0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CYPD5236-96BZXI

CYPD5236-96BZXI

  • 厂商:

    CYPRESS(赛普拉斯)

  • 封装:

    VFBGA96

  • 描述:

    IC USB TYPE C CCG5 96BGA

  • 数据手册
  • 价格&库存
CYPD5236-96BZXI 数据手册
Please note that Cypress is an Infineon Technologies Company. The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio. Continuity of document content The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page. Continuity of ordering part numbers Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering. www.infineon.com  EZ-PD™ CCG5 USB Type-C Port Controller EZ-PD™ CCG5, USB Type-C Port Controller General Description EZ-PD™ CCG5 is a dual USB Type-C controller that complies with the latest USB Type-C and PD standards. EZ-PD CCG5 provides a complete dual USB Type-C and USB-Power Delivery port control solution for PCs, notebook, and dock. It can also be used in dual role and downstream-facing port applications. EZ-PD CCG5 uses Cypress’ proprietary M0WS8 technology with a 32-bit, 48-MHz Arm® Cortex®-M0 processor with 128-KB flash and integrates two complete Type-C Transceivers including the Type-C termination resistors, RP and RD. CCG5 also integrates high-voltage regulator. CCG5 is available in 40-QFN (1 port[3]) and 96-BGA (2 ports) packages. Applications 32-bit MCU Subsystem ■ PCs, Notebook, and Dock ■ Thunderbolt hosts and devices ■ ■ ■ 48-MHz Arm Cortex-M0 CPU 128-KB Flash 12-KB SRAM Features Integrated Digital Blocks Type-C and USB-PD Support ■ Integrated USB Power Delivery (USB-PD) 3.0 support Two integrated USB-PD Type-C ports [1] [2] ■ Integrated UFP (RD) and current sources for DFP (RP) on both Type-C ports ■ Integrated dead battery termination for DRP (Power Source/Sink) applications ■ Integrated VCONN FETs to power EMCA cables ■ Integrated fast role swap and extended data messaging ■ Integrated high-voltage LDO, operational up to 21.5 V ■ Integrated 2x USB Analog Mux ■ Integrated 2x SBU Analog Mux ■ Integrated 2x USB Charger detect blocks – BC v1.2, Apple Charging (source only) ■ Integrated overvoltage protection (OVP) and overcurrent protection (OCP) on the VBUS ■ Integrated OCP protection on the VCONN ■ Integrated high-voltage protection on CC and SBU pins to protect against accidental shorts to the VBUS pin on the Type-C connector ■ Integrated current sense amplifier that supports high-side current sensing ■ Integrated gate drivers for external VBUS PFET control on Type-C Ports ■ Supports high-voltage tolerant PFET-controlled GPIOs ■ ■ ■ Up to two integrated timers and counters to meet response times required by the USB-PD protocol Four run-time serial communication blocks (SCBs) with  reconfigurable I2C, SPI, or UART functionality Clocks and Oscillators ■ Integrated oscillator eliminating the need for an external clock Low-Power Operation ■ 2.75 V to 21.5 V operation System-Level ESD on CC, D±, and SBU Pins ■ ± 8-kV Contact Discharge and ±15-kV Air Gap Discharge based on IEC61000-4-2 level 4C Hot-Swappable I/Os ■ Port 1 I2C pins and CC1, CC2 pins are hot-swappable Packages ■ ■ 6.0 mm  6.0 mm, 0.6 mm, 40-pin QFN 6.0 mm  6.0 mm, 1.0 mm, 96-ball BGA Supports industrial temperature range (–40 °C to +85 °C) Notes 1. UFP refers to Power Sink. 2. DFP refers to Power Source. 3. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part. Cypress Semiconductor Corporation Document Number: 002-17682 Rev. *M • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised March 28, 2019 EZ-PD™ CCG5 Logic Block Diagram CCG5: Single- Chip Type- C Controller Flash (128KB) SRAM (12KB ) System Resources 2x SBU Analog Mux Switch 2x2 USB Analog Mux Switch 2x USB Charge Detect Document Number: 002-17682 Rev. *M Advanced High- Performance Bus (AHB) CORTEX -M0 48 MHz 2x TCPWM High- Side Current sense Amplifier ARM Integrated Digital Blocks SCB (I2 C, SPI, UART) SCB (I2 C, SPI, UART) SCB (I2 C, SPI, UART) SCB (I2 C, SPI, UART) I/O Subsystem Programmable I/O Matrix MCU Subsystem CC VCONN 28 GPIO Pins USB PD Subsystem x2 Baseband MAC VBUS OVP Protection Baseband PHY HV Protection On CC & SBU Hi- Voltage LDO ( 21.5V) Under Voltage Protection 1x 8- bit SAR ADC 2x VCONN FETs VBUS/VCONN OCP Protection 2x Gate Drivers Page 2 of 43 EZ-PD™ CCG5 Contents Functional Overview ........................................................ 4 USB-PD Subsystem (SS) ............................................ 4 CPU and Memory Subsystem ..................................... 6 Power System Overview .................................................. 7 Peripherals .................................................................. 8 GPIO ........................................................................... 8 Pinouts .............................................................................. 9 Application Diagrams ..................................................... 16 Electrical Specifications ................................................ 21 Absolute Maximum Ratings ....................................... 21 Device-Level Specifications ...................................... 22 Digital Peripherals ..................................................... 25 System Resources .................................................... 26 Document Number: 002-17682 Rev. *M Ordering Information ...................................................... 34 Ordering Code Definitions ......................................... 34 Packaging ........................................................................ 35 Acronyms ........................................................................ 37 Document Conventions ................................................. 38 Units of Measure ....................................................... 38 References and Links To Applications Collaterals .... 39 Document History Page ................................................. 40 Sales, Solutions, and Legal Information ...................... 43 Worldwide Sales and Design Support ....................... 43 Products .................................................................... 43 PSoC® Solutions ...................................................... 43 Cypress Developer Community ................................. 43 Technical Support ..................................................... 43 Page 3 of 43 EZ-PD™ CCG5 Functional Overview USB-PD Subsystem (SS) USB-PD Physical Layer The CCG5 has two USB-PD subsystems consisting of the USB-PD physical layer (PHY) block and supporting circuits. The USB-PD PHY consists of a transmitter and receiver that communicate BMC and 4b/5b encoded data over the CC channel based on the PD 3.0 standard. All communication is half-duplex. The PHY practices collision avoidance to minimize communication errors on the channel. In addition, the CCG5 USB-PD block includes all termination resistors (RP and RD) and their switches as required by the USB Type-C spec. RP and RD resistors are required to implement connection detection, plug orientation detection, and for establishing the USB source/sink roles. The integrated RP resistor enables CCG5 to be configured as a DFP. The RP resistor is implemented as a current source and can be programmed to support the complete range of current capacity on the VBUS defined in the USB Type-C Spec. To support the latest USB-PD 3.0 specification, CCG5 has implemented the Fast Role Swap (FRS) feature. The FRS feature enables externally powered docks and hubs to rapidly switch to bus power when their external power supply is removed. CCG5 also supports DeepSleep in notebook systems where CCG5 is expecting FRS detection. For more details, refer to Section 6.3.17 in the USB-PD 3.0 specification. CCG5 is designed to be fully interoperable with revision 3.0 of the USB Power Delivery specification as well as revision 2.0 of the USB Power Delivery specification. CCG5 supports Extended Messages containing data of up to 260 bytes. The Extended Messages will be larger than expected by the USB-PD 2.0 hardware. To accommodate Revision 2.0 based systems, a Chunking mechanism is implemented such that messages are limited to Revision 2.0 sizes unless it is discovered that both systems support longer message lengths. The RD resistor is used to identify CCG5 as a UFP in a DRP application. The RD resistor on CC pins is required even when the part is not powered for dead battery termination detection and charging. Figure 1. USB-PD Subsystem To/From System Resources vref iref To/ from AHB 8-bit ADC From AMUX VCONN FET Enable V5V TxRx Enable VCONN FETs Digital Baseband PHY Tx_data from AHB Enable Logic Tx SRAM 4b5b Encoder SOP Insert BMC Encoder Rp TX CRC Rx_data to AHB CC1 RX Rx SRAM 4b5b Decoder SOP Detect CC2 Comp CC control CC detect Deep Sleep Reference Enable Functional, Wakeup Interrupts Document Number: 002-17682 Rev. *M RD1 BMC Decoder Deep Sleep Vref & Iref Gen (common for both ports) Ref Active Rd Analog Baseband PHY vref, iref DB Rd RD2 8kV IEC ESD RD1 shorted to CC1 and RD2 shorted to CC2 for DRP applications using bondwire. For DFP applications, RD1 and RD2 not shorted to CC1 and CC2. Dead Battery (DB) Rd termination removed after MCU boots up Page 4 of 43 EZ-PD™ CCG5 VCONN FET SBU Mux CCG5 has two power supply inputs, V5V_P1 and V5V_P2 pins, for providing power to EMCA cables through integrated VCONN FETs. There are two VCONN FETs for each PD port to power either CC1 or CC2 pins. These FETs can provide 1.5-W power over VCONN on the CC1 and CC2 pins for the EMCA cables. CCG5 also supports integrated OCP on VCONN. The SBU switch mux contains 2x1 Mux and a single 2x2 cross bar SBU switch per the Type-C port. The 2x1 MUX enables you to select between the Display Port or Thunderbolt alternate mode and the single-ended 2x2 switch enables you to route signals to the appropriate SBU1/2 based on CC (Type-C plug) orientation. ADC The USB-PD subsystem contains one 8-bit successive approximation register (SAR) for analog-to-digital conversions (ADC). The ADCs include an 8-bit DAC and a comparator. The DAC output forms the positive input of the comparator. The negative input of the comparator is from a 4-input multiplexer. The four inputs of the multiplexer are a pair of global analog multiplex busses, an internal bandgap voltage, and an internal voltage proportional to the absolute temperature. All GPIOs on the chip have access to the ADCs through the chip-wide analog mux bus. The CC1 and CC2 pins of both Type-C ports are not available to connect to the mux bus. The AUX port of the SBU switch supports only differential signals. Non-differential signals on the AUX port cause signal coupling at the output of the SBU switch. The LS port of the SBU switch supports both non-differential and differential signals. Figure 2. CCG5 SBU Crossbar Switch Block Diagram USB HS Mux The HS Mux contains a 2×2 cross bar switch to route the system D± lines to the Type-C top or bottom ports based on the CC (Type-C plug) orientation. The unused D± top or bottom lines can be connected to a UART (Debug) port. The maximum operating frequency of UART must be 1 Mbps. The HS Mux also contains charger detection/emulation for detecting USB BC 1.2 (source only) and Apple terminations. The charger detection block is connected to the D± from the system as shown in Figure 3. To meet the HS eye diagram requirements with sufficient margin, follow these guidelines: ■ It is recommended to keep the total USB HS signal trace lengths (USB 2.0 host to CCG5 + CCG5 to Type-C connector pins) to 4 inches. ■ Total USB HS signal trace lengths can be increased up to 8 inches by adjusting the drive strength on the USB 2.0 host. ■ The differential impedance across the DP/DM signal traces shall be 90 Ω. ■ Trace width shall be 6 mils. ■ Air Gap (distance between lines) shall be 8 mils. Figure 3. CCG5 DP/DM Switch Block Diagram Overvoltage and Undervoltage Protection on VBUS Overcurrent Protection on VBUS CCG5 implements an undervoltage/overvoltage (UV/OV) detection circuit for the VBUS supply. The threshold for OV and UV detection can be set independently. Both UV and OV detector have programmable thresholds and is controlled by the firmware. CCG5 integrates a high-side current sense amplifier to detect overcurrent on the VBUS. Overcurrent protection is enabled by sensing the current through the 10-m sense resistor connected between the “CSP_Px” and “CSN_Px” pins. Document Number: 002-17682 Rev. *M Page 5 of 43 EZ-PD™ CCG5 VBUS Discharge CCG5 also has integrated VBUS discharge FETs and resistors for each port. It is used to discharge VBUS to meet the USB-PD specification timing on a detach condition and negative voltage transition. VBUS Regulator CCG5 can operate from three power supplies – VSYS, VBUS_P1, and VBUS_P2. CCG5 integrates the regulator (that supports up to 21.5 V) to derive operating supply voltage. The VSYS always takes priority over VBUS_P1/VBUS_P2. In the absence of VSYS, the regulator powers CCG5 either from VBUS_P1 or VBUS_P2. PFET Gate Driver for VBUS CCG5 supports the consumer-side and provider-side external power FET Drivers for PFET. The VBUS_P_CTRL and VBUS_C_CTRL gate drivers can drive only low or high-Z, thus requiring an external pull-up. These pins are VBUS voltage-tolerant. Charger Detect CCG5 integrates battery charger emulation and detection for USB BC.1.2, Apple charge (source only). IEC Compliant VBUS, CC, D±, and SBU Lines The chip supports IEC-compliant ESD protection on VBUS, CC, D±, and SBU lines. CPU and Memory Subsystem CPU The Cortex-M0 CPU in EZ-PD CCG5 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for EZ-PD CCG5 has four break-point (address) comparators and two watchpoint (data) comparators. Flash The EZ-PD CCG5 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver two wait states (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required. SROM A supervisory ROM that contains boot and configuration routines is provided. SRAM CCG5 supports 12-KB SRAM. High-Voltage Tolerant SBU and CC Lines The chip supports high-voltage tolerant SBU and CC lines. In the case of SBU/CC short to VBUS through connectors, these lines will be protected internally. Document Number: 002-17682 Rev. *M Page 6 of 43 EZ-PD™ CCG5 Power System Overview Table 1. CCG5 Power Modes Mode Description Figure 4 provides an overview of the EZ-PD CCG5 power system. CCG5 can operate from three possible external supply Power is valid and XRES is not asserted. An sources: VBUS_P1/VBUS_P2 (4 V–21.5 V) or VSYS (2.75 V–5.5 V). RESET internal reset source is asserted or Sleep The VBUS_P1 and VBUS_P2 supply is regulated inside the chip Controller is sequencing the system out of reset. with a LDO. The switched supply, VDDD, is either used directly ACTIVE Power is valid and CPU is executing instructions. inside some analog blocks or further regulated down to VCCD, which powers majority of the core using the regulators. CCG5 Main regulator and most blocks are shut off. has two different power modes: Active and Deep sleep. TransiDEEP SLEEP Deep Sleep regulator powers logic, but only tions between these power modes are managed by the power low-frequency clock if available. system. A separate power domain, VDDIO, is provided for the GPIOs. The VDDD and VCCD pins, both outputs of regulators, are brought out for connecting a 1 µF and 0.1 µF capacitor respectively for the regulator stability only. The VCCD pin is not supported as a power supply. VDDD can source 2 mA (max) for external load. Figure 4. EZ-PD CCG5 Power System VBUS_P1 LDO VBUS_P2 LDO VDDD VSYS CC1_P2 CC2_P2 V5V_P2 CC1_P1 CC2_P1 V5V_P1 Core Regulator (SRSS-Lite) VDDIO VCCD GPIOs Core 2 x CC Tx/Rx VSS Document Number: 002-17682 Rev. *M Page 7 of 43 EZ-PD™ CCG5 Peripherals GPIO Serial Communication Blocks (SCB) EZ-PD CCG5 has 28 GPIOs that includes the I2C and SWD pins, which can also be used as GPIOs. The I2C pins from only SCB 1 are overvoltage-tolerant. The number of available GPIOs vary with the part numbers. The GPIO block implements the following: EZ-PD CCG5 has four SCBs, which can be configured to implement an I2C, SPI, or UART interface. The hardware I2C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as a Master/slave. In the I2C mode, the SCB blocks are capable of operating at speeds up to 1 Mbps (Fast Mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I2C that creates a mailbox address range in the memory of EZ-PD CCG5 and effectively reduce I2C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read data on time. The I2C peripherals are compatible with the I2C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus specification and user manual (UM10204). The I2C bus I/Os are implemented with GPIO in open-drain modes. The I2C port on SCB 2, SCB 3 and SCB 4 blocks of EZ-PD CCG5 are not completely compliant with the I2C spec in the following: ■ The GPIO cells for SCB 2 to SCB 4 I2C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I2C system. ■ Fast-mode Plus has an IOL specification of 20 mA at a VOL of 0.4 V. The GPIO cells can sink a maximum of 10-mA IOL with a VOL maximum of 0.6 V. ■ Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load. ■ Seven drive strength modes: ❐ Input only ❐ Weak pull-up with strong pull-down ❐ Strong pull-up with weak pull-down ❐ Open drain with strong pull-down ❐ Open drain with strong pull-up ❐ Strong pull-up with strong pull-down ❐ Weak pull-up with weak pull-down ■ Input threshold select (CMOS or LVTTL) ■ Individual control of input and output buffer enabling/disabling in addition to the drive strength modes ■ Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode) ■ Selectable slew rates for dV/dt related noise control to improve EMI During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Timer/Counter/PWM Block (TCPWM) EZ-PD CCG5 has up to two TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (TCPWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadrature signals. Document Number: 002-17682 Rev. *M Page 8 of 43 EZ-PD™ CCG5 Pinouts Table 2. Pinout for CYPD5125-40LQXIT[4] Group Name USB Type-C Mux Pin Name Port Pin CC1 Analog 9 CC2 Analog 7 USB PD connector detect/Configuration Channel 2 DPLUS_SYS Analog 23 USB 2.0 DP from the Host System DMINUS_SYS Analog 24 USB 2.0 DM from the Host System UART_TX/GPIO P4.0 29 UART TX from Host System/GPIO UART_RX/GPIO P4.1 30 UART RX from Host System/GPIO DPLUS_BOT Analog 26 USB 2.0 DP from Bottom of Type-C Connector DMINUS_BOT Analog 25 USB 2.0 DM from Bottom of Type-C Connector DMINUS_TOP Analog 27 USB 2.0 DM from Top of Type-C Connector DPLUS_TOP Analog 28 USB 2.0 DP from Top of Type-C Connector SBU2 Analog 34 Sideband Use signal SBU1 Analog 35 Sideband Use signal AUX_P Analog 36 Auxiliary signal for DisplayPort AUX_N Analog 37 Auxiliary signal for DisplayPort LSTX Analog 38 Thunderbolt Link Management UART Rx LSRX Analog 39 Thunderbolt Link Management UART Tx VBUS_P_CTRL Analog 11 Full rail control I/O for enabling/disabling Provider load PFET of USB Type-C Port 1 0: Path ON High Z: Path OFF VBUS_C_CTRL Analog 12 Full rail control I/O for enabling/disabling Consumer load PFET of USB Type-C port1 0: Path ON High Z: Path OFF VBUS Control VBUS OCP GPIOs and Serial Interfaces Description USB PD connector detect/Configuration Channel 1 CSP Analog 1 Current Sense positive Input for VBUS side external Rsense CSN Analog 40 Current sense negative for other side of external Rsense SWD_IO/AR_RST/GPIO P1.6 6 SWD I/O/GPIO SWD_CLK/I2C_CFG_EC/ GPIO P1.0 2 SWD Clock/ I2C config line. I2C config line is used to select the I2C address of HPI interface. The state of line decides the 7 bit I2C address for HPI. I2C Config Line Floating: 0x08 Pulled up with 1 K: 0x42 Pulled down with 1 K: 0x40 I2C_SDA_SCB2_TBT/GPIO P1.1 3 SCB2 I2C Data/GPIO I2C_SCL_SCB2_TBT/GPIO P1.2 4 SCB2 I2C Clock/GPIO I2C_INT_TBT/GPIO P1.3 5 TBT interrupt for port 1/GPIO OVP_TRIP/I2C_SDA_SCB4/GPIO P2.4 14 VBUS overvoltage output indicator for port 1/SCB4 I2C Data UV_OCP_TRIP/I2C_SCL_SCB4/GPIO P2.3 13 VBUS undervoltage or OCP Output Indicator for Port1 / SCB4 I2C Clock / GPIO I2C_SDA_SCB1_EC/GPIO P5.0 16 SCB1 I2C Data / GPIO I2C_SCL_SCB1_EC/GPIO P5.1 17 SCB1 I2C Clock / GPIO I2C_INT_EC/GPIO P2.5 15 Embedded Controller interrupt/GPIO HPD/GPIO P3.0 18 Hot Plug Detect I/O for port 1/GPIO I2C_SDA_SCB3 / GPIO / VSEL_2 P3.6 20 SCB3 I2C Data or GPIO or voltage selection control for VBUS I2C_SCL_SCB3 / GPIO /VSEL_1 P3.7 21 SCB3 I2C Clock or GPIO or voltage selection control for VBUS Note 4. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part. Document Number: 002-17682 Rev. *M Page 9 of 43 EZ-PD™ CCG5 Table 2. Pinout for CYPD5125-40LQXIT[4] (continued) Group Name Pin Name Port Pin Reset XRES Analog 10 Description Reset input (Active LOW) VBUS Power 22 VBUS Input for Port 1 (4 V to 21.5 V) VSYS Power 19 2.75 V to 5.5 V supply for the system VDDD Power 31 VDDD supply output 1. VSYS powered - (Min: VSYS-50 mV) 2.7 V to 5.5 V 2. VBUS powered - 3.15 V to 3.65 V VDDIO Power 32 At system-level short the VDDD to VDDIO Power Ground VCCD Power 33 1.8 V regulator output for filter capacitor. This pin cannot drive external load. V5V Power 8 4.85 V to 5.5 V supply for VCONN FET of Type-C Port 1 VSS Ground EPAD Ground Note 4. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part. VDDIO VDDD 31 VCCD 33 32 SBU1 AUX_P 36 35 34 SBU2 LSTX AUX_N 37 LSRX 38 CSN 39 1 2 3 4 5 6 7 8 9 10 30 29 28 27 26 25 24 23 22 21 40-Q FN 18 HPD 20 17 I2C_SCL_SCB1_EC UAR T_RX UAR T_TX DPLUS_TO P DM IN US_TO P DPLUS_BOT DM INUS_BO T DM IN US_SYS DPLUS_SYS VBUS I2C_SCL_SCB3 / VSEL_1 I2C_SDA_SCB3 / VSEL_2 16 I2C_INT_EC I2C_SDA_SCB1_EC 19 15 OVP_TRIP/I2C_SDA_SCB4 / GPIO VSYS 14 12 13 UV_OCP_TRIP / I2C_SCL_SCB4 / GPIO 11 VBUS_C_CTRL (T op View) VBUS_P_CTRL C SP SW D_CLK / I2C_CLK_CFG I2C_SDA_SC B2_TBT I2C_SCL_SCB2_TBT I2C_INT_TBT SW D_IO/ AR_R ST CC2 V5V CC1 XRES 40 Figure 5. 40-Pin QFN Pin Map (Top View) for CYPD5125-40LQXIT[5] Note 5. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part. Document Number: 002-17682 Rev. *M Page 10 of 43 EZ-PD™ CCG5 Table 3. Pinout for CYPD5225-96BZXI, CYPD5235-96BZXI, and CYPD5236-96BZXI Group Name USB Type-C Port 1 USB Type-C Port 2 MUX Type-C Port 1 MUX Type-C Port 2 Pin Name Port Ball Location CC1_P1 Analog K2 USB PD connector detect/Configuration Channel 1 CC2_P1 Analog H2 USB PD connector detect/Configuration Channel 2 CC1_P2 Analog K9 USB PD connector detect/Configuration Channel 1 CC2_P2 Analog K10 USB PD connector detect/Configuration Channel 2 Description AUX_P_P1 Analog B11 Auxiliary signal for DisplayPort AUX_N_P1 Analog C11 Auxiliary signal for DisplayPort LSRX_P1 Analog A11 Thunderbolt Link Management UART Rx LSTX_P1 Analog A10 Thunderbolt Link Management UART Tx SBU1_P1 Analog A3 Sideband Use signal SBU2_P1 Analog A4 Sideband Use signal DMINUS_SYS_P1 Analog A7 USB 2.0 DM from the Host System DPLUS_SYS_P1 Analog A6 USB 2.0 DP from the Host System UART_RX_P1/GPIO P4.1 A9 UART Rx from Host System/GPIO UART_TX_P1/GPIO P4.0 A8 UART Tx from Host system/GPIO DMINUS_BOT_P1 Analog C1 USB 2.0 DM from Bottom of Type-C Connector DPLUS_BOT_P1 Analog B1 USB 2.0 DP from Bottom of Type-C Connector DMINUS_TOP_P1 Analog A2 USB 2.0 DM from Top of Type-C Connector DPLUS_TOP_P1 Analog A1 USB 2.0 DP from Top of Type-C Connector AUX_P_P2 Analog D11 Auxiliary signal for DisplayPort AUX_N_P2 Analog E11 Auxiliary signal for DisplayPort LSRX_P2 Analog L11 Thunderbolt Link Management UART Rx LSTX_P2 Analog K11 Thunderbolt Link Management UART Tx SBU1_P2 Analog E1 Sideband Use signal SBU2_P2 Analog F1 Sideband Use signal DMINUS_SYS_P2 Analog G11 USB 2.0 DM from the Host System DPLUS_SYS_P2 Analog F11 USB 2.0 DP from the Host System UART_RX_P2/GPIO P0.2 J11 UART Rx from Host System/GPIO UART_TX_P2/GPIO P0.1 H11 UART Tx from Host system/GPIO DMINUS_BOT_P2 Analog L1 USB 2.0 DM from Bottom of Type-C Connector DPLUS_BOT_P2 Analog K1 USB 2.0 DP from Bottom of Type-C Connector DMINUS_TOP_P2 Analog H1 USB 2.0 DM from Top of Type-C Connector DPLUS_TOP_P2 Analog G1 USB 2.0 DP from Top of Type-C Connector VBUS_P_CTRL_P1 Analog K3 Full rail control I/O for enabling/disabling Provider load PFET of USB Type-C Port 1 0: Path ON High Z: Path OFF VBUS_C_CTRL_P1 Analog K4 Full rail control I/O for enabling/disabling Consumer load PFET of USB Type-C Port 1 0: Path ON High Z: Path OFF VBUS Control Type-C Port1 Document Number: 002-17682 Rev. *M Page 11 of 43 EZ-PD™ CCG5 Table 3. Pinout for CYPD5225-96BZXI, CYPD5235-96BZXI, and CYPD5236-96BZXI (continued) Group Name Pin Name Port Ball Location Description VBUS_P_CTRL_P2 Analog B4 Full rail control I/O for enabling/disabling Provider load PFET of USB Type-C Port 2. 0: Path ON High Z: Path OFF VBUS_C_CTRL_P2 Analog B5 Full rail control I/O for enabling/disabling Consumer load PFET of USB Type-C Port 2. 0: Path ON High Z: Path OFF VBUS Control Type-C Port2 VBUS OCP GPIOs and Serial Interfaces Reset CSP_P1 Analog J1 Current Sense Positive Input for P1 CSN_P1 Analog B3 Current Sense Negative Input for P1 CSP_P2 Analog L2 Current Sense Positive Input for P2 CSN_P2 Analog K8 Current Sense Negative Input for P2 GPIO P3.1 L7 GPIO I2C_SDA_SCB4/OVP_TRIP_P1/ GPIO P2.4 K5 VBUS overvoltage output indicator for Port 1 / SCB4 I2C Data/ GPIO OVP_TRIP_P2 / GPIO P2.2 L8 VBUS overvoltage output indicator for Port 2 / GPIO VSEL_1_P2 / GPIO P0.0 L4 Voltage selection control for VBUS on Port 2 / GPIO UV_OCP_TRIP_P1/GPIO P1.4 B6 VBUS undervoltage of OCP output indicator for Port 1/GPIO HPD_P1/GPIO P3.0 K7 Hot Plug Detect I/O for Port 1 /GPIO HPD_P2/GPIO P3.4 E10 Hot Plug Detect I/O for Port 2 /GPIO VCONN_OCP_TRIP_P2/ GPIO P3.3 B9 VCONN OCP output indicator for Port 2 / GPIO VCONN_OCP_TRIP_P1/GPIO P3.5 B8 VCONN OCP output indicator for Port 1/ GPIO UV_OCP_TRIP_P2/GPIO P1.5 B7 VBUS undervoltage or OCP output indicator for Port 2/GPIO VSEL_2_P2 / GPIO P2.0 H10 I2C_SCL_SCB1_EC/ GPIO Voltage selection control for VBUS on Port 2 / GPIO P5.1 L6 SCB1 I2C Clock I2C_SDA_SCB1_EC/ GPIO P5.0 K6 SCB1 I2C Data I2C_INT_EC/GPIO P2.5 L5 I2C interrupt line I2C_SCL_SCB2_TBT/GPIO P1.2 E2 SCB2 I2C Clock/GPIO I2C_SDA_SCB2_TBT/GPIO P1.1 D2 SCB2 I2C Data /GPIO I2C_INT_TBT_P1/GPIO P1.3 F2 I2C interrupt line/GPIO I2C_INT_TBT_P2/GPIO P2.1 G2 I2C interrupt line I2C_SCL_SCB3 / VSEL_1_P1 /GPIO P3.7 L10 SCB3 I2C Clock/ Voltage selection control for VBUS on Port 1/ GPIO I2C_SDA_SCB3 / VSEL_2_P1 / GPIO P3.6 J10 SCB3 I2C Data / Voltage selection control for VBUS on Port 1 /GPIO I2C_SCL_SCB4/GPIO P2.3 F10 SCB4 I2C Clock /GPIO I2C_SDA_SCB4/GPIO P3.2 G10 SCB4 I2C Data /GPIO SWD_IO/AR_RST# /GPIO P1.6 B2 SWD I/O / AR Reset / GPIO SWD_CLK/I2C_CFG_EC/GPIO P1.0 C2 SWD Clock / I2C config line / GPIO. I2C config line is used to select the I2C address of HPI interface. The state of line decides the 7 bit I2C address for HPI. I2C Config Line Floating: 0x08 Pulled up with 1 K: 0x42 Pulled down with 1 K: 0x40 XRES Analog H6 Reset input (Active LOW) Document Number: 002-17682 Rev. *M Page 12 of 43 EZ-PD™ CCG5 Table 3. Pinout for CYPD5225-96BZXI, CYPD5235-96BZXI, and CYPD5236-96BZXI (continued) Group Name Pin Name Port Ball Location VBUS_P1 Power D1 VBUS Input for Port 1 (4 V to 21.5 V) VBUS_P2 Power L3 VBUS Input for Port 2 (4 V to 21.5 V) VSYS Power A5 2.75 V to 5.5 V supply for the system VDDD Power D10 VDDD supply output 1. VSYS powered - (Min: VSYS-50 mV) 2.7 V to 5.5 V 2. VBUS powered - 3.15 V to 3.65 V VCCD Power B10 1.8 V regulator output for filter capacitor. This pin cannot drive external load. At system-level short the VDDD to VDDIO Power Ground No Connect Description VDDIO Power C10 V5V_P1 Power J2 4.85 V to 5.5 V supply for VCONN FET of Type-C Port 1 V5V_P2 Power L9 4.85 V to 5.5 V supply for VCONN FET of Type-C Port 2 GND Ground D5 Ground GND Ground D6 Ground GND Ground D7 Ground GND Ground D8 Ground GND Ground E4 Ground GND Ground E5 Ground GND Ground E6 Ground GND Ground E7 Ground GND Ground E8 Ground GND Ground F4 Ground GND Ground F5 Ground GND Ground F6 Ground GND Ground F7 Ground GND Ground F8 Ground GND Ground G4 Ground GND Ground G5 Ground GND Ground G6 Ground GND Ground G7 Ground GND Ground H7 Ground NC DNU G8 Not Connect NC DNU H4 Not Connect NC DNU H5 Not Connect NC DNU H8 Not Connect Document Number: 002-17682 Rev. *M Page 13 of 43 EZ-PD™ CCG5 Figure 6. 96-Pin BGA Pin Map for CYPD5225-96BXZI, CYPD5235-96BZXI, and CYPD5236-96BZXI 1 2 A DPLUS_TO DMINUS_TOP P_P1 _P1 B DPLUS_BO T_P1 SWD_DATA/ TBT_RST# / P1.6 C DMINUS_B OT_P1 SWD_CLK/ I2C_CFG_EC/ P1.0 D VBUS_P1 I2C_SDA_SC B2_TBT/ P1.1 E SBU1_P2 I2C_SCL_SCB 2_TBT/ P1.2 F SBU2_P2 3 4 5 6 SBU1_P1 SBU2_P1 VSYS DPLUS_SY S_P1 CSN_P1 7 8 9 DMINUS_S UART_Tx_P UART_Rx_ YS_P1 1 / P4.0 P1 / P4.1 P1.5 / P3.5 / P3.3 / P1.4 / VBUS_P_C VBUS_C_CT UV_OCP_T UV_OC_TRI VCON_OCP VCON_OCP TRL_P2 RL_P2 P_P2 _TRIP_P1 _TRIP_P2 RIP_P1 10 11 LSTx_P1 LSRx_P1 VCCD AUX_P_P1 VDDIO AUX_N_P1 GND GND GND GND VDDD AUX_P_P2 GND GND GND GND GND HPD_P2 / P3.4 AUX_N_P2 I2C_INT_TBT_ P1/ P1.3 GND GND GND GND GND G DPLUS_TO I2C_INT_TBT_ P_P2 P2/ P2.1 GND GND GND GND DNU H DMINUS_T OP_P2 CC2_P1 DNU DNU XRES GND DNU J CSP_P1 V5V_P1 K DPLUS_BO T_P2 CC1_P1 L DMINUS_B OT_P2 CSP_P2 SCL_4 / P2.3 DPLUS_SYS_ P2 SDA_4 / P3.2 DMINUS_SYS _P2 VSEL_2_P2/ UART_Tx_P2/ P2.0 P0.1 SDA_3/ VSEL_2_P1/ UART_Rx_P2 / P0.2 P3.6 VBUS_P_C VBUS_C_C I2C_SDA_S I2C_SDA_S CB4/OVP_T CB1_EC / TRL_P1 TRL_P1 P5.0 RIP_P1/P2.4 VBUS_P2 VSEL_1_P2 I2C_INT_EC /P0.0 / P2.5 I2C_SCL_S CB1_EC / P5.1 HPD_P1 / P3.0 P3.1 CSN_P2 CC1_P2 CC2_P2 LSTx_P2 OVP_TRIP_ P2/P2.2 V5V_P2 SCL_3 / VSEL_1_P1/ P3.7 LSRx_P2 Type-C Port 1 Type-C Port 2 Power Pins GND GPIOs Document Number: 002-17682 Rev. *M Page 14 of 43 EZ-PD™ CCG5 Table 4 through Table 7 provide the various configuration options for the serial interfaces. Table 4. Serial Communication Block (SCB1) Configuration QFN Pin BGA Pin UART SPI I2C GPIO Functionality 16 K6 – – I2C_SDA_SCB1 GPIO 17 L6 – – I2C_SCL_SCB1 GPIO B8 UART_CTS_SCB1 – – VCONN OCP output indicator for port 1/ GPIO 20 J10 UART_TX_SCB1 SPI_SEL_SCB1 – I2C_SDA_SCB3/ VSEL_2_P1 /GPIO 21 L10 UART_RX_SCB1 SPI_MISO_SCB1 – I2C_SCL_SCB3 / VSEL_1_P1/GPIO 18 K7 UART_RTS_SCB1 – – HPD_P1/GPIO 29 A8 – SPI_MOSI_SCB1 – UART_TX_P1/GPIO 30 A9 – SPI_CLK_SCB1 – UART_RX_P1/GPIO Note: UART TX and RX of the SCB1 is also the UART and SPI. I2C SDA and SCL of the SCB3. So if SCB 3 is in use, then SCB1 cannot be used for Table 5. Serial Communication Block (SCB2) Configuration QFN Pin BGA Pin UART SPI Master I2C Slave 2 C2 UART_RX_SCB2 SPI_SEL_SCB2 – 3 D2 UART_TX_SCB2 SPI_MOSI_SCB2 I2C_SDA_SCB2 4 E2 UART_CTS_SCB2 SPI_MISO_SCB2 I2C_SCL_SCB2 5 F2 UART_RTS_SCB2 SPI_CLK_SCB2 – GPIO Functionality SWD_CLK/I2C_CFG_EC/GPIO I2C_SDA_SCB2_TBT/GPIO I2C_SCL_SCB2_TBT/GPIO I2C_INT_TBT_P1/GPIO Table 6. Serial Communication Block (SCB3) Configuration QFN Pin BGA Pin UART SPI Master I2C Slave – – I2C_SDA_SCB3 UART_TX_SCB1/VSEL_2_P1 /GPIO UART_RX_SCB1 / VSEL_1_P1/GPIO GPIO Functionality 20 J10 21 L10 – – I2C_SCL_SCB3 G2 UART_CTS_SCB3 SPI_MISO_SCB3 – H10 UART_TX_SCB3 SPI_MOSI_SCB3 – VSEL_2_P2 / GPIO L4 UART_RX_SCB3 SPI_SEL_SCB3 – VSEL_1_P2 / GPIO L8 UART_RTS_SCB3 SPI_CLK_SCB3 – OVP_TRIP_P2 / GPIO I2C_INT_TBT_P2/GPIO Table 7. Serial Communication Block (SCB4) Configuration QFN Pin BGA Pin UART SPI Master I2C Slave – – I2C_SCL_SCB4 GPIO GPIO Functionality 13 F10 14 G10 UART_TX_SCB4 SPI_MOSI_SCB4 I2C_SDA_SCB4 GPIO L7 UART_CTS_SCB4 SPI_MISO_SCB4 – GPIO B9 UART_RX_SCB4 SPI_SEL_SCB4 – VCONN_OCP_TRIP_P2/GPIO E10 UART_RTS_SCB4 SPI_CLK_SCB4 – HPD_P2/GPIO Document Number: 002-17682 Rev. *M Page 15 of 43 EZ-PD™ CCG5 Application Diagrams Figure 8 and Figure 9 illustrate the Dual Type-C Port and Single[6] Type-C port Thunderbolt Notebook DRP application diagrams using a CCG5 device respectively. The Type-C port can be used as a power provider/power consumer. The CCG5 device communicates with the embedded controller (EC), which manages the Battery Charger Controller (BCC) to control the charging and discharging of the internal battery. It also updates the Thunderbolt Controller via I2C to route the High-speed signals coming from the Type-C port to the USB host (during normal mode) or the Graphics processor unit (during Display port Alternate mode) or the Thunderbolt Host (during Thunderbolt Alternate mode) based on the alternate mode negotiation. For the dual Type-C notebook application (Figure 8), these Type-C ports can be power providers or power consumers simultaneously. The CCG5 device controls the transfer of USB 2.0 D± lines from the top and bottom of the Type-C receptacle to the D± lines of the USB Host controller. CCG5 also handles the routing of SBU1 and SBU2 lines from the Type-C receptacle to the Thunderbolt controller for the Link management. CCG5 offers ESD Protection on D± and SBU lines as well as VBUS Short protection on SBU and CC lines. The CCG5 device has an integrated VCONN FET for applications that need to provide power for accessories and cables using the VCONN pin of the Type-C receptacle. VBUS FETs are also used for providing power over VBUS and for consuming power over VBUS. The 10-m resistor between the 5-V supply and FETs is used for overcurrent detection on the VBUS. The VBUS_P_CTRL pin of CCG5 has an in-built VBUS monitoring circuit that can detect OVP and UVP on VBUS. CCG5 also has an in-built VBUS discharge circuit that is used to quickly discharge VBUS after the Type-C connection is detached. The internal resistance (as listed in Table 41) of this VBUS discharge circuit is expected to be sufficient for typical CCG5 applications. However, customers can include an optional VBUS discharge circuit as shown in Figure 7 using any available GPIO. This optional circuit can be added to the design if the discharge time using the in-built VBUS discharge circuit needs to be further reduced; that is, VBUS transition time from higher to lower voltages can be further reduced using the external VBUS discharge circuit shown in Figure 7. This optional external circuit comprises of a N-channel MOSFET and the CCG5 device can be used to enable or disable it as appropriate. Figure 7. Optional External VBUS Discharge Circuit VBUS 200  C C G 5 G P IO P in (V B U S _ D IS C H A R G E _ P IN ) 100 K Note 6. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part. Document Number: 002-17682 Rev. *M Page 16 of 43 EZ-PD™ CCG5 Figure 8. CCG5 in a Dual Port Notebook Application using CYPD5225-96BZXI VBUS_OUT_P2 BSC030P03NS3 8 7 6 5 10µF 50V 49.9K 1% 4 5V 0.01  8 7 6 5 3 2 1 VBUS_OUT_P1 5V BSC030P03NS3 3 2 1 Power Subsystem 4 Consum er Path 8 7 6 5 3 2 1 8 7 6 5 3 2 1 49.9K 1% 4 K8 1µF 35V CSN_P2 10µF 50V A6 G1 A7 H1 DCC2 CC1 CSP_P1 B6 K1 B7 L1 B5 K10 A5 K9 VBUS_P_CTRL_P1 VBUS_C_CTRL_P1 390pF 4 SWD_CLK/I2C_CFG_EC/P1.0 UART_TX_P1/P4.0 SBU2_P1 SBU2_P2 SBU1_P1 DPLUS_TOP_P1 SBU1_P2 DPLUS_TOP_P2 DMINUS_TOP_P1 DMINUS_TOP_P2 DPLUS_BOT_P1 DPLUS_BOT_P2 DMINUS_BOT_P1 DMINUS_BOT_P2 CC2_P1 CC2_P2 CC1_P1 OVP_TRIP_P2/P2.2 D10 VDDD C10 VDDIO 3.3V A5 1µF 10V VSYS B10 VCCD 0.1µF SCL_3/VSEL_1_P1/P3.7 CCG5 (CYPD5225-96BZXI) 96-BGA UART_TX_P2/P0.1 UART_RX_P2/P0.2 SDA_4/P3.2 SCL_4/P2.3 SDA_3/VSEL_2_P1/P3.6 5V (from System) J2 UV_OCP_TRIP_P2/P1.5 V5V_P1 L9 GND VCON_OCP_TRIP_P1/P3.5 V5V_P2 VCON_OCP_TRIP_P2/P3.3 3.3V UV_OCP_TRIP_P1/P1.4 H6 2.2 K  2.2 K  2.2 K 2.2 K  2.2 K VSEL_1_P2/P0.0 XRES 0.1µF VSEL_2_P2/P2.0 2.2 K  2.2 K L5 Embedded Controller NC1 I2C_INT_EC/P2.5 NC2 L6 I2C_SCL_SCB1_EC/P5.1 K6 NC3 I2C_SDA_SCB1_EC/P5.0 E2 I2C_SCL_SCB2_TBT/P1.2 D2 F2 G2 VBUS_OUT_P2 4 A8 X A9 X A4 B8 A3 A8 A1 A6 A2 A7 B1 B6 C1 B7 H2 B5 A5 K2 L8 H11 J11 G10 F10 J10 X X H10 G8 X X H4 X H5 X X X L7 X D5, D6, D7, D8, E4, E5, E6, E7, E8, F4, F5, F6, F7, F8, G4, G5, G6, G7, H7 3.3V VBUS_P2 10K SWD_IO/TBT_RST/P1.6 D11 AUX_N_P2 AUX_N_P1 AUX_P_P2 AUX_P_P1 LSTX_P2 L11 8 GND X X L4 K5 GND X X B9 B6 NC4 P3.1 I2C_INT_TBT_P1/P1.3 Type-C Receptacle 1 X X X B8 I2C_SDA_SCB4/ OVP_TRIP_P1/P2.4 I2C_SDA_SCB2_TBT/P1.1 100K K11 CC2 CC1 390pF VBUS_P1 L3 0.1 µF D+ D- X B7 I2C_INT_TBT_P2/P2.1 D1 0.1 µF S B U1 D- X VBUS_OUT_P1 E11 S B U2 D+ X L10 H8 3.3V Data Lines 49.9K 1% K4 CC1_P2 390pF 0.1 µF 0.1µF 10V BSC030P03NS3 8 7 6 5 3 2 1 VB US VDDD 1µF BSC030P03NS3 8 7 3 2 6 5 1 K3 390pF Type-C Receptacle 2 4 1µF 35V CSN_P1 UART_RX_P1/P4.1 E1 D+ B3 J1 CSP_P2 VBUS_C_CTRL_P2 C2 F1 D- 49.9K 1% 10µF 50V 10µF 50V VDDD Note: CCG5 device s I2C address is determined by SWD_CLK pin. 1K 1K resistors not populated = I2C address 0x08 (default) 1K resistor connected to GND = I2C address 0x40 1K 1K resistor connected to VDDD = I2C address 0x42 A8 D+ L2 VBUS_P_CTRL_P2 S BU2 B8 S BU1 8 7 6 5 3 2 1 4 B4 4 B5 V BUS 1µF 35V Consumer Path BSC030P03NS3 BSC030P03NS3 Provider Path BSC030P03NS3 BSC030P03NS3 8 7 3 2 6 5 1 0.01 Provider Path 1µF 35V LSTX_P1 LSRX_P2 LSRX_P1 100K B2 C11 0.1 µF B11 0.1µF A10 8 A11 100K 100K Data Lines 3.3V 3.3V 10K DNP E10 HPD_P2/P3.4 HPD_P1/P3.0 D+_SYS_P2 100K F11 D-_SYS_P2 G11 D+_SYS_P1 D-_SYS_P1 A6 10K K7 DNP 100K A7 Note: Route D+ and D- Host lines to system USB Host Controller DPSRC_HPD DPSRC_HPD LSRX LSRX LSTX LSTX DPSRC_AUX_P DPSRC_AUX_P DPSRC_AUX_N DPSRC_AUX_N RESET_N Thunderbolt Controller I2C_SCL I2C_SDA I2C_INT_P1 I2C_INT_P2 USB2_D_P X Document Number: 002-17682 Rev. *M USB2_D_N X USB2_D_P X USB2_D_N X Note: Follow recommendations from manufacturer for Thunderbolt Controller connections Page 17 of 43 EZ-PD™ CCG5 Figure 9 illustrates a Single Port Thunderbolt Notebook DRP application diagram using CYPD5125-40LQXIT[7]. Figure 9. CCG5 in a Single Port Notebook Application using CYPD5125-40LQXIT[7] VBUS_OUT 5V BSC030P03NS3 BSC030P03NS3 8 7 6 5 0.01 Provider Path 1 µF 35 V 3 2 1 Power Subsystem 8 7 6 5 3 2 1 49.9K  1% 4 Consumer Path Note: CCG5 device s I2C address is determined by SWD_CLK pin. 1K resistors not populated = I2C address 0x08 (default) 1K resistor connected to GND = I2C address 0x40 1K resistor connected to VDDD = I2C address 0x42 VDDD CSP 2 CSN VBUS_P_CTRL 1µF 35V 11 VBUS_C_CTRL 3 2 1 49.9K  1% 4 SWD_CLK/I2C_CFG_EC/P1.0 1 K BSC030P03NS3 8 7 6 5 BSC030P03NS3 8 3 7 2 6 5 1 1 K VDDD 4 12 31 VDDD 0.1 µF VBUS 10 µF 50 V 32 VDDIO VSYS UART_TX/P4.0 VCCD 0.1 µF UART_RX/P4.1 5 V (from System) SBU2 VCONN_V5V SBU1 VBUS_OUT DPLUS_TOP 22 VBUS 3.3 V 10 XRES 0.1µF 2.2 K 2.2 K  DMINUS_TOP CCG5 [7] DPLUS_BOT (CYPD5125-40LQXIT ) DMINUS_BOT 40-QFN CC2 2.2 K 15 EMBEDDED CONTROLLER 17 16 X 3.3 V X X 2.2 K X 2.2 K  2.2 K  20 21 14 13 4 3 CC1 I2C_INT_EC/P2.5 X X B8 35 A8 28 A6 27 A7 26 B6 25 B7 7 B5 A5 9 3.3 V I2C_SCL_SCB1_EC/P5.1 I2C_SDA_SCB1_EC/P5.0 HPD/P3.0 18 390 pF 390 pF SBU2 SBU1 D+ DD+ DCC2 CC1 TYPE-C RECEPTACLE 10 K DNP 100 K  SDA_3/VSEL_2/P3.6 SCL_3/VSEL_1/P3.7 3.3V SDA_4/OVP_TRIP/P2.4 SCL_4/UV_OCP_TRIP/P2.3 10 K SWD_IO/TBT_RST/P1.6 I2C_SCL_SCB2_TBT/P1.2 AUX_N I2C_SDA_SCB2_TBT/P1.1 AUX_P 5 I2C_INT_TBT/P1.3 41 30 34 LSTX EPAD LSRX DPLUS_SYS 23 DMINUS_SYS 24 Note: Route D+ and D - Host lines to system USB Host Controller 100 K  6 DPSRC_HPD 8 RESET_N 37 Data Lines DPSRC_AUX_N 36 0.1 µF 38 0.1 µF GND DPSRC_AUX_P LSTX Thunderbolt Controller 39 LSRX 100 K  USB2_D_N 8 29 USB2_D_P 33 I2C_SCL 19 1 µF I2C_SDA 3.3 V 0.1 µF I2C_INT_P1 1µF 40 1 10 µF 50 V 4 X X Note: Follow recommendations from manufacturer for Thunderbolt Controller connections Note 7. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part. Document Number: 002-17682 Rev. *M Page 18 of 43 EZ-PD™ CCG5 Figure 10 illustrates the Dual Type-C Port Thunderbolt device/dock upstream application diagram using a CCG5 device. The CCG5 device communicates with the power system over I2C, which manages the power provided to the upstream Type-C ports. It also updates the Thunderbolt Controller over I2C based on the alternate mode negotiation to sink Thunderbolt or USB or DisplayPort Data. The CCG5 device controls the transfer of USB 2.0 D± lines from the top and bottom of the Type-C receptacle to the D± lines of the Thunderbolt Controller and Billboard controller. CCG5 also handles the routing of SBU1 and SBU2 lines from the Type-C receptacle to the Thunderbolt controller for the link management. As mentioned in Features, CCG5 offers ESD Protection on D± and SBU lines as well as VBUS Short protection on SBU and CC lines. Figure 10. CCG5 in a Dual port Thunderbolt Device/Dock Upstream Port Application using CYPD5235-96BXZI VBUS_OUT_P2 VBUS_OUT_P1 0.01 Power Subsystem Provider Path EN K8 CSN_P2 B4 B5 L2 CSP_P2 I2C INT B7 G10 B6 P1.5 P1.4 SDA_4/P3.2 EN F10 SCL_4/P2.3 Provider Path INT L7 K5 J1 P3.1 I2C_SDA_SCB4/ CSP_P1 B3 CSN_P1 OVP_TRIP_P1/ P2.4 VBUS_P_CTRL_P2 VBUS_C_CTRL_P2 X X D1 0.01 Power Subsystem VBUS_P_CTRL_P1 VBUS_C_CTRL_P1 X K3 X K4 L3 VBUS_P2 VBUS_P1 VBUS VBUS 10µF 50V VDDD 10µF 50V 1K C2 SWD_CLK/I2C_CFG_EC/P1.0 1K SBU1/2_P1 F1, E1 SBU1/2 DP/M_TOP_P1 G1, H1 D+/-_T DP/M_BOT_P1 K10, K9 B1, C1 D+/-_B H2, K2 CC1/2 CC1/2_P2 390pF SCL_3/VSEL_1_P1/P3.7 Type-C Receptacle 2 D+/ -_T DP/M_BOT_P2 CC1/2_P1 CC1/2 SBU1/2 A1, A2 DP/M_TOP_P2 K1, L1 D+/-_B A3, A4 SBU1/2_P2 L10 390pF X Type-C Receptacle 1 VDDD 1µF D10 VDDD C10 VDDIO 0.1 µF 3.3V A5 0.1µF 10V 1µF 10V CCG5 (CYPD5235-96BZXI) 96-BGA VSYS B10 VCCD 0.1µF SDA_3/VSEL_2_P1/P3.6 VCON_OCP_TRIP_P1/P3.5 5V (from System) J2 3.3V B8 X X GND V5V_P1 L9 GND J10 V5V_P2 H6 XRES 0.1µF B9 RESET I2C_SDA/SCL/INT USB Billboard (CY7C65215) NC2 NC3 K6 I2C_SDA_SCB1_EC/P5.0 USB FullSpeed D- NC4 H11 UART_TX_P2/P0.1 A8 UART_TX_P1/P4.0 J11 UART_RX_P2/P0.2 A9 UART_RX_P1/P4.1 L4, L8, G2, H10 SPI_Master D+ SPI_Master NC1 VCON_OCP_TRIP_P2/P3.3 L5 I2C_INT_EC/P2.5 L6 I2C_SCL_SCB1_EC/P5.1 4 E2 G8 H4 H5 H8 X X X D5, D6, D7, D8, E4, E5, E6, E7, E8, F4, F5, F6, F7, F8, G4, G5, G6, G7, H7 GND I2C_SCL_SCB2_TBT/P1.2 3.3V D2 I2C_SDA_SCB2_TBT/P1.1 F2 I2C_INT_TBT_P1/P1.3 G2 E11, D11 X 10K I2C_INT_TBT_P2/P2.1 SWD_IO/TBT_RST/P1.6 AUX_P/N_P2 AUX_P/N_P1 LSTX/RX_P2 LSTX/RX_P1 B2 B11, C11 0.1 µF 0.1 µF 4 K11, L11 A10, A11 8 8 Data Lines SPI Slave Flash Data Lines 3.3V 3.3V 10K DNP E10 HPD_P2/P3.4 HPD_P1/P3.0 D+_SYS_P2 100K F11 G11 USB2_P DPSRC_HPD LSTX/RX D-_SYS_P2 USB2_N D+_SYS_P1 D-_SYS_P1 A6 USB2_P Port B 10K K7 DNP 100K A7 USB2_N DPSRC_HPD Port A LSTX/RX DPSRC_AUX_P/N DPSRC_AUX_P/N I2C_SCL I2C_SDA 4 I2C_INT_P1 Thunderbolt Controller RESET_N I2C_INT_P2 SPI_Master Note: Follow recommendations from manufacturer for Thunderbolt Controller connections for device/dock schematics Document Number: 002-17682 Rev. *M Page 19 of 43 EZ-PD™ CCG5 Figure 11 illustrates the Dual Type-C Port dock downstream application diagram using a CCG5 device. The CCG5 negotiates power contract with the connected device on the downstream Type-C port and controls the power system. It also controls the data mux via I2C based on the alternate mode negotiation to source USB SuperSpeed and/or DisplayPort on the downstream Type-C port. As mentioned above, the CCG5 device offers ESD Protection on D± and SBU lines as well as VBUS Short protection on SBU and CC lines. Figure 11. CCG5 in a Dual port Dock Downstream Port Application using CYPD5236-96BXZI VBUS_OUT_P2 BSC030P03NS3 8 7 6 5 10µF 50V 49.9K 1% 4 5V 0.01  8 7 6 5 3 2 1 VBUS_OUT_P1 5V BSC030P03NS3 3 2 1 Provider Path 1µF 35V Provider Path Power Subsystem 4 K8 X B5 D1 1µF 35V J1 CSP_P2 CSP_P1 10µF 50V 4 B3 CSN_P1 VBUS_P_CTRL_P1 VBUS_P_CTRL_P2 VBUS_C_CTRL_P2 8 7 6 5 3 2 1 49.9K 1% 4 L2 CSN_P2 B4 BSC030P03NS3 BSC030P03NS3 8 7 3 2 6 5 1 0.01 K3 K4 VBUS_C_CTRL_P1 X VBUS_P2 L3 VBUS VBUS_P1 VBUS 10µF 50V VDDD 10µF 50V 1K C2 SWD_CLK/I2C_CFG_EC/P1.0 1K SBU1/2_P1 F1, E1 SBU1/2 DP/M_TOP_P1 G1, H1 D+/-_T K1, L1 D+/-_B A3, A4 SBU1/2 SBU1/2_P2 A1, A2 D+/ -_T DP/M_TOP_P2 DP/M_BOT_P1 B1, C1 D+/-_B DP/M_BOT_P2 CC1/2_P1 H2, K2 K10, K9 CC1/2 DS Type-C Receptacle 2 OVP_TRIP_P2/P2.2 SCL_3/VSEL_1_P1/P3.7 VDDD 1µF 0.1 µF 3.3V D10 VDDD C10 VDDIO A5 0.1µF 10V 1µF 10V B10 0.1µF VSYS VCCD CCG5 (CYPD5236-96BZXI) 96-BGA 5V (from System) J2 L9 GND H6 3.3V V5V_P1 XRES UV_OCP_TRIP_P2/P1.5 H11 UART_TX_P2/P0.1 X A8 X UART_TX_P1/P4.0 XJ11 UART_RX_P2/P0.2 A9 UART_RX_P1/P4.1 X USB2.0 FS 390pF X DS Type-C Receptacle 1 J10 X B7 X B8 X UV_OCP_TRIP_P1/P1.4 VSEL_1_P2/P0.0 L4 X VSEL_2_P2/P2.0 H10 X NC1 K6 I2C_SDA_SCB1_EC/P5.0 X L10 B6 X SCL_4/P2.3 VCON_OCP_TRIP_P2/P3.3 L5 I2C_INT_EC/P2.5 L6 I2C_SCL_SCB1_EC/P5.1 L8 VCON_OCP_TRIP_P1/P3.5 SDA_4/P3.2 B9 I2C_SDA/SCL/INT MCU Cypress FM0 SDA_3/VSEL_2_P1/P3.6 I2C_SDA_SCB4/ OVP_TRIP_P1/P2.4 V5V_P2 0.1µF RESET CC1/2 CC1/2_P2 390pF K5 GND X To Port 1& 2 Data Mux G10 F10 X G8 NC2 X H4 NC3 X H5 NC4 X H8 D5, D6, D7, D8, E4, E5, E6, E7, E8, F4, F5, F6, F7, F8, G4, G5, G6, G7, H7 GND X E2 I2C_SCL_SCB2_TBT/P1.2 X X X 3.3V D2 I2C_SDA_SCB2_TBT/P1.1 F2 G2 E11, D11 I2C_INT_TBT_P1/P1.3 10K I2C_INT_TBT_P2/P2.1 SWD_IO/TBT_RST/P1.6 AUX_P/N_P2 AUX_P/N_P1 LSTX/RX_P2 LSTX/RX_P1 B2 B11, C11 0.1 µF 0.1 µF K11, L11 X A10, A11 X 8 8 Data Lines Data Lines 3.3V 3.3V To P2 DisplayPort Source 10K DNP E10 HPD_P2/P3.4 100K HPD_P1/P3.0 D+/-_SYS_P2 F11 D+/-_SYS_P1 G11 A6 USB DS 1_HS 10K K7 DNP 100K A7 To P1 DisplayPort Source USB DS 2_HS AUX_P/N AUX_P/N Port 2 Data Mux I2C from CCG5 Full Speed USB DS 3_HS I2C from CCG5 USB3.1 HUB USB 3.1 USB DS 2_SS USB DS 1_SS Port 1 Data Mux USB 3.1 USB US From P2 DisplayPort Source Document Number: 002-17682 Rev. *M From Upstream Host From P1 DisplayPort Source Page 20 of 43 EZ-PD™ CCG5 Electrical Specifications Absolute Maximum Ratings Table 8. Absolute Maximum Ratings[8] Parameter Description Min Typ Max Unit Details/Conditions VSYS_MAX Digital supply relative to VSS – – 6 V V5V_P1_MAX Max supply voltage relative to VSS – – 6 V V5V_P2_MAX Max supply voltage relative to VSS – – 6 V VBUS_P1_MAX Max VBUS voltage relative to Vss – – 24 V VBUS_P2_MAX Max VBUS voltage relative to Vss – – 24 V VDDIO_MAX Max supply voltage relative to VSS – – VDDD V VGPIO_ABS Inputs to GPIO, DP/DM mux (UART, SYS, DP/DM_top/bot pins), SBU mux (AUX, LS, SBU1/2 pins) –0.5 – VDDIO + 0.5 V IGPIO_ABS Maximum current per GPIO –25 – 25 mA IGPIO_INJECTION GPIO injection current, Max for VIH > VDDD, and Min for VIL < VSS –0.5 – 0.5 mA ESD_HBM Electrostatic discharge human body model 2200 – – V Applicable for all pins except SBU pins ESD_HBM_SBU[9] Electrostatic discharge human body model for SBU1, SBU2 pins 1100 – – V Only applicable to SBU pins Absolute max Absolute max, current injected per pin ESD_CDM Electrostatic discharge charged device model 500 – – V – LU Pin current for latch up –200 – 200 mA – V Contact Discharge for CC1_P1/P2, CC2_P1/P2, VBUS_P1/P2, SBU1_P1/P2, SBU2_P1/P2, DPLUS_TOP/BOT_P1/P2, DMINUX_TOP/BOT_P1/P2 Air Discharge for CC1_P1/P2, CC2_P1/P2, VBUS_P1/P2, SBU1_P1/P2, SBU2_P1/P2, DPLUS_TOP/BOT_P1/P2, DMINUX_TOP/BOT_P1/P2 ESD_IEC_CON Electrostatic discharge IEC61000-4-2, contact discharge ESD_IEC_AIR Electrostatic discharge IEC61000-4-2, air discharge VCC_PIN_ABS VSBU_PIN_ABS 8000 – – 15000 – – V Max voltage on CC1 and CC2 pins – – 24 V Max voltage on SBU1 and SBU2 pins – – 24 V –0.5 – 6 V VGPIO_OVT_ABS OVT GPIO voltage Absolute max Absolute maximum for OVT pins K6 and L6 of BGA, pins 16 and 17 of QFN Notes 8. Usage above the absolute maximum conditions listed in Table 8 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification. 9. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. Document Number: 002-17682 Rev. *M Page 21 of 43 EZ-PD™ CCG5 Device-Level Specifications All specifications are valid for –40 °C  TA  85 °C and TJ  100 °C, except where noted. Specifications are valid for 3.0 V to 5.5 V except where noted. Table 9. DC Specifications Min Typ Max Unit SID.PWR#23 Spec ID VSYS Power supply input voltage 2.75 – 5.5 V UFP applications SID.PWR#23_A VSYS Power supply input voltage 3.15 – 5.5 V DFP/DRP applications SID.PWR#22 VBUS VBUS_P1 and VBUS_P2 valid range 4 – 21.5 V – SID.PWR#1 VDDD Regulated output voltage when VSYS is VSYS – 0.05 powered – VSYS V SID.PWR#1_A VDDD LDO regulated output voltage when VBUS powered 3.15 – 3.65 V SID.PWR#26 V5V_P1 and Power supply Input voltage V5V_P2 4.85 – 5.5 V – SID.PWR#13 VDDIO GPIO power supply VDDD – VDDD V At system-level short the VDDIO to VDDD SID.PWR#24 VCCD Output voltage (for Core Logic) – 1.8 – V – SID.PWR#15 CEFC External regulator voltage bypass on VCCD 80 100 120 nF SID.PWR#16 CEXC Power supply decoupling capacitor on VDDD – 1 – µF SID.PWR#27 CEXV Power supply decoupling capacitor on V5V_P1 and V5V_P2 – 0.1 – µF SID.PWR#5 IVDDD_EXT External load current on VDDD either in Active or Deep Sleep mode – 1 2 mA – 30 Max LDO current for powering VDDD and VDDIO. For powering mA external circuitry connected to the chip, max current is defined by IVDDD_EXT. SID.PWR#5A Parameter ILDO_MAX Description LDO max output current – – Details/Conditions – – X5R ceramic or better Active Mode, VSYS = 2.75 to 5.5 V. Typical values measured at VSYS = 3.3 V SID.PWR#4 IDD12 Supply current – 10 – TA = 25 °C, CC I/O IN Transmit or Receive, no mA I/O sourcing current, CPU at 24 MHz, two PD ports active – 150 – µA VSYS = 3.3 V, TA = 25 °C, – 160 – µA VSYS = 3.3 V, TA = 25 °C for two PD ports µA Power source = VSYS, Type-C not attached, CC enabled for wakeup, Rp and Rd connected at 70-ms intervals by CPU. Rp, Rd connection should be enabled for both PD ports. Deep Sleep Mode, VSYS = 2.75 to 3.6 V SID34 IDD29 SID34A IDD29A SID_DS1 IDD_DS1 VSYS = 2.75 to 3.6 V, I2C, wakeup and WDT on. VSYS = 3.3 V, CC wakeup on, Type-C not connected. Document Number: 002-17682 Rev. *M – 150 – Page 22 of 43 EZ-PD™ CCG5 Table 9. DC Specifications (continued) Spec ID Parameter SID_DS3 Description Min Typ Max Unit Details/Conditions IDD_DS2 VSYS = 3.3 V, CC wakeup on, DP/DM, SBU ON with ADC/CSA/UVOV On – 500 – µA IDD_DS1 + DP/DM, SBU, CC ON, ADC/CSA/UVOV ON IDD_XR Supply current while XRES asserted – 130 – µA Power Source = VSYS = 3.3 V, Type-C not attached, TA = 25 °C XRES Current SID307 Table 10. AC Specifications (Guaranteed by Characterization) Min Typ Max SID.CLK#4 Spec ID FCPU CPU input frequency – – 48 SID.PWR#21 TDEEPSLEEP Wakeup from Deep Sleep mode – 35 – SYS.XRES#5 TXRES External reset pulse width 5 – – µs – 5 25 ms SYS.FES#1 Parameter T_PWR_RDY Description Power-up to “Ready to accept command” I2C/CC Unit Details/Conditions MHz All VDDD µs Guaranteed by  characterization. I/O Table 11. I/O DC Specifications Spec ID Parameter Description Min Typ Max Unit Details/Conditions 0.7 × VDDIO – – V CMOS input – – 0.3 × VDDIO V CMOS input SID.GIO#37 VIH_CMOS Input voltage HIGH threshold SID.GIO#38 VIL_CMOS Input voltage LOW threshold SID.GIO#39 VIH_VDDIO2.7- LVTTL input, VDDIO < 2.7 V 0.7 × VDDIO – – V – SID.GIO#40 VIL_VDDIO2.7- LVTTL input, VDDIO < 2.7 V – – 0.3 × VDDIO V – SID.GIO#41 VIH_VDDIO2.7+ LVTTL input, VDDIO  2.7 V 2.0 – – V – SID.GIO#42 VIL_VDDIO2.7+ LVTTL input, VDDIO  2.7 V – – 0.8 V – SID.GIO#33 VOH Output voltage HIGH level VDDIO – 0.6 – – V IOH = –4 mA at 3 V VDDIO SID.GIO#34 VOH Output voltage HIGH level VDDIO – 0.5 – – V IOH = –1mA at 1.8 V VDDIO SID.GIO#35 VOL Output voltage LOW level – – 0.6 V IOL = 4 mA at 1.8 V VDDIO Output low voltage – – 0.4 V IOL = 3 mA, VDDIO > 2 V V IOL = 6 mA, VDDIO > 1.71 V SID.GIO#35A VOL_I2C_2 0.6 [10] SID.GIO#35B VOL_I2C_3 Output low voltage – – SID.GIO#35C VOL1_20mA Output low voltage – – 0.4 V IOL = 20 mA, VDDIO > 3 V, applicable for overvoltage-tolerant pins only. SID.GIO#36 VOL Output voltage LOW level – – 0.6 V IOL = 10 mA (IOL_LED) at 3 V VDDIO SID.GIO#5 RPU Pull-up resistor value 3.5 5.6 8.5 k +25 °C TA, All VDDIO SID.GIO#6 RPD Pull-down resistor value 3.5 5.6 8.5 k +25 °C TA, All VDDIO SID.GIO#16 IIL Input leakage current (absolute value) – – 2 nA +25 °C TA, 3-V VDDIO SID.GIO#17 CPIN Max pin capacitance – 3 7 pF – Note 10. In order to drive full bus load at 400 kHz, 6 mA IOL is required at 0.6 V VOL. Parts not meeting this specification can still function, but not at 400 kHz and 400 pF. Document Number: 002-17682 Rev. *M Page 23 of 43 EZ-PD™ CCG5 Table 11. I/O DC Specifications (continued) Spec ID Parameter Description Min Typ Max Unit Details/Conditions SID.GIO#43 VHYSTTL Input hysteresis, LVTTL 15 40 – > 2.7 V. Guaranteed by V mV DDIO characterization. SID.GIO#44 VHYSCMOS Input hysteresis CMOS 0.05 × VDDIO – – mV VDDIO < 4.5 V Input hysteresis CMOS 200 – – mV VDDIO > 4.5 V SID.GIO#44A VHYSCMOS55 Note 10. In order to drive full bus load at 400 kHz, 6 mA IOL is required at 0.6 V VOL. Parts not meeting this specification can still function, but not at 400 kHz and 400 pF. Table 12. I/O AC Specifications (Guaranteed by Characterization) Spec ID Parameter Description SID70 TRISEF Rise time in Fast Strong mode SID71 TFALLF Min Typ Max Unit Details/Conditions 2 – 12 ns 3.3-V VDDIO, Cload = 25 pF Fall time in Fast Strong mode 2 – 12 ns 3.3-V VDDIO, Cload = 25 pF SID.GIO#46 TRISES Rise time in Slow Strong mode 10 – 60 ns 3.3-V VDDIO, Cload = 25 pF SID.GIO#47 TFALLS Fall time in Slow Strong mode 10 – 60 ns 3.3-V VDDIO, Cload = 25 pF SID.GIO#48 FGPIO_OUT1 GPIO FOUT; 3.3 V VDDIO 5.5 V. Fast Strong mode. – – 16 MHz SID.GIO#49 FGPIO_OUT2 GPIO FOUT; 1.7 V  VDDIO  3.3 V. Fast Strong mode. – – 16 MHz SID.GIO#50 FGPIO_OUT3 GPIO FOUT; 3.3 V  VDDIO  5.5 V. Slow Strong mode. – – 7 MHz SID.GIO#51 FGPIO_OUT4 GPIO FOUT; 1.7 V  VDDIO  3.3 V. Slow Strong mode. – – 3.5 MHz SID.GIO#52 FGPIO_IN GPIO input operating frequency; 1.7 V VDDIO  5.5 V. – – 16 MHz 90/10%, 25-pF load 90/10%, 25-pF load 90/10%, 25-pF load 90/10%, 25-pF load 90/10% VIO XRES Table 13. XRES DC Specifications Spec ID Parameter Description Min Typ Max Unit V CMOS input SID.XRES#1 VIH Input voltage HIGH threshold 0.7 × VDDIO – – Details/Conditions SID.XRES#2 VIL Input voltage LOW threshold – – 0.3 × VDDIO V CMOS input SID.XRES#3 CIN Input capacitance – – 7 pF – SID.XRES#4 VHYSXRES Input voltage hysteresis – 0.05 × VDDIO – mV Guaranteed by  characterization Document Number: 002-17682 Rev. *M Page 24 of 43 EZ-PD™ CCG5 Digital Peripherals The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode. PWM for GPIO Pins Table 14. PWM AC Specifications (Guaranteed by Characterization) Spec ID Parameter Description Min Typ Max Unit Details/Conditions – – Fc MHz Fc max = CLK_SYS. Maximum = 48 MHz. TPWMENEXT Input trigger pulse width 2/Fc – – ns For all trigger events TPWMEXT Output trigger pulse width 2/Fc – – ns Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs SID.TCPWM.5A TCRES Resolution of counter 1/Fc – – ns Minimum time between successive counts SID.TCPWM.5B PWMRES PWM resolution 1/Fc – – ns Minimum pulse width of PWM output SID.TCPWM.5C QRES Quadrature inputs resolution 1/Fc – – ns Minimum pulse width between quadrature-phase inputs SID.TCPWM.3 TCPWMFREQ Operating frequency SID.TCPWM.4 SID.TCPWM.5 I2C Table 15. Fixed I2C AC Specifications (Guaranteed by Characterization) Spec ID SID153 Parameter FI2C1 Description Min Typ Max Unit Details/Conditions – – 1 Mbps – Bit rate UART Table 16. Fixed UART AC Specifications (Guaranteed by Characterization) Spec ID SID162 Parameter FUART Description Min Typ Max Unit Details/Conditions – – 1 Mbps – Description Min Typ Max Unit Details/Conditions SPI operating frequency (Master; 6X oversampling) – – 8 MHz – Bit rate SPI Table 17. Fixed SPI AC Specifications (Guaranteed by Characterization) Spec ID SID166 Parameter FSPI Table 18. Fixed SPI Master Mode AC Specifications (Guaranteed by Characterization) Description Min Typ Max Unit Details/Conditions SID167 Spec ID TDMO Parameter MOSI valid after SClock driving edge – – 15 ns – SID168 TDSI MISO valid before SClock capturing edge 20 – – ns Full clock, late MISO sampling SID169 THMO Previous MOSI data hold time 0 – – ns Referred to slave capturing edge Document Number: 002-17682 Rev. *M Page 25 of 43 EZ-PD™ CCG5 Table 19. Fixed SPI Slave Mode AC Specifications (Guaranteed by Characterization) Spec ID Parameter Description Min Typ Max Unit Details/Conditions SID170 TDMI MOSI Valid before Sclock capturing edge 40 – – ns – SID171 TDSO MISO Valid after Sclock driving edge – – 48 + 3 × TSCB ns TSCB = TCPU SID171A TDSO_EXT MISO Valid after Sclock driving edge in Ext Clk mode – – 48 ns – SID172 THSO Previous MISO data hold time 0 – – ns – SID172A TSSELSCK SSEL Valid to first SCK Valid edge 100 – – ns – Min Typ Max Unit Memory Table 20. Flash AC Specifications Spec ID Parameter Description Details/Conditions SID.MEM#4 TROW_WRITE Row (Block) write time (erase and program) – – 20 ms – SID.MEM#3 TROW_ERASE Row erase time – – 13 ms – SID.MEM#8 TROWPROGRAM Row program time after erase – – 7 ms 25 °C to 55 °C, All VDDD SID178 TBULKERASE Bulk erase time (128 KB) – – 35 ms Guaranteed by design SID180 TDEVPROG Total device program time – – 25 s Guaranteed by design SID.MEM#6 FEND Flash endurance 100k – – cycles – SID182 FRET1 Flash retention, TA ≤ 55 °C,  100K P/E cycles 20 – – years – SID182A FRET2 Flash retention, TA ≤ 85 °C,  10K P/E cycles 10 – – years – Min Typ Max System Resources Power-on-Reset (POR) with Brownout Table 21. Imprecise Power On Reset (PRES) Spec ID Parameter Description Unit SID185 VRISEIPOR Rising trip voltage 0.80 – 1.50 V SID186 VFALLIPOR Falling trip voltage 0.70 – 1.4 V Details/Conditions Guaranteed by  characterization Table 22. Precise Power On Reset (POR) (Guaranteed by Characterization) Spec ID Parameter Description Min Typ Max Unit SID190 VFALLPPOR Brownout Detect (BOD) trip voltage in active/sleep modes 1.48 – 1.62 V SID192 VFALLDPSLP BOD trip voltage in Deep Sleep mode 1.1 – 1.5 V Document Number: 002-17682 Rev. *M Details/Conditions Guaranteed by  characterization Page 26 of 43 EZ-PD™ CCG5 SWD Interface Table 23. SWD Interface Specifications Spec ID Parameter Description Min Typ Max Unit Details/Conditions SID.SWD#1 F_SWDCLK1 3.3 V  VDDIO  5.5 V – – 14 MHz SWDCLK 1/3 CPU clock frequency SID.SWD#2 F_SWDCLK2 2.7 V  VDDIO  3.3 V – – 7 MHz SWDCLK 1/3 CPU clock frequency SID.SWD#3 T_SWDI_SETUP T = 1/f SWDCLK 0.25 × T – – ns SID.SWD#4 T_SWDI_HOLD 0.25 × T – – ns SID.SWD#5 T_SWDO_VALID T = 1/f SWDCLK – – 0.50 × T ns SID.SWD#6 T_SWDO_HOLD T = 1/f SWDCLK 1 – – ns T = 1/f SWDCLK Guaranteed by  characterization Internal Main Oscillator Table 24. IMO AC Specifications (Guaranteed by Design) Spec ID Min Typ Max Unit Frequency variation at 48 MHz (trimmed) – – ±2 % 2.7 V ≤ VDDD < 5.5 V. –25 °C ≤ TA ≤ 85 °C SID.CLK#13A FIMOTOLVCCD Frequency variation at 48 MHz (trimmed) – – ±4 % All conditions SID226 TSTARTIMO IMO start-up time – – 7 µs – SID.CLK#1 FIMO IMO frequency – 48 – MHz – Min Typ Max Unit Details/Conditions SID.CLK#13 Parameter FIMOTOL Description Details/Conditions Internal Low-speed Oscillator Table 25. ILO AC Specifications Spec ID Parameter Description SID234 TSTARTILO1 ILO start-up time – – 2 ms SID238 TILODUTY ILO duty cycle 40 50 60 % SID.CLK#5 FILO ILO frequency 20 40 80 kHz Guaranteed by  characterization – Table 26. PD DC Specifications Spec ID SID.DC.cc_shvt.1 Parameter vSwing Description Transmitter Output High Voltage Min Typ Max Unit Details/Conditions 1.05 – 1.2 V – SID.DC.cc_shvt.2 vSwing_low Transmitter Output Low Voltage – 0.075 V – SID.DC.cc_shvt.3 zDriver Transmitter output impedance 33 – 75 Ω – SID.DC.cc_shvt.4 zBmcRx Receiver Input Impedance 10 – MΩ Guaranteed by design SID.DC.cc_shvt.5 Idac_std Source current for USB standard advertisement 64 – 96 µA – SID.DC.cc_shvt.6 Idac_1p5a Source current for 1.5A at 5 V advertisement 165.6 – 194.4 µA – SID.DC.cc_shvt.7 Idac_3a Source current for 3A at 5 V  advertisement 303.6 – 356.4 µA – SID.DC.cc_shvt.8 Rd Pull down termination resistance when acting as UFP (upstream facing port) 4.59 – 5.61 kΩ – Document Number: 002-17682 Rev. *M Page 27 of 43 EZ-PD™ CCG5 Table 26. PD DC Specifications (continued) Spec ID Min Typ Max Unit Details/Conditions Pull down termination resistance when acting as UFP, with dead battery (upstream facing port) 4.08 – 6.12 kΩ – SID.DC.cc_shvt.10 zOPEN CC impedance to ground when disabled 108 – kΩ – SID.DC.cc_shvt.11 DFP_default_0p2 CC voltages on DFP side-Standard USB 0.15 – 0.25 V – SID.DC.cc_shvt.12 DFP_1.5A_0p4 CC voltages on DFP side-1.5A 0.35 – 0.45 V – SID.DC.cc_shvt.13 DFP_3A_0p8 CC voltages on DFP side-3A 0.75 – 0.85 V – SID.DC.cc_shvt.14 DFP_3A_2p6 CC voltages on DFP side-3A 2.45 – 2.75 V – SID.DC.cc_shvt.15 UFP_default_0p66 CC voltages on UFP side-Standard USB 0.61 – 0.7 V – SID.DC.cc_shvt.16 UFP_1.5A_1p23 CC voltages on UFP side-1.5A 1.16 – 1.31 V – SID.DC.cc_shvt.17 Vattach_ds Deep sleep attach threshold 0.3 – 0.6 % – SID.DC.cc_shvt.18 Rattach_ds Deep sleep pull-up resistor 10 – 50 kΩ – SID.DC.cc_shvt.30 FS_0p53 Voltage threshold for Fast Swap Detect 0.49 – 0.58 V – Description Min Typ Max – 8 – Bits – SID.DC.cc_shvt.9 Parameter Description Rd_db Analog to Digital Converter Table 27. ADC DC Specifications Spec ID Parameter Unit Details/Conditions SID.ADC.1 Resolution ADC resolution SID.ADC.2 INL Integral non-linearity –1.5 – 1.5 LSB – SID.ADC.3 DNL Differential non-linearity –2.5 – 2.5 LSB – SID.ADC.4 Gain Error Gain error –1.5 – 1.5 LSB – SID.ADC.5 VREF_ADC1 Reference voltage of ADC VDDDmin – VDDDmax V Reference voltage generated from VDDD SID.ADC.6 VREF_ADC2 Reference voltage of ADC 1.96 2.0 2.04 V Reference voltage generate from bandgap Document Number: 002-17682 Rev. *M Page 28 of 43 EZ-PD™ CCG5 Charger Detect Table 28. Charger Detect Specifications Spec ID Parameter Description Min Typ Max Unit Details/Conditions DC.CHGDET.1 VDAT_REF Data detect voltage in charger detect mode 250 – 400 mV – DC.CHGDET.2 VDM_SRC Dn voltage source in charger detect mode 500 – 700 mV – DC.CHGDET.3 VDP_SRC Dp voltage source in charger detect mode 500 – 700 mV – DC.CHGDET.4 IDM_SINK Dn sink current in charger detect mode 25 – 175 µA – DC.CHGDET.5 IDP_SINK Dp sing current in charger detect mode 25 – 175 µA – DC.CHGDET.6 IDP_SRC Data contact detect current source 7 – 13 µA – DC.CHGDET.27 RDP_UP Qualcomm pull-up termination on Dp/Dn 0.9 – 1.575 kΩ – DC.CHGDET.32 RDM_UP Dp/Dn pull-up resistance 0.9 – 1.575 kΩ – DC.CHGDET.28 RDP_DWN Qualcomm pull-down termination on Dp/Dn 14.25 – 24.8 kΩ – DC.CHGDET.31 RDM_DWN Dp/Dn pull-down resistance 14.25 – 24.8 kΩ – DC.CHGDET.29 RDAT_LKG Data line leakage on Dp/Dn 300 – 500 kΩ – DC.CHGDET.34 VSETH Logic Threshold 1.26 – 1.54 V – Table 29. VBUS Regulator AC Specifications Spec ID SID.AC.20VREG.1 SID.AC.20VREG.2 Parameter TSTART TSTOP Description Total start up time for the regulator supply outputs Regulator power down time from vreg_en = 0 to regulator disable Min – Typ – Max Unit Details/Conditions µs Apply VBUS and measure start time on VDDD pin. 1 µs Time from assertion of an internal disable signal to for load current on VDDD to decrease from 30 mA to 10 μA. 120 – – Min Typ Max Unit Details/Conditions – – 1.5 Ω Measured with a load current of 5 mA to 10 mA on VDDD. Table 30. VSYS Switch Specifications Spec ID Parameter SID.DC.VDDDSW.1 Res_sw Document Number: 002-17682 Rev. *M Description Resistance from supply input to output supply VDDD Page 29 of 43 EZ-PD™ CCG5 Table 31. CSA DC Specifications Spec ID Parameter Min Typ Max Unit SID.DC.CSA.21 Out_E_Trim_15_DS Cumulative output Error for Av = 15, after trim, using Deep sleep (beta-multiplier) reference Description Details/Conditions –7 – 7 % – SID.DC.CSA.22 Out_E_Trim_15_BG Cumulative output Error for Av = 15, after trim, using bandgap reference –4.5 – 4.5 % – Cumulative output Error for Av = 100, SID.DC.CSA.23 Out_E_Trim_100_DS after trim, using Deep sleep (beta-multi- –24.5 plier) reference – 24.5 % – Table 32. UV/OV Specifications Spec ID Parameter Description Min Typ Max Unit Details/Conditions SID.UVOV.1 VTHUVOV1 Voltage threshold accuracy in active mode using bandgap reference – ±3 – % – SID.UVOV.2 VTHUVOV2 Voltage threshold accuracy in Deep Sleep mode using Deep Sleep reference – ±5 – % – SID.COMP_ACC COMP_ACC Comparator input offset at 4s –15 – 15 mV – Min Typ Max Unit – – 5 kΩ Min Typ Max Unit – – 5 Table 33. PFET Gate Driver DC Specifications Spec ID SID.DC.PGDO.1 Parameter Rpd Description Resistance when “pull_dn” enabled Details/Conditions – Table 34. PFET Gate Driver AC Specifications Spec ID SID.AC.PGDO.2 Parameter Tr_discharge Description Discharge Rate of output note Details/Conditions V/µs Guaranteed by design SBU Table 35. SBU Switch DC Specifications Spec ID Parameter Description Min Typ Max Unit Details/Conditions SID.DC.20sbu.1 Ron1 On resistances for Aux switch at 3.3 V input – 4 7 Ω – SID.DC.20sbu.2 Ron2 On resistances for Aux switch at 1 V input – 3 5 Ω – SID.DC.20sbu.4 Ileak1 Pin leakage current for SBU1, SBU2 –4.5 – 4.5 µA – SID.DC.20sbu.5 Ileak2 Pin leakage current for LSTX, LSRX, AUX_P, AUX_N –1 – 1 µA – SID.DC.20sbu.6 Rpu_aux_1 Pull-up resistance on AUX_P/N 80 – 320 KΩ – SID.DC.20sbu.7 Rpu_aux_2 Pull-up resistance on AUX_P/N 0.8 – 1.4 MΩ – SID.DC.20sbu.8 Rpd_aux_1 Pull-down resistance on AUX_P/N 80 – 120 KΩ – SID.DC.20sbu.9 Rpd_aux_2 Pull-down resistance on AUX_P/N 0.3 – 1.2 MΩ – SID.DC.20sbu.10 Rpd_aux_3 Pull-down resistance on AUX_P/N 250 – 611 KΩ – SID.DC.20sbu.11 Rpd_aux_4 Pull-down resistance on AUX_P/N 0.3 – 6.11 MΩ – SID.DC.20sbu.16 OVP_threshold Over-voltage protection detection threshold above VDDIO 200 – 120 0 Document Number: 002-17682 Rev. *M mV – Page 30 of 43 EZ-PD™ CCG5 Table 35. SBU Switch DC Specifications (continued) Spec ID Parameter Description Min Typ Max Unit Details/Conditions SID.DC.20sbu.17 lsx_ron_3p3 On resistances of LSTX/LSRX to SBU1/2 switch at 3.3 V input – 8.5 17 Ω SID.DC.20sbu.18 lsx_ron_1 On resistances of LSTX/LSRX to SBU1/2 switch at 1 V input – 5.5 11 Ω SID.DC.20sbu.19 aux_ron_flat_fs Switch On flat resistances of AUX_P/N to SBU1/2 switch (from 0 to 3.3 V) – – 2.5 Ω SID.DC.20sbu.20 aux_ron_flat_hs Switch On flat resistances of AUX_P/N to SBU1/2 switch (from 0 to 1 V) – – 0.5 Ω SID.DC.20sbu.21 lsx_ron_flat_fs Switch On flat resistances of LSTX/LSRX to SBU1/2 switch (from 0 to 3.3 V) – – 5 Ω Guaranteed by design SID.DC.20sbu.22 lsx_ron_flat_hs Switch On flat resistances of LSTX/LSRX to SBU1/2 switch (from 0 to 1 V) – – 0.5 Ω Guaranteed by design – – Guaranteed by design Guaranteed by design Table 36. SBU Switch AC Specifications Spec ID Parameter Description Min Typ Max Unit Details/Conditions SID.AC.20sbu.1 Con Switch ON capacitance – – 120 pF – SID.AC.20sbu.2 Coff Switch OFF capacitance - Connector side – – 80 pF – SID.AC.20sbu.3 Off_isolation Switch isolation at F = 1 MHz –50 – dB – SID.AC.20sbu.4 TON SBU Switch turn-on time – – 200 µs – SID.AC.20sbu.5 TOFF SBU Switch turn-off time – – 400 µs Guaranteed by design SID.AC.20sbu.6 Off_isolation_tran Coupling on sbu1,2 terminated to 50 ohm, switch-OFF, Rail-to-rail toggling on LSTX/LSRX –60 – 60 mV Guaranteed by design SID.AC.20sbu.7 X_talk_AC Cross talk of Switch at F=1 MHz SBU1/2 to SBU2/1 –50 – – dB Guaranteed by design SID.AC.20sbu.8 X_talk_tran Check voltage coupling on SBU2(1) when Data is transferred from LSTX (RX) to SBU1 (2) –70 – 70 mV Guaranteed by design Description Min Typ Max Unit Table 37. DP/DM Switch DC Specifications Spec ID Parameter Details/Conditions SID.DC.dpdm.1 Ron_HS DPDM On resistance for SYS lines (0 to 0.5 V) - HS mode – – 8  – SID.DC.dpdm.2 Ron_FS DPDM On resistance for SYS lines (0 to 3.3 V) - FS mode – – 12  – SID.DC.dpdm.5 Con_FS Switch On capacitance at FS at 6 MHz – – 50 pF Guaranteed by design SID.DC.dpdm.6 Con_HS Switch on capacitance at HS at 240 MHz – – 10 pF – SID.DC.dpdm.9 Ileak_pin pin leakage at DP/DM connector side and host side – – 1 µA – SID.DC.dpdm.10 RON_UART DPDM On resistance for UART lines (0 to 3.3 V) – – 17  – SID.DC.dpdm.11 RON_FLAT_HS DPDM On Flat resistance in HS mode (0 to 0.4 V) – – 0.5  Guaranteed by design Document Number: 002-17682 Rev. *M Page 31 of 43 EZ-PD™ CCG5 Table 37. DP/DM Switch DC Specifications (continued) Spec ID Parameter Description Min Typ Max Unit Details/Conditions SID.DC.dpdm.12 RON_FLAT_FS DPDM On flat resistance in FS mode (0 to 3.3 V) – – 4  Guaranteed by design SID.DC.dpdm.13 RON_FLAT_UA DPDM UART On flat resistance (0 to RT 3.3 V) – – 4  Guaranteed by design Details/Conditions Table 38. DP/DM Switch AC Specifications Spec ID Parameter Description Min Typ Max Unit SID.AC.dpdm.5 TON DP/DM Switch turn-on time – – 200 µs – SID.AC.dpdm.6 TOFF DP/DM Switch turn-off time – – 0.4 µs Guaranteed by design SID.AC.dpdm.7 TON_VPUMP DP/DM charge pump startup time – – 200 µs Guaranteed by characterization SID.AC.dpdm.8 Off_isolation_HS Switch-off isolation for HS –20 – – db Guaranteed by design SID.AC.dpdm.9 Off_isolation_FS Switch-off isolation for FS –50 – – db Guaranteed by design SID.AC.dpdm.10 X_talk Cross talk of Switch From FS to HS at F = 12 MHz –50 – – db SID.AC.dpdm.11 uart_coupling peak to peak coupling of UART signal to DP lines. (UART swinging from 0 to 3.3 V) – – 20 mV Guaranteed by design Guaranteed by design Table 39. VCONN Switch DC Specifications Spec ID Parameter Description Min Typ Max Unit Details/Conditions – 1.4 2  – SID.DC.20VCONN.1 Ron Switch ON resistance at V5V = 5 V with 215-mA load current SID.DC.20VCONN.9 IOCP Overcurrent detection range for CC1/CC2 440 – 600 mA – SID.DC.20VCONN.10 OVP_threshold Overvoltage protection detection threshold above VDDD or V5V whichever is higher 200 – 1200 mV – SID.DC.20VCONN.11 OVP_hysteresis Overvoltage protection detection hysteresis 50 – 200 mV Guaranteed by design SID.DC.20VCONN.12 OCP_hysteresis Overcurrent detection hysteresis 20 – 60 mA – Overvoltage protection detection threshold above V5V of CC1/2, OVP_threshold_on with CC1 or CC2 switch enabled. Same threshold triggers reverse current protection circuit 200 – 700 mV – SID.DC.20vconn.14 Document Number: 002-17682 Rev. *M Page 32 of 43 EZ-PD™ CCG5 Table 40. VCONN Switch AC Specifications Min Typ Max Unit SID.AC.20VCONN.1 Spec ID TON Parameter VCONN switch turn-on time Description – – 200 µs – Details/Conditions SID.AC.20VCONN.2 TOFF VCONN switch turn-off time – – 3 µs Guaranteed by design Table 41. VBUS Discharge Specifications Min Typ Max Unit SID.VBUS.DISC.1 Spec ID Ron1 Parameter 20-V NMOS ON resistance 1500 – 3000  – SID.VBUS.DISC.2 Ron2 20-V NMOS ON resistance 750 – 1500  – SID.VBUS.DISC.3 Ron3 20-V NMOS ON resistance 500 – 1000  – SID.VBUS.DISC.4 Ron4 20-V NMOS ON resistance 375 – 750  – SID.VBUS.DISC.5 Ron5 20-V NMOS ON resistance 300 – 600  – Document Number: 002-17682 Rev. *M Description Details/Conditions Page 33 of 43 EZ-PD™ CCG5 Ordering Information Table 42 lists the EZ-PD CCG5 part numbers and features. Table 42. EZ-PD CCG5 Ordering Information Part Number Battery Type-C Ports Dead Termination Application CYPD5125-40LQXIT[14] Notebooks, Desktops CYPD5225-96BZXI CYPD5225-96BZXIT CYPD5235-96BZXI CYPD5235-96BZXIT CYPD5236-96BZXI CYPD5236-96BZXIT Termination Resistor Role Package 1 Yes RP[11], RD[12], RD-DB[13] DRP 40-pin QFN Notebooks, Desktops 2 Yes RP[11], RD[12], RD-DB[13] DRP 96-ball BGA Dock, Upstream port 2 No RP[11], RD[12] DRP 96-ball BGA Dock, Downstream port 2 No RP[11], RD[12] DRP 96-ball BGA Ordering Code Definitions CY PD XX XX XX - XX XX X I T T = Tape and reel Temperature Grade : I = Industrial X = Pb-free Package Type: XX = FN, LQ, BZ; LQ = QFN; BZ = BGA Number of pins in the package : XX = 40 or 96 Device Role: Unique combination of role and termination 2X = Dead battery termination , 3X = No Dead battery termination X5 = Notebooks, desktops, dock applications , X6 = Docks for downstream port Number of Type -C Ports: 1 = 1 Port, 2 = 2 Ports Product Type : 5 = Fifth -generation product family , CCG5 Marketing Code : PD = Power Delivery product family Company ID: CY = Cypress Notes 11. Termination resistor denoting a downstream facing port. 12. Termination resistor denoting an accessory or upstream facing port. 13. Termination resistor denoting dead-battery termination. 14. NRND (Not Recommended for New Designs). Refer to the CCG5C Datasheet for pin to pin compatible replacement part. Document Number: 002-17682 Rev. *M Page 34 of 43 EZ-PD™ CCG5 Packaging Table 43. Package Characteristics Description Conditions Min Typ Max Unit TA Parameter Operating ambient temperature Industrial –40 25 85 °C TJ Operating junction temperature Industrial –40 25 100 °C TJA Package JA (96-ball BGA) – – – 56 °C/W TJC Package JC (96-ball BGA) – – – 18.5 °C/W TJA Package JA (40-pin QFN) – – – 19.3 °C/W TJC Package JC (40-pin QFN) – – – 13.6 °C/W Table 44. Solder Reflow Peak Temperature Maximum Peak Temperature Maximum Time within 5 °C of Peak Temperature 96-ball BGA 260 °C 30 seconds 40-pin QFN 260 °C 30 seconds Package Table 45. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2 Package MSL 96-ball BGA MSL 3 40-pin QFN MSL 3 Figure 12. 40-Pin QFN (6 × 6 × 0.6 mm), LR40A/LQ40A 4.6 × 4.6 E-PAD (Sawn) Package Outline, 001-80659 001-80659 *A Document Number: 002-17682 Rev. *M Page 35 of 43 EZ-PD™ CCG5 Figure 13. 96-Ball BGA (6 × 6 × 1.0 mm), Package Outline, 002-10631 E1 2X 0.10 C E B (datum B) A1 CORNER A 11 10 9 8 7 6 5 4 3 2 1 7 A1 CORNER A B C D E F G H J K L 6 SD D 0.10 C 2X eD 6 SE D1 (datum A) eE TOP VIEW BOTTOM VIEW DETAIL A 0.10 C A1 0.08 C A C 96XØb 5 SIDE VIEW Ø0.15 M C A B Ø0.05 M C DETAIL A NOTES: SYMBOL 1. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS MIN. NOM. MAX. A - - 1.00 A1 0.16 - - D 6.00 BSC E 6.00 BSC D1 5.00 BSC E1 5.00 BSC MD 11 ME 11 N 96 b 0.25 0.30 eD 0.50 BSC eE 0.50 BSC SD 0.00 SE 0.00 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020. 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH. 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME. 5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C. 6. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW 0.35 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" = eD/2 AND "SE" = eE/2. 7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS. 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS. 9. JEDEC SPECIFICATION NO. REF. : MO-225. Document Number: 002-17682 Rev. *M 002-10631 *A Page 36 of 43 EZ-PD™ CCG5 Acronyms Table 46. Acronyms Used in this Document (continued) Table 46. Acronyms Used in this Document Acronym Description ADC analog-to-digital converter API application programming interface Arm® advanced RISC machine, a CPU architecture CC configuration channel BOD Brown out Detect CPU central processing unit CRC cyclic redundancy check, an error-checking protocol CS Acronym Description opamp operational amplifier OCP overcurrent protection OVP overvoltage protection PCB printed circuit board PD power delivery PGA programmable gain amplifier PHY physical layer POR power-on reset PRES precise power-on reset current sense PSoC® Programmable System-on-Chip™ DFP downstream facing port PWM pulse-width modulator DIO digital input/output, GPIO with only digital  capabilities, no analog. See GPIO. RAM random-access memory DRP dual role port RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock electrically erasable programmable read-only EEPROM memory EMCA a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports RX receive SAR successive approximation register SCL I2C serial clock SDA I2C serial data S/H sample and hold SPI Serial Peripheral Interface, a communications protocol EMI electromagnetic interference ESD electrostatic discharge FPB flash patch and breakpoint FS full-speed GPIO general-purpose input/output SRAM static random access memory IC integrated circuit SWD serial wire debug, a test protocol IDE integrated development environment TX transmit Type-C a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power UART Universal Asynchronous Transmitter Receiver, a communications protocol USB Universal Serial Bus USBIO USB input/output, CCG5 pins used to connect to a USB port XRES external reset I/O pin 2 I C, or IIC Inter-Integrated Circuit, a communications protocol ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO I/O input/output, see also GPIO LVD low-voltage detect LVTTL low-voltage transistor-transistor logic MCU microcontroller unit NC no connect NMI nonmaskable interrupt NVIC nested vectored interrupt controller Document Number: 002-17682 Rev. *M Page 37 of 43 EZ-PD™ CCG5 Document Conventions Units of Measure Table 47. Units of Measure (continued) Table 47. Units of Measure Symbol Symbol Unit of Measure Unit of Measure µW microwatt milliampere °C degrees Celsius mA Hz hertz ms millisecond KB 1024 bytes mV millivolt kHz kilohertz nA nanoampere k kilo ohm ns nanosecond Mbps megabits per second  ohm MHz megahertz pF picofarad M mega-ohm ppm parts per million Msps megasamples per second ps picosecond µA microampere s second µF microfarad sps samples per second µs microsecond V volt µV microvolt Document Number: 002-17682 Rev. *M Page 38 of 43 EZ-PD™ CCG5 References and Links To Applications Collaterals Knowledge Base Articles ■ Key Differences Among EZ-PD™ CCG1, CCG2, CCG3 and CCG5 - KBA210740 ■ Programming EZ-PD™ CCG2, EZ-PD™ CCG3 and EZ-PD™ CCG5 Using PSoC® Programmer and MiniProg3 - KBA96477 ■ CCGX Frequently Asked Questions (FAQs) - KBA97244 ■ Handling Precautions for CY4501 CCG1 DVK - KBA210560 ■ Cypress EZ-PD™ CCGx Hardware - KBA204102 ■ Difference between USB Type-C and USB-PD - KBA204033 ■ CCGx Programming Methods - KBA97271 ■ Getting started with Cypress USB Type-C Products KBA04071 ■ ■ AN95599 - Hardware Design Guidelines for EZ-PD™ CCG2 ■ AN210403 - Hardware Design Guidelines for Dual Role Port Applications Using EZ-PD™ USB Type-C Controllers ■ AN210771 - Getting Started with EZ-PD™ CCG4 Reference Designs ■ EZ-PD™ CCG2 Electronically Marked Cable Assembly (EMCA) Paddle Card Reference Design ■ EZ-PD™ CCG2 USB Type-C to DisplayPort Cable Solution ■ CCG1 USB Type-C to DisplayPort Cable Solution ■ CCG1 USB Type-C to HDMI/DVI/VGA Adapter Solution Type-C to DisplayPort Cable Electrical Requirements ■ EZ-PD™ CCG2 USB Type-C to HDMI Adapter Solution ■ Dead Battery Charging Implementation in USB Type-C Solutions - KBA97273 ■ CCG1 Electronically Marked Cable Assembly (EMCA) Paddle Card Reference Design ■ Termination Resistors Required for the USB Type-C Connector – KBA97180 ■ CCG1 USB Type-C to Legacy USB Device Cable Paddle Card Reference Schematics ■ VBUS Bypass Capacitor Recommendation for Type-C Cable and Type-C to Legacy Cable/Adapter Assemblies – KBA97270 ■ EZ-USB GX3 USB Type-C to Gigabit Ethernet Dongle ■ Need for Regulator and Auxiliary Switch in Type-C to DisplayPort (DP) Cable Solution - KBA97274 ■ EZ-PD™ CCG2 USB Type-C Monitor/Dock Solution ■ CCG2 20W Power Adapter Reference Design ■ Need for a USB Billboard Device in Type-C Solutions – KBA97146 ■ CCG2 18W Power Adapter Reference Design CCG1 Devices in Type-C to Legacy Cable/Adapter Assemblies – KBA97145 ■ ■ EZ-USB GX3 USB Type-A to Gigabit Ethernet Reference Design Kit ■ Cypress USB Type-C Controller Supported Solutions – KBA97179 ■ Kits ■ CY4501 CCG1 Development Kit Termination Resistors for Type-C to Legacy Ports – KBA97272 ■ CY4502 EZ-PD™ CCG2 Development Kit ■ Handling Instructions for CY4502 CCG2 Development Kit – KBA97916 ■ CY4531 EZ-PD CCG3 Evaluation Kit ■ Thunderbolt™ Cable Application Using CCG3 Devices KBA210976 ■ CY4541 EZ-PD™ CCG4 Evaluation Kit ■ Power Adapter Application Using CCG3 Devices - KBA210975 ■ Methods to Upgrade Firmware on CCG3 Devices - KBA210974 ■ Device Flash Memory Size and Advantages - KBA210973 ■ Applications of EZ-PD™ CCG4 - KBA210739 Application Notes ■ AN96527 - Designing USB Type-C Products Using Cypress’s CCG1 Controllers ■ AN95615 - Designing USB 3.1 Type-C Cables Using EZ-PD™ CCG2 Document Number: 002-17682 Rev. *M Datasheets ■ CCG1 Datasheet: USB Type-C Port Controller with Power Delivery ■ CYPD1120 Datasheet: USB Power Delivery Alternate Mode Controller on Type-C ■ CCG2: USB Type-C Port Controller Datasheet ■ CCG3: USB Type-C Controller Datasheet Page 39 of 43 EZ-PD™ CCG5 Document History Page Document Title: EZ-PD™ CCG5, USB Type-C Port Controller Document Number: 002-17682 Revision ECN Orig. of Change ** 5528106 SOBI 12/07/2016 New datasheet SOBI Updated EZ-PD™ CCG5, USB Type-C Port Controller and Features. Updated Logic Block Diagram. Updated USB-PD Subsystem (SS) and reordered the Functional Overview 01/27/2017 section. Updated GPIO. Updated 40-Pin QFN Pin Map (Top View) for CYPD5125-40LQXIT[5]. SOBI Changed datasheet status to Preliminary. Added Errata. Added Table 4 through Table 7. Added Table 9 through Table 41 in Device-Level Specifications. Updated Logic Block Diagram, GPIO, and VBUS Discharge. 06/03/2017 Updated Table 2, Table 3, Table 8, and Table 46. Updated Figure 5 through Figure 9. Updated Figure 13 (spec 002-10631 Rev. ** to *A) in Packaging. Updated compliance with USB spec in Sales, Solutions, and Legal Information. Updated template. VGT Updated USB HS Mux and SBU Mux in Functional Overview. Updated Flash in CPU and Memory Subsystem. Updated Power System Overview. Updated description of BGA pin P2.4 to support SCB4 I2C data. Changed SID.PWR#1_A; VDDD from 3 V to 3.15 V for DFP application. Changed SID.AC.dpdm.3; Trise_HS from 630 ps max to 300 ps min. Changed SID.AC.dpdm.4, Tfall_HS from 630 ps max to 300 ps min. Updated SID.PWR#23 - changed VSYS to VSYS_UFP and changed range to 2.7 to 5.5 V. Added SID.PWR#23_A for DFP/DRP application. Changed max value for SID.20VREG.8, VBUSLOADREG, from 0.2 to 0.3. Updated SID.ADC.2, SID.ADC.4 to ±1.5. 09/27/2017 Updated SID.PWR#18 description to extend to SBU, DPDM mux pins. Updated SID.PWR#2 - changed VDDD_MAX to VSYS_MAX. Removed min value from SID.PWR#14, VDDIO_MAX. Added min spec of -25mA for SID.PWR#19, Igpio_abs. Removed ADC.AC spec. Updated SID.DC.20vconn.11, OVP_hysteresis max. Added SID.DC.20vconn.14, OVP_threshold_on. Added SID.AC.dpdm.10, SID.AC.dpdm.11. Changed min value of SID.AC.dpdm.1, BW_3dB_HS from 1000 to 700. Changed max value of SID.DC.dpdm.12, SID.DC.dpdm.13 from 4 to 3. Changed max value of SID.DC.dpdm.2, RON_FS to 12. Corrected values for SID.AC.dpdm.8, SID.AC.dpdm.9. Added SID.AC.20sbu.6, SID.AC.20sbu.8, and SID.AC.20sbu.8. *A *B *C 5606273 5694572 5885413 Submission Date Document Number: 002-17682 Rev. *M Description of Change Page 40 of 43 EZ-PD™ CCG5 Document Title: EZ-PD™ CCG5, USB Type-C Port Controller Document Number: 002-17682 *C (contd.) *D 5885413 5943992 VGT Updated SID.DC.20sbu.12, SID.DC.20sbu.15, SID.DC.20sbu.6, SID.DC.20sbu.7, SID.DC.20sbu.7A, SID.DC.20sbu.8, SID.DC.20sbu.9, SID.DC.20sbu.10, SID.DC.20sbu.11, SID.DC.20sbu.3, and SID.DC.20sbu.3. Changed SBU pins ESD voltage to 750 V. Added new Table 28, new Table 29, Table 43 through Table 45. 09/27/2017 Updated Figure 5, Figure 8, Figure 9. Added Figure 7. Removed ADC AC specifications and CSA AC specifications (Table 28 and Table 32 from previous revision). Removed Errata. VGT Added "Thunderbolt hosts and devices" in Applications. Updated Figure 1 to correctly depict "2 x ADC" for entire CCG5. Updated description of VDDD pin in Table 2 and Table 3. Updated the description for pin P2.4 in Table 3. Added "CYPD5235-96BZXI" and "CYPD5236-96BZXI" part numbers to the description of Table 3 and Figure 6. Updated VBUS_P1_MAX and VBUS_P2_MAX values to 24 in Table 8. Updated min value of ESD_HBM_SBU spec from 750 to 1100 V in Table 8. Added "Applicable for all pins except SBU pins" in description of "ESD_HBM" parameter in Table 8. Updated description of VGPIO_OVT_ABS in Table 8. Updated description of ESD_IEC_CON and ESD_IEC_AIR parameters in Table 8. Changed SID.PWR#13 min value from 1.7 to VDDD in Table 9. Updated min value of SID.PWR#23 to 2.75 in Table 9. Updated pin description, values, and details/conditions of parameters SID.PWR#1 and SID.PWR#1_A to better define VDDD supply in Table 9. Replace VDDD with VSYS in supply name and conditions for IDD parameters listed in Table 9. 10/24/2017 Updated Conditions for SID.CLK#4 to “All VDDD” in Table 10. Removed SID.PWR#20 in Table 10. Added Guaranteed by Design for SID178 and SID180 in Table 20. Added description for SID.MEM#8 in Table 20. Added description for SID.CLK#13 and SID.CLK#13A in Table 24. Added Guaranteed by Design for SID.DC.cc_shvt.4 in Table 26. Deleted details and conditions for SID.DC.cc_shvt.14 in Table 26. Removed SID.DC.cc_SHVT.19 in Table 26. Updated spec values in Table 32. Added Guaranteed by Design for SID.AC.PGDO.2 in Table 34. Added Guaranteed by Design for SID.DC.20sbu.19 through SID.DC.20sbu.22 and removed SID.AC.20sbu.3 in Table 35. Added Guaranteed by Design for SID.AC.20SBU.5 in Table 36. Updated max value for SID.AC.20SBU.8 in Table 36. Removed SID.DC.dpdm.3 and SID.DC.dpdm.4 and added Guaranteed by Design for SID.DC.dpdm.5 and SID.DC.dpdm.11 through SID.DC.dpdm.13 in Table 37. Updated SID.DC.dpdm.12 and SID.DC.dpdm.13 max value in Table 37. Removed SID.AC.dpdm.1, SID.AC.dpdm.2, SID.AC.dpdm.3, and SID.AC.dpdm.4 in Table 38. Document Number: 002-17682 Rev. *M Page 41 of 43 EZ-PD™ CCG5 Document Title: EZ-PD™ CCG5, USB Type-C Port Controller Document Number: 002-17682 *D (cont.) 5943992 VGT Added Guaranteed by Design for SID.AC.dpdm.6, SID.AC.dpdm.7, SID.AC.dpdm.8, SID.AC.dpdm.9, SID.AC.dpdm.10, and SID.AC.dpdm.13 in Table 38. 10/24/2017 Added Guaranteed by Design for SID.DC.20VCONN.11 in Table 39. Removed SID.DC.20VCONN.13 in Table 39. Added Guaranteed by Design for SID.AC.20VCONN.2 in Table 40. Updated min value of VSYS to 2.75 throughout the document. *E 5968629 VGT 11/16/2017 *F 6040630 HPV 02/16/2018 Removed VBUS Regulator DC Specifications. Updated Figure 8. Added Figure 10 and Figure 11 and associated content. Updated pin name and description of P2.4 pin in Table 3. Updated Power System Overview. Updated pin name of pin K5 in Figure 6. 03/27/2018 Updated application diagrams in Figure 8, Figure 10, and Figure 11. Added SID.PWR#5. Added MPN CYPD5135-40LQXIT in Table 42. *G 6111610 VGT/AKK *H 6206852 VGT 06/13/2018 *I 6212870 HPV 06/26/2018 Updated in Typ. value for IDD_DS1 in Table 9. VGT Updated Figure 8, Figure 9, Figure 10, and Figure 11. Updated Table 9. 09/06/2018 Updated min value for SID.DC.20VCONN.9 in Table 39. Updated Ordering Code Definitions. *J *K 6270910 6375937 Added MPNs CYPD5225-96BZXIT, CYPD5235-96BZXIT and CYPD5236-96BZXIT in Table 42. SUDH Updated Electrical Specifications: Updated Device-Level Specifications: Updated I/O: Updated Table 11 (Added VOL_I2C_2, VOL_I2C_3, VOL1_20mA parameters and their 11/27/2018 details). Added Note 10 and referred the same note in max value of VOL_I2C_3 parameter. Updated Ordering Information: Updated Table 42 (Updated part numbers). *L 6460196 SUDH Updated Table 2 and Table 3: Updated VDDD Description (“VBUS powered - 3.15 V to 3.6 V” as “VBUS powered - 3.15 V to 3.65 V”). 02/19/2019 Updated Table 9: Updated VDDD Spec Limit to 3.65V. Updated USB HS Mux. Updated Copyright information. *M 6503433 SUDH 03/28/2019 Document Number: 002-17682 Rev. *M Updated CYPD5125-40LQXI as Not Recommended for New Designs (NRND). Updated References and Links To Applications Collaterals. Page 42 of 43 EZ-PD™ CCG5 Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Arm® Cortex® Microcontrollers Automotive cypress.com/arm cypress.com/automotive Clocks & Buffers Interface cypress.com/clocks cypress.com/interface Internet of Things Memory cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs Cypress Developer Community Community | Projects | Video | Blogs | Training | Components Technical Support cypress.com/support cypress.com/pmic Touch Sensing cypress.com/touch USB Controllers Wireless Connectivity PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU cypress.com/usb cypress.com/wireless Notice regarding compliance with Universal Serial Bus specification. Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB Type-C™ Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third party software tools, including sample code, to modify the firmware for Cypress USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely responsible ensuring the compliance of any modifications you make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any modifications you make. In addition, if Cypress modifies firmware based on your specifications, then you are responsible for ensuring compliance with any desired standard or specifications as if you had made the modification. CYPRESS IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED CYPRESS PRODUCT AND SUCH MODIFIED PRODUCT NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS. © Cypress Semiconductor Corporation, 2016-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-17682 Rev. *M Revised March 28, 2019 Page 43 of 43
CYPD5236-96BZXI 价格&库存

很抱歉,暂时无法提供与“CYPD5236-96BZXI”相匹配的价格&库存,您可以联系我们找货

免费人工找货