0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TPS562210ADDFR

TPS562210ADDFR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-8

  • 描述:

    DC-DC电源芯片 SOT23-8 Vi=4.5~17V

  • 数据手册
  • 价格&库存
TPS562210ADDFR 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 TPS56x210A 采用 8 引脚 SOT-23 封装的 4.5V 至 17V 输入、2A/3A 同步降压稳压器 1 特性 3 说明 • TPS562210A 和 TPS563210A 是采用 8 引脚 SOT-23 封装的简单易用型 2A/3A 同步降压转换器。 1 • • • • • • • • • • • • • • TPS562210A:集成有 133mΩ 和 80mΩ 场效应晶体管 (FET) 的 2A 转换 器 TPS563210A:集成有 68mΩ 和 39mΩ FET 的 3A 转换器 D-CAP2™针对快速瞬态响应的模式控制 高级 Eco-mode™脉冲跳跃 输入电压范围:4.5V 至 17V 输出电压范围:0.76V 至 7V 650kHz 开关频率 低关断电流(低于 10µA) 1% 反馈电压精度 (25°C) 从预偏置输出电压中启动 逐周期过流限制 断续模式欠压保护 非锁存过压保护 (OVP),欠压闭锁 (UVLO) 和热关 断 (TSD) 保护 可调软启动 电源正常输出 两款器件均经过优化,最大限度地减少了运行所需的外 部组件并且可以实现低待机电流。 这些开关模式电源 (SMPS) 器件采用 D-CAP2™ 模式 控制,从而提供快速瞬态响应,并且在无需外部补偿组 件的情况下支持诸如高分子聚合物等低等效串联电阻 (ESR) 输出电容器以及超低 ESR 陶瓷电容器。 该器件可在高级 Eco-mode™ 下运行,从而能在轻载 运行期间保持高效率。TPS562210A 和 TPS563210A 采用 8 引脚 1.6mm × 2.9mm SOT (DDF) 封装,额定 环境温度范围为 –40°C 至 85°C。 器件信息(1) 订货编号 TPS562210A TPS563210A 封装 封装尺寸(标称值) DDF(8) 1.60mm x 2.90mm (1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。 2 应用 • • • • 数字电视电源 高清 蓝光 (Blu-ray) 碟片™播放器 网络家庭终端设备 数字机顶盒(STB) 空白 空白 简化电路原理图 效率 TPS562210A TPS563210A 1 2 VOUT GND 100 VBST SW EN VIN VFB PG SS 90 8 7 80 EN 3 4 6 VOUT 5 Efficiency (%) 70 VIN 60 50 40 30 Copyright © 2016, Texas Instruments Incorporated Vout = 5V 20 Vout = 3.3V 10 0 0.001 Vout = 1.8V 0.01 0.1 1 Output Current (A) 10 C015 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. English Data Sheet: SLVSDP9 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 4 4 4 4 5 5 6 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Timing Requirements ................................................ Typical Characteristics .............................................. 7.4 Device Functional Modes........................................ 12 8 Application and Implementation ........................ 13 8.1 Application Information............................................ 13 8.2 Typical Application ................................................. 13 9 Power Supply Recommendations...................... 21 10 Layout................................................................... 22 10.1 Layout Guidelines ................................................. 22 10.2 Layout Example .................................................... 22 11 器件和文档支持 ..................................................... 23 11.1 11.2 11.3 11.4 11.5 11.6 11.7 Detailed Description ............................................ 10 7.1 Overview ................................................................. 10 7.2 Functional Block Diagram ...................................... 10 7.3 Feature Description................................................. 11 器件支持 ............................................................... 相关链接................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 23 23 23 23 23 23 23 12 机械、封装和可订购信息 ....................................... 23 4 修订历史记录 2 日期 修订版本 注释 2016 年 11 月 * 最初发布版本。 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 5 Pin Configuration and Functions DDF Package 8 Pin Top View 1 GND 2 SW EN 7 3 VIN VFB 6 4 PG SS 5 VBST 8 Pin Functions PIN NAME DESCRIPTION NO. GND 1 Ground pin Source terminal of low-side power NFET as well as the ground terminal for controller circuit. Connect sensitive VFB to this GND at a single point. SW 2 Switch node connection between high-side NFET and low-side NFET. VIN 3 Input voltage supply pin. The drain terminal of high-side power NFET. PG 4 Power good open drain output SS 5 Soft-start control. An external capacitor should be connected to GND. VFB 6 Converter feedback input. Connect to output voltage with feedback resistor divider. EN 7 Enable input control. Active high and must be pulled up to enable the device. VBST 8 Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between VBST and SW pins. Copyright © 2016, Texas Instruments Incorporated 3 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings TJ = -40°C to 150°C (unless otherwise noted) Input voltage range (1) MIN MAX UNIT VIN, EN –0.3 19 V VBST –0.3 25 V VBST (10 ns transient) –0.3 27.5 V VBST (vs SW) –0.3 6.5 V VFB, PG –0.3 6.5 V SS –0.3 5.5 V SW –2 19 V –3.5 21 V Operating junction temperature, TJ SW (10 ns transient) –40 150 °C Storage temperature, Tstg –55 150 °C (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 6.2 ESD Ratings V(ESD) (1) (2) Electrostatic discharge VALUE UNIT Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 V Charged device model (CDM), per JEDEC specification JESD22-C101 (2) ±500 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions TJ = –40°C to 150°C (unless otherwise noted) VIN MIN MAX 4.5 17 V VBST –0.1 23 V VBST (10 ns transient) –0.1 26 V VBST(vs SW) –0.1 6 V EN –0.1 17 V VFB, pg –0.1 5.5 V SS –0.1 5 V SW –1.8 17 V SW (10 ns transient) –3.5 20 V –40 85 °C Supply input voltage range VI Input voltage range TA Operating free-air temperature UNIT 6.4 Thermal Information THERMAL METRIC (1) TPS562210A TPS563210A DDF (8 PINS) UNIT RθJA Junction-to-ambient thermal resistance 106.1 87.0 °C/W RθJC(top) Junction-to-case (top) thermal resistance 49.1 41.6 °C/W RθJB Junction-to-board thermal resistance 10.9 14.6 °C/W ψJT Junction-to-top characterization parameter 8.6 4.7 °C/W ψJB Junction-to-board characterization parameter 10.8 14.6 °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 6.5 Electrical Characteristics over operating free-air temperature range, VIN = 12 V (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SUPPLY CURRENT IVIN Operating – non-switching supply current VIN current, TA = 25°C, EN = 5V, VFB = 0.8 V 190 290 µA IVINSDN Shutdown supply current VIN current, TA = 25°C, EN = 0 V 3.0 10 µA LOGIC THRESHOLD VENH EN high-level input voltage EN VENL EN low-level input voltage EN REN EN pin resistance to GND VEN = 12 V 1.6 V 225 450 0.6 V 900 kΩ VFB VOLTAGE AND DISCHARGE RESISTANCE VFB threshold voltage TPS562210A VFBTH TA = 25°C, VO = 1.05 V, IO = 10 mA, Eco-mode™ operation 772 TA = 25°C, VO = 1.05 V VFB threshold voltage TPS562210A and TPS563210A TA = 0°C to 85°C, VO = 1.05 V 758 (1) TA = -40°C to 85°C, VO = 1.05 V (1) IVFB VFB input current 765 mV 772 753 777 751 779 VFB = 0.8 V, TA = 25°C 0 ±0.1 mV µA MOSFET RDS(on)h High side switch resistance RDS(on)l Low side switch resistance TA = 25°C, VBST – SW = 5.5 V, TPS562210A 133 TA = 25°C, VBST – SW = 5.5 V, TPS563210A 68 TA = 25°C, TPS562210A 80 TA = 25°C, TPS563210A 39 mΩ mΩ CURRENT LIMIT Current limit (1) IOCL DC current, VOUT = 1.05 V , L1 = 2.2 µH, TPS562210A 2.5 3.2 4.3 DC current, VOUT = 1.05 V , L1 = 1.5 µH, TPS563210A 3.5 4.2 5.3 A THERMAL SHUTDOWN Thermal shutdown threshold (1) TSDN Shutdown temperature 155 Hysteresis °C 35 SOFT START ISS SS charge current VSS = 1.2 V 4.2 6 7.8 85% 90% 95% µA POWER GOOD VTHPG PG threshold IPG PG sink current VFB rising (Good) VFB falling (Fault) 85% PG = 0.5 V 0.5 1 mA OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION 125%x Vfbth VOVP Output OVP threshold OVP Detect VUVP Output UVP threshold Hiccup detect tHiccupOn Hiccup Power On Time Relative to soft start time 1 cycle tHiccupOff Hiccup Power Off Time Relative to soft start time 7 cycles 65%x Vfbth UVLO UVLO (1) UVLO threshold Wake up VIN voltage 3.45 3.75 4.05 Hysteresis VIN voltage 0.13 0.32 0.55 V Not production tested. 6.6 Timing Requirements MIN TYP MAX UNIT ON-TIME TIMER CONTROL tON On time VIN = 12 V, VO = 1.05 V 150 tOFF(MIN) Minimum off time TA = 25°C, VFB = 0.5 V 260 Copyright © 2016, Texas Instruments Incorporated ns 310 ns 5 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn 6.7 Typical Characteristics 6.7.1 TPS562210A Characteristics VIN = 12 V (unless otherwise noted) 6 IVCCSHDN - Supply Current (µA) 300 ICC - Supply Current(µA) 250 200 150 100 50 0 4 3 2 1 0 ±50 0 50 100 150 Junction Temperature (ƒC) 50 100 150 Junction Temperature (ƒC) C012 图 2. VIN Shutdown Current vs Junction Temperature 60 0.775 50 EN Input Current (µA) 0.780 0.770 0.765 0.760 40 30 20 10 0.755 0 0.750 -10 ±50 0 50 100 0 150 Junction Temperature (ƒC) 3 90 80 80 70 70 Efficiency (%) 100 60 50 40 15 C014 60 50 40 20 Vout = 3.3V Vout = 3.3V 10 10 Vout = 1.8V 0.01 0.1 1 Output Current (A) 18 30 Vout = 5V 20 12 图 4. EN Current vs EN Voltage 90 30 9 EN Input Voltage (V) 100 0 0.001 6 C013 图 3. VFB Voltage vs Junction Temperature Efficiency (%) 0 ±50 C011 图 1. Supply Current vs Junction Temperature VFB Voltage (V) 5 10 Vout = 1.8V 0 0.001 0.01 0.1 1 Output Current(A) C015 10 C016 VI = 5 V 图 5. Efficiency vs Output Current 6 图 6. Efficiency vs Output Current 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 TPS562210A Characteristics (接 接下页) 800 800 Vo = 0.76V FSW - Switching Frequency 750 FSW - Switching Frequency (kHz) Vo = 0.75V Vo = 1.05V 700 Vo = 6.5V 650 600 550 500 450 400 4 6 8 10 12 14 16 Input Voltage (V) 图 7. Switching Frequency vs Input Voltage 版权 © 2016, Texas Instruments Incorporated 18 C017 700 Vo = 1.05V 600 Vo = 6.5V 500 400 300 200 100 0 0.01 0.1 1 Output Current (A) 10 C018 图 8. Switching Frequency vs Output Current 7 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn 6.7.2 TPS563210A Characteristics VIN = 12V (unless otherwise noted) 6 IVCCSHDN - Supply Current (µA) 300 ICC - Supply Current (µA) 250 200 150 100 50 0 4 3 2 1 0 ±50 0 50 100 150 Junction Temperature (ƒC) 50 100 150 Junction Temperature (ƒC) C020 图 10. VIN Shutdown Current vs Junction Temperature 60 0.775 50 EN Input Current (µA) 0.780 0.770 0.765 0.760 0.755 40 30 20 10 0 0.750 ±10 ±50 0 50 100 0 150 Junction Temperature (ƒC) 3 90 80 80 70 70 Efficiency (%) 100 60 50 40 0.1 1 Output Current (A) 60 50 40 Vout = 3.3V 10 Vout = 1.8V 0.01 18 C022 20 Vout = 3.3V 10 15 30 Vout = 5V 20 12 图 12. EN Current vs EN Voltage 90 30 9 EN Input Voltage (V) 100 0 0.001 6 C021 图 11. VFB Voltage vs Junction Temperature Efficiency (%) 0 ±50 C019 图 9. Supply Current vs Junction Temperature VFB Voltage (V) 5 10 Vout = 1.8V 0 0.001 0.01 0.1 1 Output Current (A) C023 10 C024 VI = 5 V 图 13. Efficiency vs Output Current 8 图 14. Efficiency vs Output Current 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 TPS563210A Characteristics (接 接下页) 800 800 750 Vo = 0.76V FSW - Switching Frequency (kHz) FSW - Switching Frequency (kHz) Vo = 0.76V Vo = 1.05V 700 Vo = 6.5V 650 600 550 500 450 400 4 6 8 10 12 14 16 Input Voltage (V) 图 15. Switching Frequency vs Input Voltage 版权 © 2016, Texas Instruments Incorporated 18 C025 700 Vo = 1.05V 600 Vo = 6.5V 500 400 300 200 100 0 0.01 0.1 1 Output Current (A) 10 C026 图 16. Switching Frequency vs Output Current 9 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn 7 Detailed Description 7.1 Overview The TPS562210A and TPS563210A are 2-A, 3-A synchronous step-down converters. The proprietary D-CAP2™ mode control supports low ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic capacitors without complex external compensation circuits. The fast transient response of D-CAP2™ mode control can reduce the output capacitance required to meet a specific level of performance. 7.2 Functional Block Diagram EN 7 VUVP VOVP VFB SS + UVP Hiccup + OVP Control Logic 5 Ref Soft Start SS VIN 8 VBST 2 SW 1 GND VREG5 Regulator UVLO 6 Voltage Reference 3 + + PWM HS Ton One-Shot XCON VREG 5 TSD PG OCL threshold 4 LS OCL + + V THPG + ZC Copyright © 2016, Texas Instruments Incorporated 10 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 7.3 Feature Description 7.3.1 The Adaptive On-Time Control and PWM Operation The main control loop of the TPS562210A and TPS563210A are adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP2™ mode control. The D-CAP2™ mode control combines adaptive on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2™ mode control. 7.3.2 Soft Start and Pre-Biased Soft Start The TPS562210A and TPS563210A have adjustable soft-start. When the EN pin becomes high, the SS charge current (ISS) begins charging the capacitor which is connected from the SS pin to GND (CSS). Smooth control of the output voltage is maintained during start up. The equation for the soft start time, Tss is shown in 公式 1. Css ´ VFBTH ´ 0.86 Tss(ms) = Iss (1) where VFBTH is 0.765 V and Iss is 6 µA. If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the converters ramp up smoothly into regulation point. 7.3.3 Power Good The power good output, PG is an open drain output. The power good function becomes active after 1.7 times soft-start time. When the output voltage becomes within –10% of the target value, internal comparators detect power good state and the power good signal becomes high. If the feedback voltage goes under 15% of the target value, the power good signal becomes low. 7.3.4 Current Protection The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated. During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN, VOUT, the on-time and the output inductor value. During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner. If the over current condition exists consecutive switching cycles, the internal OCL threshold is set to a lower level, reducing the available output current. When a switching cycle occurs where the switch current is not above the lower OCL threshold, the counter is reset and the OCL threshold is returned to the higher value. There are some important considerations for this type of over-current protection. The load current is higher than the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP threshold voltage, the UVP comparator detects it. And then, the device will shut down after the UVP delay time (typically 14 µs) and re-start after the hiccup time. When the over current condition is removed, the output voltage returns to the regulated value. 版权 © 2016, Texas Instruments Incorporated 11 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn Feature Description (接 接下页) 7.3.5 Over Voltage Protection TPS562210A and TPS563210A detect over voltage condition by monitoring the feedback voltage (VFB). When the feedback voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high and the high-side MOSFET is turns off. This function is non-latch operation. 7.3.6 UVLO Protection Under voltage lock out protection (UVLO) monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage, the device is shut off. This protection is non-latching. 7.3.7 Thermal Shutdown The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 155°C), the device is shut off. This is a non-latch protection. 7.4 Device Functional Modes 7.4.1 Advanced Eco-Mode™ Control The TPS562210A and TPS563210A are designed with Advanced Eco-mode™ to maintain high light load efficiency. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load current further decreases the converter runs into discontinuous conduction mode. The on-time is kept almost the same as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional to the load current, and keeps the light load efficiency high. The transition point to the light load operation IOUT(LL) current can be calculated in 公式 2. IOUT(LL) = 12 (VIN - VOUT )´ VOUT 1 ´ 2 ´ L ´ fSW VIN (2) 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The TPS562210A and TPS563210A are typically used as step down converters, which convert a voltage from 4.5 V to 17 V to a lower voltage. Webench software is available to aid in the design and analysis of circuits. 8.2 Typical Application 8.2.1 Typical Application, TPS562210A 4.5-V to 17-V Input, 1.05-V Output Converter. U1 TPS562210A L1 VIN = 4.5 - 17 V C1 0.1µF 2.2uH C5 3 VIN C2 10µF C3 10µF EN R3 10.0k 7 VIN VBST SW SS VFB PG 5 VOUT 0.1µF EN GND VOUT = 1.05 V, 2 A 8 2 R4 100k 4 C6 22µF C7 22µF PG C8 22µF R1 3.74k 6 1 C4 8200pF R2 10.0k 图 17. TPS562210A 1.05V/2A Reference Design 8.2.1.1 Design Requirements For this design example, use the parameters shown in 表 1. 表 1. Design Parameters PARAMETER Input voltage range Output voltage Output current Output voltage ripple VALUES 4.5 V to 17 V 1.05 V 2A 20 mVp-p 8.2.1.2 Detailed Design Procedure 8.2.1.2.1 Output Voltage Resistors Selection The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use 1% tolerance or better divider resistors. Start by using 公式 3 to calculate VOUT. To improve efficiency at light loads consider using larger value resistors, too high of resistance are more susceptible to noise and voltage errors from the VFB input current are more noticeable. R1 ö æ VOUT = 0.765 ´ ç 1 + ÷ R2 è ø (3) 8.2.1.2.2 Output Filter Selection The LC filter used as the output filter has double pole at: 1 FP = 2p LOUT ´ COUT 版权 © 2016, Texas Instruments Incorporated (4) 13 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off at a –40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of 公式 4 is located below the high frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in 表 2. 表 2. TPS562210A Recommended Component Values Output Voltage (V) R2 (kΩ) R3 (kΩ) 1 3.09 1.05 1.2 L1 (µH) C6 + C7 + C8 (µF) MIN TYP MAX 10.0 1.5 2.2 4.7 20 - 68 3.74 10.0 1.5 2.2 4.7 20 - 68 5.76 10.0 1.5 2.2 4.7 20 - 68 1.5 9.53 10.0 1.5 2.2 4.7 20 - 68 1.8 13.7 10.0 1.5 2.2 4.7 20 - 68 2.5 22.6 10.0 2.2 3.3 4.7 20 - 68 3.3 33.2 10.0 2.2 3.3 4.7 20 - 68 5 54.9 10.0 3.3 4.7 4.7 20 - 68 6.5 75 10.0 3.3 4.7 4.7 20 - 68 The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 公式 5, 公式 6 and 公式 7. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for fSW. Make sure the chosen inductor is rated for the peak current of 公式 6 and the RMS current of 公式 7. VIN(MAX) - VOUT VOUT ´ IlP -P = VIN(MAX) LO ´ ƒSW (5) IlPEAK = IO + IlP -P 2 ILO(RMS) = IO2 + 1 IlP -P2 12 (6) (7) For this design example, the calculated peak current is 2.34 A and the calculated RMS current is 2.01 A. The inductor used is a TDK CLF7045T-2R2N with a peak current rating of 5.5 A and an RMS current rating of 4.3 A. The capacitor value and ESR determines the amount of output voltage ripple. The TPS562210A and TPS563210A are intended for use with ceramic or other low ESR capacitors. Recommended values range from 20µF to 68µF. Use 公式 8 to determine the required RMS current rating for the output capacitor. ICO(RMS) = VOUT ´ (VIN - VOUT ) 12 ´ VIN ´ LO ´ ƒSW (8) For this design, two TDK C3216X5R0J226M 22 µF output capacitors are used. The typical ESR is 2 mΩ each. The calculated RMS current is 0.286A and each output capacitor is rated for 4A. 8.2.1.2.3 Input Capacitor Selection The TPS562210A and TPS563210A require an input decoupling capacitor and a bulk capacitor is needed depending on the application. A ceramic capacitor over 10 µF is recommended for the decoupling capacitor. An additional 0.1 µF capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage rating needs to be greater than the maximum input voltage. 14 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 8.2.1.2.4 Bootstrap capacitor Selection A 0.1µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is recommended to use a ceramic capacitor. 8.2.1.3 Application Curves 100 100 90 90 80 80 70 70 Efficiency (%) Efficiency (%) The following application curves were generated using the application circuit of 图 17. 60 50 40 30 60 50 40 30 20 20 VIN = 5V VIN = 12V 10 0 0 0.5 1 Output Current (A) 1.5 VIN = 5V VIN = 12V 10 0 0.001 2 D006 1 1 0.8 0.8 0.6 0.6 0.4 0.2 0 -0.2 -0.4 1 2 3 45 D007 0.4 0.2 0 -0.2 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 0.5 1 Output Current (A) 1.5 2 0 0.5 D008 图 20. TPS562210A Load Regulation, VI = 5 V 1 Output Current (A) 1.5 2 D009 图 21. TPS562210A Load Regulation, VI = 12 V 0.5 IO = 2 A 0.4 VI = 50 mV / div (ac coupled) 0.3 Line Regulation (%) 0.5 图 19. TPS562210A Light Load Efficiency Load Regulation (%) Load Regulation (%) 图 18. TPS562210A Efficiency 0.01 0.02 0.05 0.1 0.2 Output Current (A) 0.2 0.1 0 SW = 5 V / div -0.1 -0.2 -0.3 -0.4 -0.5 4 6 8 10 12 Input Voltage (V) 14 16 图 22. TPS562210A Line Regulation 版权 © 2016, Texas Instruments Incorporated 18 D010 Time = 1 µsec / div 图 23. TPS562210A Input Voltage Ripple 15 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn IO = 200 mA IO = 0 A VO = 20 mV / div (ac coupled) VO = 20 mV / div (ac coupled) SW = 5 V / div SW = 5 V / div Time = 5 msec / div 图 24. TPS562210A Output Voltage Ripple Time = 1 µsec / div 图 25. TPS562210A Output Voltage Ripple IO = 2 A VO = 20 mV / div (ac coupled) VO = 50 mV / div (ac coupled) IO = 500 mA / div SW = 5 V / div Load step = 0.5 A - 1.5 A Slew rate = 500 mA / µsec Time = 1 µsec / div 图 26. TPS562210A Output Voltage Ripple VI = 10V/ div EN = 10V/ div SS = 5V/ div SS = 5V/ div VO = 500mV/ div VO = 500mV/ div PG = 1V/ div PG = 1V/ div Time = 1 msec / div 图 28. TPS562210A Start Up Relative To VI 16 Time = 200 µsec / div 图 27. TPS562210A Transient Response Time = 1 msec / div 图 29. TPS562210A Start Up Relative To En 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 VI = 10V/ div EN = 10V/ div SS = 5V/ div SS = 5V/ div VO = 500mV/ div VO = 500mV/ div PG = 1V/ div PG = 1V/ div Time = 5 msec / div 图 30. TPS562210A Shut Down Relative To VI 版权 © 2016, Texas Instruments Incorporated Time = 5 msec / div 图 31. TPS562210A Shut Down Relative To EN 17 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn 8.2.2 Typical Application, TPS563210A 4.5-V To 17-V Input, 1.05-V Output Converter. U1 TPS563210A L1 VIN = 4.5 - 17 V VIN C1 0.1µF 1.5uH C5 3 C2 10µF C3 10µF R3 10.0k 7 EN VIN VBST VOUT 0.1µF EN SW PG 5 VOUT = 1.05 V, 3 A 8 SS VFB GND R4 100k 2 4 C6 22µF C7 22µF PG C8 22µF R1 3.74k 6 1 C4 8200pF R2 10.0k 图 32. TPS563210A 1.05 V / 3A Reference Design 8.2.2.1 Design Requirements For this design example, use the parameters shown in 表 3. 表 3. Design Parameters PARAMETER VALUE Input voltage range 4.5 V to 17 V Output voltage 1.05 V Output current 3A Output voltage ripple 20 mVpp 8.2.2.2 Detailed Design Procedures The detailed design procedure for TPS563210A is the same as for TPS562210A except for inductor selection. 8.2.2.2.1 Output Filter Selection 表 4. TPS563210A Recommended Component Values Output Voltage (V) R2 (kΩ) R3 (kΩ) L1 (µH) MIN TYP MAX C6 + C7 + C8 (µF) 1 3.09 10.0 1.0 1.5 4.7 20 - 68 1.05 3.74 10.0 1.0 1.5 4.7 20 - 68 1.2 5.76 10.0 1.0 1.5 4.7 20 - 68 1.5 9.53 10.0 1.0 1.5 4.7 20 - 68 1.8 13.7 10.0 1.5 2.2 4.7 20 - 68 2.5 22.6 10.0 1.5 2.2 4.7 20 - 68 3.3 33.2 10.0 1.5 2.2 4.7 20 - 68 5 54.9 10.0 2.2 3.3 4.7 20 - 68 6.5 75 10.0 2.2 3.3 4.7 20 - 68 The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 公式 9, 公式 10 and 公式 11. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for ƒSW. Use 650 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of 公式 10 and the RMS current of 公式 11. VIN(MAX) - VOUT VOUT ´ IlP -P = VIN(MAX) LO ´ ƒSW (9) 18 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 IlPEAK = IO + IlP -P 2 ILO(RMS) = IO2 + (10) 1 IlP -P2 12 (11) For this design example, the calculated peak current is 3.505 A and the calculated RMS current is 3.014 A. The inductor used is a TDK CLF7045T-1R5N with a peak current rating of 7.3-A and an RMS current rating of 4.9-A. The capacitor value and ESR determines the amount of output voltage ripple. The TPS563209 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 20 μF to 68 μF. Use 公式 7 to determine the required RMS current rating for the output capacitor. For this design three TDK C3216X5R0J226M 22 μF output capacitors are used. The typical ESR is 2 mΩ each. The calculated RMS current is 0.292A and each output capacitor is rated for 4 A. 8.2.2.3 Application Curves 100 100 90 90 80 80 70 70 Efficiency (%) Efficiency (%) The following application curves were generated using the application circuit of 图 32. 60 50 40 60 50 40 30 30 20 20 VIN = 5V VIN = 12V 10 0 0.001 0 0 0.5 1 1.5 2 Output Current (A) 2.5 VIN = 5V VIN = 12V 10 3 图 33. TPS563210A Efficiency 0.5 1 2 3 45 D002 图 34. TPS563210A Light Load Efficiency 1 1 0.8 0.8 0.6 0.6 Load Regulation (%) Load Regulation (%) 0.01 0.02 0.05 0.1 0.2 Output Current (A) D001 0.4 0.2 0 -0.2 -0.4 0.4 0.2 0 -0.2 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 0.5 1 1.5 2 Output Current (A) 2.5 图 35. TPS563210A Load Regulation, VI = 5 V 版权 © 2016, Texas Instruments Incorporated 3 D003 0 0.5 1 1.5 2 Output Current (A) 2.5 3 D004 图 36. TPS563210A Load Regulation, VI = 12 V 19 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn 0.5 IO = 3 A 0.4 VI = 50 mV / div (ac coupled) Line Regulation (%) 0.3 0.2 0.1 0 SW = 5 V / div -0.1 -0.2 -0.3 -0.4 -0.5 4 6 8 10 12 Input Voltage (V) 14 16 18 D005 图 37. TPS563210A Line Regulation Time = 1 µsec / div 图 38. TPS563210A Input Voltage Ripple IO = 300 mA IO = 0 A VO = 20 mV / div (ac coupled) VO = 20 mV / div (ac coupled) SW = 5 V / div SW = 5 V / div Time = 5 msec / div 图 39. TPS563210A Output Voltage Ripple Time = 1 µsec / div 图 40. TPS563210A Output Voltage Ripple IO = 3 A VO = 20 mV / div (ac coupled) SW = 5 V / div VO = 50 mV / div (ac coupled) IO = 1 A / div Load step = 0.75 A - 2.25 A Slew rate = 500 mA / µsec Time = 1 µsec / div 图 41. TPS563210A Output Voltage Ripple 20 Time = 200 µsec / div 图 42. TPS563210A Transient Response 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 VI = 10V/ div EN = 10V/ div SS = 5V/ div SS = 5V/ div VO = 500mV/ div VO = 500mV/ div PG = 1V/ div PG = 1V/ div Time = 1 msec / div 图 43. TPS563210A Start Up Relative To VI Time = 1 msec / div 图 44. TPS563210A Start Up Relative To EN VI = 10V/ div EN = 10V/ div SS = 5V/ div SS = 5V/ div VO = 500mV/ div VO = 500mV/ div PG = 1V/ div PG = 1V/ div Time = 5 msec / div 图 45. TPS563210A Shut Down Relative To VI Time = 5 msec / div 图 46. TPS563210A Shut Down Relative To EN 9 Power Supply Recommendations The TPS562210A and TPS563210A are designed to operate from input supply voltage in the range of 4.5 V to 17 V. Buck converters require the input voltage to be higher than the output voltage for proper operation. The maximum recommended operating duty cycle is 65%. Using that criteria, the minimum recommended input voltage is VO / 0.65. 版权 © 2016, Texas Instruments Incorporated 21 TPS562210A, TPS563210A ZHCSFR5 – NOVEMBER 2016 www.ti.com.cn 10 Layout 10.1 Layout Guidelines 1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of advantage from the view point of heat dissipation. 2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize trace impedance. 3. Provide sufficient vias for the input capacitor and output capacitor. 4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions. 5. Do not allow switching current to flow under the device. 6. A separate VOUT path should be connected to the upper feedback resistor. 7. Make a Kelvin connection to the GND pin for the feedback path. 8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has ground shield. 9. The trace of the VFB node should be as small as possible to avoid noise coupling. 10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its trace impedance. 10.2 Layout Example GND VOUT Additional Vias to the GND plane OUTPUT CAPACITOR Vias to the internal SW node copper BOOST CAPACITOR OUTPUT INDUCTOR GND VBST SW EN FEEDBACK RESISTORS TO ENABLE CONTROL TPS56x10A VIN Vias to the internal SW node copper SW node copper pour area on internal or bottom layer HIGH FREQUENCY INPUT BYPASS CAPACITOR INPUT BYPASS CAPACITOR VIN VFB SS PG SLOW START CAPACITOR VIA TO INTERNAL GROUND PLANE 22 POWER GOOD PG PULL UP RESISTOR TO PG PULL UP VOLTAGE 版权 © 2016, Texas Instruments Incorporated TPS562210A, TPS563210A www.ti.com.cn ZHCSFR5 – NOVEMBER 2016 11 器件和文档支持 11.1 器件支持 11.2 相关链接 下面的表格列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访 问。 表 5. 相关链接 器件 产品文件夹 样片与购买 技术文档 工具与软件 支持与社区 TPS562210A 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 TPS563210A 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 11.3 接收文档更新通知 如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册 后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。 11.4 社区资源 The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.5 商标 D-CAP2, Eco-mode, E2E are trademarks of Texas Instruments. 蓝光 (Blu-ray) 碟片 is a trademark of Blu-ray Disc Association. 11.6 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 机械、封装和可订购信息 以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对 本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。 版权 © 2016, Texas Instruments Incorporated 23 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TPS562210ADDFR ACTIVE SOT-23-THIN DDF 8 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 2210A TPS562210ADDFT ACTIVE SOT-23-THIN DDF 8 250 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 2210A TPS563210ADDFR ACTIVE SOT-23-THIN DDF 8 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 3210A TPS563210ADDFT ACTIVE SOT-23-THIN DDF 8 250 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 3210A (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TPS562210ADDFR 价格&库存

很抱歉,暂时无法提供与“TPS562210ADDFR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TPS562210ADDFR
  •  国内价格
  • 1+4.30650
  • 30+4.15800
  • 100+3.86100
  • 500+3.56400
  • 1000+3.41550

库存:0