Pulse Skipping and CCM 20% of IOCL ILL(PEAK) Ramp Signal ILL(PEAK) at Light Load 7% of IOCL tON 1/fSW t – Time Figure 41. Inductor Current Limit at Pulse Skipping Table 2. Skip Mode Selection SKIPSELx GND VREF2 VREG3 VREG5 OPERATING MODE Continuous Conduction Auto Skip OOA Skip (maximum 7 skips, for
TPS51222RTVT 价格&库存

很抱歉,暂时无法提供与“TPS51222RTVT”相匹配的价格&库存,您可以联系我们找货

免费人工找货