0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX20335AEWX+

MAX20335AEWX+

  • 厂商:

    AD(亚德诺)

  • 封装:

    WFBGA36

  • 描述:

    IC BATT PWR MGMT LI-ION 36WLP

  • 数据手册
  • 价格&库存
MAX20335AEWX+ 数据手册
Click here for production status of specific part numbers. MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems General Description The MAX20335 is a battery-charge-management solution ideal for low-power wearable applications. The device includes a linear battery charger with a smart power selector and several power-optimized peripherals. The MAX20335 features two ultra-low quiescent current buck regulators and three ultra-low quiescent current low-dropout (LDO) linear regulators, providing up to five regulated voltages, each with an ultra-low quiescent current, allows designers to minimize power consumption and extend battery life in 24/7 operation devices, such as those in the wearable market. The battery charger features a smart power selector that allows operation on a dead battery when connected to a power source. To avoid overloading a power adapter, the input current to the smart power selector is limited based on an I2C register setting. If the charger power source is unable to supply the entire system load, the smart power control circuit supplements the system load with current from the battery. The charger also supports temperature dependent charge currents. The two synchronous, high-efficiency step-down buck regulators feature a variable frequency mode for increased efficiency during light-load operation. The output voltage of these regulators can be programmed through I2C with the default preconfigured. The buck regulators can support dynamic voltage scaling to further improve system power consumption. The three configurable LDOs each have a dedicated input pin. Each LDO regulator output voltage can be programmed through I2C with the default preconfigured. The linear regulators can also be configured to operate as power switches that may be used to disconnect the quiescent load of the system peripherals. The MAX20335 features a programmable power controller that allows the device to be configured for applications that require the device be in a true-off, or always-on, state. The controller also provides a delayed reset signal and voltage sequencing. The MAX20335 is available in a 36-bump, 0.4mm pitch, 2.72mm x 2.47mm wafer-level package (WLP). 19-100288; Rev 6 6/21 Benefits and Features ● Extend System Use Time Between Battery Charging • Dual Ultra-Low-IQ 200mA Buck Regulators • Output Programmable from 0.7V to 2.275V and 0.7V to 3.85V • 0.9μA (typ) Quiescent Current (Buck 1) • Optional Fixed Peak-Current Mode to Optimize Ripple Frequency in Noise-Sensitive Applications • Three Ultra-Low-IQ 100mA LDOs • LDO1 • Output Programmable from 0.8V to 3.6V • 0.6μA (typ) Quiescent Current • 2.7V to 5.5V Input with Dedicated Pin • LDO2/3 • Output Programmable from 0.9V to 4V • 1μA (typ) Quiescent Current • 1.71V to 5.5V Input with Dedicated Pin ● Easy-to-Implement Li+ Battery Charging • Smart Power Selector • 28V/-5.5V Tolerant Input • Thermistor Monitor ● Minimize Solution Footprint Through High Integration • Provides Five Regulated Voltage Rails • Switch Mode Option on Each LDO ● Optimize System Control • Monitors Pushbutton for Ultra-Low Power Mode • Power-On Reset Delay and Voltage Sequencing • On-Chip Voltage Monitor Multiplexer Applications ● Wearable Electronics ● Fitness Monitors ● Rechargeable IoT devices Ordering Information appears at end of data sheet. MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Bump Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bump Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power On/Off and Reset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Smart Power Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Thermal Current Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 System Load Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Input Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Fast-Charge Current Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Thermistor Monitoring with Charger Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I2C Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Thermistor Monitoring with Charger Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Start, Stop, And Repeated Start Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Single-Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Burst Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Single Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Acknowledge Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 I2C Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 www.maximintegrated.com Maxim Integrated │  2 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems TABLE OF CONTENTS (continued) Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 PCB Layout and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 LIST OF FIGURES Figure 1. Power Function Input Control Modes Flow Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 2a. Power-On Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 2b. Power-On Sequencing Without Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 3. Smart Power Selector Current/Voltage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 4a. Charging Behavior Using Thermistor Monitoring Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 4b. Charging Behavior Using JEITA Monitoring 1 and 2 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 5a. Charger State Diagram (Thermistor Monitoring with Charger Shutdown) . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 5b. Battery Charger State Diagram (JEITA Monitoring with Charger Shutdown) . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 6. I2C START, STOP and REPEATED START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 7. Write Byte Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 8. Burst Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 9. Read Byte Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 10. Burst Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 11. Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 LIST OF TABLES Table 1. Power Function Input Control Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 2. Thermistor Monitoring/JEITA Monitoring Enable Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 3. I2C Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 4. ChipId Register (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 5. ChipRev Register (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 6. StatusA Register (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 7. StatusB Register (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 www.maximintegrated.com Maxim Integrated │  3 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems LIST OF TABLES (continued) Table 8. StatusC Register (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 9. IntA Register (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 10. IntB Register (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 11. IntMaskA Register (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 12. IntMaskB Register (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 13. ILimCntl Register (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 14. ChgCntlA Register (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 15. ChgCntlB Register (0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 16. ChTmr Register (0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 17. Buck1Cfg Register (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 18. Buck1VSet Register (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 19. Buck2Cfg Register (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 20. Buck2VSet Register (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 21. Buck1/2ISet Register (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 22. LDO1Cfg Register (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 23. LDO1VSet Register (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 24. LDO2Cfg Register (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 25. LDO2VSet Register (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 26. LDO3Cfg Register (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 27. LDO3VSet Register (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 28. ThrmCfg Register (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 29. ThrmCfg Register (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 30. MONCfg Register (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 31. BootCfg Register (0x1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 32. PinStat Register (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 33. Buck1/2Extra Control Register (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 34. PwrCfg Register (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 35. PwrCmd Register (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 36. Suggested Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 37. Output Capacitor Values* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 38. Register Bit Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 39. Register Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 www.maximintegrated.com Maxim Integrated │  4 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Typical Application Circuit MAX20335 SET CHGIN 1µF GND CAP Li+ BATTERY CHARGER WITH SMART POWER SELECTOR THM BAT 1µF 1µF EXT VIO SYS VSYS 10µF (*) SCL SCL SDA BUCK 1 INT INT MPC0 MPC0 MPC1 MPC1 CONTROL BUCK 2 PFN2 PFN2 RST RST LDO/ SWITCH 1 PFN1 VSYS B1LX B2LX L1IN MON MUX/ DIVIDER LDO/ SWITCH 3 VB2 2.2µH VL1 L3OUT 1µF VSYS VL2 L2OUT L3IN 10µF VSYS L1OUT L2IN 10µF 2.2µH B2OUT LED LDO/ SWITCH 2 MON VB1 B1OUT SDA 1µF VSYS VL3 1µF * OPTIONAL EXTERNAL FET www.maximintegrated.com Maxim Integrated │  5 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Absolute Maximum Ratings (Voltages referenced to GND.) SDA, SCL, THM, RST, SYS, PFN1, PFN2, MPC0, MPC1, INT, MON, BAT, LED, L1IN, L2IN, L3IN............................................... -0.3V to +6.0V B1LX, B2LX, B1OUT, B2OUT, EXT....... -0.3V to (VSYS + 0.3V) L1OUT.................................................... -0.3V to (VL1IN + 0.3V) L2OUT.................................................... -0.3V to (VL2IN + 0.3V) L3OUT.................................................... -0.3V to (VL3IN + 0.3V) CHGIN ..................................................................... -6V to +30V CAP.................................... -0.3V to min (|VCHGIN| + 0.3V, +6V) SET .......................................................... -0.3V to VBAT + 0.3V Continuous Current into CHGIN, BAT, SYS .................±1000mA Continuous Current into any other terminal ...................±100mA Continuous Power Dissipation (multilayer board at +70°C): 6 x 6 Array 36-Bump 2.72mm x 2.47mm 0.4mm Pitch WLP (derate 21.70mW/°C)........................1.74W Operating Temperature Range............................ -40°C to +85°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -65°C to +150°C Soldering Temperature (reflow)........................................+260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information PACKAGE TYPE: 36 WLP Package Code W362D2+1 Outline Number 21-0897 Land Pattern Number Refer to Application Note 1891 THERMAL RESISTANCE, FOUR-LAYER BOARD Junction to Ambient (θJA) 46°C/W For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. www.maximintegrated.com Maxim Integrated │  6 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS GLOBAL SUPPLY CURRENT (L_IN Connected to SYS) All functions disabled Charger Input Current BAT Input Current ICHG IBAT 0.26 Power on, VCHGIN = 5V SYS switch closed, buck regulators enabled, LDO1 enabled, ISYS = 0A, IB_OUT = 0A, IL_OUT = 0A 1.5 Power off, VCHGIN = 0V, SYS switch open 0.96 1.7 Power on, VCHGIN = 0V SYS switch closed, 2x buck regulators enabled, LDOs disabled. ISYS = 0A, IB_OUT = 0A 2.8 4.3 Power on, VCHGIN = 0V SYS switch closed, 2x buck regulators enabled, LDO1 enabled, ISYS = 0A, IB_OUT = 0A, IL_OUT = 0A 3.5 7 Power on, VCHGIN = 0V SYS switch closed, 2x buck regulators enabled, 3x LDOs enabled, ISYS = 0A, IB_OUT = 0A, IL_OUT = 0A 5.2 mA µA BUCK REGULATOR 1 (VSYS = +3.7V, L = 2.2µH, C = 2.2µF, VB1OUT = 1.2V) Input Voltage VIN_BUCK1 Input voltage = VSYS 2.7 5.5 V Output Voltage VOUT_BUCK1 25mV step resolution 0.7 2.275 V Output UVLO Voltage VUVLO_BUCK1 Note: For VOUT < UVLO ZC is imposed. Falling edge (75mV typ hysteresis) 0.35 0.55 V 1.3 µA Quiescent Supply Current IQ_BUCK1 Buck enabled, IB1OUT = 0mA, VSYS = 3.7V, VB1OUT = 1.2V (Note 2) 0.9 Dropout Quiescent Supply Current IQDO_BUCK1 IB1OUT = 0mA, (VSYS – VOUT) ≤ 0.1V 1.1 mA Shutdown Supply Current with Active Discharge Enabled ISD_BUCK1 Buck1 disabled. Falling edge (75mV typ hysterisis) 60 µA Output Accuracy ACCBUCK1 IB1OUT = 1mA Peak-to-Peak Ripple VPPRIPPLE1 Buck1ISet = 100mA, COUT = 2.2µF, IB1OUT = 1mA IPEAK Set Range IPEAK_BUCK1 25mA step resolution set by Buck1ISet[3:0]. www.maximintegrated.com -2.5 +2.5 10 50 % mV 375 mA Maxim Integrated │  7 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Load Regulation Error VLOADR_BUCK1 Buck1ISet = 150mA, Buck1IAdptEnb = 0, IB1OUT = 300mA -3 % Line Regulation Error VLINER_BUCK1 VB1OUT = 1.2V; VSYS from 2.7V to 5.5V 3 mV Maximum Operating Output Current IOUT_BUCK1 VSYS = 3.7V, Buck1VSet = 1.2V, Buck1ISet = 200mA, Buck1IAdptEnb = 0, load regulation error = -5% 500 mA B1OUT Pulldown Current ILEAK_B1OUT Buck1 enabled 110 nA B1OUT Pulldown Resistance RPD_B1OUT Buck1 disabled, VB1OUT = 1.2V 12 MΩ pMOS On-Resistance nMOS On-Resistance RONP_BUCK1 RONN_BUCK1 Freewheeling On-Resistance RONFW_BUCK1 Minimum TON TON_MIN Maximum Duty Cycle DMAX_BUCK1 Switching Frequency fSW_BUCK1 Average Current During Short-Circuit to GND ISHRT_BUCK1 200 Buck1FFET = 0 0.27 0.5 Ω Buck1FFET = 1 Buck1FFET = 0 0.55 1 Ω 0.24 0.45 Ω Buck1FFET = 1 0.43 0.9 Ω VSYS = 3.7V, VB1OUT = 1.2V 7.3 13 Ω 40 80 ns Buck1IAdptEnb = 0 98 % Load regulation error = -3% 3 MHz 100 mA Buck1ISet = 150mA, Buck1IAdptEnb = 0, VB1OUT = 0V BLX Leakage Current IBLX_BUCK1 Active Discharge Current IPD_BUCK1 VB1OUT = 1.2V 17 mA Passive Discharge Resistance RPD_BUCK1 VB1OUT = 1.2V 9 kΩ Full Turn-On Time tON_BUCK1 Time from enable to full current capability, Buck1Fst = 0 58 ms ILOAD = 10mA, Buck1ISet = 150mA, Inductor = BOURNS SRP20102R2M, VB1OUT = 1.2V 87 % Buck1LowEMI = 0 2 Buck1LowEMI = 1 0.5 Efficiency EffBUCK1 0.005 1 µA BLX Rising/Falling Slew Rate SRBLX_BUCK1 Thermal-Shutdown Temperature TSHDN_BUCK1 140 °C TSHDN_HYST_BUCK1 10 °C Thermal-Shutdown Temperature Hysteresis www.maximintegrated.com V/ns Maxim Integrated │  8 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS BUCK REGULATOR 2 (VSYS = +3.7V, L = 2.2µH, C = 2.2µF, VB2OUT = 1.2V) Input Voltage VIN_BUCK2 Input voltage = VSYS 2.7 5.5 V Output Voltage VOUT_BUCK2 50mV step resolution 0.7 3.85 V Output UVLO Voltage VUVLO_BUCK2 Note: For VOUT < UVLO ZC is imposed. Falling edge (75mV typ hysteresis) 0.35 0.55 V 1 1.4 µA Quiescent Supply Current IQ_BUCK2 Dropout Quiescent Supply Current IQDO_BUCK2 Shutdown Supply Current with Active Discharge Enabled Output Accuracy Buck enabled, IB2OUT = 0mA, VSYS = 3.7V, VB2OUT = 1.2V (Note 2) IB2OUT = 0mA, VSYS – VB2OUT ≤ 0.1V 1.1 mA ISD_BUCK2 Buck1 disabled, Buck2ActDSC = 1. 60 µA ACCBUCK2 IB2OUT = 1mA, VB2OUT < 3.4V Peak-to-Peak Ripple VPPRIPPLE2 Buck2ISet = 100mA, COUT = 2.2µF, IB2OUT = 1mA IPEAK Set Range IPEAK_BUCK2 25mA step resolution set by Buck2ISet[3:0]. -2.5 +2.5 10 50 % mV 375 mA Load Regulation Error VLOADR_BUCK2 Buck2ISet = 150mA, Buck2IAdptEnb = 0, IB2OUT = 300mA -3 % Line Regulation Error VLINER_BUCK2 VB2OUT = 1.2V; VSYS from 2.7V to 5.5V 3 mV Maximum Operating Output Current IOUT_BUCK2 VSYS = 3.7V, Buck2VSet = 1.2V, Buck2ISet = 200mA, Buck2IAdptEnb = 0, load regulation = -5% 500 mA B2OUT Pulldown Current ILEAK_B2OUT Buck2 enabled 220 nA B2OUT Pulldown Resistance RPD_B2OUT Buck2 disabled, VB2OUT = 1.2V 6 MΩ pMOS On-Resistance RONP_BUCK2 nMOS On-Resistance RONN_BUCK2 Freewheeling On-Resistance www.maximintegrated.com RONFW_BUCK2 200 Buck2FFET = 0 0.27 0.5 Ω Buck2FFET = 1 0.55 1 Ω Buck2FFET = 0 0.24 0.45 Ω Buck2FFET = 1 0.43 0.9 Ω VSYS = 3.7V, VB2OUT = 1.2V 7.3 13 Ω Maxim Integrated │  9 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Minimum TON SYMBOL Maximum Duty Cycle DMAX_BUCK2 Switching Frequency fSW_BUCK2 Average Current During Short-Circuit to GND CONDITIONS MIN TON_MIN ISHRT_BUCK2 TYP MAX UNITS 40 80 ns Buck2IAdptEnb = 0 98 % Load regulation error = -3% 3 MHz 100 mA Buck2ISet = 150mA, Buck2IAdptEnb = 0, VB2OUT = 0V BLX Leakage Current IBLX_BUCK2 Active Discharge Current IPD_BUCK2 VB2OUT = 1.2V 17 mA Passive Discharge Resistance RPD_BUCK2 VB2OUT = 1.2V 9 kΩ Full Turn-On Time TON_BUCK2 Time from enable to full current capability, Buck2Fst = 0 58 ms ILOAD = 10mA, Buck2ISet = 150mA, Inductor = BOURNS SRP20102R2M, VB2OUT = 1.2V 87 % Buck2LowEMI = 0 2 Buck2LowEMI = 1 0.5 Efficiency EffBUCK2 0.005 1 µA BLX Rising/Falling Slew Rate SRBLX_BUCK2 Thermal-Shutdown Temperature TSHDN_BUCK2 140 °C TSHDN_HYST_BUCK2 10 °C Thermal-Shutdown Temperature Hysteresis V/ns LDO1 (C = 1μF, unless otherwise noted. Typical values are at VL1IN = 3.7V, with IL1OUT = 10mA, VL1OUT = 3V.) Input Voltage VINLDO1 Quiescent Supply Current IQ_LDO1 Shutdown Supply Current with Active Discharge Enabled ISD_LDO1 Maximum Output Current Output Voltage Output Accuracy www.maximintegrated.com LDO mode 2.7 Switch mode 1.2 LDO enabled, IL1OUT = 0µA 0.55 LDO enabled, IL1OUT = 0µA, Switch mode 0.45 LDO1 disabled. LDO1ActDSC=1. 5.5 V 5.5 V 4 µA 55 µA IL1OUT_MAX 100 VL1OUT 0.8 3.6 V -2.7 +2.7 % ACCLDO1 VL1IN = (VL1OUT + 0.5V) or higher, IL1OUT = 100µA mA Maxim Integrated │  10 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Dropout Voltage SYMBOL VDROP_LDO1 CONDITIONS Line Regulation Error VLINEREG_LDO1 VL1IN = (VL1OUT + 0.5V) to 5.5V Load Regulation Error VLOADREG_LDO1 IL1OUT = 100µA to 100mA Line Transient VLINETRAN_LDO1 Load Transient VLOADTRAN_LDO1 Passive Discharge Resistance RPD_LDO1 Active Discharge Current IADL_LDO1 Switch Mode Resistance Turn-On Time RON_LDO1 tON_LDO1 MIN TYP VL1IN = 3V, IL1OUT_ = 100mA, LDO1VSet = 3V -0.12 MAX UNITS 102 mV 0.022 +0.12 %/V 0.002 0.005 %/mA VL1IN = 4V to 5V, 200ns rise time ±36 mV VL1IN = 4V to 5V, 1µs rise time ±28 mV IL1OUT = 0mA to 10mA, 200ns rise time 145 mV IL1OUT = 0mA to 100mA, 200ns rise time 290 mV 5 10 16 KΩ 7 20 37 mA VL1IN = 2.7V, IL1OUT = 100mA 0.5 0.85 VL1IN = 1.8V, IL1OUT = 100mA 0.76 1.3 VL1IN = 1.2V, IL1OUT = 5mA 1.7 2.8 IL1OUT = 0mA, time from 10% to 90% of final value 1.6 3.7 IL1OUT = 0mA, time from 10% to 90% of final value, Switch mode 0.25 0.65 VL1IN = 3.7V Ω ms VL1IN = 2.7V, VL1OUT = GND 150 345 550 mA VL1IN = 2.7V , VL1OUT = GND, Switch mode 150 335 550 mA Short-Circuit Current Limit ISHRT_LDO1 Thermal-Shutdown Temperature TSHDN_LDO1 150 °C TSHDN_HYST_LDO1 16 °C Thermal-Shutdown Temperature Hysteresis Output Noise www.maximintegrated.com OUTNOISE 10Hz to 100kHz, VL1IN = 5V, VL1OUT = 3.3V 110 10Hz to 100kHz, VL1IN = 5V, VL1OUT = 2.5V 95 10Hz to 100kHz, VL1IN = 5V, VL1OUT = 1.2V 60 10Hz to 100kHz, VL1IN = 5V, VL1OUT = 0.8V 60 µVrms Maxim Integrated │  11 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS LDO2 (C = 1μF, unless otherwise noted. Typical values are at VL2IN = 3.7V, with IL2OUT = 10mA, VL2OUT = 3V.) Input Voltage VINLDO2 Quiescent Supply Current IQ_LDO2 Quiescent Supply Current in Dropout IQDO_LDO2 Shutdown Supply Current with Active Discharge Enabled ISD_LDO2 Maximum Output Current Output Voltage IL2OUT_MAX LDO mode 1.71 5.5 V Switch mode 1.2 5.5 V IL2OUT = 0µA ACCLDO2 Dropout Voltage VDROP_LDO2 IL2OUT = 0µA, VL2IN = 2.9V, LDO2VSet = 3V. 1.8 µA LDO2 disabled. LDO2ActDSC=1. 54 µA VL2IN ≥ 2.7V 100 mA VL2IN = 1.8V or lower 50 mA VL2IN = (VL2OUT + 0.5V) or higher, IL2OUT = 100µA VL2IN = (VL2OUT + 0.5V) to 5.5V Load Regulation Error VLOADREG_LDO2 IL2OUT = 100µA to 100mA Load Transient VLOADTRAN_LDO2 Passive Discharge Resistance RPD_LDO2 Active Discharge Current IADL_LDO2 Switch Mode Resistance Turn-On Time www.maximintegrated.com RON_LDO2 tON_LDO2 0.9 4 V -2.7 +2.7 % 100 mV +0.05 +0.4 %/V 0.001 0.005 %/mA VL2IN = 3V, IL2OUT_ = 100mA, LDO2VSet = 3V VLINEREG_LDO2 VLINETRAN_LDO2 µA 0.5 Line Regulation Error Line Transient 5.1 IL2OUT = 0µA, Switch mode VL2OUT Output Accuracy 1 -0.4 VL2IN = 4V to 5V, 200ns rise time ±35 mV VL2IN = 4V to 5V, 1µs rise time ±25 mV IL2OUT = 0mA to 10mA, 200ns rise time 100 mV IL2OUT = 0mA to 100mA, 200ns rise time 200 mV 5 10 16 KΩ 7 20 37 mA VL2IN = 2.7V, IL2OUT = 100mA 0.46 0.76 VL2IN = 1.8V, IL2OUT = 50mA 0.7 1.15 VL2IN = 1.2V, IL2OUT = 5mA 1.7 2.6 IL2OUT = 0mA, time from 10% to 90% of final value 1.5 3.7 IL2OUT = 0mA, time from 10% to 90% of final value, Switch mode 0.25 0.65 VL2IN = 3.7V Ω ms Maxim Integrated │  12 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL MIN TYP MAX UNITS VL2IN = 2.7V, VL2OUT = GND CONDITIONS 140 340 600 mA VL2IN = 2.7V , VL2OUT = GND, Switch mode 140 330 600 mA Short-Circuit Current Limit ISHRT_LDO2 Thermal-Shutdown Temperature TSHDN_LDO2 150 °C TSHDN_HYST_LDO2 21 °C Thermal-Shutdown Temperature Hysteresis Output Noise L2IN UVLO OUTNOISE VUVLO_LDO2 10Hz to 100kHz, VL2IN = 5V, VL2OUT = 3.3V 150 10Hz to 100kHz, VL2IN = 5V, VL2OUT = 2.5V 125 10Hz to 100kHz, VL2IN = 5V, VL2OUT = 1.2V 90 10Hz to 100kHz, VL2IN = 5V, VL2OUT = 0.9V 80 VL2IN Falling µVrms 1.14 VL2IN Rising 1.38 1.4 1.64 V LDO3 (C = 1μF, unless otherwise noted. Typical values are at VL3IN = 3.7V, with IL3OUT = 10mA, VL3OUT = 3V.) Input Voltage VINLDO3 Quiescent Supply Current IQ_LDO3 Quiescent Supply Current in Dropout IQDO_LDO3 Shutdown Supply Current with Active Discharge Enabled ISD_LDO3 Maximum Output Current Output Voltage IL3OUT_MAX 1.71 5.5 V Switch mode 1.2 5.5 V IL3OUT = 0µA ACCLDO3 Dropout Voltage VDROP_LDO3 1 5.1 µA IL3OUT = 0µA, Switch mode 0.5 IL3OUT = 0µA, VL3IN = 2.9V, LDO3VSet = 3V. 1.8 µA LDO3 disabled. LDO3ActDSC=1. 54 µA VL3IN ≥ 2.7V 100 mA VL3IN = 1.8V or lower 50 mA VL3OUT Output Accuracy www.maximintegrated.com LDO mode VL3IN = (VL3OUT + 0.5V) or higher, IL3OUT = 100µA VL3IN = 3V, IL3OUT_ = 100mA, LDO3VSet = 3V 0.9 4 V -2.7 +2.7 % 100 mV Maxim Integrated │  13 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS Line Regulation Error VLINEREG_LDO3 VL3IN = (VL3OUT + 0.5V) to 5.5V Load Regulation Error VLOADREG_LDO3 IL3OUT = 100µA to 100mA Line Transient Load Transient VLINETRAN_LDO3 VLOADTRAN_LDO3 Passive Discharge Resistance RPD_LDO3 Active Discharge Current IADL_LDO3 Switch Mode Resistance RON_LDO3 Turn-On Time tON_LDO3 MIN TYP MAX UNITS -0.4 +0.05 +0.4 %/V 0.001 0.005 %/mA VL3IN = 4V to 5V, 200ns rise time ±35 mV VL3IN = 4V to 5V, 1µs rise time ±25 mV IL3OUT = 0mA to 10mA, 200ns rise time 100 mV IL3OUT = 0mA to 100mA, 200ns rise time 200 mV 5 10 16 KΩ 7 20 37 mA VL3IN = 2.7V, IL3OUT = 100mA 0.46 0.76 VL3IN = 1.8V, IL3OUT = 100mA 0.7 1.15 VL3IN = 1.2V, IL3OUT = 5mA 1.7 2.6 IL3OUT = 0mA, time from 10% to 90% of final value 1.5 3.7 IL3OUT = 0mA, time from 10% to 90% of final value, Switch mode 0.25 0.65 VL3IN = 3.7V Ω ms VL3IN = 2.7V, VL3OUT = GND 140 340 600 mA VL3IN = 2.7V , VL3OUT = GND, Switch mode 140 330 600 mA Short-Circuit Current Limit ISHRT_LDO3 Thermal-Shutdown Temperature TSHDN_LDO3 150 °C TSHDN_HYST_LDO3 21 °C Thermal-Shutdown Temperature Hysteresis Output Noise L3IN UVLO www.maximintegrated.com OUTNOISE VUVLO_LDO3 10Hz to 100kHz, VL3IN = 5V, VL3OUT = 3.3V 150 10Hz to 100kHz, VL3IN = 5V, VL3OUT = 2.5V 125 10Hz to 100kHz, VL3IN = 5V, VL3OUT = 1.2V 80 10Hz to 100kHz, VL3IN = 5V, VL3OUT = 0.9V 60 VL3IN Falling VL3IN Rising µVrms 1.14 1.38 1.4 1.64 V Maxim Integrated │  14 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 28 V CHGIN TO SYS PATH (VCHGIN = 5.0V, VSYS = VSYS_REG) Allowed CHGIN Input Voltage Range VCHGIN_RNG VCHGIN Detect Threshold VCHGIN_DET VCHGIN Overvoltage Threshold VCHGIN_OV VCHGIN Overvoltage Threshold Hysteresis VCHGIN_OV_HYS VCHGIN Valid Trip Point VCHGIN-SYS_TP VCHGIN Valid Trip Point Hysteresis VCHGIN-SYS_TP_HYS Input Limiter Current ILIM -5.5 Rising 3.8 3.9 4.1 Falling 3.0 3.1 3.2 Rising 7.2 7.5 7.8 200 VCHGIN – VSYS, Rising, VBAT = 4V +30 +145 +290 0 ILimCntl[1:0] = 01 90 100 ILimCntl[1:0] = 10 450 550 ILimCntl[1:0] = 11 1000 VCAP CHGIN-SYS Regulation Voltage VCHGIN-SYS VCHGIN = 4V, ISYS = 1mA 40 CHGIN to SYS On-Resistance RCHGIN-SYS VCHGIN = 4.4V, ISYS = 500mA 370 (Note 3) +150 o C o C TCHGIN_SHDN Thermal-Shutdown Temperature Hysteresis TCHGIN_SHDN_HYS 30 Input Current Soft-Start Time tSFST_LIM 1 Internal Supply Switchover Threshold VCCINT_TH www.maximintegrated.com VCHGIN = VCAP rising, VBAT = 4.2V 2.5 2.8 4.7 mA Internal CAP Regulator Thermal-Shutdown Temperature 4.2 mV mV ILimCntl[1:0] = 00 3.9 V mV 275 VCHGIN = 5V V V mV 660 mΩ ms 3.0 V Maxim Integrated │  15 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX 3 3.06 2.92 2.98 3.04 UNITS SYS, BATTERY, AND VCCINT UVLOs SYS UVLO Threshold VSYSUVLO_R Rising VSYSUVLO_F Falling V SYS UVLO Threshold Hysteresis VSYSUVLO_HYS Hysteresis 26 mV SYS UVLO Falling Debounce Time tSYSUVLO_FDEB SYS Falling 20 µs VCCINT UVLO Threshold (POR) VUVLO VCCINT UVLO Threshold Hysteresis VUVLO_HYS BAT UVLO Threshold VBAT_UVLO BAT UVLO Threshold Hysteresis VBAT_UVLO_HYS VCCINT Rising 0.8 1.82 2.6 140 Rising (Valid only when CHGIN is present. When VBAT < VBAT_UVLO, the BAT-SYS switch opens and BAT is connected to SYS through a diode.) 1.9 Hysteresis V mV 2.05 2.2 50 V mV BATTERY CHARGER (See Figure 5a and Figure 5b) (VBAT = 4.2V. Typical values are at VCHGIN = 5.0V, VSYS = VSYS_REG) Allowed BAT Voltage Range VBAT_RNG BAT to SYS On-Resistance RBAT-SYS VBAT = 4.2V, IBAT = 300mA 80 Current Reduce Thermal Threshold Temperature TCHG_LIM (Note 4) 120 0 5.5 V 140 mΩ o C BAT-to-SYS Switch-On Threshold VBAT-SYS-ON SYS falling 10 22 35 mV BAT-to-SYS Switch-Off Threshold VBAT-SYS-OFF SYS rising -3 -1.5 0 mV VBatReg + 140mV VBatReg + 200mV VBatReg + 260mV V SYS-BAT Regulation Voltage www.maximintegrated.com VSYS_REG VCHGIN = 5V, ISYS = 1mA Maxim Integrated │  16 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYS Threshold Voltage Charger Limiting Current (Note 5) Charger Current SoftStart Time SYMBOL VSYS_LIM MIN TYP MAX SysMin = 000, VBAT > 3.6V CONDITIONS   VBAT+ 0.1   SysMin = 000, VBAT < 3.4V   3.6   SysMin = 001, VBAT < 3.4V   3.7   SysMin = 010, VBAT < 3.4V   3.8   SysMin = 011, VBAT < 3.4V   3.9   SysMin = 100, VBAT < 3.4V 3.86 4 4.14 SysMin = 101, VBAT < 3.4V   4.1   SysMin = 110, VBAT < 3.4V   4.2   SysMin = 111, VBAT < 3.4V   4.3   tCHG_SOFT 1 UNITS V ms PRECHARGE IPChg = 00 Precharge Current IPCHG IPChg = 01 Prequalification Threshold Hysteresis www.maximintegrated.com VBAT_PChg VBAT_PChg_HYS 10 IPChg = 10 20 IPChg = 11 30 VPChg = 000 2.1 VPChg = 001 Prequalification Threshold 5 9 2.15 2.25 VPChg = 010 2.40 VPChg = 011 2.55 VPChg = 100 2.7 VPChg = 101 2.85 VPChg = 110 3.0 VPChg = 111 3.15 90 11 %IFChg 2.35 V mV Maxim Integrated │  17 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS FAST CHARGE SET Current Gain Factor KSET 2000 A/A SET Regulation Voltage VSET 1 V RSET = 400kΩ Fast-Charge Current Fast-Charge Current Accuracy (Note 6) IFChg IFChg_ACC 5 RSET = 40kΩ 45 50 55 RSET = 4kΩ 450 500 550 RSET Range = 4kΩ to 40kΩ -10 +10 mA % MAINTAIN CHARGE ChgDone = 00 Charge Done Qualification IChg_DONE ChgDone = 01 5 8.5 ChgDone = 10 ChgDone = 11 30 BatReg = 0000 4.05 BatReg = 0001 4.10 BatReg = 0011 BAT Recharge Threshold www.maximintegrated.com VBatReg VBatReChg 11.5 20 BatReg = 0010 BAT Regulation Voltage (Note 7) 10 %IFChg 4.15 TA = +25°C 4.179 TA = 0 to +45C 4.168 4.2 4.221 4.2 4.232 BatReg = 0100 4.25 BatReg = 0101 4.3 BatReg = 0110 4.35 BatReg = 0111 4.4 BatReg = 1000 4.45 BatReg = 1001 4.5 BatReg = 1010 4.55 V BatReg = 1011 4.6 BatReChg = 00 VBatReg - 70 BatReChg = 01 VBatReg - 120 BatReChg = 10 VBatReg -170 BatReChg = 11 VBatReg -220 mV Maxim Integrated │  18 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS CHARGER TIMER Maximum Prequalification Time Maximum Fast-Charge Time Maintain-Charge Time Timer Accuracy Timer Extend Threshold Timer Suspend Threshold tPChg tFChg tTOChg PChgTmr = 00 30 PChgTmr = 01 60 PChgTmr = 10 120 PChgTmr = 11 240 FChgTmr = 00 75 FChgTmr = 01 150 FChgTmr = 10 300 FChgTmr = 11 600 TOChgTmr = 00 0 TOChgTmr = 01 15 TOChgTmr = 10 30 TOChgTmr = 11 60 tCHG_ACC -10 min min min +10 % TIMEXD_THRES If charge current is reduced due to ILIM or TDIE this is the percentage of charge current below which timer clock operates at half speed 50 %IFChg TIMSUS_THRES If charge current is reduced due to ILIM or TDIE this is the percentage of charge current below which timer clock pauses 20 %IFChg THERMISTOR MONITOR AND NTC DETECTION THM Hot Threshold T4 VTHM falling 30.9 32.9 34.9 VTHM falling 21.3 23.3 25.3 VTHM falling 48 50 52 VTHM falling 30.9 32.9 34.9 THM Warm Threshold T3 THM Cool Threshold T2 VTHM rising 62.5 64.5 66.5 THM Cold Threshold T1 VTHM rising 71.9 73.9 75.9 THM Disable Threshold THMDIS VTHM rising 91 93 95 THM Threshold Hysteresis THMHYS THM Input Leakage ILKG_THM www.maximintegrated.com 60 -1 %CAP mV 1 µA Maxim Integrated │  19 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS START UP TIMING (See Figure 2) Boot Delay Boot Delay Timer Accuracy tRST BootDly = 00 80 BootDly = 01 120 BootDly = 10 220 BootDly = 11 420 tRST_ACC -10 Input Logic-High (SDA, SCL, MPC0, MPC1, PFN1, PFN2) VIH 1.4 Input Logic-Low (SDA, SCL, MPC0, MPC1, PFN1, PFN2) VIL Output Logic-Low (SDA, RST, INT, LED, PFN2) VOL High Level Leakage Current (SDA, RST, INT, LED, PFN2) ms 10 % DIGITAL SIGNALS V 0.5 0.4 V ILK 1 µA SCL Clock Frequency fSCL 400 kHz Bus Free Time Between a STOP and START Condition tBUF START Condition (Repeated) Hold Time tHD:STA IOL = 4mA V (Note 8) 1.3 µs 0.6 µs Low Period of SCL Clock tLOW 1.3 µs High Period of SCL Clock tHIGH 0.6 µs Setup Time for a Repeated START Condition tSU:STA 0.6 µs Data Hold Time tHD:DAT (Note 9) 0 Data Setup Time tSU:DAT (Note 9) 100 ns Setup Time for STOP Condition tSU:STO 0.6 µs Spike Pulse Widths Suppressed by Input Filter tSP www.maximintegrated.com (Note 10) 0.9 50 µs ns Maxim Integrated │  20 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Electrical Characteristics (continued) (VCHGIN = 5.0V, VBAT = 3.7V, TA = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) Note 1: Note Note Note Note Note Note Note Note Note All devices are 100% production tested at TA = +25°C. Limits over the operating temperature range guaranteed by design. 2: This value is included in the IBAT quiescent current values for the ON states. 3: When the die temperature exceeds TCHGIN_SHDN, the CHGIN to SYS path opens, and the charger is turned off. 4: When the die temperature exceeds TCHG_LIM, the charger current starts to decrease. 5: This is the threshold at which the charger starts to limit the current due to SYS dropping; if VSYS drops below this value the charger will not move to maintain charge. 6: Fast charge current accuracy tested only at 50mA and 500mA, all other values guaranteed by design. 7: Values over temperature are not production tested and guaranteed by characterization. 8: fSCL must meet the minimum clock low time plus the rise/fall times. 9: The maximum tHD:DAT has to be met only if the device does not stretch the low period (tLOW) of the SCL signal. 10: Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant. www.maximintegrated.com Maxim Integrated │  21 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Typical Operating Characteristics (VBAT = 3.7V, VCHGIN = 0V, registers in their default state, TA = +25°C, unless otherwise noted.) IBAT vs. VBAT toc01 BUCKS ON, ALL LDOS ON BUCKS ON, LDO1 ON BUCKS ON 2 POWER OFF -40 -15 10 35 60 BUCKS ON 4 2 0 85 BUCKS ON, LDO1 ON 6 3.0 3.3 TEMPERATURE (°C) VBAT_REG vs. TEMPERATURE IBAT (mA) VBAT_REG (V) 3.9 35 VBAT 60 0 85 6 -15 0 40 80 120 ICHGIN vs. TEMPERATURE 5 4 4 160 200 240 280 2 2 1 1 0 0 3 4 -40 -15 10 35 toc09 3.05 TEMPERATURE (°C) www.maximintegrated.com VBAT = 3.3V, 3.7V, 4.2V 3.00 2.95 60 85 2.90 8 VL2OUT = 3.0V VL2OUT (V) VL1OUT (V) ILimCntl[1:0] = 0x01 7 3.10 3.05 ILimCntl[1:0] = 0x02 0 6 VL2OUT vs. LOAD toc08 VBAT = 3.3V, 3.7V, 4.2V 200 5 VL1OUT = 3.0V 400 85 VCHGIN (V) 3.10 VBAT = 3.7V VCHGIN = 5V ISYS = 600mA 60 3 VL1OUT vs. LOAD toc07 35 VBAT = 2.8V RSYS = 50Ω TIME (minutes) 800 10 toc06 6 5 3 IBAT TEMPERATURE (°C) 600 -40 VSYS vs. VCHGIN 40 10 VBAT = 2V TEMPERATURE (°C) 120 80 -15 0 4.2 150mAhr BATTERY IChgDone[1:0]= 01 IPChg[1:0=01 VPChg[2:0]=110 RSET = 40kΩ 160 4.19 ICHGIN (mA) 3.6 toc05 200 VCHGIN = 5V BatReg[2:0] = 011 RSET = 40kΩ 4.2kΩ at BAT -40 VBAT = 3.7V IBAT/ VBAT vs. TIME toc04 4.20 4.18 40 VBAT (V) 4.22 4.21 60 20 POWER OFF 2.7 VCHGIN = 5V RSET = 40kΩ IPChg[1:0] = 01 80 BUCKS ON, ALL LDOS ON VSYS (V) 4 8 toc03 100 VBAT (V) 6 0 IBAT (µA) BATTERY INPUT CURRENT IBAT (µA) BATTERY INPUT CURRENT VBAT = 3.7V 8 IFCHG vs. TEMPERATURE toc02 10 IFCHG (mA) IBAT vs. TEMPERATURE 10 3.00 2.95 0 20 40 60 IL1OUT (mA) 80 100 2.90 0 20 40 60 80 100 IL2OUT (mA) Maxim Integrated │  22 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Typical Operating Characteristics (continued) (VBAT = 3.7V, VCHGIN = 0V, registers in their default state, TA = +25°C, unless otherwise noted.) VL3OUT vs. LOAD LDO1 TRANSIENT RESPONSE LDO1 TRANSIENT RESPONSE toc11 toc10 3.10 toc12 VL1OUT = 3.0V VL3OUT = 3.0V VL1OUT = 3.0V 3.05 VL3OUT (V) VBAT = 3.3V, 3.7V, 4.2V VOUT 200mV/div VOUT 200mV/div IOUT 50mA/div IOUT 50mA/div 3.00 2.95 2.90 0 20 40 60 80 100ms/div 100 40µs/div IL3OUT (mA) LDO2 TRANSIENT RESPONSE LDO2 TRANSIENT RESPONSE toc13 LDO3 TRANSIENT RESPONSE toc15 toc14 VL2OUT = 3.0V VL3OUT = 3.0V VL2OUT = 3.0V VOUT 200mV/div VOUT 200mV/div VOUT 200mV/div IOUT 50mA/div IOUT 50mA/div IOUT 50mA/div 100ms/div BUCK2 EFFICIENCY vs. LOAD toc16 100 VL3OUT = 3.0V 90 EFFICIENCY (%) 70 60 50 50mA/div 80 VBAT = 3.7V VBAT = 3.3V 40 0 0.001 0.1 10 IB2OUT (mA) www.maximintegrated.com VBAT = 4.2V 70 60 50 VBAT = 3.7V VBAT = 3.3V 40 30 VB2OUT = 1.8V INDUCTOR = TOKO DFE201610E0-2R2M 20 10 40µs/div toc18 90 30 IOUT 100 VBAT = 4.2V 80 200mV/div BUCK2 EFFICIENCY vs. LOAD toc17 EFFICIENCY (%) LDO3 TRANSIENT RESPONSE VOUT 100ms/div 40µs/div 20 VB2OUT = 0.7V INDUCTOR = TOKO DFE201610E0-2R2M 10 1000 0 0.001 0.1 10 1000 IB2OUT (mA) Maxim Integrated │  23 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Typical Operating Characteristics (continued) (VBAT = 3.7V, VCHGIN = 0V, registers in their default state, TA = +25°C, unless otherwise noted.) VB2OUT vs. LOAD 1.90 toc19 VB2OUT vs. LOAD 0.80 100 VB2OUT = 0.7V VB2OUT = 1.8V VBAT = 3.3V, 3.7V, 4.2V VBAT = 3.3V, 3.7V, 4.2V 0.72 1.78 0.68 1.74 0.64 VBAT = 4.2V 80 EFFICIENCY (%) VB2OUT (V) 1.82 toc21 90 0.76 1.86 VB2OUT (V) BUCK1 EFFICIENCY vs. LOAD toc20 70 VBAT = 3.7V 60 VBAT = 3.3V 50 40 30 20 VB1OUT = 1.2V INDUCTOR = TOKO DFE201610E0-2R2M 10 1.70 0 100 200 300 0.60 400 0 100 200 IB2OUT (mA) BUCK1 EFFICIENCY vs. LOAD 0.1 10 1000 IB1OUT (mA) VB1OUT vs. LOAD toc22 VB1OUT vs. LOAD toc23 1.30 0.80 VB1OUT = 1.2V 90 toc24 VB1OUT = 0.7V 1.25 80 VBAT = 4.2V 0.75 VBAT = 3.7V 60 VBAT = 3.3V 1.20 VB1OUT (V) 70 VB1OUT (V) EFFICIENCY (%) 0 0.001 400 IB2OUT (mA) 100 50 300 1.15 0.70 40 1.10 30 20 VB1OUT = 0.7V INDUCTOR = TOKO DFE201610E0-2R2M 10 0 0.001 0.1 10 VBAT = 3.3V, 3.7V, 4.2V 0.65 VBAT = 3.3V, 3.7V, 4.2V 1.05 1.00 1000 0 100 IB1OUT (mA) 200 300 0.60 400 0 100 BUCK1 TRANSIENT RESPONSE 400 toc26 VB1OUT = 1.2V VB2OUT = 1.8V VB1OUT 20mV/div VB2OUT 20mV/div IB1OUT 50mA/div IB2OUT 50mA/div www.maximintegrated.com 300 BUCK2 TRANSIENT RESPONSE toc25 20µs/div 200 IB1OUT (mA) IB1OUT (mA) 20µs/div Maxim Integrated │  24 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Bump Configuration TOP VIEW (BUMP SIDE DOWN) MAX20335 1 2 3 4 5 6 A L1OUT L1IN CAP GND B2OUT B2LX B L2OUT L2IN INT MON BAT BAT C L3OUT L3IN GND GND SET SYS D LED PFN2 GND GND EXT SYS E RST MPC0 MPC1 PFN1 CHGIIN CHGIN F SDA SCL THM GND B1OUT B1LX + WLP (2.72mm x 2.47mm) Bump Description BUMP NAME A1 L1OUT A2 L1IN LDO1 Input A3 CAP Bypass for Internal LDO. Bypass with a 1µF capacitor to GND. A4, C3, C4 D3, D4, F4 GND Ground A5 B2OUT A6 B2LX B1 L2OUT B2 L2IN LDO2 Input B3 INT Open-Drain, Active-Low Interrupt Output. B4 MON Voltage Monitor Pin B5,B6 BAT Battery Connection. Connect BAT to a positive battery terminal, bypass BAT with a minimum 1µF capacitor to GND. www.maximintegrated.com FUNCTION LDO1 Output. Bypass with a minimum 1µF capacitor to GND. 0.7V to 3.85V Buck Regulator Output Feedback. Bypass with a 10µF capacitor to GND. 0.7V to 3.85V Buck Regulator Switch. Connect 2.2µH inductor to B2OUT. LDO2 Output. Bypass with a minimum 1µF capacitor to GND. Maxim Integrated │  25 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Bump Description (continued) PIN NAME FUNCTION C1 L3OUT C2 L3IN LDO3 Input C5 SET External Resistor For Battery Charge Current Level Setting. Do not connect any external capacitance on this pin; maximum allowed capacitance (CSET < 5µs/RSET) pF. C6, D6 SYS System Load Connection. Connect SYS to the system load. Bypass SYS with a minimum 10µF lowESR ceramic capacitor to GND. D1 LED LED Open-Drain Pulldown Current. Add an external current limiting pullup resistor. D2 PFN2 D5 EXT Push-Pull Gate Drive for Optional External pFET from BAT-to-SYS. Output is pulled to GND when charger is disconnected and internal BAT-SYS FET is switched on. Otherwise, this output is pulled high to the SYS voltage. E1 RST Power-On Reset Output. Active-low, open-drain. E2 MPC0 Multipurpose Configuration Input 0 E3 MPC1 Multipurpose Configuration Input 1 E4 PFN1 Power Function Control Input. Programmable functionality via PwrFnMode. See Table 1. E5, E6 CHGIN F1 SDA Open-Drain, I2C Serial Data Input/Output. F2 SCL I2C Serial Clock Input F3 THM Battery Temperature Thermistor Measurement Connection. Connect a 10kΩ resistor from THM to CAP and a 10kΩ, 3380β NTC thermistor from THM to GND. F5 B1OUT 0.7V to 2.275V Buck Regulator Output Feedback. Bypass B1OUT with a 10µF capacitor to GND. F6 B1LX 0.7V to 2.275V Buck Regulator Switch Terminal. Connect B1LX to B1OUT with a 2.2µH inductor. LDO3 Output. Bypass with a minimum 1µF capacitor to GND. Power Function Control Input/Output. Programmable functionality via PwrFnMode. See Table 1. -5.5V/+28V Protected Charger Input. Bypass CHGIN with 1µF capacitor to GND. Note: All capacitance values listed in this document refer to effective capacitance. Be sure to specify capacitors that will meet these requirements under typical system operating conditions taking into consideration the effects of voltage and temperature. www.maximintegrated.com Maxim Integrated │  26 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Block Diagram MAX20335 POWER 28V/-5.5V INPUT PROTECTION LINEAR Li+ BATTERY CHARGER WITH POWER SELECTOR POWER SEQUENCER BUCK 1 MONITOR BUCK 2 LDO/SWITCH 1 DATA CONTROL LDO/SWITCH 2 SYS Detailed Description Power Regulation The MAX20335 family includes two high-efficiency, low quiescent current buck regulators, and three low quiescent current linear regulators that are also configurable as power switches. Excellent light-load efficiency allows the switching regulators to run continuously without significant energy cost. www.maximintegrated.com LDO/SWITCH 3 Power On/Off and Reset Control The behavior of power function control pins (PFN1 and PFN2) is preconfigured to support one of the multiple types of wearable application cases. Table 1 describes the behavior of the PFN1 and PFN2 pins based on the PwrRstCfg[3:0] bits and Figure 1 shows basic flow diagrams associated with each mode. A Soft-Reset generates a 10ms logic low pulse at RST and resets all registers to their default values. A HardReset initiates a complete Power-On Reset sequence and generates a 50ms logic-low pulse at RST. Maxim Integrated │  27 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Table 1. Power Function Input Control Modes PwrRstCfg[3:0]** PFN1** PFN1 PU/PD PFNxResEna = 1 PFN2** PFN2 PU/PD PFNxResEna = 1 ENABLE PULLDOWN Manual Reset PULLUP* Available PwrCmd OFF HARD SOFT NO NO YES On/Off On/Off Mode with 10ms debounce. PFN1 is the active-high on/off control input. PFN2 is the active-low softreset input. On/Off On/Off Mode with 10ms debounce. PFN1 is the active-low on/off control. PFN2 is the active-low soft-reset input. DISABLE Hard-Reset on PFN1 Rising AON CR High CR Low Hard-Reset on CHGIN insertion When PFN1 High Hard-Reset on CHGIN Insertion When PFN1 low YES NO YES YES YES PULLUP* Soft-Reset on PFN2 Falling PULLUP* YES YES YES PULLDOWN Soft-Reset CHGIN Insertion When PFN2 High PULLDOWN YES YES YES PULLUP* Soft-Reset on CHGIN Insertion When PFN2 Low PULLUP* YES YES YES Charger Reset Low Mode. When PFN1 is low, a CHGIN insertion generates a Hard-Reset after a 200ms delay. When PFN2 is low, a CHGIN insertion generates a Soft-Reset after a 200ms delay. In this mode, the device can only enter the off state by writing to the PwrCmd register. PULLUP* KOUT NONE YES YES YES Custom Button Mode. PFN1 is the active-low KIN button input. PFN2 is the open-drain KOUT output, which buffers the KIN input. The device can enter the off state by either a KIN press (>12s) or by writing to the PwrCmd register. A CHGIN insertion or a KIN press (>400ms) can exit the off state. PULLUP* KOUT NONE YES NO NO Custom Soft Reset 1. PFN1 is the active-low KIN button input. PFN2 is the open-drain KOUT output, which buffers the KIN input. A KIN press (>12s) generates a soft-reset. The device can only enters the off state through the PwrCmd register. A CHGIN insertion or a KIN press (>3s) can exit the off state. KIN CSR2 PULLDOWN NO Charger Reset High Mode. When PFN1 is high, a CHGIN insertion generates a hard-reset after a 200ms delay. When PFN2 is high, a CHGIN insertion generates a soft-reset after a 200ms delay. In this mode, the device can only enter the off state by writing to the PwrCmd register. KIN CSR1 Soft-Reset on PFN2 Rising PULLUP* Always-On Mode. A falling edge on PFN1 generates a hard-reset after a 200ms delay. A falling edge on PFN2 generates a soft-reset after a 200ms delay. In this mode, the device can only enter the off state by writing to the PwrCmd register. KIN KIN PULLDOWN Manual Reset Always-On Mode. A rising edge on PFN1 generates a hard reset after a 200ms delay. A rising edge on PFN2 generates a soft-reset after a 200ms delay. In this mode, the device can only enter the off state by writing to the PwrCmd register. Hard-Reset on PFN1 Falling AON PULLUP* PULLUP* Manual Reset NONE YES YES YES Custom Soft-Reset 2. PFN1 is the active-low KIN button input. PFN2 is the active-low soft-reset input. A PFN2 press (>12s) generates a soft-reset. In this mode, the device can only enter the off state by writing to the PwrCmd register. * Pullup is connected to an internal supply, VCCINT. (VCCINT = VCAP if VCAP > VCCINT_TH, or VCCINT = VBAT if VCAP < VCCINT_TH). ** PwrRstCfg[3:0] is read-only; the functions of PFN1 and PFN2 cannot be changed through I2C www.maximintegrated.com Maxim Integrated │  28 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Figure 1. Power Function Input Control Modes Flow Diagrams www.maximintegrated.com Maxim Integrated │  29 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems Power Sequencing There are multiple configuration options for the sequencing of the buck regulators and LDOs during power-on. See Table 1 for details. Regulators can be configured to turn on at one of the four points during the power-on process: 0% tRST, 25% tRST, 50% tRST, and 100% tRST. The reset delay tRST can be set to 80ms, 120ms, 220ms, or 420ms by BootDly[1:0] in the BootCfg register. The power-on sequencing is depicted in Figure 2a and Figure 2b. Additionally, the regulators can be selected to default off and can be turned on with an I2C command after RST is released. Each LDO regulator can be configured to be always-on as long as SYS or BAT is present. In general, if an undervoltage condition is detected on SYS the device goes into the off state. However if there is a valid voltage on CHGIN the behavior is determined by the ChgAlwTry setting. If ChgAlwTry = 0, and an undervoltage condition is detected on SYS during the sequencing process the device turns SYS and all other external resources off and waits for CHGIN removal. On CHGIN removal the device enters the off state to avoid draining the battery. If ChgAlwTry = 1, the process will continually recheck the SYS undervoltage condition every 500ms until it is no longer vaild before continuing with the sequencing process. tRST POR CHGIN INSERTION OR KIN PRESS* 15ms SYS CHGIN INSERTION KIN PRESS 30ms 30ms ENABLE VIA I2C/MPC 15ms 5ms ENABLE VIA I2C/MPC LDO_En BUCK_En** BUCK CANNOT BE ALWAYS ON RST _Seq 001 010 011 100 111 % OF tRST ALWAYS-ON 0% 25% 50% 100% *KIN PRESS TURN-ON ENABLED VIA SPECIFIC PwrRstCfg ONLY **AFTER BEING ENABLED, THE BUCK CONVERTERS HAVE AN 8ms (TYP) BLANKING TIME BEFORE THE OUTPUT VOLTAGE STARTS TO RISE. Figure 2a. Power-On Sequencing www.maximintegrated.com Maxim Integrated │  30 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems tRST POR CHGIN 30ms SYS 15ms ENABLE VIA I2C/MPC ENABLE VIA I2C/MPC LDO_En 15ms Buck_En* BUCK CANNOT BE ALWAYS ON RST 001 010 011 100 111 ALWAYS-ON 0% 25% 50% 100% _Seq % of tRST *After being enabled, the buck converters have an 8ms (typ) blanking time before the output voltage starts to rise. Figure 2b. Power-On Sequencing Without Battery Smart Power Selector The smart power selector seamlessly distributes power from the external CHGIN input to the battery (BAT) and the system (SYS). With both an external adapter and battery connected, the smart power selector basic functions are: ● When the system load requirements are less than the input current limit, the battery is charged with residual power from the input. ● When the system load requirements exceed the input current limit, the battery supplies supplemental current to the load. www.maximintegrated.com ● When the battery is connected and there is no external power input, the system is powered from the battery. Thermal Current Regulation In case the die temperature exceeds the normal limit, the MAX20335 will attempt to limit the temperature increase by reducing the input current from CHGIN. In this condition, the system load has priority over charger current, so the input current is first reduced by lowering the charge current. If the junction temperature continues to rise and reaches the maximum operating limit, no input current is drawn from CHGIN and the battery powers the entire system load. Maxim Integrated │  31 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems System Load Switch Note: The body diode of an external pMOS connected between BAT and SYS remains present when the device is in off mode. An internal 80mΩ (typ) MOSFET connects SYS to BAT when no voltage source is available on CHGIN. When an external source is detected at CHGIN, this switch opens and SYS is powered from the input source through the input current limiter. The SYS-to-BAT switch also prevents VSYS from falling below VBAT when the system load exceeds the input current limit. If VSYS drops to VBAT due to the current limit, the load switch turns on so the load is supported by the battery. If the system load continuously exceeds the input current limit the battery is not charged. This is useful for handling loads that are nominally below the input current limit but have high current peaks exceeding the input current limit. During these peaks, battery energy is used, but at all other times the battery charges. See Figure 3. Input Limiter The input limiter distributes power from the external adapter to the system load and battery charger. In addition to the input limiter’s primary function of passing power to the system load and charger, it performs several additional functions to optimize use of available power: Invalid CHGIN Voltage Protection: If CHGIN is above the overvoltage threshold, the MAX20335 enters overvoltage lockout (OVL). OVL protects the MAX20335 and downstream circuitry from high-voltage stress up to 28V and down to -5.5V. During OVL, the internal circuit remains powered and an interrupt is sent to the host. During OVL, the charger turns off and the system load switch closes, allowing the battery to power SYS. CHGIN is also invalid if it is less than VBAT, or less than the USB undervoltage threshold. With an invalid input voltage, the SYS-to-BAT load switch closes and allows the battery to power SYS. The pin EXT can drive the gate of an external pMOS connected between SYS (source, bulk) and BAT (drain) in parallel to the internal one. When VCHGIN < VBDET the EXT voltage is the buffered version of the internal gate command that controls the internal 80mΩ (typ) MOSFET. VCHG VSYS VBAT CLOSED OPEN OPEN ` SYS SWITCH CLOSE ILIM ICHG IBAT ISYS 0mA SMART POWER SELECTOR OPERATION WITH LIMITED VB CURRENT CONSTANT BAT VOLTAGE CHARGE DONE Figure 3. Smart Power Selector Current/Voltage Behavior www.maximintegrated.com Maxim Integrated │  32 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems CHGIN Adaptive Input Current Limit: The CHGIN input current is limited to prevent input overload. The input current limit is controlled by I2C. However, if the voltage at CHGIN collapses because the source is not able to supply either the current programmed in I2C, or the total current required by the battery charger and system load, the input current limit will be adaptively reduced. Thermal Limiting: In case the die temperature exceeds the normal limit (TCHG_LIM), the MAX20335 attempts to limit temperature increase by reducing the input current from CHGIN. In this condition, the system load has priority over the charger current, so the input current is first reduced by lowering the charge current. If the junction temperature continues to rise and reaches the maximum operating limit (TCHGIN_SHDN), no input current is drawn from CHGIN and the battery powers the entire system load. Adaptive Battery Charging: While the system is powered from CHGIN, the charger draws power from SYS to charge the battery. If the total load exceeds the input current limit, an adaptive charger control loop reduces charge current to prevent VSYS from collapsing. When the charge current is reduced below 50% due to ILIM or TDIE, the timer clock operates at half speed. When the charge current is reduced below 20% due to ILIM or TDIE, the timer clock is paused. Fast-Charge Current Setting The MAX20335 uses an external resistor connected from SET to GND to set the fast-charge current. The pre-charge and charge-termination currents are programmed as a percentage of this value through I2C registers. The fastcharge current resistor can be calculated as: RSET = KSET x VSET/IFChg Thermistor Monitoring with Charger Shutdown The MAX20335 features three modes for controlling charger behavior based on battery-pack temperature: Thermistor Monitoring, JEITA Monitoring 1, and JEITA Monitoring 2. The divider formed by a pull-up resistor (RPU) to CAP, optional parallel resistor (RPA) from THM to ground, and NTC thermistor (RTHM) from THM to ground, provides a voltage at THM that is proportional to temperature as a fraction of the CAP voltage. Two sets of preconfigured default thresholds (0°C/10°C/45°C/60°C or 0°C/10°C/25°C/45°C as a %CAP) optimized for beta 3380 thermistors are available (see Table 38). The four default thresholds create five temperature zones, and the fractional CAP voltage measured at the THM pin is compared to the thresholds to determine the active temperature zone during operation. The behavior in each temperature zone is determined by the configuration of bits in the I2C registers. The active monitoring mode is selected by ThermEn[1:0] in the ThrmCfrg register. In all modes, the T2IFchg[2:0] and T2T3IFchg[2:0], and T3T4IFchg[2:0] fields in the ThrmCfg registers set the fast charge current in three temperature zones, T1_T2, T2_T3, and T3_T4. In Thermistor Monitoring mode, charging is enabled only in T1_T2 and T2_T3 and the battery termination voltage is equal to VBATREG, as shown in Figure 4a. In both JEITA Monitoring 1 and JEITA Monitoring 2 the charger is active in the T1_T2, T2_T3, and T3_T4 zones. However, JEITA Monitoring 1 sets the battery termination voltage to VBATREG for all zones, while JEITA Monitoring 2 sets the battery termination voltage to VBATREG - 150mV for zones T1_2 and T3_T4, as shown in Figure 4b. The behavior of all three modes is summarized in Table 2. where KSET has a typical value of 2000A/A and VSET has a typical value of 1V. The range of acceptable resistors for RSET is 4kΩ to 400kΩ www.maximintegrated.com Maxim Integrated │  33 MAX20335 PMIC with Ultra-Low IQ Voltage Regulators and Battery Chargers for Small Lithium Ion Systems PREQUAL: VBAT VSYS OR ChgEn = 0 RESET CHARGE TIMER T1 < T < T3 CHARGE SUSPEND CHARGER OFF FAULT ChgStat = 000 LED = OFF ICHG = 0 ChgStat = 111 LED = 0.15s PERIOD ICHG = 0 ChgStat = 001 LED = 1.5s PERIOD ICHG = 0 RECOVER FROM FAULT RESET CHARGE TIMER ChgEn = 1, VSYS > VSYS_LIM RISE MAINTAIN CHARGE DONE T < T1 or T > T3 VBAT < VBATREG – VBATRECHG AND ChgAutoReSta = 1 AND VSYS > VSYS_LIM RISE RESET CHARGE TIMER PREQUAL VBAT < VBAT_PChg RESET CHARGE TIMER (VOLTAGE MODE = 0* AND VSYS > VSYS_LIM RISE) OR VBAT < VBAT_PChg ChgStat = 101 LED = ON ICHG < ICHG_DONE tMTCHG NOTES: ICHG > ICHG_DONE ChgAutoStp = 0" RESET CHARGE TIMER ICHG < ICHG_DONE AND VSYS > VSYS_LIM RISE AND TDIE < TCHG_LIM RESET CHARGE TIMER PREQUAL SUSPEND ChgStat = 001 LED = 1.5s PERIOD ICHG = 0 T1 < T < T3 VBAT > VBAT_PChg RESET CHARGE TIMER FAST CHARGE (CONSTANT CURRENT) ChgStat = 011 LED = ON ICHG = IFCHG** tCHG_TIMER > tMTCHG AND ChgAutoStp = 1 T < T1 or T > T3 T < T1 or T > T3 ChgStat = 010 LED = ON ICHG = IPCHG ChgStat = 110 LED = OFF ICHG = 0 MAINTAIN CHARGE PAUSE CHARGE TIMER TT3 PAUSE CHARGE TIMER TT3 T1tPCHG V BAT >V BAT_PChg RESET CHARGE TIMER FAST CHARGE (CONSTANT CURRENT ) tCHG_TIMER >tMTCHG AND ChgAutoStp =1 PREQUAL SUSPEND T1
MAX20335AEWX+ 价格&库存

很抱歉,暂时无法提供与“MAX20335AEWX+”相匹配的价格&库存,您可以联系我们找货

免费人工找货