0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TXS0102DCTTG4

TXS0102DCTTG4

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SM8_2.95X2.8MM

  • 描述:

    Voltage Level

  • 数据手册
  • 价格&库存
TXS0102DCTTG4 数据手册
Product Folder Order Now Technical Documents Tools & Software Support & Community TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 适用于漏极开路和推挽应用的 TXS0102 2 位双向电压电平 转换器 1 特性 • • 1 • • • • • • • 3 说明 无需方向控制信号 最大数据速率 – 24Mbps(推挽) – 2Mbps(开漏) 采用德州仪器的 NanoStar™封装 A 端口支持 1.65V 至 3.6V 的电压,B 端口支持 2.3V 至 5.5V 的电压 (VCCA ≤ VCCB) VCC 隔离特性:如果任何一个 VCC 输入接地 (GND),则两个端口均处于高阻抗状态 无需电源定序:VCCA 或 VCCB 均可优先斜升 Ioff 支持局部关断模式运行 闩锁性能超出 JESD 78 II 类规范要求的 100mA 静电放电 (ESD) 保护性能超过 JESD 22 规范的要 求 – A 端口: – 2500V 人体放电模型 (A114-B) – 250V 机器放电模式 (A115-A) – 1500V 充电器件模型 (C101) – B 端口: – 8kV 人体放电模型 (A114-B) – 250V 机器放电模式 (A115-A) – 1500V 充电器件模型 (C101) 2 应用 • • • 此两位同相转换器是一个双向电压电平转换器,可用来 在混合电压系统之间建立数字开关兼容性。它使用两个 独立的可配置电源轨,其中 A 端口支持 1.65V 至 3.6V 工作电压范围,同时可跟踪 VCCA 电源,而 B 端口支 持 2.3V 至 5.5V 工作电压范围,同时可跟踪 VCCB 电 源。因此,该器件能够支持更低及更高的逻辑信号电 平,同时能够在 1.8V、2.5V、3.3V 和 5V 电压节点之 间任意进行双向转换。 当输出使能端 (OE) 输入为低电平时,所有输入/输出均 处于高阻抗状态,从而显著减少了电源静态电流消耗。 为确保在上电或掉电期间均处于高阻抗状态,应将 OE 通过下拉电阻器接地;该电阻其的最小值取决于驱动器 的拉电流能力。 器件信息(1) 器件型号 封装 封装尺寸(标称值) TXS0102DCT SSOP (8) 2.95mm × 2.80mm TXS0102DCU 超薄小外形尺寸 封装 (VSSOP)(8) 2.30mm x 2.00mm TXS0102DQE X2SON (8) 1.40mm x 1.00mm TXS0102DQM X2SON (8) 1.80mm × 1.20mm TXS0102YZP DSBGA (8) 1.90mm × 0.90mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 2 I C/SMBus UART 通用输入/输出 (GPIO) TXS0102 典型应用方框图 VCCA Processor VCCB Peripheral 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SCES640 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 目录 1 2 3 4 5 6 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 7 8 1 1 1 2 3 4 Absolute Maximum Ratings ..................................... 4 ESD Ratings ............................................................ 4 Recommended Operating Conditions ...................... 5 Thermal Information .................................................. 5 Electrical Characteristics........................................... 6 Timing Requirements: VCCA = 1.8 V ±0.15 V............ 7 Timing Requirements: VCCA = 2.5 V ± 0.2 V ............ 7 Timing Requirements: VCCA = 3.3 V ± 0.3 V ............ 7 Switching Characteristics: VCCA = 1.8 V ± 0.15 V .... 8 Switching Characteristics: VCCA = 2.5 V ± 0.2 V .... 9 Switching Characteristics: VCCA = 3.3 V ± 0.3 V .. 10 Typical Characteristics .......................................... 11 Parameter Measurement Information ................ 12 Detailed Description ............................................ 14 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 14 14 15 16 Application and Implementation ........................ 17 9.1 Application Information............................................ 17 9.2 Typical Application ................................................. 17 10 Power Supply Recommendations ..................... 19 11 Layout................................................................... 19 11.1 Layout Guidelines ................................................. 19 11.2 Layout Example .................................................... 19 12 器件和文档支持 ..................................................... 20 12.1 12.2 12.3 12.4 12.5 12.6 文档支持 ............................................................... 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... 术语表 ................................................................... 20 20 20 20 20 20 13 机械、封装和可订购信息 ....................................... 21 4 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 Changes from Revision H (April 2018) to Revision I • Updated the VIH A-port I/O VCCA value in the Recommended Operating Conditions table From: "1.65 V to 3.6 V", To: "1.65 V to 1.95 V" .................................................................................................................................................................. 5 Changes from Revision G (January 2018) to Revision H • Page Page Updated TXS0102 Layout Example diagram ...................................................................................................................... 19 Changes from Revision F (August 2014) to Revision G Page • 已更改 将首页图形标题中的器件编号从 TXS010x 更改成了 TXS0102 ................................................................................. 1 • Changed value from 8 V to 8000 V in ESD Ratings table...................................................................................................... 4 • Changed unit from kV to V in ESD Ratings table................................................................................................................... 4 • Added typical value column in Electrical Characteristics table ............................................................................................. 6 • 已更改 part number in title of 图 10 from TXS01xx to TXS0102 .......................................................................................... 15 • 已添加 title to TXS0102 Layout Example diagram .............................................................................................................. 19 2 Copyright © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 5 Pin Configuration and Functions DCT or DCU Package 8-Pin SSOP and VSSOP Top View B2 1 8 B1 GND 2 7 VCCB VCCA 3 6 OE A2 4 5 A1 DQE or DQM Package 8-Pin X2SON Top View VCCA A1 A2 GND 1 8 2 7 3 6 4 5 VCCB B1 B2 OE YZP Package 8-Pin DSBGA Bottom View A2 D1 4 5 D2 A1 VCCA C1 3 6 C2 OE GND B1 2 7 B2 VCCB B2 A1 1 8 A2 B1 Pin Functions PIN NAME TYPE (1) NO. DESCRIPTION DCT, DCU DQE, DQM YZP B2 1 6 A1 I/O Input/output B. Referenced to VCCB. GND 2 4 B1 — Ground VCCA 3 1 C1 P A-port supply voltage. 1.65 V ≤ VCCA ≤ 3.6 V and VCCA ≤ VCCB A2 4 3 D1 I/O Input/output A. Referenced to VCCA. A1 5 2 D2 I/O Input/output A. Referenced to VCCA. OE 6 5 C2 I Output enable (active High). Pull OE low to place all outputs in 3-state mode. Referenced to VCCA. VCCB 7 8 B2 P B-port supply voltage. 2.3 V ≤ VCCB ≤ 5.5 V B1 8 7 A2 I/O (1) Input/output B. Referenced to VCCB. I = input, O = output, I/O = input and output, P = power Copyright © 2007–2018, Texas Instruments Incorporated 3 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings over recommended operating free-air temperature range (unless otherwise noted) (1) Supply voltage range, VCCA Supply voltage range, VCCB Input voltage range, VI (2) Voltage range applied to any output in the high-impedance or power-off state, VO (2) Voltage range applied to any output in the high or low state, VO (2) (3) MIN MAX –0.5 4.6 V V –0.5 6.5 A port –0.5 4.6 B port –0.5 6.5 A port –0.5 4.6 B port –0.5 6.5 A port –0.5 VCCA + 0.5 B port –0.5 VCCB + 0.5 UNIT V V V Input clamp current, IIK VI < 0 –50 mA Output clamp current, IOK VO < 0 –50 mA ±50 mA ±100 mA 150 °C 150 °C Continuous output current, IO Continuous current through VCCA, VCCB, or GND Junction temperature, TJ Storage temperature, Tstg (1) (2) (3) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The value of VCCA and VCCB are provided in the recommended operating conditions table. 6.2 ESD Ratings V(ESD) (1) (2) 4 Electrostatic discharge VALUE UNIT Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins, A Port (1) ±2500 V Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins, B Port (1) ±8000 V Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1500 V 250-V Machine Model (A115-A), all pins ±250 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 6.3 Recommended Operating Conditions VCCI is the supply voltage associated with the input port. VCCO is the supply voltage associated with the output port. VCCA Supply voltage VCCB Supply voltage MIN MAX 1.65 3.6 V 2.3 5.5 V VCCA = 1.65 V to 1.95 V VCCB = 2.3 V to 5.5 V VCCI – 0.2 VCCI VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V VCCI – 0.4 VCCI B-port I/Os VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V VCCI – 0.4 VCCI V OE input VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V VCCA × 0.65 5.5 V A-port I/Os VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V 0 0.15 V B-port I/Os VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V 0 0.15 V OE input VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V 0 VCCA × 0.35 V A-port I/Os push-pull driving VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V 10 ns/V B-port I/Os push-pull driving VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V 10 ns/V Control input VCCA = 1.65 V to 3.6 V VCCB = 2.3 V to 5.5 V 10 ns/V 85 °C (1) A-port I/Os High-level input voltage VIH VIL (2) Δt/Δv TA (1) (2) Low-level input voltage Input transition rise or fall rate UNIT V Operating free-air temperature –40 VCCA must be less than or equal to VCCB, and VCCA must not exceed 3.6 V. The maximum VIL value is provided to ensure that a valid VOL is maintained. The VOL value is VIL plus the voltage drop across the passgate transistor. 6.4 Thermal Information TXS0102 THERMAL METRIC (1) DCT DCU DQE DQM YZP 8 PINS 8 PINS 8 PINS 8 PINS 8 PINS UNIT RθJA Junction-to-ambient thermal resistance 182.6 199.1 199.3 239.3 105.8 °C/W RθJC(top) Junction-to-case (top) thermal resistance 113.3 72.4 26.4 106.7 1.6 °C/W RθJB Junction-to-board thermal resistance 94.9 77.8 78.6 130.4 10.8 °C/W ψJT Junction-to-top characterization parameter 39.4 6.2 5.9 8.2 3.1 °C/W ψJB Junction-to-board characterization parameter 93.9 77.4 78.0 130.2 10.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — — — — — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2007–2018, Texas Instruments Incorporated 5 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 6.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCCA VCCB VOHA Port A output high voltage IOH = –20 µA VIB ≥ VCCB – 0.4 V 1.65 V to 3.6 V 2.3 V to 5.5 V VOLA Port A output low voltage IOL = 1 mA VIB ≤ 0.15 V 1.65 V to 3.6 V 2.3 V to 5.5 V VOHB Port B output high voltage 1.65 V to 3.6 V 2.3 V to 5.5 V VOLB Port B output low voltage 1.65 V to 3.6 V 2.3 V to 5.5 V II Input leakage current Ioff Partial power down current IOZ High-impedance state output A or B port current ICCA VCCA supply current ICCB VCCB supply current TA = 25°C MIN MIN TYP MAX VCCA × 0.67 VCCB × 0.67 OE 1.65 V to 3.6 V 2.3 V to 5.5 V ±1 ±2 A port 0V 0 V to 5.5 V ±1 ±2 B port 0 V to 3.6 V 0V ±1 ±2 ±1 ±2 VI = VO = open IO = 0 VI = VO = open IO = 0 V V 0.4 1.65 V to 3.6 V 2.3 V to 5.5 V UNIT V 0.4 1.65 V to VCCB 2.3 V to 5.5 V 2.4 3.6 V 0V 2.2 0V 5.5 V –1 1.65 V to VCCB 2.3 V to 5.5 V 12 3.6 V 0V –1 0V 5.5 V V µA µA µA 1 Combined supply current VI = VCCI or GND IO = 0 1.65 V to VCCB 2.3 V to 5.5 V CI Input capacitance OE 3.3 V 3.3 V 2.5 Input-to-output internal capacitance A or B port 3.3 V 3.3 V 10 Cio 6 TA = –40°C to +85°C TYP MAX ICCA + ICCB (1) (2) (3) (2) (3) A port 5 6 B port 6 7.5 14.4 µA 3.5 pF pF VCCI is the VCC associated with the input port. VCCO is the VCC associated with the output port VCCA must be less than or equal to VCCB, and VCCA must not exceed 3.6 V. Copyright © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 6.6 Timing Requirements: VCCA = 1.8 V ±0.15 V VCCB = 2.5 V ± 0.2 V MIN Data rate tw Pulse duration VCC = 3.3 V ± 0.3 V MAX Push-pull driving Open-drain driving (data inputs) VCC = 5 V ± 0.5 V MAX MIN MAX 21 22 24 2 2 2 Open-drain driving Push-pull driving (data inputs) MIN 47 45 41 500 500 UNIT Mbps ns 500 6.7 Timing Requirements: VCCA = 2.5 V ± 0.2 V VCCB = 2.5 V ± 0.2 V MIN Data rate tw Pulse duration MAX Push-pull driving Open-drain driving Push-pull driving (data inputs) Open-drain driving (data inputs) VCC = 3.3 V ± 0.3 V MIN VCC = 5 V ± 0.5 V MAX MIN MAX 20 22 24 2 2 2 50 45 41 500 500 UNIT Mbps ns 500 6.8 Timing Requirements: VCCA = 3.3 V ± 0.3 V VCC = 3.3 V ± 0.3 V MIN Data rate tw Pulse duration Push-pull driving Open-drain driving Push-pull driving (data inputs) Open-drain driving (data inputs) Copyright © 2007–2018, Texas Instruments Incorporated VCC = 5 V ± 0.5 V MAX MIN MAX 23 24 2 2 43 41 500 500 UNIT Mbps ns 7 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 6.9 Switching Characteristics: VCCA = 1.8 V ± 0.15 V over operating free-air temperature range (unless otherwise noted) PARAMETER tPHL TEST CONDITIONS VCCB = 2.5 V ±0.2 V MIN MIN MAX MIN UNIT Propagation delay time low-to-high output A-to-B Propagation delay time high-to-low output B-to-A Propagation delay time low-to-high output B-to-A ten Enable time OE-to-A or B 200 200 200 ns tdis Disable time OE-to-A or B 50 40 35 ns trA Input rise time A port rise time Push-pull driving 3.2 9.5 2.3 9.3 2 7.6 Open-drain driving 38 165 30 132 22 95 Input rise time B port rise time Push-pull driving 4 10.8 2.7 9.1 2.7 7.6 34 145 23 106 10 58 Input fall time A port fall time Push-pull driving 2 5.9 1.9 6 1.7 13.3 Open-drain driving 4.4 6.9 4.3 6.4 4.2 6.1 Input fall time B port fall time Push-pull driving 2.9 13.8 2.8 16.2 2.8 16.2 Open-drain driving 6.9 13.8 7.5 16.2 7 16.2 tPHL tPLH trB tfA tfB tSK(O) Skew (time), output Maximum data rate 8 2.3 Push-pull driving Open-drain driving 45 Open-drain driving 1.9 Open-drain driving 36 5.3 45 175 2.6 208 1.1 4.4 27 0.7 140 ns 198 ns 4.7 1.2 4.5 36 10 7.5 4.5 5.3 Channel -to- channel skew Push-pull driving 260 9.6 6.8 7.1 4.4 Push-pull driving Open-drain driving 2.4 6.8 Push-pull driving Open-drain driving 8.8 5.4 MAX A-to-B Open-drain driving 5.3 VCCB = 3.3 V ±0.2 V Propagation delay time high-to-low output tPLH Push-pull driving MAX VCCB = 3.3 V ±0.2 V 4 ns 0.5 27 0.7 102 0.7 21 22 24 2 2 2 ns ns ns ns ns ns Mbps Copyright © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 6.10 Switching Characteristics: VCCA = 2.5 V ± 0.2 V over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCCB = 2.5 V ±0.2 V MIN MIN MAX MIN UNIT A-to-B tPLH Propagation delay time low-to-high output A-to-B tPHL Propagation delay time high-to-low output B-to-A tPLH Propagation delay time low-to-high output B-to-A ten Enable time OE-to-A or B 200 200 200 ns tdis Disable time OE-to-A or B 50 40 35 ns trA Input rise time A port rise time trB Input rise time B port rise time tfA Input fall time A port fall time tfB Input fall time B port fall time tSK(O) Skew (time), output 1.7 Push-pull driving Open-drain driving 43 Push-pull driving 250 1.8 4.7 36 170 2.1 206 2.6 4.2 27 140 190 1.2 4 27 103 7.4 2.6 6.6 1.8 5.6 3 149 28 121 24 89 Push-pull driving 3.2 8.3 2.9 7.2 2.4 6.1 Open-drain driving 35 151 24 112 12 64 Push-pull driving 1.9 5.7 1.9 5.5 1.8 5.3 Open-drain driving 4.4 6.9 4.3 6.2 4.2 5.8 Push-pull driving 2.2 7.8 2.4 6.7 2.6 6.6 Open-drain driving 5.1 8.8 5.4 9.4 5.4 10.4 Channel-to-channel skew Push-pull driving Open-drain driving Copyright © 2007–2018, Texas Instruments Incorporated 0.7 ns ns 1 2.8 Open-drain driving ns 4.3 1.6 37 5.8 4.4 3.6 2.5 44 6 3.8 4.1 3 Push-pull driving Open-drain driving 2 3.5 Push-pull driving Open-drain driving 6.3 3.7 MAX Propagation delay time high-to-low output Open-drain driving 3.2 VCCB = 5 V ± 0.5 V tPHL Maximum data rate Push-pull driving MAX VCCB = 3.3 V ±0.3 V 0.7 0.7 20 22 24 2 2 2 ns ns ns ns ns ns Mbps 9 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 6.11 Switching Characteristics: VCCA = 3.3 V ± 0.3 V over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCCB = 3.3 V ±0.2 V MIN MAX MIN UNIT Propagation delay time high-to-low output A-to-B tPLH Propagation delay time low-to-high output A-to-B tPHL Propagation delay time high-to-low output B-to-A tPLH Propagation delay time low-to-high output B-to-A ten Enable time OE-to-A or B 200 200 ns tdis Disable time OE-to-A or B 40 35 ns trA Input rise time A port rise time trB Input rise time B port rise time tfA Input fall time A port fall time tfB Input fall time B port fall time tSK(O) Skew (time), output 10 Open-drain driving 2.4 MAX tPHL Maximum data rate Push-pull driving VCCB = 5 V ± 0.5 V 1.3 Push-pull driving Open-drain driving 36 204 1 124 28 139 165 1 97 3 105 2.3 5.6 1.9 4.8 Open-drain driving 25 116 19 85 Push-pull driving 2.5 6.4 2.1 7.4 Open-drain driving 26 116 14 72 2 5.4 1.9 5 Open-drain driving 4.3 6.1 4.2 5.7 Push-pull driving 2.3 7.4 2.4 7.6 5 7.6 4.8 8.3 Open-drain driving Channel-to-channel skew Push-pull driving Open-drain driving ns ns 2.6 Push-pull driving Push-pull driving ns 3.3 2.5 3 4.6 4.4 2.5 Push-pull driving Open-drain driving 1.4 4.2 Push-pull driving Open-drain driving 4.2 3.1 0.7 0.7 23 24 2 2 ns ns ns ns ns ns Mbps 版权 © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 6.12 Typical Characteristics 图 1. Low-Level Output Voltage (VOL(Bx)) vs Low-Level Current (IOL(Bx)) 图 2. Low-Level Output Voltage (VOL(Bx)) vs Low-Level Current (IOL(Bx)) 图 3. Low-Level Output Voltage (VOL(Bx)) vs Low-Level Current (IOL(Bx)) 版权 © 2007–2018, Texas Instruments Incorporated 11 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 7 Parameter Measurement Information Unless otherwise noted, all input pulses are supplied by generators having the following characteristics: • PRR 10 MHz • ZO = 50 W • dv/dt ≥ 1 V/ns 注 All parameters and waveforms are not applicable to all devices. VCCI VCCO DUT IN OUT 1M 15 pF 图 4. Data Rate, Pulse Duration, Propagation Delay, Output Rise And Fall Time Measurement Using A Push-Pull Driver VCCI VCCO DUT IN OUT 1M 15 pF 图 5. Data Rate, Pulse Duration, Propagation Delay, Output Rise And Fall Time Measurement Using An Open-Drain Driver 2 x VCCO S1 50 k Open From Output Under Test 15 pF 50 k 图 6. Load Circuit For Enable / Disable Time Measurement 表 1. Switch Configuration For Enable / Disable Timing TEST tPZL (1) , tPLZ S1 (2) tPHZ (2), tPZH (1) (1) (2) 12 2 × VCCO Open tPZL and tPZH are the same as ten. tPLZ and tPHZ are the same as tdis. 版权 © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 tw VCCI Input VCCI / 2 VCCI / 2 0V (1) All input pulses are measured one at a time, with one transition per measurement. 图 7. Voltage Waveforms Pulse Duration VCCI VCCI / 2 VCCI / 2 Input 0V TPLH TPHL 0.9 VCCO / 2 Output VOH VCCO VCCO / 2 VCCO 0.1 VOL tr A. tf All input pulses are measured one at a time, with one transition per measurement. 图 8. Voltage Waveforms Propagation Delay Times Output Control (low-level enabling) VCCA VCCA / 2 VCCA / 2 0V tPLZ Output Waveform 1(1) S1 at x VCCO tPZL VCCO VCCO / 2 0.1 VCCO tPHZ tPZH Output Waveform 2(2) S1 at GND VOL 0.9 VOH VCCO VCCO / 2 0V (1) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. (2) Waveform 2 is for an output with internal conditions such that the ouput is high, except when disabled by the output control. 图 9. Voltage Waveforms Enable And Disable Times 版权 © 2007–2018, Texas Instruments Incorporated 13 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 8 Detailed Description 8.1 Overview The TXS0102 device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.65 V to 3.6 V, while the B port can accept I/O voltages from 2.3 V to 5.5 V. The device is a pass-gate architecture with edge-rate accelerators (one-shots) to improve the overall data rate. 10-kΩ pullup resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs. 8.2 Functional Block Diagram VCCA VCCB OE One Shot Accelerator One Shot Accelerator Gate Bias 10 NŸ 10 NŸ A1 B1 One Shot Accelerator One Shot Accelerator Gate Bias 10 NŸ A2 14 10 NŸ B2 版权 © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 8.3 Feature Description 8.3.1 Architecture The TXS0102 architecture (see Figure 10) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A. VCCA VCCB T1 One Oneshot shot One Oneshot shot T2 R1 10k R2 10k Gate Bias A B N2 图 10. Architecture of a TXS0102 Cell These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this autodirection feature is realized. The TXS0102 device is part of TI's "Switch" type voltage translator family and employs two key circuits to enable this voltage translation: 1) An N-channel pass-gate transistor topology that ties the A-port to the B-port and 2) Output one-shot (O.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B ports For bidirectional voltage translation, pull-up resistors are included on the device for dc current sourcing capability. The VGATE gate bias of the N-channel pass transistor is set at approximately one threshold voltage (VT) above the VCC level of the low-voltage side. Data can flow in either direction without guidance from a control signal. The O.S. rising-edge rate accelerator circuitry speeds up the output slew rate by monitoring the input edge for transitions, helping maintain the data rate through the device. During a low-to-high signal rising edge, the O.S. circuits turn on the PMOS transistors (T1, T2) to increase the current drive capability of the driver for approximately 30 ns or 95% of the input edge, whichever occurs first. This edge-rate acceleration provides high ac drive by bypassing the internal 10-kΩ pull-up resistors during the low-to-high transition to speed up the signal. The output resistance of the driver is decreased to approximately 50 Ω to 70 Ω during this acceleration phase. To minimize dynamic ICC and the possibility of signal contention, the user should wait for the O.S. circuit to turn off before applying a signal in the opposite direction. The worst-case duration is equal to the minimum pulse-width number provided in the Timing Requirements section of this data sheet. 版权 © 2007–2018, Texas Instruments Incorporated 15 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn Feature Description (接 接下页) 8.3.2 Input Driver Requirements The continuous dc-current "sinking" capability is determined by the external system-level open-drain (or pushpull) drivers that are interfaced to the TXS0102 I/O pins. Since the high bandwidth of these bidirectional I/O circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a modest dc-current "sourcing" capability of hundreds of micro-Amps, as determined by the internal 10-kΩ pullup resistors. The fall time (tfA, tfB) of a signal depends on the edge-rate and output impedance of the external device driving TXS0102 data I/Os, as well as the capacitive loading on the data lines. Similarly, the tPHL and max data rates also depend on the output impedance of the external driver. The values for tfA, tfB, tPHL, and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 Ω. 8.3.3 Output Load Considerations TI recommends careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30 ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic ICC, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the TXS0102 device output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system-level affects. 8.3.4 Enable and Disable The TXS0102 device has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. The disable time (tdis) indicates the delay between the time when OE goes low and when the outputs are disabled (Hi-Z). The enable time (ten) indicates the amount of time the user must allow for the oneshot circuitry to become operational after OE is taken high. 8.3.5 Pullup or Pulldown Resistors on I/O Lines Each A-port I/O has an internal 10-kΩ pullup resistor to VCCA, and each B-port I/O has an internal 10-kΩ pullup resistor to VCCB. If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to VCCA or VCCB (in parallel with the internal 10-kΩ resistors). Adding lower value pull-up resistors will effect VOL levels, however. The internal pull-ups of the TXS0102 are disabled when the OE pin is low. 8.4 Device Functional Modes The device has two functional modes, enabled and disabled. To disable the device set the OE input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device. 16 版权 © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 9 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The TXS0102 device can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I2C or 1-wire, where the data is bidirectional and no control signal is available. The device can also be used in applications where a pushpull driver is connected to the data I/Os, but the TXB0102 might be a better option for such push-pull applications. 9.2 Typical Application 图 11. Typical Application Circuit 9.2.1 Design Requirements For this design example, use the parameters listed in Table 3. And make sure the VCCA ≤ VCCB. 表 2. Design Parameters DESIGN PARAMETER EXAMPLE VALUE Input voltage range 1.65 to 3.6 V Output voltage range 2.3 to 5.5 V 版权 © 2007–2018, Texas Instruments Incorporated 17 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 9.2.2 Detailed Design Procedure To begin the design process, determine the following: • Input voltage range - Use the supply voltage of the device that is driving the TXS0102 device to determine the input voltage range. For a valid logic high the value must exceed the VIH of the input port. For a valid logic low the value must be less than the VIL of the input port. • Output voltage range - Use the supply voltage of the device that the TXS0102 device is driving to determine the output voltage range. - The TXS0102 device has 10-kΩ internal pullup resistors. External pullup resistors can be added to reduce the total RC of a signal trace if necessary. • An external pull down resistor decreases the output VOH and VOL. Use Equation 1 to calculate the VOH as a result of an external pull down resistor. VOH = VCCx × RPD / (RPD + 10 kΩ) Where: • VCCx is the supply voltage on either VCCA or VCCB • RPD is the value of the external pull down resistor 9.2.3 Application Curves 图 12. Level-Translation of a 2.5-MHz Signal 18 版权 © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 10 Power Supply Recommendations During operation, ensure that VCCA ≤ VCCB at all times. The sequencing of each power supply will not damage the device during the power up operation, so either power supply can be ramped up first. The output-enable (OE) input circuit is designed so that it is supplied by VCCA and when the (OE) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the OE input pin must be tied to GND through a pulldown resistor and must not be enabled until VCCA and VCCB are fully ramped and stable. The minimum value of the pulldown resistor to ground is determined by the currentsourcing capability of the driver. 11 Layout 11.1 Layout Guidelines To ensure reliability of the device, the following common printed-circuit board layout guidelines are recommended: • Bypass capacitors should be used on power supplies and should be placed as close as possible to the VCCA, VCCB pin, and GND pin. • Short trace lengths should be used to avoid excessive loading. • PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than the one-shot duration, approximately 30 ns, ensuring that any reflection encounters low impedance at the source driver. 11.2 Layout Example LEGEND Polygonal VIA to Power Plane Copper Pour VIA to GND Plane (Inner Layer) TXS0102DCTR 1 B2 B1 8 VCCB 7 OE 6 A1 5 To System 0.1 …F Bypass Capacitor 2 GND 0.1 µF 3 VCCA 4 A2 To System Bypass Capacitor Keep OE low until VCCA and VCCB are powered up To Controller To Controller 图 13. TXS0102 Layout Example 版权 © 2007–2018, Texas Instruments Incorporated 19 TXS0102 ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 www.ti.com.cn 12 器件和文档支持 12.1 文档支持 12.1.1 相关文档 请参阅如下相关文档: • 德州仪器 (TI),《使用 TXS-型转换器进行电压转换指南》应用手册 • 德州仪器 (TI),《TXS 和 LSF 自动双向转换器件的 VOL 影响因素》应用手册 • 德州仪器 (TI),《TXS、TXB 和 LSF 自动双向转换器的偏置要求》应用手册 • 德州仪器 (TI),《上拉和下拉电阻器对 TXS 和 TXB 器件的影响》应用手册 • 德州仪器 (TI),《逻辑简介》应用手册 • 德州仪器 (TI),《TI 逻辑和线性产品指南》选择和解决方案指南 • 德州仪器 (TI),《洗衣机解决方案指南》选择和解决方案指南 • 德州仪器 (TI),《TI 智能手机解决方案指南》选择和解决方案指南 12.2 接收文档更新通知 要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 12.3 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 12.4 商标 NanoStar, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 12.5 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 12.6 术语表 SLYZ022 — TI 术语表。 这份术语表列出并解释术语、缩写和定义。 20 版权 © 2007–2018, Texas Instruments Incorporated TXS0102 www.ti.com.cn ZHCSHK3I – JANUARY 2007 – REVISED OCTOBER 2018 13 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 版权 © 2007–2018, Texas Instruments Incorporated 21 PACKAGE OPTION ADDENDUM www.ti.com 30-Aug-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TXS0102DCTR ACTIVE SM8 DCT 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 NFE (R, Z) TXS0102DCTRE4 ACTIVE SM8 DCT 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 NFE (R, Z) TXS0102DCTT ACTIVE SM8 DCT 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 NFE (R, Z) TXS0102DCTTE4 ACTIVE SM8 DCT 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 NFE (R, Z) TXS0102DCTTG4 ACTIVE SM8 DCT 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 NFE (R, Z) TXS0102DCUR ACTIVE VSSOP DCU 8 3000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 85 (FE, NFEQ, NFER) NZ TXS0102DCURG4 ACTIVE VSSOP DCU 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 NFER TXS0102DCUT ACTIVE VSSOP DCU 8 250 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 85 (FE, NFEQ, NFER) NZ TXS0102DCUTG4 ACTIVE VSSOP DCU 8 250 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 NFER TXS0102DQER ACTIVE X2SON DQE 8 5000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 85 2H TXS0102DQMR ACTIVE X2SON DQM 8 3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 85 2H (2H7, 2HR) (2HG, 2HH) TXS0102YZPR ACTIVE DSBGA YZP 8 3000 RoHS & Green Level-1-260C-UNLIM -40 to 85 (2H, 2HN) SNAGCU (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 30-Aug-2021 RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TXS0102DCTTG4 价格&库存

很抱歉,暂时无法提供与“TXS0102DCTTG4”相匹配的价格&库存,您可以联系我们找货

免费人工找货