0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS548D22EVM-784

TPS548D22EVM-784

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    EVALBOARDFORTPS548

  • 数据手册
  • 价格&库存
TPS548D22EVM-784 数据手册
www.ti.com Table of Contents User’s Guide TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Table of Contents 1 Introduction.............................................................................................................................................................................3 2 Description.............................................................................................................................................................................. 3 2.1 Typical End-User Applications........................................................................................................................................... 3 2.2 EVM Features.................................................................................................................................................................... 3 3 EVM Electrical Performance Specifications.........................................................................................................................4 4 Schematic................................................................................................................................................................................5 5 Test Equipment....................................................................................................................................................................... 6 6 The PWR-784EVM................................................................................................................................................................... 7 7 List of Test Points, Jumpers, and Switch............................................................................................................................. 8 8 Test Procedure........................................................................................................................................................................ 9 8.1 Line and Load Regulation Measurement Procedure..........................................................................................................9 8.2 Efficiency............................................................................................................................................................................9 8.3 Equipment Shutdown......................................................................................................................................................... 9 9 Performance Data and Typical Characteristic Curves...................................................................................................... 10 9.1 Efficiency..........................................................................................................................................................................10 9.2 Load Regulation............................................................................................................................................................... 10 9.3 Line Regulation.................................................................................................................................................................11 9.4 Transient Response......................................................................................................................................................... 11 9.5 Output Ripple................................................................................................................................................................... 12 9.6 Control On........................................................................................................................................................................13 9.7 Control Off........................................................................................................................................................................14 9.8 Thermal Image................................................................................................................................................................. 14 10 EVM Assembly Drawing and PCB Layout........................................................................................................................ 15 11 List of Materials...................................................................................................................................................................20 12 Revision History................................................................................................................................................................. 21 List of Figures Figure 4-1. PWR-784EVM Schematic......................................................................................................................................... 5 Figure 6-1. PWR-784EVM Overview........................................................................................................................................... 7 Figure 6-2. Tip and Barrel Measurement..................................................................................................................................... 7 Figure 9-1. Efficiency of 1-V Output vs Load............................................................................................................................. 10 Figure 9-2. Load Regulation of 1-V Output................................................................................................................................10 Figure 9-3. Line Regulation of 1-V Output................................................................................................................................. 11 Figure 9-4. Transient Response of 1-V Output at 12 VIN, Transient is 8 A to 32 A, 2.5 A/µs.....................................................11 Figure 9-5. Output Ripple and SW Node of 1-V Output at 12 VIN, 0-A Output.......................................................................... 12 Figure 9-6. Output Ripple and SW Node of 1-V Output at 12 VIN, 40-A Output........................................................................ 12 Figure 9-7. Start up from Control, 1-V Output at 12 VIN, 40-A Output....................................................................................... 13 Figure 9-8. 0.5-V Pre-bias start up from Control, 1-V Output at 12 VIN, 40-A Output................................................................13 Figure 9-9. Soft Stop from Control, 1-V Output at 12 VIN, 40-A Output..................................................................................... 14 Figure 9-10. Thermal Image at 1-V Output at 12 VIN, 40-A Output........................................................................................... 14 Figure 10-1. PWR-681EVM Top Layer Assembly Drawing (top view).......................................................................................15 Figure 10-2. PWR-784EVM Top Solder Mask (top view)...........................................................................................................15 Figure 10-3. PWR-784EVM Top Layer (top view)......................................................................................................................16 Figure 10-4. PWR-784EVM Inner Layer 1 (top view)................................................................................................................ 16 Figure 10-5. PWR-784EVM Inner Layer 2 (top view)................................................................................................................ 17 Figure 10-6. PWR-784EVM Inner Layer 3 (top view)................................................................................................................ 17 Figure 10-7. PWR-784EVM Inner Layer 4 (top view)................................................................................................................ 18 Figure 10-8. PWR-784EVM Bottom Layer (top view)................................................................................................................ 18 Figure 10-9. PWR-784EVM Bottom Solder Mask (top view)..................................................................................................... 19 SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 1 Trademarks www.ti.com Figure 10-10. PWR-784EVM Bottom Overlay Layer (top view).................................................................................................19 List of Tables Table 3-1. PWR-784EVM Electrical Performance Specifications................................................................................................ 4 Table 7-1. The Function of Each Test Point................................................................................................................................. 8 Table 8-1. List of Test Points for Line and Load Measurements.................................................................................................. 9 Table 8-2. List of Test Points for Efficiency Measurements..........................................................................................................9 Table 11-1. PWR784 List of Materials........................................................................................................................................20 Trademarks All trademarks are the property of their respective owners. 2 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Introduction 1 Introduction The PWR784EVM evaluation module uses the TPS548D22 device. The TPS548D22 is a highly integrated synchronous buck converter that is designed for up to 40-A current output. 2 Description The PWR784EVM is designed as a single output DC-DC converter that demonstrates the TPS548D22 in a typical low-voltage application while providing a number of test points to evaluate the performance. It uses a nominal 12-V input bus to produce a regulated 1-V output at up to 40-A load current. 2.1 Typical End-User Applications • • • • • Enterprise Storage, SSD, NAS Wireless and Wired Communication Infrastructure Industrial PCs, Automation, ATE, PLC, Video Surveillance Enterprise Server, Switches, Routers AISIC, SoC, FPGA, DSP Core and I/O Rails 2.2 EVM Features • • Regulated 1-V output up to 40-A, steady-state output current Convenient Test Points for Probing Critical Waveforms SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 3 EVM Electrical Performance Specifications www.ti.com 3 EVM Electrical Performance Specifications Table 3-1. PWR-784EVM Electrical Performance Specifications PARAMETER TEST CONDITIONS MIN TYP MAX 5 12 16 UNITS Input Characteristics Voltage range VIN tied to VDD Maximum input current VIN = 12 V, IO = 40 A No load input current VIN = 12 V, IO = 0 A 12 V A 60 mA 1 V Output Characteristics VOUT Output voltage Output current = 10 A IOUT Output load current IOUT(min) to IOUT(max) Output voltage regulation VOUT Output voltage ripple VOUT Output overcurrent 0 40 Line regulation: input voltage = 5 V to 16 V 0.5% Load regulation: output current = 0 A to IOUT(max) 0.5% VIN = 12 V, IOUT = 40 A A 10 mVPP 46 A 650 kHz Systems Characteristics VOUT 4 Switching frequency FSW Peak efficiency VIN = 12 V, IO = 18 A, FSW = 650 kHz Operating temperature Toper 89% 0 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide 105 °C SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Schematic 4 Schematic J1 VIN = 6V - 16V C1 C2 22µF DNP330uF C11 100µF C12 DNP330uF C3 22µF C13 22µF C4 22µF DNPC14 22uF C5 22µF DNPC15 22uF C6 22µF DNPC16 22uF C7 22µF DNPC17 22uF C8 22µF C9 22µF C18 22uF C19 22uF C10 2200pF C20 22µF J2 PGND R1 1.00 VDD TP1 TP2 TP5 SW TP4 R6 200k 21 22 23 24 25 26 PVIN PVIN PVIN PVIN PVIN PVIN 28 VDD CNTL/EN_UVLO J4 VDD LOW CNTL R12 100k C34 DNP1uF DRGND MODE TP9 BP 3 2 1 34 31 C44 1uF DNP 5 BOOT EN_UVLO FSEL C45 4.7µF VSEL TP12 ILIM TP14 32 BP FSEL VSEL 36 ILIM DRGND 40 REFIN_TRK VOSNS U1 C46 TP6 100k NC 27 13 14 15 16 17 18 19 20 29 30 41 R11 0 C31 DNP 0.1uF C36 DNP1000pF VOUT = 1V I_OUT = 40A MAX 0 R8 DNPC32 1.10k 6800pF CHA C25 100µF C26 100µF C27 100µF C28 100µF C29 100µF C23 470µF DNPC30 100uF C24 470µF C33 100µF R14 DNP 0 38 PGND PGND PGND PGND PGND PGND PGND PGND DRGND AGND PAD TP7 J3 R3 DNP R4 0 CHB R7 0 R13 PGND RSN MODE R10 0 39 RSP 33 37 R19 137k NU NU NU 250nH R5 470pF DNP1.50k TP19 R9 PGOOD 3.01 TP8 BP DNP TP3 Remote Sense pos/neg should run as balanced pair 0 DNPC21 C22 0.1µF 35 PGOOD C35 1µF CLK DATA ALERT BP 4 6 7 8 9 10 11 12 SW SW SW SW SW SW SW R2 DNP L1 R15 10.0k C39 100µF C40 100µF C41 100µF C42 100µF DNPC43 100uF C37 DNP470uF C38 470µF R16 J5 0 TP10 TP11 R17 DNP DNP 0 0 TP13 TP18 PGND PGND NT1 NT2 Net-Tie Net-Tie R18 PGND TPS548C22RVF 1000pF AGND DRGND PGND AGND BP R20 100k DRGND R21 100k R22 100k J6 1 3 5 7 9 DNP 2 4 6 8 10 DATA TP17 ADDR ALERT TP16 MODE CLK TP15 VSEL PGND ----- GND NET TIES ----- AGND TP20 CLK TP21 DATA TP22 ALERT PMBus VSEL MODE R23 37.4k FSEL R24 42.2k R25 22.1k AGND AGND Figure 4-1. PWR-784EVM Schematic SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 5 Test Equipment www.ti.com 5 Test Equipment Voltage Source: The input voltage source VIN must be a 0-V to 18-V variable DC source capable of supplying at least 12 ADC. Multimeters: It is recommended to use two separate multimeters Figure 6-1. One meter is used to measure VIN and one to measure VOUT. Output Load: A variable electronic load is recommended for testing Figure 6-1. It must be capable of 40 A at voltages as low as 0.6 V. Oscilloscope: An oscilloscope is recommended for measuring output noise and ripple. Output ripple must be measured using a tip-and-barrel method or better as shown in Figure 6-2.The scope must be adjusted to 20-MHz bandwidth, AC coupling at 50 mV/division, and must be set to 1-µs/division. Fan: During prolonged operation at high loads, it may be necessary to provide forced air cooling with a small fan aimed at the EVM. Temperature of the devices on the EVM must be maintained below 105°C. Recommended Wire Gauge: The voltage drop in the load wires must be kept as low as possible in order to keep the working voltage at the load within its operating range. Use the AWG 14 wire (2 wires parallel for VOUT positive and 2 wires parallel for the VOUT negative) of no more than 1.98 feet between the EVM and the load. This recommended wire gauge and length should achieve a voltage drop of no more than 0.2 V at the maximum 40-A load. 6 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com The PWR-784EVM 6 The PWR-784EVM Figure 6-1. PWR-784EVM Overview Metal Ground Barrel Probe Tip Tip and Barrel VOUT Ripple Measurement Figure 6-2. Tip and Barrel Measurement SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 7 List of Test Points, Jumpers, and Switch www.ti.com 7 List of Test Points, Jumpers, and Switch Table 7-1. The Function of Each Test Point (1) 8 ITEM TYPE NAME DESCRIPTION TP5 T-H loop SW TP7 T-H loop CH-A Measure loop stability TP6 T-H loop CH-B Measure loop stability TP2 T-H loop LocS+ Sense VOUT + locally across C5. Use for efficiency and ripple measurements TP10 T-H loop LocS- Sense VOUT – locally across C5. Use for efficiency and ripple measurements TP3 T-H loop RemS+ Remote sense + TP11 T-H loop RemS- Remote sense – TP4 T-H loop PVIN Sense VIN + across C10 TP13 T-H loop PGND Sense VIN – across C10 TP1 T-H loop VDD Supplies the internal circuitry TP17 T-H loop FSEL Monitor the FSEL external resistor divider ratio during initial power up. TP15 T-H loop VSEL Monitor the VSEL external resistor divider ratio during initial power up. TP9 T-H loop BP LDO output TP8 T-H loop PG Power good TP16 T-H loop MODE TP12 T-H loop ILIM TP14 T-H loop REFIN_TRK TP19 T-H loop PGND Common GND TP18 T-H loop PGND Common GND TP20 T-H loop CLK Not used TP21 T-H loop DATA Not used TP22 T-H loop ALERT Not used JP4 2-pin jumper CNTL Shunts control pin to GND Power supply Switch node Monitor the MODE external resistor divider ratio during initial power up. Program over-current limit. Do not connect.(1) Pin name changes to RESV_TRK. TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Test Procedure 8 Test Procedure 8.1 Line and Load Regulation Measurement Procedure 1. 2. 3. 4. 5. Connect VOUT to J3 and VOUT_GND to J5 Figure 6-1. Ensure that the electronic load is set to draw 0 ADC. Connect VIN to J1 and VIN_GND to J2 Figure 6-1. Increase VIN from 0 V to 12 V using the digital multimeter to measure input voltage. Use the other digital multimeter to measure output voltage VOUT at TP2 and TP10. Table 8-1. List of Test Points for Line and Load Measurements TEST POINT NODE NAME DESCRIPTION TP2 LocS+ Sense VOUT + locally across C5. Use for efficiency and ripple measurements TP10 LocS- Sense VOUT - locally across C5. Use for efficiency and ripple measurements TP4 PVIN Sense VIN + across C10 TP13 PGND Sense VIN - across C10 6. Vary the load from 0 ADC to maximum rated output 40 ADC. VOUT must remain in regulation as defined in Table 3-1. 7. Vary VIN from 5 V to 16 V. VOUT must remain in regulation as defined in Table 3-1. 8. Decrease the load to 0 A. 9. Decrease VIN to 0 V or turn off the supply. 8.2 Efficiency To measure the efficiency of the power train on the EVM, it is important to measure the voltages at the correct location. This is necessary because otherwise the measurements will include losses in efficiency that are not related to the power train itself. Losses incurred by the voltage drop in the copper traces and in the input and output connectors are not related to the efficiency of the power train, and they must not be included in efficiency measurements. Table 8-2. List of Test Points for Efficiency Measurements TEST POINT NODE NAME TP2 LocS+ Sense VOUT + locally across C5. Use for efficiency and ripple measurements DESCRIPTION TP10 LocS- Sense VOUT - locally across C5. Use for efficiency and ripple measurements TP4 PVIN Sense VIN + across C10 TP13 PGND Sense VIN - across C10 Input current can be measured at any point in the input wires, and output current can be measured anywhere in the output wires of the output being measured. Using these measurement points result in efficiency measurements that do not include losses due to the connectors and PCB traces. 8.3 Equipment Shutdown 1. 2. 3. 4. Reduce the load current to 0 A. Reduce input voltage to 0 V. Shut down the external fan if in use. Shut down equipment. SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 9 Performance Data and Typical Characteristic Curves www.ti.com 9 Performance Data and Typical Characteristic Curves Figure 9-1 through Figure 9-10 present typical performance curves for the PWR-784EVM. SPACE 9.1 Efficiency 100% 90% 80% E ffic ie n c y ( % ) 70% 60% 50% 40% 30% 20% 8V 10% IN 12 V IN 16 V IN 0 0 5 10 15 20 25 30 35 40 I OUT (A) D001 Figure 9-1. Efficiency of 1-V Output vs Load 9.2 Load Regulation 1.01 VOUT (V) 1.005 1 0.995 8V 12 V 16 V 0.99 0 5 10 15 IOUT (A) 20 25 30 D002 Figure 9-2. Load Regulation of 1-V Output 10 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 9.3 Line Regulation 1.01 VOUT (V) 1.005 1 0.995 0.99 0 2 4 6 8 VIN (V) 10 12 14 16 D003 Figure 9-3. Line Regulation of 1-V Output 9.4 Transient Response Figure 9-4. Transient Response of 1-V Output at 12 VIN, Transient is 8 A to 32 A, 2.5 A/µs SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 11 Performance Data and Typical Characteristic Curves www.ti.com 9.5 Output Ripple Figure 9-5. Output Ripple and SW Node of 1-V Output at 12 VIN, 0-A Output Figure 9-6. Output Ripple and SW Node of 1-V Output at 12 VIN, 40-A Output 12 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Performance Data and Typical Characteristic Curves 9.6 Control On Figure 9-7. Start up from Control, 1-V Output at 12 VIN, 40-A Output Figure 9-8. 0.5-V Pre-bias start up from Control, 1-V Output at 12 VIN, 40-A Output SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 13 Performance Data and Typical Characteristic Curves www.ti.com 9.7 Control Off Figure 9-9. Soft Stop from Control, 1-V Output at 12 VIN, 40-A Output 9.8 Thermal Image Figure 9-10. Thermal Image at 1-V Output at 12 VIN, 40-A Output 14 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout 10 EVM Assembly Drawing and PCB Layout Figure 10-1 through Figure 10-8 show the design of the PWR-784EVM printed-circuit board (PCB). The PWR-784EVM has a 2-oz. copper finish for all layers. Figure 10-1. PWR-681EVM Top Layer Assembly Drawing (top view) Figure 10-2. PWR-784EVM Top Solder Mask (top view) SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 15 EVM Assembly Drawing and PCB Layout www.ti.com Figure 10-3. PWR-784EVM Top Layer (top view) Figure 10-4. PWR-784EVM Inner Layer 1 (top view) 16 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 10-5. PWR-784EVM Inner Layer 2 (top view) Figure 10-6. PWR-784EVM Inner Layer 3 (top view) SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 17 EVM Assembly Drawing and PCB Layout www.ti.com Figure 10-7. PWR-784EVM Inner Layer 4 (top view) Figure 10-8. PWR-784EVM Bottom Layer (top view) 18 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com EVM Assembly Drawing and PCB Layout Figure 10-9. PWR-784EVM Bottom Solder Mask (top view) Figure 10-10. PWR-784EVM Bottom Overlay Layer (top view) SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 19 List of Materials www.ti.com 11 List of Materials The EVM components list according to the schematic shown in Table 11-1. Table 11-1. PWR784 List of Materials Quantity 20 Designator 12 C2, C3, C4, C5, C6, C7, C8, C9, C13, C18, C19, C20 1 C10 1 Value Description Package Reference Manufacturer Part Number CAP, CERM, 22 µF, 25 V, +/10%, X7R, 1210 1210 MuRata GRM32ER71E226KE15 L 2200 pF CAP, CERM, 2200 pF, 25 V, +/10%, X5R, 0402 0402 MuRata GRM155R61E222KA01 D C11 100 µF CAP, AL, 100uF, 35V, +/-20%, 0.15 ohm, SMD SMT Radial G Panasonic EEE-FC1V101P 1 C22 0.1 µF CAP, CERM, 0.1 µF, 50 V, +/10%, X7R, 0603 0603 MuRata GRM188R71H104KA93 D 3 C23, C24, C38 470 µF CAP, Tantalum Polymer, 470 µF, 2.5 V, +/- 20%, 0.006 ohm, 7.3x2.8x4.3mm SMD 7.3x2.8x4.3mm Panasonic 2R5TPF470M6L 10 C25, C26, C27, C28, C29, C33, C39, C40, C41, C42 100 µF CAP, CERM, 100 µF, 6.3 V, +/20%, X5R, 1210 1210 MuRata GRM32ER60J107ME20 L 1 C35 1 µF CAP, CERM, 1 µF, 16 V, +/- 10%, 0603 X5R, 0603 Kemet C0603C105K4PACTU 1 C45 4.7 µF CAP, CERM, 4.7 µF, 16 V, +/10%, X7R, 0805 0805 MuRata GRM21BR71C475KA73 L 1 C46 1000 pF CAP, CERM, 1000 pF, 50 V, +/5%, C0G/NP0, 0603 0603 Kemet C0603C102J5GACTU 4 J1, J2, J3, J5 TERMINAL BLOCK 5.08MM VERT 2POS, TH TERM_BLK, 2pos, 5.08mm On-Shore Technology ED120/2DS 1 J4 Header, 100mil, 2x1, Tin, TH Header, 2 PIN, 100mil, Tin Sullins Connector Solutions PEC02SAAN 1 L1 250 nH Inductor, Shielded Drum Core, Ferrite, 250 nH, 50 A, 0.000165 ohm, SMD 12.5x13mm Wurth Elektronik 744309025 1 R1 1.00 RES, 1.00, 1%, 0.1 W, 0603 0603 Yageo America RC0603FR-071RL 5 R4, R7, R10, R11, R16 RES, 0, 5%, 0.1 W, 0603 0603 Vishay-Dale CRCW06030000Z0EA 1 R6 200 k RES, 200 k, 1%, 0.1 W, 0603 0603 Vishay-Dale CRCW0603200KFKEA 1 R8 1.10 k RES, 1.10 k, 1%, 0.1 W, 0603 0603 Vishay-Dale CRCW06031K10FKEA 5 R12, R13, R20, R21, R22 100 k RES, 100 k, 1%, 0.1 W, 0603 0603 Vishay-Dale CRCW0603100KFKEA 1 R15 10.0 k RES, 10.0k ohm, 1%, 0.1W, 0603 0603 Vishay-Dale CRCW060310K0FKEA 1 R19 137 k RES, 137 k, 1%, 0.1 W, 0603 0603 Vishay-Dale CRCW0603137KFKEA 1 R23 37.4 k RES, 37.4 k, 1%, 0.1 W, 0603 0603 Vishay-Dale CRCW060337K4FKEA 1 R24 42.2 k RES, 42.2 k, 1%, 0.1 W, 0603 0603 Vishay-Dale CRCW060342K2FKEA 1 R25 22.1 k RES, 22.1 k, 1%, 0.1 W, 0603 0603 Vishay-Dale CRCW060322K1FKEA 14 TP1, TP5, TP6, TP7, TP8, TP9, TP12, TP14, TP15, TP16, TP17, TP20, TP21, TP22 White Test Point, Multipurpose, White, TH White Multipurpose Testpoint Keystone 5012 3 TP2, TP3, TP4 Test Point, Multipurpose, Red, TH Red Multipurpose Testpoint Keystone 5010 5 TP10, TP11, TP13, TP18, TP19 Test Point, Multipurpose, Black, TH Black Multipurpose Testpoint Keystone 5011 1 U1 High Performance, 40-A Single Synchronous Step-Down Converter with Analog REFIN, RVF0040A RVF0040A Texas Instruments TPS548C22RVF 0 C1, C12 330 µF CAP, TA, 330 µF, 6.3 V, +/- 20%, 0.025 ohm, SMD 7.3x2.8x4.3mm Sanyo 6TPE330ML 0 C14, C15, C16, C17 22 µF CAP, CERM, 22 µF, 25 V, +/10%, X7R, 1210 1210 MuRata GRM32ER71E226KE15 L 22 µF 0 Red Black TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Revision History Table 11-1. PWR784 List of Materials (continued) Quantity Designator Value Description Package Reference Manufacturer Part Number 0 C21 470 pF CAP, CERM, 470 pF, 50 V, +/10%, X7R, 0603 0 C30, C43 100 µF CAP, CERM, 100 µF, 6.3 V, +/20%, X5R, 1210 1210 MuRata GRM32ER60J107ME20 L 0 C31 0.1 µF CAP, CERM, 0.1 µF, 50 V, +/10%, X7R, 0603 0603 MuRata GRM188R71H104KA93 D 0 C32 6800 pF CAP, CERM, 6800 pF, 50 V, +/10%, X7R, 0603 0603 MuRata GRM188R71H682KA01 D 0 C34, C44 CAP, CERM, 1 µF, 16 V, +/- 10%, 0603 X5R, 0603 Kemet C0603C105K4PACTU 0 C36 1000 pF CAP, CERM, 1000 pF, 25 V, +/10%, X7R, 0603 0603 MuRata GRM188R71E102KA01 D 0 C37 470 µF CAP, Tantalum Polymer, 470 µF, 2.5 V, +/- 20%, 0.006 ohm, 7.3x2.8x4.3mm SMD 7.3x2.8x4.3mm Panasonic 2R5TPF470M6L 0 J6 Header (shrouded), 100mil, 5x2, Gold, TH 5x2 Shrouded header TE Connectivity 5103308-1 0 R2, R3, R14, R17, R18 RES, 0, 5%, 0.1 W, 0603 0603 Vishay-Dale CRCW06030000Z0EA 0 R5 1.50 k RES, 1.50 k, 1%, 0.1 W, 0603 0603 Yageo America RC0603FR-071K5L 3.0 1 RES, 3.01 ohm, 1%, 0.125W, 0805 0805 Vishay-Dale CRCW08053R01FKEA 0 R9 1 µF 0 0603 MuRata GRM188R71H471KA01 D 12 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (February 2016) to Revision B (August 2021) Page • Updated user's guide title................................................................................................................................... 3 • Updated the numbering format for tables, figures, and cross-references throughout the document. ................3 SLUUBE4B – FEBRUARY 2016 – REVISED AUGUST 2021 TPS548D22 SWIFT™ Step-Down Converter Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 21 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
TPS548D22EVM-784 价格&库存

很抱歉,暂时无法提供与“TPS548D22EVM-784”相匹配的价格&库存,您可以联系我们找货

免费人工找货