0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX5871EXE+

MAX5871EXE+

  • 厂商:

    AD(亚德诺)

  • 封装:

    LFBGA144

  • 描述:

    IC DAC 16BIT A-OUT 144FCCSP

  • 数据手册
  • 价格&库存
MAX5871EXE+ 数据手册
EVALUATION KIT AVAILABLE Click here for production status of specific part numbers. 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface General Description The MAX5871 high-performance interpolating and modu­ lating 16-bit 5.9Gsps RF DAC can directly synthesize up to 600MHz of instantaneous bandwidth from DC to frequen­ cies greater than 2.8GHz. The device enables multi-standard and multi-band transmitters in wireless communications applications. The device meets spectral mask requirements for a broad set of communication standards including multicarrier GSM, UMTS, and LTE. The device integrates interpolation filters, a digital quadra­ ture modulator, a numerically controlled oscillator (NCO), clock multiplying PLL+VCO and a 14-bit RF DAC core. The user-configurable 5x, 6x, 6.67x, 8x, 10x, 12x, 13.33x, 16x, 20x or 24x, linear phase interpola­ tion filters simplify reconstruction filtering, while enhancing passband dynamic performance, and reduce the input data bandwidth required from an FPGA/ASIC. The NCO allows for fully agile modulation of the input baseband signal for direct RF synthesis. The MAX5871 accepts 16-bit input data via a four-lane JESD204B SerDes data input interface that is Subclass-0 and Subclass-1 compliant. The interface can be configured for 1, 2, or 4 lanes and supports data rates up to 10Gbps per lane allowing flexibility to optimize the I/O count and speed. The MAX5871 clock input has a flexible clock interface and accepts a differential sine-wave, or square-wave input clock signal. A bypassable clock multiplying PLL and VCO can be used to generate a high-frequency sampling clock. The device outputs a divided reference clock to ensure synchronization of the system clock and DAC clock. In addition, multiple devices can be synchronized using JESD204B Subclass-1. The MAX5871 uses a differential current-steering archi­ tecture and can produce a 0dBm full-scale output signal level with a 50Ω load. Operating from 1.8V and 1.0V power supplies, the device consumes 2.5W at 4.9Gsps. The device is offered in a compact 144-pin, 10mm x 10mm, FCCSP pack­age and is specified for the extended industrial temperature range (-40°C to +85°C). Benefits and Features ●● Simplifies RF Design and Enables New Wireless Communication Architectures • Eliminates I/Q Imbalance and LO Feedthrough • Enables Multi-Band RF Modulation ●● Direct RF Synthesis of 600MHz Bandwidth Up to 2.8GHz • 5.898Gsps DAC Output Update Rate • High-Performance 14-Bit RF DAC Core • Digital Quadrature Modulator and NCO with 1Hz/10Hz/100Hz/1kHz/10kHz Resolution • 5x/6x/6.67x/8x/10x/12x/13.33x/16x/20x/24x Interpolation • Integrated Clock Multiplying PLL+VCO ●● Highly Flexible and Configurable • 1, 2, or 4-Lane JESD204B Input Data Interface ▫▫ Subclass-0 and Subclass-1 Compliant ▫▫ Up to 10Gbps Per Lane • Reference Clock for System Synchronization • Multiple DAC Synchronization (Subclass-1) • SPI Interface for Device Configuration Applications ●● Cellular Base-Station Transmitters • 2.5G/3G - GSM/TDMA/CDMA/UMTS • 4G LTE and WiMAX ●● Multi-Standard and Multi-Band Transmitters ●● Point-to-Point Microwave Links ●● Wireless Backhaul Simplified Block Diagram PLL_COMP CLKP CLKN VCOBYP PLL MOD SYSREFP SYSREFN DP[3:0] DN[3:0] MAX5871 CLOCK DISTRIBUTION MUX MAX5871 16 4 MUTE R 14-BIT 5.9Gsps RF DAC 14 JESD 204B SYNC 16 OUTP OUTN R SYNCNP SYNCNN SYNC REFERENCE SYSTEM SPI PORT SDI SDO CSB SCLK FSADJ DACREF CSBP REFIO VDD AVDD AVCLK GND SYNCOP SYNCON INTB QUADRATURE NCO Ordering Information appears at end of data sheet. 19-7462; Rev 1; 7/19 RCLKP RCLKN RESETB MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 JESD204B Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 JESD204B Data Interface Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 High-Speed Input Receiver (Rx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 JESD204B Receiver Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Synchronization with SYSREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Link Layer (LINK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Lane Skew Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Mapping of Physical to Logical Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Serial Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Interrupt and Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Digital Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Frequency Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Signal Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Complex Modulator and NCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Reference Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DAC Clock PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 VCO Band Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Lock Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 PLL External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Interpolation Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 www.maximintegrated.com Maxim Integrated │  2 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface TABLE OF CONTENTS (CONTINUED) Register Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Register Bank Name, Bytes, Type, Address and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Global Configuration Registers Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 DSP and DAC Configuration Registers Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Link Layer Configuration Registers Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SERDES Common Registers Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 MAX5871 Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Chip Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Clock Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 FIFO Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Mode Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Interrupt Mode Enables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Start Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Clear and Check Statuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Unmute DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 JESD204B Rx Link and DSP Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Subclass-0 with Device Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Subclass-0 without Device Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Subclass-1 with Device Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Subclass-1 without Device Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 MAX5871 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 MAX5871 Example Configuration Option-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 JESD204B Subclass-1 SYSREF Signal Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Synchronous SYSREF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Asynchronous SYSREF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Applications Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 www.maximintegrated.com Maxim Integrated │  3 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface TABLE OF CONTENTS (CONTINUED) Power Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Power Supply AVCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Power-On RESETB and SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Delay Time TD_DivRst Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Pin DACREF Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 DAC PLL Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Pin SDO Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Clock Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 NCO Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Turn off JESD204B Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 PRBS Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DSP FIFO Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DAC Output Impedance Model and Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 LIST OF FIGURES Figure 1. Simplified Diagram of JESD204B Internal to MAX5871 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 2. JESD204B Rx Physical Layer Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 3. VGA Gain Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 4. Receiver Equalization Eye Diagram Before and After Lane Training (9.8304Gbps, 30in Nelco Trace) . . . . 26 Figure 5. Channel Loss Curve (30in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 6. SYSREF Usage for Sample Clock (DLCK/2) Generation and Synchronization . . . . . . . . . . . . . . . . . . . . . . 27 Figure 7. SYSREF Usage for Sample Clock (From DACCLK) Generation and Synchronization . . . . . . . . . . . . . . . . 28 Figure 8. Interface Timing for Subclass-0 (See JEDEC Standard No. 204B.01, Figure 11) . . . . . . . . . . . . . . . . . . . . 28 Figure 9. JESD204B Receive Link Layer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 10. JESD204B Receive Lane Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 11. Octet To Sample Conversion vs. Modes and Lanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 12. Single SPI Write Transaction with MSB-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 13. Single SPI Read Transaction with MSB-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 14. Single SPI Write Transaction with LSB-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 www.maximintegrated.com Maxim Integrated │  4 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface LIST OF FIGURES (CONTINUED) Figure 15. Single SPI Read Transaction with LSB-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 16. Burst SPI Write Transaction with MSB-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 17. Burst SPI Read Transaction with MSB-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 18. Burst SPI Write Transaction with LSB-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 19. Burst SPI Read Transaction with LSB-First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 20. MAX5871 Interrupt Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 21. MAX5871 DAC Mute Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 22. Example of Multiband Transmission and Dominant Harmonic Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 23. Complex NCO and Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 24. NCO Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 25a. Reference Architecture, Internal Reference Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 25b. Reference Architecture, External Reference Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 26. Typical DAC Output Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 27. Output Configuration for Low-Frequency Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 29. DAC Clock PLL External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 30. 5x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . . . 49 Figure 31. 6x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . . . 49 Figure 32. 6.67x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . 50 Figure 34. 10x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . . 50 Figure 33. 8x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . . . 50 Figure 35. 12x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . . 50 Figure 36. 13.33x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . 51 Figure 38. 20x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . . 51 Figure 37. 16x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . . . 51 Figure 39. 24x Filter Baseband Frequency Response Normalized to DAC Output Update Rate . . . . . . . . . . . . . . . . 51 Figure 40. Rx Link and DSP Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 41. Asynchronous SYSREF Mode with One-Shot Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Figure 42. Asynchronous SYSREF Mode with Continuous Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 LIST OF TABLES Table 1. JESD204B Receiver Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 2. MAX5871 Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 3. PLL Configuration Settings and Overall Multiplication Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 4. Digital Filter Coefficients for 8x and 10x Interpolation Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 www.maximintegrated.com Maxim Integrated │  5 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Absolute Maximum Ratings VDD2, AVCLK2, AVDD2, AVDD2PLL, VDD2PLL...........................................................-0.3V to +2.1V OUTP, OUTN ...................................... -0.3V to (VAVDD2 + 0.5V) MUTE, RESETB, CSB, SCLK, SDO, SDI, INTB,TDA ....................... -0.3V to (VVDD2 + 0.3V, MAX 2.1V) SYSREFP, SYSREFN, SYNCIP, SYNCIN, SYNCOP, SYNCON, RCLKP, RCLKN .............. -0.3V to (VVDD2 + 0.3V, MAX 2.1V) DP0, DN0, DP1, DN1, DP2, DN2, DP3, DN3................................. -0.3V to (VVDD2 + 0.3V, MAX 2.1V) JRES, CAPT, SYSREFEN .............................. (VVSSPLL - 0.3V) ............................................. to (VVDD2PLL + 0.3V, MAX 2.1V) VCOBYP...........................-0.3V to (VAVCLK2 + 0.3V, MAX 2.1V) PLL_COMP .................-0.3V to (VAVDD2PLL + 0.3V, MAX 2.1V) VSSPLL, TDC, DACREF...........(VGND - 0.3V) to (VGND + 0.3V) VDD, AVDD, AVCLK, AVDD1PLL .........................-0.3V to +1.2V REFIO, FSADJ, CSBP...... -0.3V to (VAVDD2 + 0.3V, MAX 2.1V) CLKP, CLKN.................-0.3V to (VAVDD1PLL + 0.3V, MAX 1.2V) SDO, INTB Maximum Continuous Current...........................8mA Continuous Power Dissipation (TA = +85°C).......................4.0W Maximum Junction Temperature......................................+150°C Storage Temperature Range............................. -60°C to +150°C Junction Operating Temperature Range (TJ).....-40°C to +110°C Operating Temperature Range (TA).................... -40°C to +85°C Soldering Temperature (reflow)........................................ +260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 1) FCCSP Junction-to-Ambient Thermal Resistance (θJA)........16.2°C/W Junction-to-Case Thermal Resistance (θJC)...............2.5°C/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. Electrical Characteristics (VDD = VAVCLK = VAVDD= VAVDD1PLL = 1V, VDD2 = VAVCLK2 = VAVDD2 = VAVDD2PLL = VVDD2PLL = 1.8V, PCLK = +7dBm, fCLK = 983.04MHz, fDAC = 4915.2Msps, 6.67x interpolation, 4-lanes, 7372.8Mbps per lane, external reference at 1.20V and RSET = 1.3kΩ between FSADJ and DACREF, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), PLL ON. TA ≥ -40°C and TJ ≤ +110°C (Note 2), unless otherwise noted. Typical values are at TJ = +65.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS STATIC PERFORMANCE Input Data Word Width N DAC Resolution 16 Bits 14 Bits Differential Nonlinearity DNL Figure 27 ±1.5 LSB Integral Nonlinearity INL Figure 27 ±3 LSB Offset Voltage Error OS 0.003 %FS Full-Scale Output Current IOUTFS Output Voltage Gain Error GEFS fOUT = DC, Figure 27 ±3 %FS Output Power POUT fOUT = 100MHz 0 dBm Maximum Output Compliance VAVDD2 + 0.4V V Minimum Output Compliance VAVDD2 - 0.4V V 50 Ω Output Resistance www.maximintegrated.com ROUT 10 Differential DAC output resistance 30 mA Maxim Integrated │  6 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Electrical Characteristics (continued) (VDD = VAVCLK = VAVDD= VAVDD1PLL = 1V, VDD2 = VAVCLK2 = VAVDD2 = VAVDD2PLL = VVDD2PLL = 1.8V, PCLK = +7dBm, fCLK = 983.04MHz, fDAC = 4915.2Msps, 6.67x interpolation, 4-lanes, 7372.8Mbps per lane, external reference at 1.20V and RSET = 1.3kΩ between FSADJ and DACREF, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), PLL ON. TA ≥ -40°C and TJ ≤ +110°C (Note 2), unless otherwise noted. Typical values are at TJ = +65.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DYNAMIC PERFORMANCE Maximum DAC Sample Rate Adjusted DAC Update Rate Maximum Input Sample Rate In-Band SFDR (Notes 5 and 6) fDAC AURDAC fS_IN SFDR Smallest interpolation factor = 5x 3686.4 Smallest interpolation factor = 6x 4423.68 Smallest interpolation factor = 6.67x (Note 3) 4915.2 PLL ON, fCLK = 1474.56MHz, PCLK = -3dBm, smallest interpolation factor or greater = 8x, fSER_IN = 7372.8Mbps 5898.24 (Note 4) 737.28 For the complex I/Q data set CW tone at 1842.5MHz CW tone at 1842.5MHz 1.4MHz LTE carrier at 2140MHz; Measured in a 1.4MHz bandwidth around the harmonic/ spur location HD2, HD3, fDAC/2-fOUT, Measured in 1st Nyquist Zone Intermodulation Distortion (Note 6) 3rd Order Intermodulation Distortion (Difference Products Only) Four-Carrier ACLR for WCDMA, Test Model 1 www.maximintegrated.com IMD IM3 ACLR Msps Two-tone signal, f1 = 1842MHz and f2 = 1843MHz Msps 737.28 MHz -15dBFS 68 dBc -19dBFS 82 -33dBFS 76 -3dBFS -71 dBc -18dBFS -65 dBc -33dBFS -87 dBFS Average total power -15dBFS -74 dBc Average total power -33dBFS -80 dBFS -74 dBc 70 dBc Two-Carrier GSM (GMSK) signal, 600kHz spacing, ‑13dBFS per carrier at DAC input, f1 = 1842.2MHz, f2 = 1842.8MHz, Both carrier and intermodulation products measured with RBW = 30kHz (Note 7) Each a single 5MHz UMTS carrier, f1 = 2131MHz, f2 = 2137MHz, f3 = 2143MHz, f4 = 2149MHz, ‑15dBFS average total power at DAC input -65 dBFS Maxim Integrated │  7 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Electrical Characteristics (continued) (VDD = VAVCLK = VAVDD= VAVDD1PLL = 1V, VDD2 = VAVCLK2 = VAVDD2 = VAVDD2PLL = VVDD2PLL = 1.8V, PCLK = +7dBm, fCLK = 983.04MHz, fDAC = 4915.2Msps, 6.67x interpolation, 4-lanes, 7372.8Mbps per lane, external reference at 1.20V and RSET = 1.3kΩ between FSADJ and DACREF, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), PLL ON. TA ≥ -40°C and TJ ≤ +110°C (Note 2), unless otherwise noted. Typical values are at TJ = +65.) PARAMETER SYMBOL 0dBFS CW tone at DAC input, fOUT = 2140MHz Output Power (CW) Noise Density CONDITIONS ND MIN TYP Excludes loss from cables and matching network at DAC output (Note 8) -1.6 Excludes loss from cables and matching network at DAC output, includes sin(x)/x roll-off -4.5 CW tone at 1842.5MHz, -15dBFS, measured at 10MHz offset from carrier in 200kHz bandwidth Output Settling Time for FullScale Input Step (Note 9) To -0.024% of output full-scale, 5x interpolation, fDAC = 3686.4Msps Output Bandwidth fDAC = 5898.24Msps, -1dB bandwidth, Excludes loss from cables and matching network at DAC output (Note 8) MAX UNITS dBm -160 dBm/Hz 20 ns 2600 MHz DAC RESPONSE CHARACTERISTIC Gain Flatness In-Band (Note 6) Over 80MHz bandwidth, fDAC = 4915.2Msps, includes 0.2dB sinc(x) roll-off 0.6 Over 300MHz bandwidth, fDAC = 4915.2Msps, includes 0.8dB sinc(x) roll-off 2.2 dB INTERPOLATION FILTERS Interpolation Rates (Note 3) 5x, 6x, 6.67x, 8x, 10x, 12x, 13.33x, 16x, 20x, 24x R Passband Width Ripple < 0.01dB Stopband Rejection 0.593 x fS_IN www.maximintegrated.com 0.407 x fS_IN 90 dB Maxim Integrated │  8 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Electrical Characteristics (continued) (VDD = VAVCLK = VAVDD= VAVDD1PLL = 1V, VDD2 = VAVCLK2 = VAVDD2 = VAVDD2PLL = VVDD2PLL = 1.8V, PCLK = +7dBm, fCLK = 983.04MHz, fDAC = 4915.2Msps, 6.67x interpolation, 4-lanes, 7372.8Mbps per lane, external reference at 1.20V and RSET = 1.3kΩ between FSADJ and DACREF, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), PLL ON. TA ≥ -40°C and TJ ≤ +110°C (Note 2), unless otherwise noted. Typical values are at TJ = +65.) PARAMETER SYMBOL Data Latency (Excluding JESD204B Latency) CONDITIONS MIN TYP 5x interpolation 371 6x interpolation 403 6.67x interpolation (Note 3) 455 8x interpolation 438 10x interpolation 662 12x interpolation 749 13.33x interpolation (Note 3) 1260 16x interpolation 689 20x interpolation 923 24x interpolation 1105 MAX UNITS DAC Update Cycles NCO Maximum Frequency Frequency Control Word Resolution fDAC/2 Hz 33 Bits SNR (Note 10) 85.5 dB SFDR (Note 10) 90 dBc REFERENCE Reference Input Range 1.10 Reference Output Voltage VREFIO Reference Input Resistance RREFIO Internal reference 1.10 Reference Voltage Drift 1.30 1.20 1.30 V V 10 kΩ ±110 ppm/ °C CMOS LOGIC INPUTS/OUTPUTS (SCLK, CSB, MUTE, RESETB, SDI, SDO, INTB) Input High Voltage VIH Input Low Voltage VIL Input Current IIN RESETB Input Current 0.7 x VDD2 Excluding RESETB IINRB CIN Output High Voltage VOH ILOAD = 200μA, INTB has a 1kΩ external pullup resistor to VDD2 Output Low Voltage VOL ISINK = 200μA, INTB has a 1kΩ external pullup resistor to VDD2 www.maximintegrated.com ±0.1 -1 Input Capacitance Output Leakage Current -1 V 0.3 x VDD2 V +1 µA 55 µA 3 Three-state, SDO pin pF 0.8 x VDD2 -4 V ±2.5 0.2 x VDD2 V +4 µA Maxim Integrated │  9 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Electrical Characteristics (continued) (VDD = VAVCLK = VAVDD= VAVDD1PLL = 1V, VDD2 = VAVCLK2 = VAVDD2 = VAVDD2PLL = VVDD2PLL = 1.8V, PCLK = +7dBm, fCLK = 983.04MHz, fDAC = 4915.2Msps, 6.67x interpolation, 4-lanes, 7372.8Mbps per lane, external reference at 1.20V and RSET = 1.3kΩ between FSADJ and DACREF, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), PLL ON. TA ≥ -40°C and TJ ≤ +110°C (Note 2), unless otherwise noted. Typical values are at TJ = +65.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS JESD204B INPUTS (DP3–DP0, DN3–DN0) Differential Input Return Loss RLDIFF 8 dB Common-Mode Input Return Loss RLCM 6 dB Receiver Differential Impedance ZRDIFF Minimum Differential Input Voltage Vmin_IN 110 mVP-P Maximum Differential Input Voltage Vmax_IN 1050 mVP-P Discrete Serial Data Rate per Lane At DC 80 Also supports ½ and ¼ fractional data rates fSER_IN 120 Ω 9830.4 7372.8 Also supports ½ fractional data rates Mbps 6144.0 LVDS LOGIC INPUT/OUTPUT (SYNCNP, SYNCNN, SYSREFP, SYSREFN, SYNCIP, SYNCIN, SYNCOP, SYNCON, RCLKP, RCLKN) Differential Input Logic High VIH Differential Input Logic Low VIL 100 Input Common-Mode Voltage VICM 0.675 Differential Input Resistance RIN 87.5 mV 100 -100 mV 1.375 V 132.5 Ω Differential Input Capacitance CINLVDS Differential Output Logic High VOH RLOAD = 100Ω differential 250 450 mV Differential Output Logic Low VOL RLOAD = 100Ω differential -450 -250 mV 1.375 V Output Common-Mode Voltage VOCM Output Maximum Frequency fRCLK 1 1.125 RLOAD = 100Ω differential, CLOAD = 8pF 1.25 737.28 pF MHz CLOCK INPUT (CLKP, CLKN) Power Level at Differential CLKP/CLKN Clock Input (Note 11) PCLK Common-Mode Voltage VCOM Differential Input Resistance RCLK www.maximintegrated.com Sine-wave input, PLL OFF, fCLK = 4915.2MHz >0 Sine-wave input, PLL OFF, fCLK = 5898.24MHz >5 Sine-wave input, PLL ON > –3 AC-coupled, internally biased 0.5 V 100 Ω dBm (50Ω) Maxim Integrated │  10 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Electrical Characteristics (continued) (VDD = VAVCLK = VAVDD= VAVDD1PLL = 1V, VDD2 = VAVCLK2 = VAVDD2 = VAVDD2PLL = VVDD2PLL = 1.8V, PCLK = +7dBm, fCLK = 983.04MHz, fDAC = 4915.2Msps, 6.67x interpolation, 4-lanes, 7372.8Mbps per lane, external reference at 1.20V and RSET = 1.3kΩ between FSADJ and DACREF, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), PLL ON. TA ≥ -40°C and TJ ≤ +110°C (Note 2), unless otherwise noted. Typical values are at TJ = +65.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS INTERNAL DAC CLOCK PLL Low-band VCO minimum frequency Internal DAC Clock PLL Frequency Range fPLL Low-band VCO maximum frequency 4915.2 High-band VCO minimum frequency High-band VCO maximum frequency PLL Input Frequencies 4423.68 5898.24 MHz 6144.0 fCLK fPLL/MLT MHz Minimum PLL Input Frequency Multiplier MLTmin (Note 12) 2 Hz/Hz Maximum PLL Input Frequency Multiplier MLTmax (Note 12) 60 Hz/Hz Phase Noise at 6MHz Offset fDAC = 4915.2Msps, measured at PLL output, does not include DAC core phase noise -142 dBc/Hz Cycle-to-Cycle Jitter fDAC = 4915.2Msps, measured at PLL output, does not include DAC core jitter 245 fs 350000 fCLK Cycles RESET TIMING RESET to Ready Delay tRRDY SERIAL PORT INTERFACE TIMING (Note 7) SCLK Frequency fSCLK SCLK to CSB Setup Time tCSS 10 ns SCLK to CSB Hold Time tCSH 0 ns SDI to SCLK Hold Time tSDH Data-write 0 ns SDI to SCLK Setup Time tSDS Data-write 5 ns Data-read, 10pF load from SDO to Ground 1.5 ns Data-read, 100pF load from SDO to Ground 3.5 ns Data-read, 10pF load from SDO to Ground 8 Data-read, 100pF load from SDO to Ground 11 Minimum SCLK to SDO Data Delay tSDD_MIN Maximum SCLK to SDO Data Delay tSDD_MAX 1/tSCLK 25 MHz ns POWER SUPPLY VDD, VAVDD, 1.0V Supply Voltage Range VAVCLK www.maximintegrated.com 0.95 1.0 1.05 fDAC sample rate ≤ 4.9152Gsps 0.95 1.0 1.05 fDAC sample rate > 4.9152Gsps and ≤ 5.89824Gsps 1.00 1.02 1.05 VAVDD1PLL V Maxim Integrated │  11 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Electrical Characteristics (continued) (VDD = VAVCLK = VAVDD= VAVDD1PLL = 1V, VDD2 = VAVCLK2 = VAVDD2 = VAVDD2PLL = VVDD2PLL = 1.8V, PCLK = +7dBm, fCLK = 983.04MHz, fDAC = 4915.2Msps, 6.67x interpolation, 4-lanes, 7372.8Mbps per lane, external reference at 1.20V and RSET = 1.3kΩ between FSADJ and DACREF, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), PLL ON. TA ≥ -40°C and TJ ≤ +110°C (Note 2), unless otherwise noted. Typical values are at TJ = +65.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 1.71 1.8 1.89 V 1.8V Supply Voltage Range VDD2, VAVCLK2, VAVDD2, VAVDD2PLL, VDD2PLL 1.0V Digital Supply Current IVDD 530 940 mA 1.8V Digital Supply Current IVDD2 390 445 mA 1.0V Clock Supply Current IAVCLK 360 510 mA 1.8V Clock Supply Current IAVCLK2 57 70 mA 1.0V Analog Supply Current IAVDD 237 345 mA 1.8V Analog Supply Current IAVDD2 248 292 mA 8 15 mA fDAC = 4915.2Msps, fOUT = 1842.5MHz, 6.67x interpolation, PLL ON, JESD204B Lanes = 4 1.0V Clock PLL Supply Current IAVDD1PLL 1.8V Clock PLL Supply Current IAVDD2PLL 28 34 mA 1.8V JESD204B PLL Supply Current IVDD2PLL 30 36 mA PTOTAL 2490 3389 mW Total Power Dissipation Note 2: All specifications are guaranteed via test at TJ = +60°C and TJ = +115°C to an accuracy of ±10°C. Specifications at TJ < +60°C are guaranteed by design and characterization. Timing specifications are guaranteed by design and characterization. Note 3: The 6.67x and 13.33x interpolation rates are precisely (20 ÷ 3)x and (40 ÷ 3)x, respectively. Note 4: Adjusted DAC update rate is defined as the maximum DAC update rate divided by the smallest interpolating factor. Note this is a mathematically derived specification. Note 5: SFDR is the minimum ratio in carrier power to the power measured in specified bandwidth (RBW) that is offset from the carrier and swept over a particular band. The carrier power is measured with a 30kHz bandwidth. The spur RBW is 30kHz or 100kHz depending on the frequency distance from the center of the carrier. In the case of multicarrier SFDR, the frequency distance/offset is measured from the center of either edge carrier. The spur RBW is 30kHz for frequency offsets from 0 to 1.8MHz and 100kHz for frequency offsets greater than 1.8MHz. Note 6: In-band is considered to be 1710MHz to 2170MHz, inclusive. Note 7: Specification guaranteed by design and characterization, and functionally tested during production. Note 8: Excludes sin(x)/x roll-off. Note 9: Settling time is dominated by the interpolation filter step response. Note 10: Typical values specified based on worst-case simulation with margin. Note 11: Input power is referenced to a 50Ω load. Note 12: DAC PLL reference input frequency multiplier, MLT, is defined by the ratio of the PLL feedback divide value, M, and the input reference divide value, N. MLT = M ÷ N where M can be {16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, or 60} and where N can be {1, 2, 4, or 8}. www.maximintegrated.com Maxim Integrated │  12 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Typical Operating Characteristics (VDD = VAVCLK = VAVDD = VAVDD1PLL = 1V, VDD2 = VAVCLK2, = VAVDD2, VAVDD2PLL = VDD2PLL = 1.8V, PCLK = 0dBm, signal power is referred to the DAC core input, fCLK = 983.04MHz, fDAC= 4915.2Msps, 6.67x interpolation, 4 lanes, 7.3728Gbps per lane. External reference at 1.2V and RSET = 1.3kΩ, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), and TA = +25°C, unless otherwise noted.) (Note 6) SINGLE-CARRIER GSM (GMSK) NARROW-BAND SPECTRUM (fOUT = 1.82GHz, fCLK = 1.47456GHz, INPUT AMPLITUDE = -15dBFS, TJ = 110°C) SINGLE-CARRIER GSM (GMSK) NARROW-BAND SPECTRUM (fOUT = 1.82GHz, fCLK = 1.47456GHz, INPUT AMPLITUDE = -15dBFS, TA = +25°C) 10dB/div 10dB/div toc1 Ref = -20dBm 1 -30 -50 -50 -70 -70 -90 -110 5 4∆1 Center 1.82GHz Res BW 30kHz MKR# 6 8 3∆1 7 -110 5 FREQUENCY BAND POWER POWER INTEGRATION BANDWIDTH UNITS MKR# 2∆1 4∆1 Center 1.82GHz Res BW 30kHz Span 25MHz Sweep 281.7ms (1780pts) VBW 3.0kHz MEASUREMENT TYPE toc2 1 -90 2∆1 3∆1 7 Ref = -20dBm -30 6 VBW 3.0kHz MEASUREMENT TYPE 8 Span 25MHz Sweep 281.7 ms (1780pts) FREQUENCY BAND POWER POWER INTEGRATION BANDWIDTH UNITS 1 Absolute 1.82GHz -24.48 30kHz dBm 1 Absolute 1.82GHz -24.27 30kHz dBm 2 Delta to Mkr#1 +600kHz -73.36 30kHz dBc 2 Delta to Mkr#1 +600kHz -72.89 30kHz dBc 3 Delta to Mkr#1 -600kHz -73.31 30kHz dBc 3 Delta to Mkr#1 -600kHz -72.89 30kHz dBc 4 Delta to Mkr#1 -5.598MHz -80.5 100kHz dBc 4 Delta to Mkr#1 -5.598MHz -80.22 100kHz dBc 5 Absolute 1.814GHz -157.84 100kHz dBm/Hz 5 Absolute 1.814GHz -158.29 100kHz dBm/Hz 6 Absolute 1.826GHz -158.57 100kHz dBm/Hz 6 Absolute 1.826GHz -158.44 100kHz dBm/Hz 7 Absolute 1.810GHz -158.56 200kHz dBm/Hz 7 Absolute 1.810GHz -158.94 200kHz dBm/Hz 8 Absolute 1.830GHz -159.48 200kHz dBm/Hz 8 Absolute 1.830GHz -159.48 200kHz dBm/Hz SINGLE-CARRIER GSM (GMSK) NARROW-BAND SPECTRUM (fOUT = 1.82GHz, fCLK = 1.47456GHz, 8x INTERPOLATION, INPUT AMPLITUDE = -15dBFS, TJ = +110°C) 10dB/div Ref = -20dBm toc3 1 -30 -50 -70 -90 3∆1 7 -110 5 Res BW 30kHz Center 1.82GHz 6 8 Sweep 281.7ms (1780 pts) Span 25MHz VBW 3.0kHz MEASUREMENT TYPE FREQUENCY BAND POWER POWER INTEGRATION BANDWIDTH UNITS 1 Absolute 1.82GHz -23.85 30kHz dBm 2 Delta to Mkr#1 +600kHz -72.85 30kHz dBc 3 Delta to Mkr#1 -600kHz -72.69 30kHz dBc 4 Delta to Mkr#1 -5.598MHz -84.32 100kHz dBc 5 Absolute 1.814GHz -158.81 100kHz dBm/Hz 6 Absolute 1.826GHz -158.56 100kHz dBm/Hz 7 Absolute 1.810GHz -157.62 200kHz dBm/Hz 8 Absolute 1.830GHz -159.48 200kHz dBm/Hz MKR# www.maximintegrated.com 2∆1 4∆1 Maxim Integrated │  13 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Typical Operating Characteristics (continued) (VDD = VAVCLK = VAVDD = VAVDD1PLL = 1V, VDD2 = VAVCLK2, = VAVDD2, VAVDD2PLL = VDD2PLL = 1.8V, PCLK = 0dBm, signal power is referred to the DAC core input, fCLK = 983.04MHz, fDAC= 4915.2Msps, 6.67x interpolation, 4 lanes, 7.3728Gbps per lane. External reference at 1.2V and RSET = 1.3kΩ, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), and TA = +25°C, unless otherwise noted.) (Note 6) 10dB/div SIX-CARRIER GSM (fOUT = 1.8425GHz) and 4-CARRIER WCDMA (fOUT = 2.14GHz), WIDE-BAND SPECTRUM (INPUT AMPLITUDE = -1dBFS) Ref = -24dBm -34 SIX-CARRIER GSM (fOUT = 1.8425GHz) and 4-CARRIER WCDMA (fOUT = 2.14GHz), NARROW-BAND GSM SPECTRUM (INPUT AMPLITUDE = -1dBFS) toc4 10dB/div 1 2 -54 1 -81 3 -94 -101 -114 -121 Span 1.000GHz Sweep 11.26s (1001pts) VBW 3.0kHz toc5 2 -61 -74 Center 1.99GHz Res BW 30kHz Ref = -31dBm -41 MKR# FREQUENCY POWER 1 1.841GHz -47.13dBm 2 2.140GHz -54.87dBm 3 2.4576GHz -90.56dBm 3∆1 5 4∆1 Center 1.8425GHz Res BW 30kHz VBW 3.0kHz 6 Span 20MHz Sweep 225.3ms (1780pts) MKR# MEASUREMENT TYPE FREQUENCY POWER POWER INTEGRATION BANDWIDTH UNITS 1 Absolute 1.841GHz -41.17 30kHz dBm 2 Absolute 1.844GHz -40.98 30kHz dBm 3 Delta to Mkr#1 -600kHz -68.83 30KHz dBc 4 Delta to Mkr#1 +3.600MHz -68.38 30kHz dBc 5 Absolute 1.835GHz -158.24 100kHz dBm/Hz 6 Absolute 1.850GHz -158.00 100kHz dBm/Hz SIX-CARRIER GSM (fOUT = 1.8425GHz) and 4-CARRIER WCDMA (fOUT = 2.14GHz), NARROW-BAND WCDMA SPECTRUM (INPUT AMPLITUDE = -1dBFS) 10dB/div toc6 Ref = -23 dBm -24.3 dBm -33 -24.3 dBm -24.0 dBm -23.8 dBm -53 -73 -69.1 dBc -68.0 dBc -67.2 dBc -68.8 dBc -93 -113 Center 2.140GHz Res BW 30kHz www.maximintegrated.com VBW 3.0kHz Span 38.84MHz Sweep 1.072s Maxim Integrated │  14 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Typical Operating Characteristics (continued) (VDD = VAVCLK = VAVDD = VAVDD1PLL = 1V, VDD2 = VAVCLK2, = VAVDD2, VAVDD2PLL = VDD2PLL = 1.8V, PCLK = 0dBm, signal power is referred to the DAC core input, fCLK = 983.04MHz, fDAC= 4915.2Msps, 6.67x interpolation, 4 lanes, 7.3728Gbps per lane. External reference at 1.2V and RSET = 1.3kΩ, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), and TA = +25°C, unless otherwise noted.) (Note 6) IN-BAND SFDR vs. CW FREQUENCY MEASUREMENT BAND = 1990MHz ±250MHz OUTPUT FREQUENCY RANGE = 1805MHz to1880MHz -1dBFS INPUT AMPLITUDE IN-BAND SFDR vs. CW FREQUENCY MEASUREMENT BAND = 1990MHz ±250MHz OUTPUT FREQUENCY RANGE = 2110MHz to 2170MHz -1dBFS INPUT AMPLITUDE toc08 79.0 TJ = 0°C 77.0 IN-BAND SFDR (dBc) 76.0 75.0 74.0 TJ = 65°C TJ = 110°C 73.0 85.0 81.0 80.0 79.0 75.0 77.0 71.0 69.0 67.0 70.0 1800 65.0 2100 1840 1860 fOUT (MHz) 1880 1900 toc10 -67.0 -69.0 -71.0 -71.0 TJ = 0°C IM3 (dBc) -73.0 -75.0 -77.0 1820 2120 2140 2160 2180 1860 www.maximintegrated.com fOUT = 2140MHz 55.0 -20 toc11 1880 1900 0 toc12 -65.0 fOUT = 2140MHz -70.0 -75.0 -77.0 -85.0 2100 -15 -10 -5 INPUT AMPLITUDE (dBFS) TWO-TONE IM3 vs. INPUT AMPLITUDE fSPACE = 1MHz -60.0 TJ = 110°C TJ = 0°C -73.0 -83.0 fOUT (MHz) 60.0 40.0 2200 -75.0 -80.0 -81.0 TJ = 65°C 1840 65.0 45.0 TJ = 0°C -79.0 -79.0 -85.0 1800 70.0 50.0 -65.0 -69.0 TJ = 110°C fOUT = 1840MHz TWO-TONE IM3 vs. CW FREQUENCY OUTPUT FREQUENCY RANGE = 2110MHz to 2170MHz fSPACE = 1MHz, -1dBFS INPUT AMPLITUDE -67.0 -83.0 toc09 fOUT (MHz) -65.0 -81.0 TJ = 110°C 73.0 71.0 1820 TJ = 65°C 75.0 72.0 TWO-TONE IM3 vs. CW FREQUENCY OUTPUT FREQUENCY RANGE = 1805MHz to 1880MHz fSPACE = 1MHz, -1dBFS INPUT AMPLITUDE IM3 (dBc) 90.0 83.0 IM3 (dBc) IN-BAND SFDR (dBc) 78.0 85.0 IN-BAND SFDR (dBc) toc07 80.0 IN-BAND SFDR vs. INPUT AMPLITUDE MEASUREMENT BAND = 1990MHz ±250MHz -85.0 fOUT = 1840MHz TJ = 65°C 2120 2140 2160 fOUT (MHz) 2180 2200 -90.0 -25 -20 -15 -10 -5 0 INPUT AMPLITUDE (dBFS) Maxim Integrated │  15 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Typical Operating Characteristics (continued) (VDD = VAVCLK = VAVDD = VAVDD1PLL = 1V, VDD2 = VAVCLK2, = VAVDD2, VAVDD2PLL = VDD2PLL = 1.8V, PCLK = 0dBm, signal power is referred to the DAC core input, fCLK = 983.04MHz, fDAC= 4915.2Msps, 6.67x interpolation, 4 lanes, 7.3728Gbps per lane. External reference at 1.2V and RSET = 1.3kΩ, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), and TA = +25°C, unless otherwise noted.) (Note 6) IN-BAND SFDR vs. CW FREQUENCY MEASUREMENT BAND = 1990MHz ±250MHz OUTPUT FREQUENCY RANGE = 2110MHz to 2170MHz -1dBFS INPUT AMPLITUDE toc14 IN-BAND SFDR vs. CW FREQUENCY MEASUREMENT BAND = 1990MHz ±250MHz OUTPUT FREQUENCY RANGE = 1805MHz to 1880MHz -1dBFS INPUT AMPLITUDE toc13 90.0 90.0 fDAC = 5.89824Gsps 8x INTERPOLATION 88.0 86.0 TJ = 65°C IN-BAND SFDR (dBc) IN-BAND SFDR (dBc) 85.0 80.0 TJ = 0°C 75.0 70.0 1820 TJ = 65°C TJ = 0°C 84.0 82.0 80.0 78.0 76.0 TJ = 110°C 74.0 TJ = 110°C 65.0 1800 fDAC = 5.89824Gsps 8x INTERPOLATION 72.0 1840 1860 1880 70.0 2100 1900 2120 fDAC = 5.89824Gsps 8x INTERPOLATION -67.0 80.0 -69.0 75.0 -71.0 70.0 -73.0 65.0 fOUT = 2140MHz 60.0 -79.0 -81.0 45.0 -83.0 40.0 -10 -5 INPUT AMPLITUDE (dBFS) www.maximintegrated.com 0 toc16 fDAC = 5.89824Gsps 8x INTERPOLATION TJ = 0°C -77.0 50.0 -15 2200 -75.0 55.0 -20 2180 -65.0 fOUT = 1840MHz IM3 (dBc) IN-BAND SFDR (dBc) 85.0 2160 TWO-TONE IM3 vs. CW FREQUENCY FREQUENCY RANGE = 1805MHz to 1880MHz fSPACE = 1MHz, -1dBFS INPUT AMPLITUDE IN-BAND SFDR vs. INPUT AMPLITUDE BAND = 1990MHz ±250MHz toc15 90.0 2140 fOUT (MHz) fOUT (MHz) -85.0 1800 TJ = 110°C 1820 TJ = 65°C 1840 1860 fOUT (MHz) 1880 1900 Maxim Integrated │  16 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Typical Operating Characteristics (continued) (VDD = VAVCLK = VAVDD = VAVDD1PLL = 1V, VDD2 = VAVCLK2, = VAVDD2, VAVDD2PLL = VDD2PLL = 1.8V, PCLK = 0dBm, signal power is referred to the DAC core input, fCLK = 983.04MHz, fDAC= 4915.2Msps, 6.67x interpolation, 4 lanes, 7.3728Gbps per lane. External reference at 1.2V and RSET = 1.3kΩ, IOUTFS = 29.5385mA, output is 50Ω double-terminated and transformer coupled (see Figure 26), and TA = +25°C, unless otherwise noted.) (Note 6) TWO-TONE IM3 vs. CW FREQUENCY FREQUENCY RANGE = 2110MHz to 2170MHz fSPACE = 1MHz, -1dBFS INPUT AMPLITUDE toc17 -55 -60 -60.0 fDAC = 5.89824Gsps 8x INTERPOLATION TJ = 0°C IM3 (dBc) IM3 (dBc) fOUT = 2140MHz -70.0 TJ = 110°C -75.0 -75 -80.0 -80 -85.0 TJ = 65°C -85 2100 fDAC = 5.89824Gsps 8x INTERPOLATION -65.0 -65 -70 TWO-TONE IM3 vs. INPUT AMPLITUDE fSPACE = 1MHz toc18 2120 2140 2160 2180 2200 fOUT = 1840MHz -90.0 -25 -20 -15 -10 -5 0 INPUT AMPLITUDE (dBFS) fOUT (MHz) OUTPUT FREQUENCY RESPONSE INCLUDING SIN(X)/X ROLL-OFF 0.0 9.83Gbps DATA EYE AFTER EQUALIZATION APPLIED JITTER: 250MUI OF BUJ. 14.53UI (RMS) OF RJ PATTERN = PRBS7 toc19 GCDF: 10G_BASEJITTER_PHY0_VTH1_ECP1 -300 TOC20 -1.0 -200 -3.0 -100 -4.0 VOLTAGE [0:1:63] OUTPUT POWER (dBm) -2.0 -5.0 -6.0 -7.0 100 -8.0 -9.0 -10.0 1700 200 1800 1900 2000 fOUT (MHz) www.maximintegrated.com 0 2100 2200 300 0 50 100 150 PhaseECP [0:1:255] 200 250 Maxim Integrated │  17 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Pin Configuration TOP VIEW DIE CRITICAL ANALOG AND RF SUPPLIES GND RF DATA AND CLOCK ANALOG, DIGITAL IO NO CONNECT AVCLK GND PLL_COMP A9 A10 A11 A12 AVDD2 AVDD2 GND VCOBYP AVCLK2 B7 B8 B9 B10 B11 B12 GND GND GND GND GND GND GND C5 C6 C7 C8 C9 C10 C11 C12 GND GND GND GND GND GND GND AVDD2PLL CLKP D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 CSB GND AVDD GND GND GND GND AVDD GND AVDD1PLL CLKN E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 SDI RESETB GND GND VDD VDD VDD VDD GND GND GND GND F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 SDO INTB MUTE VDD2 VDD GND GND VDD VDD2 GND GND GND G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 SYNCNP NC SYNCOP VDD2 GND GND GND GND VDD2 GND NC H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 SYNCNN NC SYNCON VDD2 GND GND GND GND VDD2 GND NC SYSREFN /SYNCIN J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 GND GND GND GND GND RCLKP RCLKN GND GND GND TDA GND K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 DP0 GND DP1 GND SYSREFEN NC NC VDD2PLL GND DP2 GND DP3 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 DN0 GND DN1 GND JRES GND VSSPLL CAPT GND DN2 TDC DN3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 REFIO CSBP AVCLK AVDD2 AVDD2 OUTP OUTN A1 A2 A3 A4 A5 A6 A7 A8 FSADJ GND AVDD2 AVDD2 AVDD2 B1 B2 B3 B4 B5 B6 GND AVDD2 AVDD2 GND GND C1 C2 C3 C4 GND GND GND D1 D2 SCLK DACREF www.maximintegrated.com AVDD2 AVDD2 AVDD2 SYSREFP /SYNCIP Maxim Integrated │  18 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Pin Description PIN NAME FUNCTION A1 REFIO Reference Voltage Input/Output. REFIO outputs an internal 1.2V bandgap reference voltage. REFIO has a 10kΩ series resistance and can be driven using an external 1.2V reference voltage. Connect a 1μF capacitor between REFIO and DACREF. A2 CSBP DAC current source bypass. Connect 1.0µF capacitor between CSBP and DACREF. B1 DACREF Internal DAC Reference Ground Used for DAC Current Source Bypass Ground. Do not connect to board ground (GND). B2 FSADJ Analog Input for DAC Full-Scale Output Current Adjustment. A resistor from FSADJ to DACREF sets the full-scale output current of the DAC. To obtain a 29.5385mA full-scale output current using the internal reference voltage, connect a 1.3kΩ resistor between FSADJ and DACREF ground. A4, A5, A8, A9, B4-B9, C2, C3 AVDD2 Analog 1.8V Supply Input A6 OUTP Positive Terminal of Differential DAC Output A7 OUTN Negative Terminal of Differential DAC Output A11, B3, B10, C1, C4-C12, D1-D10, E3, E5-E8, E10, F3-F4, F9F12, G6-G7, G10-G12, H5-H8, H10, J5-J8, J10, K1-K5, K8K10, K12, L2, L4, L9, L11, M2, M4, M6, M9 GND A12 PLL_COMP Analog I/O for DAC PLL Loop Filter Connection D11 AVDD2PLL 1.8V DAC Clock PLL Supply E11 AVDD1PLL 1.0V DAC Clock PLL Supply B12 AVCLK2 1.8V Supply Input for Clock Ground CLKP Clock Positive Input. Multipurpose pin that generates following internal clocks based on use case: 1) PLL use cases a) PLL OFF (Bypassed): Clock for RF DAC core (DACCLK) b) PLL ON (Enabled): Reference clock for DAC PLL which in turn generates the DACCLK 2) Device clock (DCLK) for JESD204B interface when frequency is ≤ 1474.56MHz (twice the maximum input sample rate of 737.28MHz) An internal 100Ω termination resistor connects CLKP to CLKN. E12 CLKN Clock Negative Input B11 VCOBYP A3, A10 AVCLK 1.0V Supply Input for Clock E4, E9 AVDD Analog 1.0V Supply Input D12 www.maximintegrated.com Pin for VCO Loop Filter Maxim Integrated │  19 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Pin Description (continued) PIN NAME F5-F8, G5, G8 FUNCTION VDD 1.0V Supply Input for Digital Core E1 SCLK Digital CMOS Input for Serial Port Interface Clock E2 CSB Digital CMOS Input for Serial Port Interface Chip Selection Bar. MAX5871 is selected when CSB = low. F1 SDI Digital CMOS Input for Serial Port Interface Data Input in 4-Wire SPI Interface Mode. Serial port data is latched on the rising edge of SCLK. Digital CMOS Input/Output for Serial Port Interface data Input and Output in 3-wire SPI interface mode. Equivalent to SDIO pin in a typical 3-wire SPI interface mode. Serial port data is latched on the rising edge of SCLK. G1 SDO Digital CMOS Output for Serial Port Interface Data Output. Serial port data is clocked out from MAX5871 on the falling edge of SCLK. G2 INTB Digital CMOS Output for Interrupt, open-drain output. Needs external pullup resistor, 1kΩ recommended. G3 MUTE Digital CMOS Input. MUTE = high puts the device into mute mode. MUTE = low puts the device into normal operation mode. F2 RESETB K11 TDA Temperature Sensor Diode Anode. Connect TDC and TDA to ground if not used. Temperature Sensor Diode Cathode. Connect TDC and TDA to ground if not used. Digital CMOS Input with Internal Pulldown to Ground. Device is reset when RESETB = low. Set RESETB low during device startup. RESETB must be set high for normal operation after startup. M11 TDC G4, H4, J4, G9, H9, J9 VDD2 K6, K7 RCLKP, RCLKN L6, L7, J2, H2, J11, H11 NC H1, J1 SYNCNP, SYNCNN LVDS Output. Active low JESD204B error reporting signal (SYNC~) from Rx to Tx. H12, J12 SYSREFP, SYSREFN LVDS clock input used for JESD204B Subclass-1 operation (deterministic latency). Signal is synchronous to the device clock (DCLK = CLKP/CLKN) for all transmit and receive devices. Alternate function for multi-purpose pin SYNCIP, SYNCIN. H12, J12 SYNCIP, SYNCIN LVDS Input. Required for Multi-DAC Synchronization (Subclass-1). Alternate function for multipurpose pin SYSREFP, SYSREFN. H3, J3 SYNCOP, SYNCON LVDS Output used for Multi-DAC Synchronization under JESD204B Subclass-1. Multiple DAC synchronization is not supported in Subclass-0. If not used, terminate with 100Ω resistor differentially. JESD204B PLL 1.8V Power Supply 1.8V Supply Input for Digital I/O LVDS Reference Clock Output for Sample Rate Synchronization to Internal DACCLK at RF DAC Core. Equals DACCLK frequency at RF DAC core divided by DAC interpolation ratio (R). If not used, terminate with a 100Ω resistor differentially. No Connect L8 VDD2PLL M7 VSSPLL L1, L3, L10, L12 DP0–DP3 Analog Input. JESD204B Serial Data Positive Input, Lanes 0-3 M1, M3, M10, M12 DN0–DN3 Analog Input. JESD204B Serial Data Negative Input, Lanes 0-3 M5 JRES M8 CAPT L5 SYSREFEN www.maximintegrated.com Clock Multiplier Unit (CMU) PLL Ground Analog Input. JESD204B Current Biasing. Analog Input. JESD204B PLL Loop Filter Input. Hardwired SYSREF Enable CMOS Input. Use instead of SPI for improved timing control. Maxim Integrated │  20 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface 4x 1x 2x 1x 2x 4x 1x 2x 1x 1.25x 1.5x 1.67x FSADJ DACREF CSBP REFIO VDD AVDD AVCLK VDD2 AVDD2 AVCLK2 GND SYNCO P/N 14-BIT 5.9Gsps RF DAC OUTP OUTN 1x 2x REFERENCE SYSTEM SYNCN P/N MUTE QUADRATURE NCO SPI PORT CSB 16 Rx CONTROLLER SYSREF P/N or SYNCI P/N JRES CAPT VSSPLL VDD2PLL www.maximintegrated.com MOD 1x 1.25x 1.5x 1.67x 14 DCLK CLOCK MULTIPLIER UNIT 16 Code Group Sync 8B/10B Decoder Frame Sync / Monitoring Inter Lane Alignment Character Replacement Descrambler (Optional) Rx FIFO Rx Mapper Demux Rx LINK Clock+Data Recovery 4 VGA DP[3:0] DN[3:0] Decision Feedback Equalizer Rx PHY SDI JESD204B INTERFACE (4 LANES) INTB RESETB SDO SYSREF RCLKP RCLKN MAX5871 CLOCK GENERATION AND DISTRIBUTION SCLK MUX PLL CLKP CLKN VCOBYP AVDD2PLL PLL_COMP AVDD1PLL Functional Diagram Maxim Integrated │  21 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Detailed Description The MAX5871 is a high-performance interpolating and modulating 16-bit, 5.9Gsps RF DAC designed for wire­ less communications applications such as cellular base stations, multistandard and multiband transmitters, and point-to-point microwave links. The device can synthesize up to 600MHz of instantaneous bandwidth at frequen­cies up to the Nyquist bandwidth (fDAC/2) of the DAC. The major functional blocks of the device include a four-lane JESD204B interface which accepts 16-bit input data (I and Q), a cascade of interpolation filters, a digital quadrature modulator and NCO, clock multiplying PLL+VCO and a 14-bit, 5.9Gsps RF DAC core. The supporting functional blocks include the clock distribution system, reference system, and SPI interface. See the detailed Functional Diagram. The 16-bit input data enhances the accuracy of the interpolation and modula­tion functions and ensures true 14-bit data is presented to the RF DAC core. The 16-bit input baseband data (I and Q) is supplied to the device using up to four lanes of JESD204B (DP[3:0]/DN[3:0]). The JESD204B interface can be configured for Subclass-1 for applications requiring deterministic delay and Subclass-0 for normal operation. The interface can be configured for 1, 2, or 4 lanes and supports serial data rates up to 10Gbps providing flexibility to optimize the I/O count, speed, and power to support the required frequency plan. The four-lane JESD204B interface has the following major components: ●● A high-speed input receiver (Rx) consisting of a physical (PHY) layer for each of the 4 lanes and a common clock multiplier unit (CMU). The PHY layer contains a variable gain amplifier (VGA) which receives the incoming signal and decision feedback equalizer (DFE) to suppress inter-symbol interference. The PHY layer also includes a clock and data recovery (CDR) unit to latch the incoming single-bit data and a Demux to deserialize the data and convert it to a 20-bit parallel data bus. ●● A receiver link layer (Rx Link) which takes the 20 bits from the PHY and restores the 16-bit DAC data for I and Q channel each. The Rx link consists of four Rx lanes, four Rx FIFOs, a Rx mapper and a Rx controller. The four Rx lanes perform code group synchronization, 8B/10B decoding, frame synchronization and monitoring, interlane alignment and monitoring, character replacement, and optional descrambling. The four lanes are fed into Rx FIFOs where data is aligned by the Rx controller. Using the Rx mapper, data from each physical channel is mapped to a logical channel. www.maximintegrated.com The DSP path consists of a chain of configurable inter­ polation filters for I and Q channel each. Interpolation rates of 5x, 6x, 6.67x, 8x, 10x, 12x, 13.33x, 16x, 20x, or 24x can be selected by bypassing one or more of the interpolation filters. Interpolation reduces the required input data rate to the device relaxing the require­ments on the FPGA or ASIC. In addition, interpolation increases the separation between the desired signal and its aliased image easing filter design requirements. After passing through the interpolation stages, the complex signal is modulated using the LO signal generated by the NCO and the digital quadrature modulator. The NCO allows for fully agile modulation of the input baseband signal for direct RF synthesis with 32 bits of frequencysetting resolution. Placing the modulator at the output of the interpolator chain allows for fully agile placement of the output carrier frequency within the Nyquist bandwidth of the DAC. The quadrature modulator produces a real signal at its output, which is in turn fed into the 14-bit DAC core where it is converted to an analog RF signal. The analog output produces a full-scale current between 10mA and 30mA driving loads up to 50Ω differential. The clock distribution system provides a low-noise dif­ ferential input buffer for the external master DAC clock (CLKP/CLKN) and delivers all necessary clocks to all the DAC blocks. The master DAC clock input accepts a differential sine-wave or square-wave signal. An integrated clock multiplying PLL and VCO can be used to generate a high-frequency clock in the range from 4.4GHz to 4.9GHz or at 5.9GHz. The PLL can be bypassed allowing use of an external clock source. The device outputs a divided reference clock (RCLKP/RCLKN) that is equal to the DAC clock frequency divided by the DAC interpolation ratio to ensure synchronization with the system clock. The SYSREF clock input is used for Subclass-1 operation (deterministic latency) and is synchronous to the device clock (DCLK = CLKP/CLKN) for all transmit and receive devices. The SYNCN output is used for error reporting from the receiving device (MAX5871) to the transmitting device (FPGA or ASIC). The SYNCO output is used to synchronize multiple MAX5871 devices. The reference system delivers the reference current to the DAC current source array and all bias currents neces­ sary for the circuit operation. The reference system also includes a band-gap reference, which can be used as a reference for the DAC full-scale current. The SPI port is a bidirectional interface and is used for configuring the device and reading/writing status and control registers. The device operates from 1.8V and 1.0V power-supply voltages and consumes 2.5W at 4.9Gsps. Maxim Integrated │  22 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface JESD204B Interface takes the 20 bits from the PHY and restores the original 16-bit DAC data for the I and Q channels. See Figure 1. The MAX5871 JESD204B interface consists of four lanes of physical layer (PHY) with a common clock multiplier unit (CMU). Each lane takes a serial 1-bit stream and converts it to a parallel 20 bit bus. The link layer (LINK) The MAX5871 JESD204B receiver specifications are compliant with the LV-OIF-6G-SR and LV-OIF-11G-SR specifications from the JESD204B standard. SYNCO P/N SYNCN P/N PHY PHY DP[3:0] DN[3:0] 4 PHY PHY Div 1/2/4 CMU 20b 20b LINK 20b 16b DSP AND NCO RF DAC OUTN 20b SYNC LOGIC CLOCK GENERATION RCLK ( DACCLK/R ) R = INTERPOLATION RATE OUTP 14b DACCLK MUX DCLK ( DEVICE CLOCK ) PLL MULTIPURPOSE INPUT SYSREF P/N or SYNCI P/N CLK P/N EXTERNAL DAC CLOCK SOURCE AND SYSTEM CLOCK GENERATION Figure 1. Simplified Diagram of JESD204B Internal to MAX5871 Table 1. JESD204B Receiver Power Dissipation BLOCK NO. of JESD LANES (7.3728Gbps/LANE) TOTAL ESTIMATED POWER (PHY+CMU+LINK) (mW) LINK RX-1 1 200 LINK RX-2 2 322 LINK RX-4 4 563 www.maximintegrated.com Maxim Integrated │  23 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface JESD204B Data Interface Features A summary of the MAX5871 SerDes PHY (Rx) and link features are provided below. Rx PHY Key Features ●● Detection of following 8b10b control characters: K28.0, K28.3, K28.4, K28.5, K28.7 ●● Detection of following errors/conditions ●● Code Group Synchronization • 8b10b Running Disparity Error • 8b10b Not-in-table Error • Unexpected Control Character Detection • Code Group Synchronization Error • Frame Realignment Detection • Lane Realignment Detection • ILA Failure Detection • Link Configuration Error • ILA Sequence Error ●● Various errors can be enabled to trigger resynchronization through SYNC~ interface ●● Inter Lane Alignment (ILA) ●● Continuous /K/ and continuous ILA sequence detection ●● 1 + x14 + x15 Polynomial Scrambling ●● Error reporting via the SYNC~ interface ●● Character Replacement ●● Data repetition from previous frame/sample on not-intable error detection ●● Programmable Gain ●● Decision Feedback Equalizer. Fully configurable as to which coefficients to enable/disable. ●● Auto adaptation available for all DFE coefficients, gain, boost. Link Key Features: ●● 8b10b decoding ●● Dynamic on-the-fly frame/lane realignment if the elastic buffer allows it ●● Sample PRBS data for debug ●● Multiple Converter Device Alignment-Multiple Lanes (MCDA-ML) device ●● SerDes PRBS data for debug High-Speed Input Receiver (Rx) ●● Subclass-0 and Subclass-1 support As shown in Figure 2, the high-speed input receiver consists of a variable gain amplifier (VGA), decision feedback equalizer (DFE), clock and data recovery (CDR) unit and deserializer (DEMUX). The VGA and DFE provide autonomous adaptive effective equalization to optimize the input receiver filter coefficients to best recover the data dependent jitter introduced by the incoming channel. The initial receiver gain and equalization settings are shadowed by internal registers and may be overridden and driven by the user. ●● Number of lanes (L): 1, 2, 4 ●● Number of data converters or I and Q paths (M): 2 ●● Number of octets per frame (F): 1, 2, 4 ●● Number of samples per frame (S): 1, 2 Other Features: ●● Scrambling disable mode ●● Elastic buffer depth of 320 serial bit periods DFE COEFFICIENT EQUALIZER COEFFICIENT CONTROLS DEMUX DFE CDR 20b VGA COEFFICIENT RxP RxN VGA Figure 2. JESD204B Rx Physical Layer Simplified Block Diagram www.maximintegrated.com Maxim Integrated │  24 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface The VGA is a high-speed input receiver that has high gain, which allows for excellent input sensitivity while still preserving the linearity required for optimal performance of the DFE. The receiver expects the incoming high-speed signal to be differentially driven and AC-coupled to the transmitter. The receiver common-mode voltage is set by a self-biasing network, eliminating the need for any external board circuitry. The receiver provides on-chip termination between the true and complement input signals, RxP and RxN (typically 100Ω differential). The VGA gain settings are set based on the amplitude of the incoming high-speed signal and the optimal setting to the DFE circuitry and the VGA gain range is (±20dB). In addition to the gain function, there is also a boost function in the VGA to compensate for the high-speed frequency loss in the channel as shown in Figure 3. The PHY receiver provides a sophisticated level of equalization to suppress inter-symbol interference (ISI) ±20dB RANGE caused by a dispersive channel known as decision feedback equalization. The DFE makes use of previously determined data to estimate the current bit. Any trailing ISI caused by a previous bit is reconstructed and then subtracted. This technique allows for the recovery of very lossy backplane and connector channels. The PHY equalizer is designed to meet or exceed the JESD204B standard. The clock and data recovery unit is responsible for the centering of the incoming data eye for optimal sampling and error-free operation. The PHY clock and data recovery unit has multiple loop bandwidth settings to aid in optimal performance for jitter tolerance. The recovered clock generated from CDR is used to latch in the single-bit data, then the DEMUX block deserializes the single bit to 20-bit parallel data bus to be used by Rx Link. 3GHz UNITY-GAIN BANDWIDTH 40 GAIN (dB) 20 0 -20 -40 HIGH-FREQUENCY BOOST -60 -80 107 108 109 1010 FREQUENCY (Hz) 1011 1012 Figure 3. VGA Gain Range www.maximintegrated.com Maxim Integrated │  25 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface JESD204B Receiver Equalization Device Configuration This section demonstrates the JESD204B receiver equalization capability over a long length of cable (30in); however, use of cables of this length is not recommended. The MAX5871 is designed for and meets the JESD204B 20cm trace length requirement with a given set of internal configurations. Serial Data Rate: 9.8304Gbps Xilinx® VC707 FPGA Data Source Channel: 30in Nelco 4000-13SI plus cables and FMC connector 30in Nelco Traces = -14.7dB loss at 4.914GHz Cables and connector ~ 3dB loss at 4.914GHz After Before Figure 4. Receiver Equalization Eye Diagram Before and After Lane Training (9.8304Gbps, 30in Nelco Trace) 0 4.914GHz, -14.687dB -10 Loss (dB) -20 -30 -40 -50 0 2 4 6 8 10 12 14 16 18 20 Frequency ( GHz) Figure 5. Channel Loss Curve (30in) www.maximintegrated.com Maxim Integrated │  26 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Synchronization with SYSREF A JESD204B Subclass-1 device achieves deterministic delay through a clock-and-sync interface as specified in the standard. The SYSREF input is synchronous to the device clock (DCLK=CLKP/N) input for all the receive and transmit devices. SYSREF is sampled on the rising edge and then used to reset the phase of the divided clock(s). One of the divided clocks is configured as the sample clock. An extended version of the sampled SYSREF is used to reset the octet and frame counters running on the sample clock. Deterministic delay is achieved by synchronizing the phase of all sample clocks and octet/ frame counters and configuring the same point in time for the FIFO read start across all the devices. The transmit logic device (FPGA or ASIC) generates data at the same time for all the receive devices (multiple DACs). After this resynchronization, the data read out of the FIFOs in all the receive devices is triggered at the same time achieving deterministic delay. The timing diagram (Figure 6) shows the SYSREF signal usage for a JESD204B Subclass-1 device. DCLK is the device clock, SAMCLK is the sample clock, OCNT is the octet counter holding the octet count in a frame and FCNT is the frame counter holding the frame count in a multiframe (as specified in the JESD204B standard). The SYSREF signal essentially sets the phase of the frame and multiframe clocks implemented as octet and frame counters. The maximum device clock (DCLK) frequency is twice the specified maximum input sample rate of 737.28MHz. This means the SYSREF timing window, for the transmit logic device and the receive device together, is 500ps. This results in tight setup and holds constraints on the DCLK/ SYSREF timing, even though it is a source synchronous interface. To enable sufficient margins for sampling of SYSREF on DCLK, a programmable delay on SYSREF needs to be implemented with steps of 10's of ps so that the timing can be adjusted at each of the receive device inputs. DCLK SETUP HOLD SYSREF SAMCLK OCNT FCNT XX XX 0 1 Figure 6. SYSREF Usage for Sample Clock (DLCK/2) Generation and Synchronization www.maximintegrated.com Maxim Integrated │  27 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface An additional mode to replace the device clock source is to generate the sample clock by dividing down the DACCLK in the DSP section. In this mode, there will not be a device clock and the SYSREF input will be an asynchronous signal. For multi-DAC synchronization, the JESD204B link will not have a deterministic delay but the overall skew within one DAC clock cycle. The SYSREF signal will be passed through to the DSP block where it is used to reset the clock-divider circuit and generate a synchronous signal to RCLK (reference clock at sample rate). This synchronization will occur with one DAC clock uncertainty. The synchronous signal RSYNC is used by the Rx Link block to reset its frame counters. See Figure 7 for the timing diagram for this mode. SYSREF UNCERTAINTY OF ONE DAC CLOCK RCLK RSYNC OCNT FCNT XX XX XX 0 Figure 7. SYSREF Usage for Sample Clock (From DACCLK) Generation and Synchronization JESD204B SIGNALS AT Rx (RF DAC) INTERNAL FRAME CLOCK AT Rx HARMONIC DEVICE CLOCK AT Rx tDS_R(max) tDS_R(min) SYNC~ OUTPUT AT Rx LAUNCH FROM DEVICE CLOCK JESD204B SIGNALS AT Tx (FPGA or ASIC) FRAME CLOCK PERIOD TFRAME INTERNAL FRAME CLOCK AT Tx CAPTURE HERE DEVICE CLOCK AT Tx tSU_T(min) SYNC~ INPUT AT Tx CAPTURE ON FRAME CLOCK tH_T(min) VALID Figure 8. Interface Timing for Subclass-0 (See JEDEC Standard No. 204B.01, Figure 11) www.maximintegrated.com Maxim Integrated │  28 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer (LINK) The Rx link layer for the MAX5871 consists of 4 lanes interfacing to the 4 PHYs. The data from the 4 lanes is passed through FIFOs controlled by a Rx controller used to align the data on all the configured number of lanes in both JESD204B Subclass-0 and Subclass-1 modes. The Rx controller also handles the Subclass-1 deterministic latency using the input device clock (DCLK=CLKP/N) and SYSREF signals. The Rx controller also generates the SYNCN signal for error reporting as specified by the JESD204B standard. The data from the FIFOs, used to absorb the lane skews, is then mapped into I and Q sample data for the DSP to process. Each of the 4 lanes in the Rx link operates independently and includes code group synchronization operating on the 20-bit input from the PHY, 8b10b decoding, frame synchronization and monitoring, lane alignment and monitoring, character replacement and optional descrambling. All these functions are specified in the JESD204B standard. In addition to extracting the octets, which are later combined into I and Q samples, the Rx Lane also monitors and acts on various error conditions. Most error conditions can be enabled to trigger a resynchronization request from the transmit logic sevice through the SYNCN signal. See Link Layer Configuration Registers for more detail. Rx LINK PHY 1 Rx LANE 1 Rx FIFO 1 PHY 2 Rx LANE 2 Rx FIFO 2 PHY 3 Rx LANE 3 Rx FIFO 3 PHY 4 Rx LANE 4 Rx FIFO 4 RX MAPPER OCTETS TO SAMPLES DCLK (DEVICE CLOCK) DATAQ1[15:0] SAMCLK Rx CONTROLLER (# LANES CONFIGURABLE) SYSREF DATAI1[15:0] VALID SYNC~ Figure 9. JESD204B Receive Link Layer Block Diagram Rx LANE CODE GROUP SYNC 8b10b DECODING FRAME SYNC/ MONITORING Data_In[19:0] CLOCK RESET LANE ALIGNMENT/ MONITORING CHARACTER REPLACEMENT OPTIONAL DESCRAMBLING Data_Out[15:0] FRAME START MULTIFRAME START Figure 10. JESD204B Receive Lane Block Diagram On the input side of the Rx lane are 20-bit data and the clock from the PHY along with a synchronous reset. On the output side are 16-bit data (two octets) and frame/multiframe start signals marking the two bytes of data. www.maximintegrated.com Maxim Integrated │  29 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Lane Skew Requirement The skew between the various lanes is absorbed within the FIFOs and through the initial lane alignment process. The FIFO depth determines the amount of lane skew that can be absorbed for a particular Rx Link configuration. A FIFO depth of 32 bytes would account for up to 320 SerDes bit periods of skew between the various lanes. In actuality, the maximum supported skew is smaller than this due to multiple bytes written to and read from the FIFO in a single write/read clock cycle in various modes. The maximum supported skew is also reduced due to the write clock to read clock synchronization uncertainty. A minimum and maximum FIFO depth can be set and the overflow/underflow configured to trigger resynchroniza- tion from the transmit logic device. The configured FIFO range determines the actual lane skew supported by the MAX5871. Mapping of Physical to Logical Channels Each physical channel can be mapped to any logical channel before the octet to sample conversion. The octet to sample conversion for various modes as determined by the number of lanes (L), number of octets per frame (F) per JESD204B, and the number of samples per frame (S) is according to the formats shown below. Non-JESD204B I0[7:0] I1[15:8] I1[7:0] I1[7:0] I2[7:0] I3[7:0] Q0[15:8] Q0[7:0] Q1[15:8] Q1[7:0] Q0[15:8] Q1[15:8] Q2[15:8] Q3[15:8] Q3[7:0] Q0[7:0] Q1[7:0] Q2[7:0] Q3[7:0] Q0[7:0] I0[15:8] I0[7:0] Q3[15:8] Q2[7:0] Q0[15:8] I3[15:8] I3[7:0] Q2[15:8] Q1[7:0] I2[15:8] I2[7:0] Q1[15:8] Q0[7:0] I1[15:8] I2[15:8] I1[7:0] Q0[15:8] LANE 3 I0[15:8] I1[15:8] I0[7:0] LANE 2 I3[15:8] I0[15:8] LANE 1 LANE 0 I0[7:0] LFS=141 LFS=221 LFS=422a I0[15:8] LFS=411 M=2 M = NUMBER OF DATA CONVERTERS (I AND Q PATHS) L = NUMBER OF LANES F = NUMBER OF OCTETS PER FRAME S = NUMBER OF SAMPLES PER FRAME OCTET TO SAMPLE MAPPING FORMATS FOR SINGLE COMPLEX DAC Figure 11. Octet To Sample Conversion vs. Modes and Lanes www.maximintegrated.com Maxim Integrated │  30 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Serial Control Interface bits wide and is transmitted MSB to LSB in the default MSB-first mode. In the LSB-first mode, the address word is transmitted LSB to MSB followed by the R/W bit. The serial control interface is composed of the CSB, SCLK, SDI, and SDO pins. It supports typical 4-wire SPI interface (CSB, SCLK, SDI, and SDO) where pin SDI is the digital data input, and a typical 3-wire interface (CSB, SCLK, and SDI) where pin SDI is both digital data input and output. In the 3-wire interface mode, the SDI pin is identical to the SDIO pin, as identified in a typical 3-wire interface in some literature. For a write operation, a data word is immediately written to the MAX5871 after the last control word (R/W or address word) bit. The data word is 8 bits wide and is transmitted from the external controller, MSB to LSB in the default MSB-first mode. For a read operation, the data word is transmitted from the MAX5871 on the SDO signal line. The transmission starts on the falling edge of SCLK immediately after the last control word bit is latched into the MAX5871. Again the data word from the MAX5871 is transmitted MSB to LSB in the default MSB-first mode. The SDO driver enters a high-impedance state on the next falling SCLK edge immediately after the control word LSB is transmitted. CSB must toggle from low to high and then back down to low before another communication cycle can resume if burst mode is turned off. The SDO and SDI signals can be tied together to achieve an SDIO communication pin. The MAX5871 is always a slave device with the master controlling CSB, SCLK, and SDI. In 4-wire SPI interface mode, CSB, SCLK, and SDI are CMOS-level digital input pins, with a 1.8V input range. SDO is high impedance except when the MAX5871 is transmitting serial data. SDO is a CMOS output signal with a 1.8V output range. CSB is the chip-select pin. While in the low state, a MAX5871 device is open to communication through the SCLK, SDI, and SDO pins. Each communication cycle is composed of a read/write bit, an address word, and a write data word or a read data word. The serial interface clock, SCLK, latches data into the MAX5871 on the rising edge and clocks data out of the MAX5871 on the falling edge. A one for the R/W bit signifies a read operation and a zero indicates a write operation. A write operation is defined as the controller writing a data word to the MAX5871. A read operation is when the MAX5871 serial interface transmits a data word back to the controller. In the non-default LSB-first mode, the data word is transmitted LSB to MSB both for writes and reads. When burst mode is enabled, a continued assertion of CSB after the data word would auto decrement/increment the address word depending on the configuration for a successive read/write. Every 8 cycles of SCLK would access a successive address for either write or a read based on the R/W bit in the initial control word. Both the R/W bit and the address word are sent to the MAX5871 through the SDI pin. The address word is 15 CSB SCLK SDI R/ W A 14 A 13 A 12 A 11 A 10 A 9 A 8 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 SDO Figure 12. Single SPI Write Transaction with MSB-First www.maximintegrated.com Maxim Integrated │  31 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface CSB SCLK SDI R/ W A 14 A 13 A 12 A 11 A 10 A 9 A 8 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 SDO D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 Figure 13. Single SPI Read Transaction with MSB-First CSB SCLK SDI A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 A 13 A 14 R/ W SDO Figure 14. Single SPI Write Transaction with LSB-First www.maximintegrated.com Maxim Integrated │  32 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface CSB SCLK SDI A 0 A 1 A 2 A 3 A 4 A 5 A 8 A 7 A 6 A A A A A R/ 10 11 12 13 14 W A 9 D 0 SDO D 1 D 2 D 3 D 4 D 5 D 6 D 3 D 2 D 7 Figure 15. Single SPI Read Transaction with LSB-First CSB SCLK SDI A R/ 1 W 4 A 1 3 A 1 2 A 1 1 A 1 0 A 9 A 8 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 D 7 D 6 D 5 D 4 D 3 D 2 ADDRESS (a) D 1 D 0 D 7 D 6 D 5 D 4 D 1 D 0 ADDRESS (a ± 1) SDO Figure 16. Burst SPI Write Transaction with MSB-First www.maximintegrated.com Maxim Integrated │  33 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface CSB SDI A 10 A A A A 14 13 12 11 R/ W A 6 A 7 A 8 A 9 A 5 A 4 A 3 A 2 A 1 A 0 D 7 SDO D 6 D 5 D 4 D 3 D 2 D 1 D 0 D 7 D 6 ADDRESS (a) D 5 D 4 D 3 D 2 D 1 D 0 D 6 D 7 ADDRESS (a ± 1) Figure 17. Burst SPI Read Transaction with MSB-First CSB SCLK SDI A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A A A A A R/ 10 11 12 13 14 W D 0 D 1 D 2 D 3 D 4 D 5 ADDRESS (a) D 6 D 7 D 0 D 1 D 2 D 3 D 4 D 5 ADDRESS (a ± 1) SDO Figure 18. Burst SPI Write Transaction with LSB-First www.maximintegrated.com Maxim Integrated │  34 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface CSB SCLK SDI A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A A A A A R/ 10 11 12 13 14 W SDO D 0 D 1 D 2 D 3 D 4 D 5 ADDRESS (a) D 6 D 7 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 ADDRESS (a ±1) Figure 19. Burst SPI Read Transaction with LSB-First www.maximintegrated.com Maxim Integrated │  35 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Interrupt and Mute The INTB pin is a CMOS output port that signals an interrupt condition when in the low state. The interrupt system is composed of an interrupt register and an interrupt mask. The interrupt signal is a logic NOR of the bit-wise AND operation of the interrupt register and the interrupt mask. In the MAX5871, 7 interrupt bits are defined: 2 bits for JESD204B mute and interrupt status, 3 bits for a FIFO collision (1-away and 2-away), 1 bit for trim ready, and 1 7 BIT-WISE AND bit for DAC PLL unlock status. The interrupt tree for the MAX5871 is shown in Figure 20. The JESD204B interface has its own second level of interrupt registers and interrupt mask registers as defined in the register interface. The interrupt mask and register can be modified through the serial interface. Table 2 shows all the status register bits that can be enabled to generate an interrupt. 0 JESD204B STATUS REGISTERS (5) JESD204B INTERRUPT MASKS (5) 0 7 BIT-WISE AND DSP STATUS REGISTER EINT REGISTER INTB Figure 20. MAX5871 Interrupt Tree Table 2. MAX5871 Status Register Bits DSP STATUS REGISTERS (1ST LEVEL INTERRUPT) BANK.REGISTER.BIT FUNCTION DSP.STATUS.JSDIM Real-time status indicating DAC mute from JSDI link layer is active DSP.STATUS.JSDII Real-time status indicating interrupt from JSDI link layer is active DSP.STATUS.FCOL Latched status set when the input FIFO write and read pointers collide causing FIFO underflow or overflow DSP.STATUS.F1A Latched status set when the input FIFO write and read pointers are away from each other by one sample DSP.STATUS.F2A Latched status set when the input FIFO write and read pointers are away from each other by two samples DSP.STATUS.TRDY Latched status set when trim loading load is complete and the SPI bus is unblocked for external access DSP.STATUS.PLLlck Latched status set when the DAC PLL is unlocked www.maximintegrated.com Maxim Integrated │  36 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface JESD204B STATUS REGISTERS (2ND LEVEL INTERRUPT) BANK.REGISTER.BIT FUNCTION LNK.StatLane.lnNfnsync Real-time status indicating the frame synchronization state machine is not in sync on Lane N LNK.StatLane.lnNlnrealgn Latched status set when a lane realignment occurs on Lane N LNK.StatLane.lnNfrrealgn Latched status set when a frame realignment occurs on Lane N LNK.StatLane.lnNuk Latched status set when an unexpected /K/ character is received at an unexpected position while code group synchronization is established on Lane N LNK.StatLane.lnNctrl Latched status set when an unexpected control character other than /K/ is received when not expected on Lane N LNK.StatLane.lnNdisp Latched status set when a disparity error is detected on Lane N LNK.StatLane.lnNnit Latched status set when a NIT error is detected on Lane N LNK.StatLane.lnNcgs Latched status set when code group synchronization state-machine is out of sync on Lane N LNK.StatFIFO.lnNfafail Latched status set when dynamic FIFO adjustment fails due to not enough FIFO space on Lane N LNK.StatFIFO.lnNempty Latched status set when the FIFO goes empty on Lane N LNK.StatFIFO.lnNfull Latched status set when the FIFO goes full on Lane N LNK.StatILAS.lnNkerr Latched status set when a /K/ character is received at the current CGS boundary while in frame sync on Lane N LNK.StatILAS.lnNrprbs Latched status set when the SerDes interface PRBS monitor detected an error on Lane N LNK.StatILAS.lnNkrcv Latched status set when a non-/K/ character is detected on Lane N LNK.StatILAS.lnNfchkerr Latched status set when an ILA sequence FCHK error is detected on Lane N LNK.StatILAS.lnNlcfgerr Latched status set when an ILA sequence lane configuration error is detected on Lane N LNK.StatILAS.lnNilaerr Latched status set when an ILA sequence decode (/R/, /Q/, /A/ character) error is detected on Lane N LNK.StatILA.nsync Real-time status indicating ILA synchronization has not been achieved LNK.StatILA.syncn_det Latched status set on a resync request until a SYSREF pulse is detected LNK.StatILA.sysref_ndet Real-time SYSREF detection status set until first SYSREF detected LNK.StatILA.fail Latched status set when ILA failure due to not enough FIFO depth or when ILA is based on lanes that are not ready with data LNK.StatLink.prbs_c2err Latched status set when Converter 2 (Q-sample) PRBS error is detected LNK.StatLink.prbs_c1err Latched status set when Converter 1 (I-sample) PRBS error is detected LNK.StatLink.stp_c2err Latched status set when Converter 2 (Q-sample) short test pattern error is detected LNK.StatLink.stp_c1err Latched status set when Converter 1 (I-sample) short test pattern error is detected www.maximintegrated.com Maxim Integrated │  37 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Digital Control Pins The MAX5871 contains two 1.8V CMOS logic digital con­ trol pins, RESETB and MUTE. The device is placed in a reset state when RESETB is low. This control line is level sensitive. On power-up, RESETB should remain low until all supply voltages have stabilized. The MUTE pin defines when the device enters the mute mode. A high logic level places the device in mute mode while a low state establishes normal operation. In mute mode, the DAC digital input is set to midscale. The main purpose of mute is to eliminate any transmit power during the receive time of a TDMA system. In addition, there is a mute configuration programmed through the serial inter- 7 BIT-WISE AND face that enables the mute mode internally regardless of the state of the MUTE pin. A duplication of the interrupt mask registers as Mute Enable registers generate the internal mute signal. Table 2 shows all the status register bits that can be enabled to generate internal mute. The internal control state of the converter is preserved while the MAX5871 is in the MUTE state. Frequency Planning Using a DAC to generate communications transmit signals requires careful consideration of aliased harmonics and internally generated divided clocks. Figure 22 shows an example of two modulated signals transmitted at 1.8GHz and 2.1GHz. The second harmonic (HD2) and 0 7 JESD204B STATUS REGISTERS (5) DSP STATUS REGISTER BIT-WISE AND JESD204B MUTE ENABLE (5) 0 DSP EMUTE REGISTER DAC MUTE MUTE_PIN Figure 21. MAX5871 DAC Mute Generation fOUT1 1.8GHz fOUT2 2.1GHz fOUT2 image fOUT1 image DAC FREQUENCY RESPONSE fOUT1 HD3 fOUT2 HD2 fOUT1 fOUT2 HD2 HD3 fDAC fDAC/2 FREQUENCY 1GHz 2GHz 3GHz 4GHz 5GHz Figure 22. Example of Multiband Transmission and Dominant Harmonic Locations www.maximintegrated.com Maxim Integrated │  38 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface third harmonic (HD3) of the signal are aliased close to the transmitted signal due to the DAC sampling rate. The MAX5871 features a high-performance DAC core and many of the spurs and harmonics are suppressed. However, care must be taken to select the DAC sample rate such that the location of the dominant harmonics, such has HD2 and HD3, do not fall into the band of interest. If the board is not carefully designed to isolate the digital and analog portions, the input data may cause spurs to appear at the DAC output. The MAX5871 offers many interpolation settings for upconverting the input data such that a proper update rate can be chosen. For frequency planning, determine the input sample (or data) rate for the DAC and choose the DAC update rate such that the dominant harmonics are aliased outside of the band of interest. Next choose an interpolation rate closest to the DAC update rate divided by the input sample rate. Once the interpolation rate is determined, recalculate the exact DAC update rate, thereby determining the frequency of the DAC clock input. For new DAC update rate, reverify that the spur or harmonics are within spurious emission requirements. Signal Bandwidth The MAX5871 can generate a maximum I/Q complex signal bandwidth of 600.15MHz when operating fDAC = 5898.24Msps and 8x interpolation (or fDAC and interpolation setting combinations with the maximum input sample rate of 737.28MHz) for output frequencies ranging from DC to Nyquist. The actual signal bandwidth is dependent on the input sample rate (fS_IN), or the DAC update rate (fDAC) divided by the interpolation setting (R), and the interpolation filter passband width (PBW = 0.407, expressed as a percentage of the input sample rate). The I/Q complex DAC signal bandwidth is calculated as: The complex NCO employs a 33-bit phase accumulator to provide a programmed signal frequency up to fDAC/2. The DAC sample rate, fDAC, must be an integer multiple of a 30.72MHz reference frequency. The resolution of the MAX5871 can be programmed at 1Hz/10Hz/100Hz/1kHz/10kHz for a range of DAC clock frequency options. The user needs to program the following three parameters for the NCO, frequency control word (FCW), numerator frequency word (NFW), and denominator frequency word (DFW). The NCO resolution (fSTEP) is defined as: f STEP = f DAC M × 3 × 210 × 10 N where fDAC = M x reference frequency. For example, if the reference frequency is 30.72MHz, use M = 192 for a DAC clock frequency (fDAC) of 5898.24Msps. N = 0-4 sets the NCO resolution to 10kHz to 1Hz, respectively. The values of M and N are only used to calculate the FCW, NFW, and DFW that are required to program the required signal frequency. To program the required output frequency (fOUT) of the DAC, the user needs to follow these steps: 1) Convert fOUT into an integer number, mapping it on to the desired frequency resolution scale (fr) that depends on the value of N, using the equation: = f r f sig × 10 n− 4 where fOUT is in Hz. 2) The frequency control word parameters can be calculated using the following equation: DAC Signal Bandwidth = 2 x (fDAC/R) x (PBW) The complex I/Q signals are converted to a real signal using a digital quadrature modulator and quadrature NCO. The real bandwidth is centered around the NCO frequency. Complex Modulator and NCO The device includes a complex modulator comprised of a complex NCO driving two multipliers followed by an adder (Figure 23). The complex modulator produces the result: I(n) x COS(ωn) - Q(n) x SIN(ωn) where I and Q are filtered and interpolated versions of the input I-data and Q-data. www.maximintegrated.com QUADRATURE NCO Figure 23. Complex NCO and Modulator Maxim Integrated │  39 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface FCW = 2 33 × f r M × 3 × 210 × 10 N 3) The previous calculation results in a rational value (FCW_full) of the frequency control word. Only the quotient portion is set as the FCW. The remainder fractional value is converted into two integer rational numbers by removing the common integer multiplication factor between them. The numerator of this ratio is set as NFW and the denominator as DFW. Thus: FCW = _full FCW + NFW DFW When calculating FCW, NFW, and DFW, use long format (more precision) in Matlab code. For example, take M = 163 for fDAC = 163 x 30.72MHz = 5007.36MHz. Case 1 select fNCO = 1796.769375MHz F FCW _full = 2 33 × NCO = 2 33 FDAC 1796.769375MHz 3082289152.000000 × = 5007.36MHz Therefore, FCW = 3082289152, NFW = 0, DFW = 0. FCW (32-bit), NFW (18-bit), and DFW (19-bit), control words are programmed via the SPI bus. If the above calculation results into an integer number then NFW=DFW=0 should be set: F NFW FCW _full = 2 33 × NCO = FCW + FDAC DFW FCW_full = full resolution of rational number to be programmed Case 2 select fNCO = 1796.875MHz F FCW _full = 2 33 × NCO = 2 33 FDAC 1796.875MHz 3082470347.64826000000 × = 5007.36MHz Therefore, FCW = 3082470347, NFW/DFW = 317/489 ~ 0.64826000000. FCW = integer part of the FCW_full NFW = numerator of the fractional part of FCW_full DFW = denominator of the fractional part of FCW_full The NCO block diagram is shown in Figure 24. PHASE ACCUMULATOR FCW SIN REG TRUNCATE SIN/COS MAPPING FUNCTION COS +1 NFW > DFW -DFW REG DFW Figure 24. NCO Block Diagram www.maximintegrated.com Maxim Integrated │  40 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface The following is a simple Matlab code for calculating FCW, NFW, and DFW: % Find out MAX5871 NCO values format long The reference circuit employs a control amplifier designed to regulate the full-scale, differential output current, IOUTFS. The output current is calculated as follows: IOUTFS = 32 x IREF % Define DAC clock frequency M=1-200 M = 163 Fdac = 30.72e6*M % Define desired NCO frequency Fnco = 1796.769375e6; where IREF is the reference output current (IREF = VREFIO/ RSET) and IOUTFS is the full-scale output current of the DAC. Using the 1.2V (typical) internal reference and RSET of 1.28kΩ results in a full-scale output current of 30mA. In general, the dynamic performance of the DAC improves with increasing full-scale current. Analog Output FCW_full = 2^33*Fnco/Fdac; % Calculate FCW, NFW and DFWa FCW = floor(FCW_full) rats(FCW_full-FCW) % END Analog Interface Reference Interface The device operates with either the on-chip 1.2V band­ gap reference or an external reference voltage source as shown in Figures 25a and 25b. REFIO serves as the input for an external, low-impedance reference source, or as the reference output when the internal reference is used. REFIO must be decoupled to DACREF with a 1µF capacitor when using the internal reference. REFIO must be buffered with an external amplifier if heavier loading is required, due to the 10kΩ series resistance. The device is a differential current-steering DAC with built-in output termination resistors. The outputs are terminated to AVDD2 providing a 50Ω differential output resistance. In addition to the signal current, a constant current sink (IFIX) equal to one half IOUTFS is connected to each differential DAC output. N = 14 and is the number of bits of resolution of the DAC core. Figure 26 shows an equivalent circuit for the internal output structure of the device. The circuit has some resistive, capacitive and inductive elements. These elements have been minimized by design in order to achieve the highest possible output bandwidth (2600MHz typical). In addition, the device requires a differential external termination (i.e. double termination). This external termination can be accomplished with a differential 50Ω load or a single-ended 50Ω load interfaced through a transformer. RF chokes to the AVDD2 supply should be used with the transformer coupled output. A typical transformer coupled configuration for high-frequency operation is shown in Figure 26. 1.2V REFERENCE MAX5871 MAX5871 10kΩ IN REFIO 1µF RSET 10kΩ OUT OUTP IREF FSADJ 1.2V REFERENCE 2.5V TO 12.6V CURRENT SOURCE ARRAY DAC DACREF REFIO 1.25V 0.1µF MAX6161 1µF RSET OUTN VREFIO CURRENT SOURCE ARRAY DAC OUTN DACREF GND IREF = IREF = OUTP IREF FSADJ VREFIO RSET RSET Figure 25a. Reference Architecture, Internal Reference Configuration www.maximintegrated.com Figure 25b. Reference Architecture, External Reference Configuration Maxim Integrated │  41 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface For applications where the DC information is important, the output configuration in Figure 27 can be used. 25Ω resistors to AVDD2 are required for DC coupling. The DC configuration will lower the output common-mode which may reduce performance slightly. The device is not compatible with an unterminated output when using the upper portion of the full-scale current range. Lowering the fullscale current to 20mA or less may allow use of the outputs without external terminations, though performance will be impacted in this configuration. Clock Interface The MAX5871 DAC contains a differential high frequency clock input (CLKP/CLKN) and an optional (bypassable) internal clock multiplying PLL to ease clock distribution. When the PLL is bypassed, the DAC is updated on the rising edge of (CLKP/CLKN) at maximum frequency of 5898.24MHz. See the DAC Clock PLL section for operation with PLL enabled. The high-frequency clock should be a balanced fully differential signal with a 50%, or near 50%, duty cycle. The clock input has internal (on-chip) 100Ω differential termination. The clock inputs requires a minimum of 0dBm MAX5871 AVDD2 25Ω 25Ω input power. The clock inputs must be AC-coupled to the clock source as they are self-biased internally. DAC Clock PLL The MAX5871 differential high frequency clock input (CLKP/CLKN) also accepts an external reference clock signal that can be multiplied internally by a phase-lockedloop (PLL). The PLL includes user-programmable multiplication factors which provide flexibility in the reference clock selection. Figure 28 shows the functional block diagram of the PLL. The reference input signal is divided by 1, 2, 4, or 8 under user control before being applied to the phase/frequency detector (PFD). The VCO output is divided by a programmable divide by 16/20/24/28 divider and fed back to the PFD. In addition to the programmable reference divider and programmable VCO divider, there is an optional output divide by 2, before the clock signal is supplied to the RF DAC. Table 3 summarizes frequency multiplication factors between an external reference clock and DACCLK for various PLL settings. I1 = IFIX + IOUTFS x ((2N – 1) – CODE)/2N I1 = IFIX + IOUTFS x ((2N – 1) – CODE)/2N MAX5871 I2 = IFIX + IOUTFS x CODE/2N I2 = IFIX + IOUTFS x CODE/2N AVDD2 AVDD2 0.01µF OUTP 25Ω 390nH 390nH AVDD2 1µF 6 4 25Ω 25Ω 25Ω OUTP 1 T1 3 OUTN OUTN I1 I2 0.01µF Figure 26. Typical DAC Output Configuration www.maximintegrated.com I1 I2 Figure 27. Output Configuration for Low-Frequency Operation Maxim Integrated │  42 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Table 3. PLL Configuration Settings and Overall Multiplication Factor REFERENCE DIVIDE-SETTING (N) FEEDBACK DIVIDE-SETTING (M) POST DIVIDE-SETTING VCO MULTIPLICATION FACTOR OVERALL FREQUENCY MULTIPLICATION FACTOR 2 16 1 8 8 2 20 1 10 10 2 24 1 12 12 2 28 1 14 14 2 16 2 8 4 2 20 2 10 5 2 24 2 12 6 2 28 2 14 7 4 16 1 4 4 4 20 1 5 5 4 24 1 6 6 4 28 1 7 7 4 16 2 4 2 4 20 2 5 2.5 4 24 2 6 3 4 28 2 7 3.5 8 16 1 2 2 8 20 1 2.5 2.5 8 24 1 3.0 3 8 28 1 3.5 3.5 8 16 2 2 1 8 20 2 2.5 1.25 8 24 2 3.0 1.50 8 28 2 3.5 1.75 www.maximintegrated.com Maxim Integrated │  43 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface VCO Band Select The loop filter components should be placed as close as possible to the MAX5871 to avoid noise coupling into the circuit. In addition to the loop filter, there is a bypass capacitor that must be placed very close to the MAX5871. The C1 nF and C2 pF capacitor values strongly depends on system PCB design and are unique for most designs (see the Application Guidelines section). The VCO has two frequency ranges. The low range is 4.42368GHz to 4.9152GHz and the high range is 5.89824GHz to 6.1440GHz; however, the DAC sample rate is limited to 5.89824Gsps. The combination of reference frequency, reference and feedback divide values, and VCO band select must be chosen to operate the VCO within its allowed frequency range. Interpolation Filters Lock Detect The MAX5871 has powerful digital signal process capability with its built-in digital interpolation filters that can be configured with an interpolation ratio of 5x, 6x, 6.67x, 8x, 10x, 12x, 13.33x, 16x, 20x, 24x. Table 4 shows the digital filter coefficients of 8x and 10x interpolation ratios as examples. Figure 30 to Figure 39 show the frequency response of each of the interpolation ratio settings. The DAC clock PLL includes a lock detect indicator which can be read out of the SPI status register (DSP.StatPLL). Bit PLLST3 is set high when the PLL is locked and low when the PLL is unlocked. PLL External Components The DAC clock PLL requires external loop filter components. Figure 29 shows the schematic for the loop filter. LOOP FILTER (EXTERNAL) EXTERNAL REFERENCE CLOCK REFERENCE DIVIDER (1/2/4/8) PHASE/FREQENCY DETECTOR (PFD) CHARGE PUMP DUAL BAND VCO POST DIVIDER (/1/2) DACCLK VCO/FEEDBACK DIVIDER (/16/20/24/28) Figure 28. DAC Clock PLL Functional Block Diagram MAX5871 PLL_COMP VCOBYP C2 pF 0Ω 650Ω 4.7nF C1 nF Figure 29. DAC Clock PLL External Components www.maximintegrated.com Maxim Integrated │  44 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Table 4. Digital Filter Coefficients for 8x and 10x Interpolation Ratios TAPS FILTER 8x FILTER 10x TAPS FILTER 8x FILTER 10x 1 0.00000000000000000 0.00000000000000000 171 0.04010009765625000 0.99548339843750000 2 0.00001525878906250 0.00001525878906250 172 0.05004882812500000 0.99548339843750000 3 0.00003051757812500 0.00003051757812500 173 0.05175781250000000 0.96273803710937500 4 0.00004577636718750 0.00003051757812500 174 0.04571533203125000 0.89920043945312500 5 0.00006103515625000 0.00004577636718750 175 0.03344726562500000 0.80863952636718700 6 0.00007629394531250 0.00006103515625000 176 0.01730346679687500 0.69641113281250000 7 0.00006103515625000 0.00007629394531250 177 0.00000000000000000 0.56901550292968700 8 0.00003051757812500 0.00007629394531250 178 -0.01580810546875000 0.43365478515625000 9 0.00000000000000000 0.00006103515625000 179 -0.02795410156250000 0.29772949218750000 10 -0.00003051757812500 0.00004577636718750 180 -0.03494262695312500 0.16838073730468700 11 -0.00006103515625000 0.00001525878906250 181 -0.03619384765625000 0.05197143554687500 12 -0.00013732910156250 0.00000000000000000 182 -0.03198242187500000 -0.04637145996093750 13 -0.00018310546875000 -0.00003051757812500 183 -0.02340698242187500 -0.12295532226562500 14 -0.00016784667968750 -0.00006103515625000 184 -0.01211547851562500 -0.17572021484375000 15 -0.00012207031250000 -0.00010681152343750 185 0.00000000000000000 -0.20431518554687500 16 -0.00006103515625000 -0.00015258789062500 186 0.01106262207031250 -0.21008300781250000 17 0.00000000000000000 -0.00018310546875000 187 0.01953125000000000 -0.19575500488281200 18 0.00012207031250000 -0.00016784667968750 188 0.02439880371093750 -0.16522216796875000 19 0.00024414062500000 -0.00012207031250000 189 0.02523803710937500 -0.12316894531250000 20 0.00033569335937500 -0.00007629394531250 190 0.02227783203125000 -0.07461547851562500 21 0.00039672851562500 -0.00001525878906250 191 0.01629638671875000 -0.02461242675781250 22 0.00039672851562500 0.00004577636718750 192 0.00842285156250000 0.02224731445312500 23 0.00033569335937500 0.00013732910156250 193 0.00000000000000000 0.06210327148437500 24 0.00019836425781250 0.00022888183593750 194 -0.00765991210937500 0.09211730957031250 25 0.00000000000000000 0.00030517578125000 195 -0.01348876953125000 0.11053466796875000 26 -0.00022888183593750 0.00036621093750000 196 -0.01683044433593750 0.11682128906250000 27 -0.00048828125000000 0.00038146972656250 197 -0.01739501953125000 0.11148071289062500 28 -0.00070190429687500 0.00038146972656250 198 -0.01530456542968750 0.09611511230468750 29 -0.00085449218750000 0.00033569335937500 199 -0.01113891601562500 0.07298278808593750 30 -0.00085449218750000 0.00022888183593750 200 -0.00573730468750000 0.04495239257812500 31 -0.00070190429687500 0.00009155273437500 201 0.00000000000000000 0.01504516601562500 32 -0.00041198730468750 -0.00009155273437500 202 0.00520324707031250 -0.01383972167968750 33 0.00000000000000000 -0.00028991699218750 203 0.00915527343750000 -0.03907775878906250 34 0.00048828125000000 -0.00048828125000000 204 0.01136779785156250 -0.05859375000000000 35 0.00097656250000000 -0.00067138671875000 205 0.01168823242187500 -0.07099914550781250 36 0.00138854980468750 -0.00080871582031250 206 0.01025390625000000 -0.07569885253906250 37 0.00161743164062500 -0.00085449218750000 207 0.00744628906250000 -0.07284545898437500 38 0.00161743164062500 -0.00082397460937500 208 0.00381469726562500 -0.06326293945312500 39 0.00134277343750000 -0.00070190429687500 209 0.00000000000000000 -0.04837036132812500 40 0.00077819824218750 -0.00047302246093750 210 -0.00343322753906250 -0.02996826171875000 41 0.00000000000000000 -0.00016784667968750 211 -0.00601196289062500 -0.01005554199218750 www.maximintegrated.com Maxim Integrated │  45 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Table 4. Digital Filter Coefficients for 8x and 10x Interpolation Ratios (continued) TAPS FILTER 8x FILTER 10x TAPS FILTER 8x FILTER 10x 42 -0.00090026855468750 0.00019836425781250 212 -0.00744628906250000 0.00935363769531250 43 -0.00177001953125000 0.00061035156250000 213 -0.00762939453125000 0.02648925781250000 44 -0.00247192382812500 0.00099182128906250 214 -0.00666809082031250 0.03987121582031250 45 -0.00286865234375000 0.00132751464843750 215 -0.00482177734375000 0.04847717285156250 46 -0.00283813476562500 0.00155639648437500 216 -0.00247192382812500 0.05186462402343750 47 -0.00231933593750000 0.00164794921875000 217 0.00000000000000000 0.05007934570312500 48 -0.00134277343750000 0.00158691406250000 218 0.00219726562500000 0.04362487792968750 49 0.00000000000000000 0.00134277343750000 219 0.00381469726562500 0.03344726562500000 50 0.00152587890625000 0.00091552734375000 220 0.00469970703125000 0.02076721191406250 51 0.00299072265625000 0.00033569335937500 221 0.00479125976562500 0.00698852539062500 52 0.00415039062500000 -0.00036621093750000 222 0.00415039062500000 -0.00651550292968750 53 0.00479125976562500 -0.00109863281250000 223 0.00299072265625000 -0.01844787597656250 54 0.00469970703125000 -0.00177001953125000 224 0.00152587890625000 -0.02780151367187500 55 0.00381469726562500 -0.00234985351562500 225 0.00000000000000000 -0.03384399414062500 56 0.00219726562500000 -0.00274658203125000 226 -0.00134277343750000 -0.03625488281250000 57 0.00000000000000000 -0.00289916992187500 227 -0.00231933593750000 -0.03503417968750000 58 -0.00247192382812500 -0.00276184082031250 228 -0.00283813476562500 -0.03053283691406250 59 -0.00482177734375000 -0.00231933593750000 229 -0.00286865234375000 -0.02340698242187500 60 -0.00666809082031250 -0.00157165527343750 230 -0.00247192382812500 -0.01452636718750000 61 -0.00762939453125000 -0.00056457519531250 231 -0.00177001953125000 -0.00488281250000000 62 -0.00744628906250000 0.00061035156250000 232 -0.00090026855468750 0.00454711914062500 63 -0.00601196289062500 0.00184631347656250 233 0.00000000000000000 0.01289367675781250 64 -0.00343322753906250 0.00300598144531250 234 0.00077819824218750 0.01942443847656250 65 0.00000000000000000 0.00396728515625000 235 0.00134277343750000 0.02363586425781250 66 0.00381469726562500 0.00460815429687500 236 0.00161743164062500 0.02529907226562500 67 0.00744628906250000 0.00483703613281250 237 0.00161743164062500 0.02441406250000000 68 0.01025390625000000 0.00457763671875000 238 0.00138854980468750 0.02125549316406250 69 0.01168823242187500 0.00378417968750000 239 0.00097656250000000 0.01628112792968750 70 0.01136779785156250 0.00253295898437500 240 0.00048828125000000 0.01010131835937500 71 0.00915527343750000 0.00088500976562500 241 0.00000000000000000 0.00340270996093750 72 0.00520324707031250 -0.00102233886718750 242 -0.00041198730468750 -0.00314331054687500 73 0.00000000000000000 -0.00299072265625000 243 -0.00070190429687500 -0.00891113281250000 74 -0.00573730468750000 -0.00483703613281250 244 -0.00085449218750000 -0.01341247558593750 75 -0.01113891601562500 -0.00636291503906250 245 -0.00085449218750000 -0.01632690429687500 76 -0.01530456542968750 -0.00736999511718750 246 -0.00070190429687500 -0.01744079589843750 77 -0.01739501953125000 -0.00769042968750000 247 -0.00048828125000000 -0.01679992675781250 78 -0.01683044433593750 -0.00723266601562500 248 -0.00022888183593750 -0.01458740234375000 79 -0.01348876953125000 -0.00598144531250000 249 0.00000000000000000 -0.01113891601562500 80 -0.00765991210937500 -0.00398254394531250 250 0.00019836425781250 -0.00689697265625000 www.maximintegrated.com Maxim Integrated │  46 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Table 4. Digital Filter Coefficients for 8x and 10x Interpolation Ratios (continued) TAPS FILTER 8x FILTER 10x TAPS FILTER 8x FILTER 10x 81 0.00000000000000000 -0.00141906738281250 251 0.00033569335937500 -0.00231933593750000 82 0.00842285156250000 0.00152587890625000 252 0.00039672851562500 0.00215148925781250 83 0.01629638671875000 0.00459289550781250 253 0.00039672851562500 0.00607299804687500 84 0.02227783203125000 0.00746154785156250 254 0.00033569335937500 0.00909423828125000 85 0.02523803710937500 0.00978088378906250 255 0.00024414062500000 0.01103210449218750 86 0.02439880371093750 0.01127624511718750 256 0.00012207031250000 0.01174926757812500 87 0.01953125000000000 0.01174926757812500 257 0.00000000000000000 0.01127624511718750 88 0.01106262207031250 0.01103210449218750 258 -0.00006103515625000 0.00976562500000000 89 0.00000000000000000 0.00910949707031250 259 -0.00012207031250000 0.00744628906250000 90 -0.01211547851562500 0.00607299804687500 260 -0.00016784667968750 0.00460815429687500 91 -0.02340698242187500 0.00215148925781250 261 -0.00018310546875000 0.00154113769531250 92 -0.03198242187500000 -0.00230407714843750 262 -0.00013732910156250 -0.00141906738281250 93 -0.03619384765625000 -0.00689697265625000 263 -0.00006103515625000 -0.00399780273437500 94 -0.03494262695312500 -0.01113891601562500 264 -0.00003051757812500 -0.00596618652343750 95 -0.02795410156250000 -0.01458740234375000 265 0.00000000000000000 -0.00720214843750000 96 -0.01580810546875000 -0.01679992675781250 266 0.00003051757812500 -0.00765991210937500 97 0.00000000000000000 -0.01744079589843750 267 0.00006103515625000 -0.00733947753906250 98 0.01730346679687500 -0.01631164550781250 268 0.00007629394531250 -0.00634765625000000 99 0.03344726562500000 -0.01341247558593750 269 0.00006103515625000 -0.00482177734375000 100 0.04571533203125000 -0.00889587402343750 270 0.00004577636718750 -0.00297546386718750 101 0.05175781250000000 -0.00312805175781250 271 0.00003051757812500 -0.00100708007812500 102 0.05004882812500000 0.00340270996093750 272 0.00001525878906250 0.00090026855468750 103 0.04010009765625000 0.01010131835937500 273 0.00000000000000000 0.00254821777343750 104 0.02273559570312500 0.01628112792968750 274 0.00379943847656250 105 0.00000000000000000 0.02127075195312500 275 0.00456237792968750 106 -0.02496337890625000 0.02442932128906250 276 0.00482177734375000 107 -0.04837036132812500 0.02529907226562500 277 0.00460815429687500 108 -0.06631469726562500 0.02363586425781250 278 0.00396728515625000 109 -0.07537841796875000 0.01942443847656250 279 0.00300598144531250 110 -0.07318115234375000 0.01289367675781250 280 0.00183105468750000 111 -0.05892944335937500 0.00454711914062500 281 0.00059509277343750 112 -0.03358459472656250 -0.00488281250000000 282 -0.00056457519531250 113 0.00000000000000000 -0.01452636718750000 283 -0.00155639648437500 114 0.03735351562500000 -0.02339172363281250 284 -0.00230407714843750 115 0.07293701171875000 -0.03050231933593750 285 -0.00274658203125000 116 0.10086059570312500 -0.03501892089843750 286 -0.00289916992187500 117 0.11575317382812500 -0.03625488281250000 287 -0.00274658203125000 118 0.11360168457031200 -0.03385925292968750 288 -0.00234985351562500 119 0.09259033203125000 -0.02781677246093750 289 -0.00177001953125000 www.maximintegrated.com Maxim Integrated │  47 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Table 4. Digital Filter Coefficients for 8x and 10x Interpolation Ratios (continued) TAPS FILTER 8x FILTER 10x TAPS FILTER 8x FILTER 10x 120 0.05349731445312500 -0.01846313476562500 290 -0.00108337402343750 121 0.00000000000000000 -0.00651550292968750 291 -0.00036621093750000 122 -0.06158447265625000 0.00698852539062500 292 0.00032043457031250 123 -0.12277221679687500 0.02076721191406250 293 0.00091552734375000 124 -0.17385864257812500 0.03343200683593750 294 0.00134277343750000 125 -0.20507812500000000 0.04360961914062500 295 0.00158691406250000 126 -0.20782470703125000 0.05007934570312500 296 0.00164794921875000 127 -0.17584228515625000 0.05187988281250000 297 0.00154113769531250 128 -0.10620117187500000 0.04849243164062500 298 0.00131225585937500 129 0.00000000000000000 0.03987121582031250 299 0.00097656250000000 130 0.13760375976562500 0.02648925781250000 300 0.00059509277343750 131 0.29754638671875000 0.00936889648437500 301 0.00018310546875000 132 0.46774291992187500 -0.01005554199218750 302 -0.00018310546875000 133 0.63421630859375000 -0.02996826171875000 303 -0.00048828125000000 134 0.78253173828125000 -0.04838562011718750 304 -0.00070190429687500 135 0.89944458007812500 -0.06327819824218750 305 -0.00082397460937500 136 0.97422790527343700 -0.07286071777343750 306 -0.00086975097656250 137 0.99996948242187500 -0.07571411132812500 307 -0.00079345703125000 138 0.97422790527343700 -0.07101440429687500 308 -0.00067138671875000 139 0.89944458007812500 -0.05859375000000000 309 -0.00048828125000000 140 0.78253173828125000 -0.03907775878906250 310 -0.00028991699218750 141 0.63421630859375000 -0.01385498046875000 311 -0.00009155273437500 142 0.46774291992187500 0.01502990722656250 312 0.00009155273437500 143 0.29754638671875000 0.04498291015625000 313 0.00022888183593750 144 0.13760375976562500 0.07301330566406250 314 0.00032043457031250 145 0.00000000000000000 0.09613037109375000 315 0.00038146972656250 146 -0.10620117187500000 0.11149597167968700 316 0.00039672851562500 147 -0.17584228515625000 0.11682128906250000 317 0.00038146972656250 148 -0.20782470703125000 0.11056518554687500 318 0.00032043457031250 149 -0.20507812500000000 0.09213256835937500 319 0.00024414062500000 150 -0.17385864257812500 0.06210327148437500 320 0.00015258789062500 151 -0.12277221679687500 0.02223205566406250 321 0.00006103515625000 152 -0.06158447265625000 -0.02462768554687500 322 -0.00001525878906250 153 0.00000000000000000 -0.07464599609375000 323 -0.00009155273437500 154 0.05349731445312500 -0.12318420410156200 324 -0.00013732910156250 155 0.09259033203125000 -0.16522216796875000 325 -0.00016784667968750 156 0.11360168457031200 -0.19572448730468700 326 -0.00016784667968750 157 0.11575317382812500 -0.21005249023437500 327 -0.00015258789062500 158 0.10086059570312500 -0.20428466796875000 328 -0.00012207031250000 www.maximintegrated.com Maxim Integrated │  48 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Table 4. Digital Filter Coefficients for 8x and 10x Interpolation Ratios (continued) TAPS FILTER 8x FILTER 10x TAPS FILTER 8x FILTER 10x 159 0.07293701171875000 -0.17565917968750000 329 -0.00007629394531250 160 0.03735351562500000 -0.12292480468750000 330 -0.00003051757812500 161 0.00000000000000000 -0.04637145996093750 331 0.00000000000000000 162 -0.03358459472656250 0.05195617675781250 332 0.00001525878906250 163 -0.05892944335937500 0.16836547851562500 333 0.00003051757812500 164 -0.07318115234375000 0.29769897460937500 334 0.00004577636718750 165 -0.07537841796875000 0.43363952636718700 335 0.00006103515625000 166 -0.06631469726562500 0.56903076171875000 336 0.00006103515625000 167 -0.04837036132812500 0.69642639160156200 337 0.00006103515625000 168 -0.02496337890625000 0.80863952636718700 338 0.00004577636718750 169 0.00000000000000000 0.89920043945312500 339 0.00003051757812500 170 0.02273559570312500 0.96275329589843700 340 0.00001525878906250 6x MAGNITUDE RESPONSE 5x MAGNITUDE RESPONSE 0 0 -10 MAGNITUDE (dB) MAGNITUDE (dB) -20 -30 -40 -50 -60 -70 -50 -60 -70 -80 -90 -100 -80 -90 -100 -10 -20 -30 -40 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NORMALIZED FREQUENCY (xπ rad/sample) Figure 30. 5x Filter Baseband Frequency Response Normalized to DAC Output Update Rate www.maximintegrated.com 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NORMALIZED FREQUENCY (xπ rad/sample) Figure 31. 6x Filter Baseband Frequency Response Normalized to DAC Output Update Rate Maxim Integrated │  49 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface 6.67x MAGNITUDE RESPONSE 8x MAGNITUDE RESPONSE 0 0 -10 -20 -20 MAGNITUDE (dB) MAGNITUDE (dB) -30 -40 -50 -60 -70 -80 -90 -100 -40 -60 -80 -100 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 NORMALIZED FREQUENCY (xπ rad/sample) Figure 32. 6.67x Filter Baseband Frequency Response Normalized to DAC Output Update Rate 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 Figure 33. 8x Filter Baseband Frequency Response Normalized to DAC Output Update Rate 12x MAGNITUDE RESPONSE 10x MAGNITUDE RESPONSE 0 0 -20 -20 MAGNITUDE (dB) MAGNITUDE (dB) 0.3 NORMALIZED FREQUENCY (xπ rad/sample) -40 -60 -80 -40 -60 -80 -100 -100 Normalized Frequency ( xπ rad/sample) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NORMALIZED FREQUENCY (xπ rad/sample) Figure 34. 10x Filter Baseband Frequency Response Normalized to DAC Output Update Rate www.maximintegrated.com -120 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NORMALIZED FREQUENCY (xπ rad/sample) Figure 35. 12x Filter Baseband Frequency Response Normalized to DAC Output Update Rate Maxim Integrated │  50 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface 16x MAGNITUDE RESPONSE 0 -20 -20 MAGNITUDE (dB) MAGNITUDE (dB) 13.33x MAGNITUDE RESPONSE 0 -40 -60 -80 -40 -60 -80 -100 -100 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 Figure 36. 13.33x Filter Baseband Frequency Response Normalized to DAC Output Update Rate 0.1 -20 -20 MAGNITUDE (dB) MAGNITUDE (dB) 0 -80 -100 0.5 0.6 0.7 0.8 0.9 24x MAGNITUDE RESPONSE 20x MAGNITUDE RESPONSE -60 0.4 Figure 37. 16x Filter Baseband Frequency Response Normalized to DAC Output Update Rate 0 -40 0.2 0.3 NORMALIZED FREQUENCY (xπ rad/sample) NORMALIZED FREQUENCY (xπ rad/sample) -40 -60 -80 -100 -120 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NORMALIZED FREQUENCY (xπ rad/sample) Figure 38. 20x Filter Baseband Frequency Response Normalized to DAC Output Update Rate www.maximintegrated.com 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NORMALIZED FREQUENCY (xπ rad/sample) Figure 39. 24x Filter Baseband Frequency Response Normalized to DAC Output Update Rate Maxim Integrated │  51 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Register Definition and Description There are four banks of configuration registers in the MAX5871, which can be configured through SPI serial control interface. Configuration Register Banks 1) Global Configuration Registers – GLB This register bank configures SPI serial control interface, device information. 2) DSP and DAC Configuration Registers – DSP This register bank configures the MAX5871 chip operation, DSP engine, NCO, DAC operation, interruption and status, DAC PLL operation. 3) Link Layer Configuration Registers for JESD204B – LNK This register bank configures the JESD204B link layer on the serial data interface lanes, operation, and synchronization. 4) SerDes Configuration Registers for JESD204B – SER This register bank configures the JESD204B SerDes physical layer on the serial data interface lanes, operation, and synchronization. Register Bank Name, Bytes, Type, Address and Description (Note: Do not write to registers with addresses not listed in the table below. Register addresses not listed are reserved for factory use.) REGISTER NAME BYTES TYPE ADDRESS DECIMAL DESCRIPTION Global Configuration Registers–GLB CfgIFA 1 RW 0 Configure Interface A CfgIFB 1 RW 1 Configure Interface B CfgDev 1 RW 2 Device Configuration ChipType 1 R 3 Chip Type Status VendorID 2 R 12 Vendor ID CfgIFC 1 RW 15 Configure Interface C CfgDACrate 1 RW 16 Configure DAC Update Rate CfgCLKrate 1 RW 17 Configure CLKP/N Input Rate CfgREGS 1 RW 18 Configure Register Options DSP and DAC Configuration Registers–DSP CfgChipOM 1 RW 256 Configure Chip Operation Mode CfgDSP 1 RW 257 Configure DSP Engine CfgNCOF 4 RW 258 Configure NCO Frequency Control Word for DAC DSP CfgNCON 3 RW 262 Configure NCO Frequency Control Word Numerator Word for DAC DSP CfgNCOD 3 RW 265 Configure NCO Frequency Control Word Denominator Word for DAC DSP CfgNCOU 1 RW 268 Configure NCO Update for DAC DSP CfgNCOUS 3 RW 269 Configure NCO Step Size for DAC DSP CfgPM 1 RW 272 Configure Power Monitor for DAC DSP CfgPMT 1 RW 273 Configure Power Monitor Threshold for DAC DSP CfgPMIC 6 RW 274 Configure Power Monitor Init Count 6x8=48 Bits for DAC DSP www.maximintegrated.com Maxim Integrated │  52 MAX5871 REGISTER NAME 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface BYTES TYPE ADDRESS DECIMAL DESCRIPTION StatPM 2 R 280 Power Monitor Status for DAC DSP CfgSync 1 RW 346 Configure Multi-DAC Synchronization for DAC DSP CfgFIFO 1 RW 347 Configure Input FIFO for DAC EMUTE 1 RW 354 Mute Enable Mask for DAC EINT 1 RW 355 Interrupt Enable Mask for DAC DSP STATUS 1 R 356 Status Register for DAC DSP iFIFOLevel 1 R 357 Input FIFO Level for DAC DieSN 3 R 358 MAX5871 RF DAC Serial Number. Total 8x3 = 24 Bits CfgPLL 3 RW 384 Configure DAC PLL StatPLL 2 R 387 DAC PLL Status Link Layer Configuration Registers for JESD204B–LNK CfgSRst 1 RW 1024 Configure Soft Reset CfgLnRst 1 RW 1025 Configure Lane Reset CfgLinkSet 1 RW 1026 Configure Link Settings CfgSYSREF 1 RW 1027 Configure SYSREF Signal CfgSTHRSH 1 RW 1028 Configure SYSREF Threshold CfgSIGN 1 RW 1029 Configure SYSREF Ignore Count CfgSVLD 1 RW 1030 Configure SYSREF Valid Count CfgSYNCN 1 RW 1031 Configure SYNCN pin options CfgSAC 1 RW 1032 Configure SYNCN assert frame count CfgSDC 1 RW 1033 Configure SYNCN deassert frame count CfgLinkMLFS 1 RW 1034 Configure Link for M, L, F and S CfgLinkK 1 RW 1035 Configure Link Multiframe Length CfgBID 1 RW 1036 Configure Bank ID CfgDID 1 RW 1037 Configure Device ID CfgLID 4 RW 1038 Configure Lane N ID CfgLinkSrc 1 RW 1042 Configure Link Signal Source CfgClkInv 1 RW 1043 Configure Lane Clock Inversion CfgLinkCtl 1 RW 1044 Configure Link Control CfgBOff 2 RW 1045 Configure Manual Code Group Synch Bit Offsets CfgRstCnt 1 RW 1047 Configure SYSREF Reset Counts CfgILALck 1 RW 1048 Configure ILA Lock Configuration CfgILAC 1 RW 1049 Configure ILA Control CfgILAD 1 RW 1050 Configure ILA Delay Control CfgILAM 4 RW 1051 Configure Lane N Manual ILA Delay CfgILAmfs 2 RW 1055 Configure ILA Multiframe start CfgILAsn 2 RW 1057 Configure ILA Sequence Number CfgLerrM 2 RW 1059 Configure Error Mask for Reporting on SYNCN CfgSerrM 2 RW 1061 Configure Error Mask for Resync Request on SYNCN CfgMDS 2 RW 1063 Configure Multi-DAC Synchronization www.maximintegrated.com Maxim Integrated │  53 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface BYTES TYPE ADDRESS DECIMAL CfgINV 1 RW 1065 Configure Data Inversion CfgLnSrc 2 RW 1066 Configure Lane Source CfgLnEn 1 RW 1068 Configure Lane Enable CfgFIFO 2 RW 1069 Configure FIFO Depths CfgRepl 1 RW 1071 Configure Sample Replacement on NIT Error CfgSamTest 1 RW 1072 Configure Sample Interface Test CfgSTPc1s1 2 RW 1073 Configure Short Test Pattern for Converter 1, Sample 1 CfgSTPc1s2 2 RW 1075 Configure Short Test Pattern for Converter 1, Sample 2 CfgSTPc2s1 2 RW 1077 Configure Short Test Pattern for Converter 2, Sample 1 CfgSTPc2s2 2 RW 1079 Configure Short Test Pattern for Converter 2, Sample 2 CfgCnt 1 RW 1280 Configure Counter Settings CfgCntSel 1 RW 1281 Configure Counter Selects EIntLane 4 RW 1283 Lane N Interrupt Enable EIntFIFO 4 RW 1287 Lane N FIFO Interrupt Enable EIntILAS 4 RW 1291 Lane N ILA Sequence Interrupt Enable EIntILA 1 RW 1295 Initial Lane Alignment Interrupt Enable EIntLink 1 RW 1296 Link Interrupt Enable EMuteLane 4 RW 1297 Lane N Mute Enable EMuteFIFO 4 RW 1301 Lane N FIFO Mute Enable EMuteILAS 4 RW 1305 Lane N ILA Sequence Mute Enable EMuteILA 1 RW 1309 Initial Lane Alignment Mute Enable EMuteLink 1 RW 1310 Link Mute Enable StatLane 4 R 1408 Lane N Status StatFIFO 4 R 1412 Lane N FIFO Status StatILAS 4 R 1416 Lane N ILA Sequence Status StatILA 1 R 1420 Initial Lane Alignment Status StatLink 1 R 1421 Link Status CntInvld 2 R 1422 Counter for Invalid Errors CntDbg 2 R 1424 Counter for Lane Debug REGISTER NAME DESCRIPTION SERDES Configuration Registers for JESD204B–SER CfgRst 1 RW 1536 Configure Reset for All Lanes CfgRate 1 RW 1542 Configure Rate for All Lanes CfgTrainLnN 4 RW 1543 Configure Training for Lane N CfgMisc 1 RW 1547 Configure Miscellaneous for All Lanes EIntLnN 4 RW 1600 SerDes Phy Logic Interrupt Enable for Lane N EMuteLnN 4 RW 1604 SerDes Phy Logic DAC Mute Enable for Lane N StatusLnN 4 R 1608 SerDes Phy Logic Status for Lane N CfgCMU 8 RW 1792 Configure CMU Note: In the following Register Definition and Description sections, register and register bit marked with asterisk “*” indicates that it needs GLB.CfgIFC.Xfer writing a 1 to transfer the register content into active registers to take effect, when GLB.CfgREGS.ActSel = 1. www.maximintegrated.com Maxim Integrated │  54 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Global Configuration Registers Definition and Description ADDRESS BYTE 0x0000 1 REGISTER NAME CfgIFA Bit DESCRIPTION Configure Interface A 7 6 5 4 3 2 1 0 Name SftRst LSBF AddIncr 4Wire 4Wire AddIncr LSBF SftRst Default 0 0 0 0 0 0 0 0 SftRst Writing a 1 to this bit resets all of the digital logic except address 0x0000, 0x0001, and SPI interface. This bit is self-clearing. LSBF 0 = MSB first for SPI interface input control/data and output data 1 = LSB first for SPI interface input control/data and output data Definition AddIncr 0 = Decrement address for SPI streaming mode 1 = Increment address for SPI streaming mode 4Wire 0 = 3-Wire SPI mode, SDIO used for both input and output 1 = 4-Wire SPI mode, SDIO is input and SDO is output 0x0001 1 Note Bits[3:0] are mirrored in Bits[4:7], both low and high bits need to be written to the same value CfgIFB Configure Interface B Bit Name Default 7 6 5 4 3 2 1 0 StrmDis Res RdReg Res Reserved X X Res 0 0 0 0 0 0 0 0 StrmDis 0 = SPI streaming mode is enabled 1 = SPI streaming mode is disabled and continued CSB assertion forces instruction-data format 0x0002 1 Definition RdReg 0 = Register read back from active registers 1 = Register read back from buffer registers For fields that are not implemented with active/buffer registers, this bit has no effect. CfgDev Device Configuration Bit Name Default Definition www.maximintegrated.com 7 6 5 4 3 2 1 0 Res Res Res Res Res CDrst* PDM1 PDM0 0 0 0 0 0 0 0 0 PDM[1:0] 00 = Normal operation mode 01 = Reserved 10 = Reserved 11 = Sleep mode with lowest power dissipation with chip inactivity except SPI interfaceCDrst 0 = Clock Divider is not reset 1 = Clock Divider is reset Maxim Integrated │  55 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Global Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0003 1 REGISTER NAME ChipType 2 Chip Type Status Bit 7 6 5 4 3 2 1 0 Name X X X X Type3 Type2 Type1 Type0 Default 0 0 0 0 0 1 0 0 Definition 0x000C DESCRIPTION Type[3:0] Read-only field indicating high-speed DAC VendorID Maxim Integrated ID Bit 7 6 5 4 3 2 1 0 VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 15 14 13 12 11 10 9 8 Name VID15 VID14 VID13 VID12 VID11 VID10 VID9 VID8 Default 16'h0B6A Definition Read-only Maxim Integrated ID Name Bit 0x000F 1 CfgIFC Bit 7 6 5 4 3 2 1 0 Name X X X X X X X Xfer 0 0 0 0 0 0 0 0 Default Definition 0x0010 1 Configure Interface C CfgDACrate Xfer Writing a 1 transfers the buffer registers to active registers. This bit is self-clearing. Note: After the internal configuration is complete, DSP.STATUS.TRDY status is set Configure DAC Update Rate Bit 7 6 5 4 3 2 1 0 Name X X X X Drate3 Drate2 Drate1 Drate0 Default 0 0 0 0 1 0 1 0 Drate[3:0] Definition www.maximintegrated.com DAC rate 0000 = 2211.8MHz 0001 = 2457.6MHz 0010 = 2949.1MHz 0011 = 3072.0MHz 0100 = 3276.8MHz 0101 = 3686.4MHz 0110 = 3932.2MHz 0111 = 4096.0MHz 1000 = 4423.7MHz 1001 = 4915.2MHz 1010 = 5898.2MHz 1011 = 6144.0MHz 1100–1111 = Reserved Maxim Integrated │  56 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Global Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0011 1 REGISTER NAME CfgCLKrate DESCRIPTION Configure CLKP/N Input Rate Bit 7 6 5 4 3 2 1 0 Name X X X X Crate3 Crate2 Crate1 Crate0 Default 0 0 0 0 1 1 1 0 Crate[3:0] Definition 0x0012 1 CfgREGS CLKP/N rate 1000 = 4423.7MHz 1001 = 4915.2MHz 1010 = 5898.2MHz 1011 = 6144.0MHz 1100 = 983.04MHz 1101 = 1228.8MHz 1110 = 1474.56MHz 1111 = Reserved 0000 = 2211.8MHz 0001 = 2457.6MHz 0010 = 2949.1MHz 0011 = 3072.0MHz 0100 = 3276.8MHz 0101 = 3686.4MHz 0110 = 3932.2MHz 0111 = 4096.0MHz Configure Register options Bit 7 6 5 4 3 2 1 0 Name X X X X X X ActSel IntCfg Default 0 0 0 0 0 0 0 0 Definition www.maximintegrated.com ActSel 0 = Buffer register output is used 1 = Active register output is used for registers that are updated with CfgIFC.Xfer bitIntCfg 0 = Internal register configuration is disabled 1 = When CfgIFC.Xfer bit is set, some JESD204B registers are configured internally. (After internal configuration is complete, the DSP.STATUS.TRDY latched status is set.) Contact the chip manufacturer for more details if this function is needed. Maxim Integrated │  57 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description ADDRESS BYTE 0x0100 1 REGISTER NAME CfgChipOM Bit DESCRIPTION Configure Chip Operation Mode 7 6 5 4 3 2 1 0 Name Reserved2 RclkM1 RclkM0 INVQ* Reserved1 Mute Reserved0 DFMT* Default 0 0 0 0 0 1 0 0 Reserved2 Reserved – Do not write RclkM[1:0] 00 = RCLK output is DAC clock divided by (interpolation ratio x 1) 01 = RCLK output is DAC clock divided by (interpolation ratio x 2) 10 = RCLK output is DAC clock divided by (interpolation ratio x 4) 11 = Reserved Definition INVQ 0 = Disable DAC I-Q data Q being inverted to make I-Q (default) 1 = Enable DAC I-Q data Q being inverted to make I+Q Reserved1 Reserved – Do not write Mute 0 = DAC in normal mode 1 = Enable DAC mute Reserved0 Reserved – Do not write DFMT 0 = DAC Input data in two's complement format 1 = DAC Input data in offset binary format www.maximintegrated.com Maxim Integrated │  58 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0101 1 REGISTER NAME CfgDSP Bit DESCRIPTION Configure DSP Engine 7 6 5 4 3 2 1 0 Name R3* R2* R1* R0* RstDSP RstFIFO NCOE* NCOLD Default 0 0 0 0 0 0 0 0 1101 = DSP interpolation mode is 16x 1110 = DSP interpolation mode is 20x 1111 = DSP interpolation mode is 24x 0010 = DSP interpolation mode is 20/3x 0011 = DSP interpolation mode is 40/3x 0001, 0100 - 1000 = Reserved R[3:0] 1001 = DSP interpolation mode is 5x 1010 = DSP interpolation mode is 6x 1011 = DSP interpolation mode is 8x 0000 = DSP interpolation mode is 10x 1100 = DSP interpolation mode is 12x RstDSP 0 = No reset 1 = Reset DSP (Input FIFO, interpolation filters, complex modulator and NCO) Definition RstFIFO 0 = No reset 1 = Reset input data FIFO NCOE 0 = Disable Extended NCO mode for DAC 1 = Enable Extended NCO mode using the fractional NCO control words in CfgNCON and CfgNCOD NCOLD Writing a 1 loads NCO frequency control words to the DSP, this bit is self-clearing The NCO frequency control words are also loaded when GLBL.CfgIFC.Xfer bit is set to 1 0x0102 4 CfgNCOF* Bit Name Bit Name Bit Name Bit Name Configure NCO Frequency Control Word for DSP 7 6 5 4 3 2 1 0 FCW7 FCW6 FCW5 FCW4 FCW3 FCW2 FCW1 FCW0 15 14 13 12 11 10 9 8 FCW15 FCW14 FCW13 FCW12 FCW11 FCW10 FCW9 FCW8 23 22 21 20 19 18 17 16 FCW23 FCW22 FCW21 FCW20 FCW19 FCW18 FCW17 FCW16 31 30 29 28 27 26 25 24 FCW31 FCW30 FCW29 FCW28 FCW27 FCW26 FCW25 FCW24 Default Definition www.maximintegrated.com 0x00000000 FCW[31:0] NCO Frequency Control Word Maxim Integrated │  59 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0106 3 REGISTER NAME CfgNCON* Bit Name Bit Name DESCRIPTION Configure NCO Frequency Control Word Numerator Word for DSP 7 6 5 4 3 2 1 0 NFW7 NFW6 NFW5 NFW4 NFW3 NFW2 NFW1 NFW0 15 14 13 12 11 10 9 8 NFW15 NFW14 NFW13 NFW12 NFW11 NFW10 NFW9 NFW8 Bit 23 22 21 20 19 18 17 16 Name X X X X X X NFW17 NFW16 Default 0x0109 3 0x000000 Definition NFW[17:0] Numerator word of the Extended NCO Frequency Control Word CfgNCOD* Configure NCO Frequency Control Word Denominator Word for DSP Bit Name Bit Name 7 6 5 4 3 2 1 0 DFW7 DFW6 DFW5 DFW4 DFW3 DFW2 DFW1 DFW0 15 14 13 12 11 10 9 8 DFW15 DFW14 DFW13 DFW12 DFW11 DFW10 DFW9 DFW8 Bit 23 22 21 20 19 18 17 16 Name X X X X X DFW18 DFW17 DFW16 Default 0x010C 0x010D 1 3 0x000000 Definition DFW[18:0] Denominator word of the Extended NCO Frequency Control Word CfgNCOU Configure NCO Update for DSP Bit 7 6 Name X X Default 0 0 5 4 Reserved Reserved 0 3 2 1 0 Reserved Reserved RLM1 Reserved 0 0 0 0 0 Definition RLM1 0 = Load immediately with no glitch control 1 = Use step increment/decrement mode for a slow change in NCO phase towards the new frequency CfgNCOUS Configure NCO Step Size for DSP Bit Name Bit Name Bit Name Default Definition www.maximintegrated.com 7 6 5 4 3 2 1 0 TIM7 TIM6 TIM5 TIM4 TIM3 TIM2 TIM1 TIM0 15 14 13 12 11 10 9 8 TIM15 TIM14 TIM13 TIM12 TIM11 TIM10 TIM9 TIM8 23 22 21 20 19 18 17 16 TIM23 TIM22 TIM21 TIM20 TIM19 TIM18 TIM17 TIM16 0x000000 TIM[23:0] NCO Step Size in DAC Clock /8 clock cycles when CfgNCOU.RLM1=1 Maxim Integrated │  60 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0110 1 REGISTER NAME CfgPM DESCRIPTION Configure Power Monitor for DSP Bit 7 6 5 4 3 2 1 0 Name X X X X X Start Mode Reset Default 0 0 0 0 0 0 0 0 Start 0 = Power Monitor Stop 1 = Power Monitor Start Definition Mode 0 = Count samples below the threshold 1 = Count samples above the threshold Reset Writing a 1 resets the power monitor count, this bit is self-clearing 0x0111 1 CfgPMT Bit 0x0112 6 Configure Power Monitor Threshold for DSP 7 6 5 4 3 2 1 0 Name PMT7 PMT6 PMT5 PMT4 PMT3 PMT2 PMT1 PMT0 Default 0 0 0 0 0 0 0 0 Definition PMT[7:0] Power Monitor Threshold CfgPMIC Configure Power Monitor Initial Count for DSP Bit Name Bit Name Bit Name Bit Name Bit Name Bit Name 7 6 5 4 3 2 1 0 PMIC7 PMIC6 PMIC5 PMIC4 PMIC3 PMIC2 PMIC1 PMIC0 15 14 13 12 11 10 9 8 PMIC15 PMIC14 PMIC13 PMIC12 PMIC11 PMIC10 PMIC9 PMIC8 23 22 21 20 19 18 17 16 PMIC23 PMIC22 PMIC21 PMIC20 PMIC19 PMIC18 PMIC17 PMIC16 31 30 29 28 27 26 25 24 PMIC31 PMIC30 PMIC29 PMIC28 PMIC27 PMIC26 PMIC25 PMIC24 39 38 37 36 35 34 33 32 PMIC39 PMIC38 PMIC37 PMIC36 PMIC35 PMIC34 PMIC33 PMIC32 47 46 45 44 43 42 41 40 PMIC47 PMIC46 PMIC45 PMIC44 PMIC43 PMIC42 PMIC41 PMIC40 Default Definition www.maximintegrated.com 0x000000000000 PMIC[47:0] Power Monitor initial count Maxim Integrated │  61 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0118 2 REGISTER NAME StatPM Bit Name Bit Name DESCRIPTION Power Monitor Status for DSP 7 6 5 4 3 2 1 0 PMST7 PMST6 PMST5 PMST4 PMST3 PMST2 PMST1 PMST0 15 14 13 12 11 10 9 8 PMDONE X X X PMST11 PMST10 PMST9 PMST8 Default 0x015A 1 12'h000 Definition PMST[11:0] Power Monitor Status indicating the threshold crossing count PMDONE 1 = Power Monitor Status update done 0 = Power Monitor Status update in progress CfgSYNC Configure multiple-DAC synchronization for DSP Bit 7 6 5 4 3 2 1 0 Name DSP_ASync* ClkDiv_ Sync* iFIFO_ Sync* NCO_ Sync* X Reserved OIF_dinc OIF_ddec Default 0 0 0 0 0 0 0 0 DSP_ASync 0 = Disable Asynchronous SYSREF reset to the DSP 1 = Enable Asynchronous SYSREF reset to the DSP when there is no device cock to the JESD204B Link Definition ClkDiv_Sync When DSP_ASync = 0 0 = Disable synchronous SYSREF reset to the clock-divider block 1 = Enable synchronous SYSREF reset to the clock-divider block When DSP_ASync = 1 0 = Enable first asynchronous SYSREF reset to the clock-divider block 1 = Enable continuous asynchronous SYSREF reset to the clock-divider block iFIFO_Sync 0 = Disable synchronous SYSREF reset to the input FIFO 1 = Enable synchronous SYSREF reset to the input FIFO NCO_Sync 0 = Disable synchronous SYSREF reset to the NCO 1 = Enable synchronous SYSREF reset to the NCO OIF_dinc Writing a 1 increases the DSP latency by one DAC clock cycle, this bit is self-clearing OIF_ddec Writing a 1 decreases the DSP latency by one DAC clock cycle, this bit is self-clearing www.maximintegrated.com Maxim Integrated │  62 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x015B 1 REGISTER NAME CfgFIFO Bit Name Default DESCRIPTION Configure Input FIFO for DSP 7 6 5 4 3 2 1 0 RdPtrAdj3 RdPtrAdj2 RdPtrAdj1 RdPtrAdj0 Off Dupl* SwapIQ* RevBitOrd* 0 0 0 0 0 0 0 0 RdPtrAdj[3:0] 0Adjust read pointer by adding this value to the free running read pointer Off 0 = Input FIFO is not bypassed 1 = Input FIFO is bypassed Definition Dupl 0 = Do not duplicate I 1 = Duplicate I for Q SwapIQ 0 = Normal I/Q Order 1 = Reverse I/Q Order RevBitOrd 0 = Normal LSB/MSB Order 1 = Reverse LSB/MSB Order 0x0162 1 EMUTE Bit 0x0163 1 Mute Enable Register for DAC 7 6 5 4 3 2 1 0 Name EM7 EM6 EM5 EM4 EM3 EM2 EM1 EM0 Default 0 0 0 0 0 0 0 0 Definition EM[7:0] 0 = DAC Mute not enabled when the corresponding bit in STATUS register is set 1 = Enable DAC Mute when the corresponding bit in STATUS register is set EINT Interrupt Enable Register for DSP Bit Name Default Definition www.maximintegrated.com 7 6 5 4 3 2 1 0 EINT7 EINT6 EINT5 EINT4 EINT3 EINT2 EINT1 EINT0 0 0 0 0 0 1 0 0 EINT[7:0] 0 = Interrupt not enabled when the corresponding bit in STATUS register is set 1 = Enable Interrupt when the corresponding bit in STATUS register is set Maxim Integrated │  63 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0164 1 REGISTER NAME STATUS Bit Name DESCRIPTION Status Register for DAC DSP 7 6 5 4 JSDIM JSDII FCOL F1A Default 3 2 1 0 F2A TRDY Reserved PLLlck 0xXX JSDIM 0 = JSDI Link layer Mute is not active 1 = JSDI Link layer Mute is active JSDII 0 = JSDI Link layer Interrupt is not active 1 = JSDI Link layer Interrupt is active FCOL 0 = Input FIFO Rd/Wr pointers are not in collision 1 = Input FIFO Rd/Wr pointers are in collision indicating FIFO underflow/overflow. This is a latched state. Definition F1A 0 = Input FIFO Rd/Wr pointers are not away by 1 1 = Input FIFO Rd/Wr pointers are away by 1. This is a latched state. F2A 0 = Input FIFO Rd/Wr pointers are not away by 2 1 = Input FIFO Rd/Wr pointers are away by 2. This is a latched state. TRDY 0 = SPI interface access is unavailable out of reset through RESETB. 1 = SPI interface access is available after a reset through RESETB. It indicates that trim loading complete after RESETB deassertion, latched status and internal configuration complete after setting GLB.CfgIFC.Xfer, latched status PLLlck DAC PLL loss-of-lock, latched status. Writing 0 to clear this bit for status" 0 = locked, 1 = lossof-lock. 0x0165 1 Note Writing 0 clears these bits and writing 1 has no effect, except for JSDII and JSDIM which are second-level statuses and cannot be cleared iFIFOLevel Input FIFO Level for DSP Bit Name Default Definition www.maximintegrated.com 7 6 5 4 3 2 1 0 iFL7 iFL6 iFL5 iFL4 iFL3 iFL2 iFL1 iFL0 0xXX iFL[7:0] Input FIFO Level thermometer code, number of 1's indicating the FIFO depth Maxim Integrated │  64 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0166 3 REGISTER NAME DieSN Bit Name Bit Name Bit Name Default Definition www.maximintegrated.com DESCRIPTION MAX5871 RF DAC Serial Number 7 6 5 4 3 2 1 0 SN7 SN6 SN5 SN4 SN3 SN2 SN1 SN0 15 14 13 12 11 10 9 8 SN15 SN14 SN13 SN12 SN11 SN10 SN9 SN8 23 22 21 20 19 18 17 16 SN23 SN22 SN21 SN20 SN19 SN18 SN17 SN16 0xXXXXXX SN[23:0] Serial Number of the MAX5871 RF DAC die Maxim Integrated │  65 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0180 3 REGISTER NAME DESCRIPTION CfgPLL Configure DAC PLL Bit 7 6 5 4 3 2 1 0 Name PLL7 PLL6 PLL5 PLL4 PLL3 PLL2 PLL1 PLL0 Bit 15 14 13 12 11 10 9 8 Name PLL15 PLL14 PLL13 PLL12 PLL11 PLL10 PLL9 PLL8 Bit 23 22 21 20 19 18 17 16 Name PLL23 PLL22 PLL21 PLL20 PLL19 PLL18 PLL17 PLL16 Default 0x004000 PLL[23:21] Reserved - do not write PLL[20:19] (DVAL[3:2]) See decode below PLL16 0 = Selects the lowband VCO 1 = Selects the highband VCO PLL17, PLL15 Reserved – do not write PLL14 0 = DAC PLL is not bypassed 1 = DAC PLL is bypassed Definition PLL[13:12] (DVAL[1:0]) 0100 = Feedback divider set to div-by-16 0101 = Feedback divider set to div-by-20 0110 = Feedback divider set to div-by-24 1000 = Feedback divider set to div-by-32 1001 = Feedback divider set to div-by-36 1010 = Feedback divider set to div-by-40 1100 = Feedback divider set to div-by-48 PLL11 (PVAL) 0 = Output divider set to div-by-2 1 = Output divider set to div-by-1 PLL18, PLL10 (RVAL) 00 = Reference divider control set to div-by-8 01 = Reference divider control set to div-by-4 10 = Reference divider control set to div-by-2 11 = Reference divider control set to div-by-1 PLL[9:2] Reserved – Do not writ PLL1 Reserved – Do not write PLL0 Force restart PLL digital tuning by toggling from 1 to 0 and back to 1 www.maximintegrated.com Maxim Integrated │  66 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface DSP and DAC Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0183 2 REGISTER NAME StatPLL Bit Name Bit Name DESCRIPTION DAC PLL Status 7 6 5 4 3 2 1 0 PLLST7 PLLST6 PLLST5 PLLST4 PLLST3 PLLST2 PLLST1 PLLST0 15 14 13 12 11 10 9 8 PLLST15 PLLST14 PLLST11 PLLST10 PLLST9 PLLST8 PLLST13 PLLST12 Default 0xXXXX PLLST[15:4] Reserved Definition PLLST3 0 = PLL not locked 1 = PLL locked PLLST[2:0] Reserved Link Layer Configuration Registers Definition and Description ADDRESS BYTE 0x0400 1 REGISTER NAME CfgSRst 1 Configure Soft Reset Bit 7 6 5 4 3 2 1 0 Name X X X X X X srl ila Default 0 0 0 0 0 0 0 0 Definition 0x0401 DESCRIPTION CfgLnRst srl Soft reset to clear all the latched statuses ila Soft reset for ILA engine Configure Lane Reset Bit 7 6 5 4 3 2 1 0 Name X X X X ln4 ln3 ln2 ln1 Default 0 0 0 0 0 0 0 0 Definition www.maximintegrated.com ln[4:1] Soft reset for Lane N Maxim Integrated │  67 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0402 1 REGISTER NAME CfgLinkSet Bit DESCRIPTION Configure Link Settings 7 6 5 4 3 2 1 0 Name idisp scrmd* X X ddiv1* ddiv0* sclass1* sclass0* Default 0 0 0 0 0 1 0 0 idisp 0 = Do not ignore running disparity errors for data processing 1 = Ignore running disparity errors for data processing scrmd 0 = Descrambler is enabled 1 = Descrambler is disabled Definition ddiv[1:0] 00 = Device clock to sample clock frequency ratio is 1 01 = Device clock to sample clock frequency ratio is 2 10 = Device clock to sample clock frequency ratio is 4 11 = Device clock to sample clock frequency ratio is 8 sclass[1:0] JESD204B Subclass (0, 1 or 2), only 00 and 01 are valid values 0x0403 1 CfgSYSREF Configure SYSREF Signal Bit 7 6 5 4 3 2 1 0 Name X valid_det senext rsync smode1 smode0 ignore_ en thrsh_en Default 0 0 0 0 0 0 0 0 valid_det 0 = SYSREF validity is not checked 1 = SYSREF validity is checked to be a number of symbol clocks as configured in CfgSVLD. valid[7:0] senext 0 = SYSREF_EN pin is ignored 1 = SYSREF enable is controlled by SYSREF_EN pin for better timing than through SPI writes rsync0 = A re-sync request is not output on SYNCN on a new SYSREF multiframe boundary 1 = A re-sync request is output on SYNCN on a new SYSREF multiframe boundary Definition smode[1:0] 00 = SYSREF is ignored 01 = The first SYSREF pulse is enabled when smode0 is toggled from 0 to 1 10 = All SYSREF pulses are enabled 11 = ReservedThese bits are only used for synchronous SYSREF mode ignore_en 0 = No SYSREF pulses are dropped before smode[1:0] takes effect 1 = SYSREF pulses are dropped as configured in CfgSIGN.ign[7:0] before smode[1:0] takes effect thrsh_en 0 = LMFC is reset irrespective of the new SYSREF offset 1 = LMFC is reset only if the new SYSREF offset exceeds the threshold from CfgSTHRSH. thrsh[3:0] www.maximintegrated.com Maxim Integrated │  68 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0404 1 REGISTER NAME CfgSTHRSH Bit Name Default Definition DESCRIPTION Configure SYSREF Threshold 7 6 5 4 3 2 1 0 dfath3 dfath2 dfath1 dfath0 thrsh3 thrsh2 thrsh1 thrsh0 0 0 0 0 0 0 0 0 dfath[3:0] 0 = No threshold for Dynamic FIFO adjustment 1-15 = Dynamic FIFO adjustment is suppressed when the new frame/lane boundary is offset by more than the decimal value of this field in sample clock cycles thrsh[3:0] SYSREF offset threshold in sample clock cycles when enabled by CfgSYSREF.thrsh_en 0x0405 1 CfgSIGN Bit 0x0406 1 Configure SYSREF Ignore Count 7 6 5 4 3 2 1 0 Name ign7 ign6 ign5 ign4 ign3 ign2 ign1 ign0 Default 0 0 0 0 0 0 0 0 Definition ign[7:0] SYSREF number of pulses ignored count when enabled by CfgSYSREF.ignore_en CfgSVLD Configure SYSREF Valid Count Bit 7 6 5 4 3 2 1 0 Name valid7 valid6 valid5 valid4 valid3 valid2 valid1 valid0 Default 0 0 0 0 0 0 0 0 Definition www.maximintegrated.com valid[7:0] SYSREF validity check count of device clock cycles when enabled by CfgSYSREF.valid_det Maxim Integrated │  69 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0407 1 REGISTER NAME CfgSYNCN DESCRIPTION Configure SYNCN pin options Bit 7 6 5 4 Name X ret Reserved2 cset Default 0 0 0 0 3 2 Reserved1 Reserved0 0 0 1 0 init pol 0 0 ret 0 = SYNCN is output synchronous to the internal sample clock1 = SYNCN is retimed to device clock, useful for Subclass0 at lower frequencies This bit should be cleared when the device clock is not present (CfgLinkSrc.rclk = 1) Reserved2Reserved–Do not write Definition cset0 = Disable manual control of assert/deassert frame cycle of SYNCN error reporting 1 = Enable manual control of assert/deassert frame cycle of SYNCN error reporting through CfgSAC and CfgSDC Reserved1-0 Reserved–Do not write init 0 = Out-of-reset value for SYNCN output is 0 1 = Out-of-reset value for SYNCN output is 1 pol 0 = SYNCN polarity is active low according to the JESD204B standard 1 = SYNCN polarity is active-high 0x0408 0x0409 1 1 CfgSAC Configure SYNCN assert frame count Bit 7 6 5 4 3 2 1 0 Name X X X acnt4 acnt3 acnt2 acnt1 acnt0 Default 0 0 0 0 0 0 0 0 Definition acnt[4:0] When CfgSYNCN.cset is set, this value determines the SYNCN error reporting assertion frame count CfgSDC Configure SYNCN deassert frame count Bit 7 6 5 4 3 2 1 0 Name X X X dcnt4 dcnt3 dcnt2 dcnt1 dcnt0 0 0 0 0 0 0 0 0 Default Definition www.maximintegrated.com dcnt[4:0] When CfgSYNCN.cset is set, this value determines the SYNCN error reporting deassertion frame count Maxim Integrated │  70 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x040A 1 REGISTER NAME CfgLinkMLFS DESCRIPTION Configure Link for M, L, F and S Bit 7 6 5 4 3 2 1 0 Name S F1 F0 X L1 L0 X M 0 0 0 0 1 1 0 1 Default S Number of samples per frame cycle is (S1), restricted to allowed combinations of L/F/S Definition F[1:0] Number of octets per frame cycle per lane is (F1), restricted to allowed combinations of L/F/S L[1:0] Number of active lanes in the Link is (L1), restricted to allowed combinations of L/F/S M Number of converters in the Link is (M1), should always be set to 1 0x040B 1 CfgLinkK 7 6 5 4 3 2 1 0 Name X X X K4 K3 K2 K1 K0 0 0 0 0 1 1 1 1 Default 0x040C 0x040D 1 1 Configure Link multiframe length Bit Definition K[4:0] Number of frames per multiframe is (K1) CfgBID Configure Bank ID Bit 7 6 5 4 3 2 1 0 Name X X X X bid3 bid2 bid1 bid0 Default 0 0 0 0 0 0 0 0 Definition bid[3:0] Bank ID used for ILA sequence checking CfgDID Configure Device ID Bit 7 6 5 4 3 2 1 0 Name did7-0 did6 did5 did4 did3 did2 did1 did0 Default 0 0 0 0 0 0 0 0 Definition www.maximintegrated.com did[7:0] Device ID used for ILA sequence checking Maxim Integrated │  71 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x040E 4 REGISTER NAME CfgLID Bit DESCRIPTION Configure Lane N ID 7 6 5 4 3 2 1 0 Name X X X lid1_4 lid1_3 lid1_2 lid1_1 lid1_0 Bit 15 14 13 12 11 10 9 8 Name X X X lid2_4 lid2_3 lid2_2 lid2_1 lid2_0 Bit 23 22 21 20 19 18 17 16 Name X X X lid3_4 lid3_3 lid3_2 lid3_1 lid3_0 Bit 31 30 29 28 27 26 25 24 Name X X X lid4_4 lid4_3 lid4_2 lid4_1 lid4_0 Default Definition 0x0412 1 0x00000000 lidN_[4:0] Lane ID for Lane N used for ILA sequence checking CfgLinkSrc Configure Link signal source Bit 7 6 5 4 3 2 1 0 Name X X X X X X async_ avl rclk 0 0 0 0 0 0 0 1 Default Definition async_avl 0 = Frame synchronization supports re-initialization over the data interface, monitoring the reception of /K/ characters 1 = SYNCN signals from all receivers are available and frame synchronization state machine does not support re-initialization over the data interface (no FS_CHECK state) rclk 0 = Sample Clock is derived from Device Clock (CLKP/N) with a divide down set by CfgLinkSet. ddiv[1:0] 1 = Sample Clock is sourced from the DSP through the DAC Clock divided by interpolation ratio 0x0413 1 CfgClkInv Configure Lane Clock Inversion Bit 7 6 5 4 3 2 1 0 Name X X X X ln4 ln3 ln2 ln1 0 0 0 0 0 0 0 0 Default Definition www.maximintegrated.com lnN When set, invert Rx clock from SerDes Maxim Integrated │  72 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0414 1 REGISTER NAME CfgLinkCtl Bit 0x0415 2 DESCRIPTION Configure Link control 7 6 5 4 3 2 1 0 Name cgsmen serrc altm dynfadj lcoren fcoren bswap afdeti Default 0 0 0 1 0 0 0 0 Definition cgsmen When set, enable Manual Code Group Synchronization through CfgBOff serrc When set, enable SYNCN error reporting assertion/deassertion on any frame–JESD204A altm When set, enable alternate sample data mapping for MLFS=2422 dynfadj When set, enable dynamic FIFO pointer adjustment on a frame/lane synchronization change lcoren When set, enable Lane Synchronization auto-correction fcoren When set, enable Frame Synchronization auto-correction bswap When set, enable Bit Swap MSBLSB in an octet on all lanes afdeti When set, enable detection of invalid (Running Disparity) /A/ and /F/ characters CfgBOff Configure Manual Code Group Synch Bit Offsets Bit Name Bit Name 7 6 5 4 3 2 1 0 ln2_3 ln2_2 ln2_1 ln2_0 ln1_3 ln1_2 ln1_1 ln1_0 15 14 13 12 11 10 9 8 ln4_3 ln4_2 ln4_1 ln4_0 ln3_3 ln3_2 ln3_1 ln3_0 Default 0x0417 1 0x0000 Definition ln[4:1]_[3:0] Lane N manual Code Group Synchronization boundary enabled by CfgLinkCtl.cgsmen CfgRstCnt Configure SYSREF reset counts Bit 7 6 5 4 3 2 1 0 Name X X oi fi4 fi3 fi2 fi1 fi0 Default 0 0 0 0 0 0 0 0 oi Initial value of octet count in the frame cycle from SYSREF sampling Definition www.maximintegrated.com fi[4:0] Initial value of frame count in the multiframe cycle from SYSREF sampling This value along with CfgRstCnt.oi is useful for setting the LMFC boundary relative to SYSREF Maxim Integrated │  73 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0418 0x0419 1 1 REGISTER NAME CfgILALck DESCRIPTION Configure ILA Lock configuration Bit 7 6 5 4 3 2 1 0 Name X X X X lksel4 lksel3 lksel2 lksel1 Default 0 0 0 0 1 1 1 1 Definition lkselN ILA Lock Select mask for Lane N based on FIFO write start, 1 indicating the lane is included This field is typically set to the same value as CfgLnEn.ln[3:0] but if the lksel bit is set to 0 when the lane is enabled, that particular lane will not be included in the ILA process. CfgILAC Configure ILA Control Bit 7 6 5 4 3 2 1 0 Name X X X X lsdis ilasd1 ilasd0 dfsync Default 0 0 0 0 0 0 0 0 lsdis 0 = Lane synchronization enabled 1 = Lane synchronization disabled Definition ilasd[1:0] 00 = ILA sequence detection is enabled 01 = ILA sequence detection is disabled for the first CfgILAsn.snum frames 10 = ILA sequence detection is disabled 11 = Reserved dfsync 0 = Enable ILA restart on frame resynchronization 1 = Disable ILA restart on frame resynchronization 0x041A 1 CfgILAD Bit Name Default Definition www.maximintegrated.com Configure ILA Delay Control 7 6 5 4 3 2 1 0 ilam X idly5 idly4 idly3 idly2 idly1 idly0 0 0 0 0 0 0 0 0 ilam 0 = Manual ILA control is disabled 1 = Manual ILA control is enabled idly[5:0] ILA Delay sample clock count from the LMFC boundary for FIFO read start This field is useful to set the FIFO depths based on the link delay Maxim Integrated │  74 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x041B 4 REGISTER NAME CfgILAM Bit DESCRIPTION Configure Lane N Manual ILA Delay 7 6 5 4 3 2 1 0 Name X X ln1imd5 ln1imd4 ln1imd3 ln1imd2 ln1imd1 ln1imd0 Bit 15 14 13 12 11 10 9 8 Name X X ln2imd5 ln2imd4 ln2imd3 ln2imd2 ln2imd1 ln2imd0 Bit 23 22 21 20 19 18 17 16 Name X X ln3imd5 ln3imd4 ln3imd3 ln3imd2 ln3imd1 ln3imd0 Bit 31 30 29 28 27 26 25 24 Name X X ln4imd5 ln4imd4 ln4imd3 ln4imd2 ln4imd1 ln4imd0 Default 0x041F 2 0x00000000 Definition ln[4:1]imd[5:0] Manual ILA Delay sample clock count for FIFO read start for Lane N when enabled by CfgILAD.ilam CfgILAmfs Configure ILA Multiframe start Bit Name 7 6 5 4 3 2 1 0 mfsel7 mfsel6 mfsel5 mfsel4 mfsel3 mfsel2 mfsel1 mfsel0 Bit 15 14 13 12 11 10 9 8 Name X X X X X X X Reserved0 Default Definition 0x0421 2 CfgILAsn Bit 0x0004 mfsel[7:0] ILA multiframe count for FIFO write start Reserved0 Reserved–do not write Configure ILA sequence number 7 6 5 4 3 2 1 0 snum7 snum6 snum5 snum4 snum3 snum2 snum1 snum0 Bit 15 14 13 12 11 10 9 8 Name X X X X X X X Reserved0 Name Default Definition www.maximintegrated.com 0x0003 snum[7:0] Number of multiframes used for ILA sequence checking Reserved0 Reserved–do not write Maxim Integrated │  75 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0423 2 REGISTER NAME CfgLerrM* Bit Name DESCRIPTION Configure Mask for error reporting on SYNCN 7 6 5 4 3 2 1 0 lerrm7 lerrm6 lerrm5 lerrm4 lerrm3 lerrm2 lerrm1 lerrm0 Bit 15 14 13 12 11 10 9 8 Name X lerrm14 lerrm13 lerrm12 lerrm11 lerrm10 lerrm9 lerrm8 Default 0x0000 lerrm14 When set, ILA Fail error is enabled lerrm13 Reserved lerrm12 When set, FIFO empty error is enabled lerrm11 When set, FIFO full error is enabled lerrm10 When set, Lane Configuration in ILA sequence FCS check error is enabled lerrm9 When set, Lane Configuration in ILA sequence mismatch error is enabled lerrm8 When set, ILA sequence control character error is enabled Definition lerrm7 When set, Dynamic FIFO adjustment failure is enabled lerrm6 When set, Lane realignment event is enabled lerrm5 When set, Frame realignment event is enabled lerrm4 When set, 8b10b /K/ character at unexpected alignment error is enabled lerrm3 When set, unexpected 8b10b control character other than /K/ error is enabled lerrm2 When set, 8b10b Running Disparity error is enabled lerrm1 When set, 8b10b Not-in-table error is enabled lerrm0 Reserved www.maximintegrated.com Maxim Integrated │  76 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0425 2 REGISTER NAME CfgSerrM* Bit Name DESCRIPTION Configure Mask for re-sync request on SYNCN 7 6 5 4 3 2 1 0 serrm7 serrm6 serrm5 0 0 serrm2 serrm1 0 Bit 15 14 13 12 11 10 9 8 Name X serrm14 serrm13 serrm12 serrm11 serrm10 serrm9 serrm8 Default 0x0000 serrm14 When set, ILA Fail error is enabled serrm13 Reserved serrm12 When set, FIFO empty error is enabled serrm11 When set, FIFO full error is enabled serrm10 When set, Lane Configuration in ILA sequence FCS check error is enabled serrm9 When set, Lane Configuration in ILA sequence mismatch error is enabled serrm8 When set, ILA sequence control character error is enabled Definition serrm7 When set, Dynamic FIFO adjustment failure is enabled serrm6 When set, Lane realignment event is enabled serrm5 When set, Frame realignment event is enabled serrm4 Reserved = 0 only serrm3 Reserved = 0 only serrm2 When set, 8b10b Running Disparity error is enabled serrm1 When set, 8b10b Not-in-table error is enabled serrm0 Reserved = 0 only www.maximintegrated.com Maxim Integrated │  77 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0427 2 REGISTER NAME CfgMDS DESCRIPTION Configure Multi-DAC Synchronization Bit 7 6 5 4 3 2 1 0 Name X X X rclk Reserved3 Reserved2 Reserved1 Reserved0 Bit 15 14 13 12 11 10 9 8 X Reserved8 Reserved7 Reserved6 Reserved5 Reserved4 Name X X Default Definition 0x0000 rclk When set, RSYNC from DSP replaces SYSREF This bit should be set to 1 when SYSREF is used for multi-DAC synchronization and no Device Clock is available to sample SYSREF on Reserved8-0 Reserved–do not write 0x0429 0x042A 1 2 CfgINV Configure data inversion Bit 7 6 5 4 3 2 1 0 Name X X X X ln4 ln3 ln2 ln1 Default 0 0 0 0 0 0 0 0 Definition ln[4:1] 0 = Lane N octet data inversion is disabled 1 = Lane N octet data inversion is enable CfgLnSrc Configure Lane Source Bit 7 6 5 4 3 2 1 0 Name X X ln2_1 ln2_0 X X ln1_1 ln1_0 Bit 15 14 13 12 11 10 9 8 Name X X ln4_1 ln4_0 X X ln3_1 ln3_0 Default Definition www.maximintegrated.com 0x3210 ln[4:1]_[1:0] Physical Lane number source for Logical Lane N at octet-to-sample mapping Maxim Integrated │  78 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x042C 0x042D 1 2 REGISTER NAME CfgLnEn DESCRIPTION Configure Lane Enable Bit 7 6 5 4 3 2 1 0 Name X X X X ln4 ln3 ln2 ln1 Default 0 0 0 0 1 1 1 1 6 5 4 3 2 1 0 Definition ln[4:1] Lane N enable CfgFIFO Configure FIFO depths Bit 7 Name X X X minfd4 minfd3 minfd2 minfd1 minfd0 Bit 15 14 13 12 11 10 9 8 Name X X X maxfd4 maxfd3 maxfd2 maxfd1 maxfd0 Default Definition 0x042F 1 CfgRepl 0x1A06 maxfd[4:0] Maximum FIFO depth for dynamic adjustment and full/empty status minfd[4:0] Minimum FIFO depth for dynamic adjustment and full/empty status Configure Sample Replacement on NIT error Bit 7 6 5 4 3 2 1 0 Name X X X X X ac frm sam 0 0 0 0 0 0 0 0 Default ac When set, replace sample/frame for all converters with previous good sample/frame Definition frm When set, replace frame with previous good frame sam When set, replace sample with previous good sample www.maximintegrated.com Maxim Integrated │  79 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0430 1 REGISTER NAME DESCRIPTION CfgSamTest Configure SerDes/Sample Interface Test Bit 7 6 5 4 3 2 1 0 Name prbst1 prbst0 tprbs rprbs X X sprbs2 sprbs1 Default 0 0 0 0 0 0 0 0 prbst[1:0] 00 = PRBS7 for SerDes Interface 01 = PRBS23 for SerDes Interface 10 = PRBS31 for SerDes Interface 11 = Reserved Definition tprbs Enable PRBS on transmit SerDes interface, pattern based on prbst1-0 rprbs Enable PRBS checking on receive SerDes interface, pattern based on prbst1-0 This bit should be toggled from 0 to 1 for restarting the PRBS check sprbsN Enable PRBS15 checker for converter N samples This bit should be toggled from 0 to 1 for restarting the PRBS check 0x0431 2 CfgSTPc1s1 Bit Name Bit Name Default Definition www.maximintegrated.com Configure Short Test Pattern for Converter 1, Sample 1 7 6 5 4 3 2 1 0 pat7 pat6 pat5 pat4 pat3 pat2 pat1 pat0 15 14 13 12 11 10 9 8 pat15 pat14 pat13 pat12 pat11 pat10 pat9 pat8 0x0000 pat[15:0] Converter 1, Sample 1 short test pattern (alternating sample test pattern) Maxim Integrated │  80 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0433 2 REGISTER NAME CfgSTPc1s2 Bit Name Bit Name DESCRIPTION Configure Short Test Pattern for Converter 1, Sample 2 7 6 5 4 3 2 1 0 pat7 pat6 pat5 pat4 pat3 pat2 pat1 pat0 15 14 13 12 11 10 9 8 pat15 pat14 pat13 pat12 pat11 pat10 pat9 pat8 Default 0x0435 2 0x0000 Definition pat[15:0] Converter 1, Sample 2 short test pattern (alternating sample test pattern) CfgSTPc2s1 Configure Short Test Pattern for Converter 2, Sample 1 Bit Name Bit Name Default Definition www.maximintegrated.com 7 6 5 4 3 2 1 0 pat7 pat6 pat5 pat4 pat3 pat2 pat1 pat0 15 14 13 12 11 10 9 8 pat15 pat14 pat13 pat12 pat11 pat10 pat9 pat8 0x0000 pat[15:0] Converter 2, Sample 1 short test pattern (alternating sample test pattern) Maxim Integrated │  81 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0437 2 REGISTER NAME CfgSTPc2s2 Bit Name Bit Name DESCRIPTION Configure Short Test Pattern for Converter 2, Sample 2 7 6 5 4 3 2 1 0 pat7 pat6 pat5 pat4 pat3 pat2 pat1 pat0 15 14 13 12 11 10 9 8 pat15 pat14 pat13 pat12 pat11 pat10 pat9 pat8 Default 0x0500 1 0x0000 Definition pat[15:0] Converter 2, Sample 2 short test pattern (alternating sample test pattern) CfgCnt Configure Counter Settings Bit 7 6 5 4 3 2 1 0 Name X X X X X samld rxld cdcor 0 0 0 0 0 0 0 0 Default samld Load signal for sample clock domain Lane FIFO depth update, this bit is self-clearing Definition rxld Load signal for Rx SerDes clock domain counter update, this bit is self-clearing cdcor Counter data clear-on-read enable www.maximintegrated.com Maxim Integrated │  82 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0501 1 REGISTER NAME CfgCntSel Bit DESCRIPTION Configure Counter Selects 7 6 5 4 3 2 1 0 Name ctsel3 ctsel2 ctsel1 ctsel0 X X rxcsel1 rxcsel0 Default 0 0 0 0 0 0 0 0 Definition ctsel[3:0] Lane debug counter error type select for CntDbg register 0000 = No counts 0001 = NIT errors 0010 = Disparity errors 0011 = /K/ detect 0100 = /R/ detect 0101 = /Q/ detect 0110 = /A/ detect 0111 = /F/ detect 1000 = Unexpected control character error 1001 = ILA sequence control character error 1010-1111 = No counts rxcsel[1:0] 00 = Lane 1 counts enabled for CntDbg register 01 = Lane 2 counts enabled for CntDbg register 10 = Lane 3 counts enabled for CntDbg register 11 = Lane 4 counts enabled for CntDbg register 0x0503 4 EIntLane Bit Name Bit Name Bit Name Bit Name Default Definition www.maximintegrated.com Lane N Interrupt Enable 7 ln1fnsync 15 ln2fnsync 23 ln3fnsync 31 ln4fnsync 6 5 ln1lnrealgn ln1frrealgn 14 13 ln2lnrealgn ln2frrealgn 22 21 ln3lnrealgn ln3frrealgn 30 29 ln4lnrealgn ln4frrealgn 4 3 2 1 0 ln1uk ln1ctrl ln1disp ln1nit ln1cgs 12 11 10 9 8 ln2uk ln2ctrl ln2disp ln2nit ln2cgs 20 19 18 17 16 ln3uk ln3ctrl ln3disp ln3nit ln3cgs 28 27 26 25 24 ln4uk ln4ctrl ln4disp ln4nit ln4cgs 0x00000000 Interrupt enable for the corresponding bit in StatLane register Maxim Integrated │  83 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0507 4 REGISTER NAME EIntFIFO Bit Name Bit Name Bit Name Bit Name DESCRIPTION Lane N FIFO Interrupt Enable 7 6 5 4 3 2 1 0 ln1fafail ln1empty ln1full X X X X X 15 14 13 12 11 10 9 8 ln2fafail ln2empty ln2full X X X X X 23 22 21 20 19 18 17 16 ln3fafail ln3empty ln3full X X X X X 31 30 29 28 27 26 25 24 ln4fafail ln4empty ln4full X X X X X 2 1 0 Default 0x050B 4 0x00000000 Definition Interrupt enable for the corresponding bit in StatFIFO register EIntILAS Lane N ILA Sequence Interrupt Enable Bit 7 6 5 4 3 Name X ln1drcv ln1kerr ln1rprbs ln1krcv Bit 15 14 13 12 11 Name X ln2drcv ln2kerr ln2rprbs ln2krcv Bit 23 22 21 20 19 Name X ln3drcv ln3kerr ln3rprbs ln3krcv Bit 31 30 29 28 27 Name X ln4drcv ln4kerr ln4rprbs ln4krcv Default 0x050F 0x0510 1 1 ln1fchkerr ln1lcfgerr 10 9 ln2fchkerr ln2lcfgerr 18 17 ln3fchkerr ln3lcfgerr 26 25 ln4fchkerr ln4lcfgerr ln1ilaerr 8 ln2ilaerr 16 ln3ilaerr 24 ln4ilaerr 0x00000000 Definition Interrupt enable for the corresponding bit in StatILAS register EIntILA Initial Lane Alignment Interrupt Enable Bit 7 6 5 4 3 2 1 0 Name X X X sysref_ nvld nsync Reserved0 sysref_ ndet fail Default 0 0 0 0 0 0 1 0 Definition Interrupt enable for the corresponding bit in StatILA register EIntLink Link Interrupt Enable Bit 7 6 5 4 3 2 1 0 Name X X prbs_ c2err prbs_ c1err X X stp_ c2err stp_ c1err Default 0 0 0 0 0 0 0 0 Definition www.maximintegrated.com Interrupt enable for the corresponding bit in StatLink register Maxim Integrated │  84 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0511 4 REGISTER NAME DESCRIPTION EMuteLane Lane N Mute Enable Bit Name Bit Name Bit Name Bit Name 7 ln1fnsync 15 ln2fnsync 23 ln3fnsync 31 ln4fnsync 6 5 ln1lnrealgn ln1frrealgn 14 13 ln2lnrealgn ln2frrealgn 22 21 ln3lnrealgn ln3frrealgn 30 29 ln4lnrealgn ln4frrealgn Default Definition 0x0515 4 EMuteFIFO Bit Name Bit Name Bit Name Bit Name 0x0519 4 3 2 1 0 ln1uk ln1ctrl ln1disp ln1nit ln1cgs 12 11 10 9 8 ln2uk ln2ctrl ln2disp ln2nit ln2cgs 20 19 18 17 16 ln3uk ln3ctrl ln3disp ln3nit ln3cgs 28 27 26 25 24 ln4uk ln4ctrl ln4disp ln4nit ln4cgs 2 1 0 0x00000000 Enable DAC Mute for the corresponding bit in StatLane register Lane N FIFO Mute Enable 7 6 5 ln1fafail ln1empty ln1full X X X X X 15 14 13 12 11 10 9 8 ln2fafail ln2empty ln2full X X X X X 23 22 21 20 19 18 17 16 ln3fafail ln3empty ln3full X X X X X 31 30 29 28 27 26 25 24 ln4fafail ln4empty ln4full X X X X X 2 1 Default Definition 4 4 3 0x00000000 Enable DAC Mute for the corresponding bit in StatFIFO register EMuteILAS Lane N ILA Sequence Mute Enable Bit 7 6 5 4 3 Name X ln1drcv ln1kerr ln1rprbs ln1krcv Bit 15 14 13 12 11 Name X ln2drcv ln2kerr ln2rprbs ln2krcv Bit 23 22 21 20 19 Name X ln3drcv ln3kerr ln3rprbs ln3krcv Bit 31 30 29 28 27 Name X ln4drcv ln4kerr ln4rprbs ln4krcv Default Definition www.maximintegrated.com ln1fchkerr ln1lcfgerr 10 9 ln2fchkerr ln2lcfgerr 18 17 ln3fchkerr ln3lcfgerr 26 25 ln4fchkerr ln4lcfgerr 0 ln1ilaerr 8 ln2ilaerr 16 ln3ilaerr 24 ln4ilaerr 0x00000000 Enable DAC Mute for the corresponding bit in StatILAS register Maxim Integrated │  85 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x051D 1 REGISTER NAME EMuteILA 1 7 6 5 4 3 2 1 0 Name X X X sysref_ nvld nsync Reserved sysref_ ndet fail 0 0 0 0 0 0 1 0 1 0 Definition Enable DAC Mute for the corresponding bit in StatILA register EMuteLink Link Mute Enable Bit 7 6 Name X X 0 0 Default 0x0580 4 Initial Lane Alignment Mute Enable Bit Default 0x051E DESCRIPTION 5 4 prbs_c2err prbs_c1err 0 0 3 2 X X 0 0 0 0 Definition Enable DAC Mute for the corresponding bit in StatLink register StatLane Lane N Status Bit Name Bit Name Bit Name Bit Name 7 ln1fnsync 6 ln1lnrealgn ln1frrealgn 15 ln2fnsync 14 22 21 ln3lnrealgn ln3frrealgn 31 ln4fnsync 13 ln2lnrealgn ln2frrealgn 23 ln3fnsync 5 30 29 ln4lnrealgn ln4frrealgn Default stp_c2err stp_c1err 4 3 2 1 0 ln1uk ln1ctrl ln1disp ln1nit ln1cgs 12 11 10 9 8 ln2uk ln2ctrl ln2disp ln2nit ln2cgs 20 19 18 17 16 ln3uk ln3ctrl ln3disp ln3nit ln3cgs 28 27 26 25 24 ln4uk ln4ctrl ln4disp ln4nit ln4cgs 0xXXXXXXXX lnNfnsync Frame synchronization state machine not in Sync real-time lnNlnrealgnLane realignment occurred latched lnNfrrealgn Frame realignment occurred latched Definition lnNuk Lane N unexpected /K/ character latched. When set, this bit is not necessarily indicating an error since /K/ can occur across the character boundaries. lnNctrl Lane N unexpected control character latched lnNdisp Lane N Disparity error latched lnNnit Lane N NIT error latched lnNcgs Lane N Code Group Synchronization out of Sync latched www.maximintegrated.com Maxim Integrated │  86 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0584 4 REGISTER NAME StatFIFO Bit Name Bit Name Bit Name Bit Name DESCRIPTION Lane N FIFO Status 7 6 5 4 3 2 1 0 ln1fafail ln1empty ln1full ln1fd4 ln1fd3 ln1fd2 ln1fd1 ln1fd0 15 14 13 12 11 10 9 8 ln2fafail ln2empty ln2full ln2fd4 ln2fd3 ln2fd2 ln2fd1 ln2fd0 23 22 21 20 19 18 17 16 ln3fafail ln3empty ln3full ln3fd4 ln3fd3 ln3fd2 ln3fd1 ln3fd0 31 30 29 28 27 26 25 24 ln4fafail ln4empty ln4full ln4fd4 ln4fd3 ln4fd2 ln4fd1 ln4fd0 Default 0xXXXXXXXX lnNfafail Lane N dynamic FIFO adjustment failure latched Definition lnNempty Lane N FIFO empty status latched lnNfull Lane N FIFO full status latched lnNfd[4:0] Lane N FIFO depth real-time loaded when CfgCnt.samld is set to 1 www.maximintegrated.com Maxim Integrated │  87 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x0588 4 REGISTER NAME StatILAS Bit DESCRIPTION Lane N ILA Sequence Status 7 6 5 4 3 Name X ln1drcv ln1kerr ln1rprbs ln1krcv Bit 15 14 13 12 11 Name X ln2drcv ln2kerr ln2rprbs ln2krcv Bit 23 22 21 20 19 Name X ln3drcv ln3kerr ln3rprbs ln3krcv Bit 31 30 29 28 27 Name X ln4drcv ln4kerr ln4rprbs ln4krcv Default 2 1 ln1fchkerr ln1lcfgerr 10 9 ln2fchkerr ln2lcfgerr 18 17 ln3fchkerr ln3lcfgerr 26 25 ln4fchkerr ln4lcfgerr 0 ln1ilaerr 8 ln2ilaerr 16 ln3ilaerr 24 ln4ilaerr 0xXXXXXXXX lnNdrcv Lane N continuous D21.5 not-detect latched lnNkerr Lane N /K/ character while in frame sync latched lnNrprbs Lane N SerDes interface PRBS error latched Definition lnNkrcv Lane N continuous /K/ not-detect latched lnNfchkerr Lane N ILA sequence FCHK error latched lnNlcfgerr Lane N ILA sequence lane configuration error latched lnNilaerr Lane N ILA sequence decode error latched 0x058C 1 StatILA Initial Lane Alignment Status Bit 7 6 5 4 3 2 1 0 Name X X X sysref_ nvld nsync Reserved0 sysref_ ndet fail Default 0xXX sysref_nvld SYSREF validity detection error status latched nsync ILA synchronization not achieved real-time Definition Reserved0 sysref_ndet SYSREF detection status set until a SYSREF pulse is detected and used for LMFC reset fail ILA failure latched This status is set when a lane FIFO is empty or full when the read starts www.maximintegrated.com Maxim Integrated │  88 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Link Layer Configuration Registers Definition and Description (continued) ADDRESS BYTE 0x058D 1 REGISTER NAME StatLink DESCRIPTION Link Status Bit 7 6 5 4 3 2 1 0 Name X X prbs_ c2err prbs_ c1err X X stp_ c2err stp_ c1err Default Definition 0x058E 2 CntInvld Bit Name Bit Name 0xXX prbs_cNerr Converter N PRBS error latched stp_cNerr Converter N short test pattern error latched Counter for Invalid Errors 7 6 5 4 3 2 1 0 cnt7 cnt6 cnt5 cnt4 cnt3 cnt2 cnt1 cnt0 15 14 13 12 11 10 9 8 cnt15 cnt14 cnt13 cnt12 cnt11 cnt10 cnt9 cnt8 Default 0x0590 2 0xXXXX Definition cnt1[5:0] Invalid character count for lane # controlled by CfgCntSel.rxcsel1-0 This counter should be loaded by setting CfgCnt.rxld to 1 CntDbg Counter for Lane Debug Bit Name Bit Name Default Definition 7 6 5 4 3 2 1 0 cnt7 cnt6 cnt5 cnt4 cnt3 cnt2 cnt1 cnt0 15 14 13 12 11 10 9 8 cnt15 cnt14 cnt13 cnt12 cnt11 cnt10 cnt9 cnt8 0xXXXX cnt1[5:0] Debug count type controlled by CfgCntSel.ctsel3-0 for lane # controlled by CfgCntSel.rxcsel1-0 This counter should be loaded by setting CfgCnt.rxld to 1 *SYNCN behavior per the JESD204B standard is to be asserted while the Rx Link is out of Code Group Synchronization (CGS). The MAX5871 asserts SYNCN (drive low) as long as any of the active lanes are out of CGS. LNK.CfgLerrM register can be used for error reporting on SYNCN which asserts SYNCN for 2 frame clock cycles at the end of the multiframe on an error that is enabled through this register. LNK.CfgSerrM register can be used for resynchronization request on SYNCN which asserts SYNCN for the minimum required period of "5 frames + 9 octets" on an error that is enabled through this register. If LNK.CfgSerrM.serrm0 is set, it would interfere with the required behavior of SYNCN per the JESD204B standard and asserts SYNCN only for the minimum required period and not as long as CGS error persists. www.maximintegrated.com Maxim Integrated │  89 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface SERDES Common Registers Definition and Description ADDRESS BYTE 0x0600 1 REGISTER NAME CfgRst DESCRIPTION Configure Reset for all Lanes Bit 7 6 5 4 3 2 1 0 Name X X X X X PhyKill RstTx Rst Default 0 0 0 0 0 0 0 1 PhyKill Reserved – do not write Definition RstTx Reserved – do not write Rst 0 = SerDes PHY Logic is not in reset 1 = SerDes PHY Logic is in reset 0x0606 1 CfgRate Configure Rate for all lanes Bit 7 6 5 4 3 2 1 0 Name X X X X TxRate1 TxRate0 RxRate1 RxRate0 Default 0 0 0 0 1 1 1 1 TxRate[1:0] Reserved – do not write Definition www.maximintegrated.com RxRate[1:0] 00 = Reserved 01 = Serial Rate for Rx SerDes is CMU clock rate divide-by-4 10 = Serial Rate for Rx SerDes is CMU clock rate divide-by-2 11 = Serial Rate for Rx SerDes is CMU clock rate Maxim Integrated │  90 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface SERDES Common Registers Definition and Description (continued) ADDRESS BYTE 0x0607 4 REGISTER NAME CfgTrainLn DESCRIPTION Configure Training for Lane Bit 7 6 5 4 Name X X X X Bit 15 14 13 12 Name X X X X Bit 23 22 21 20 Name X X X X Bit 31 30 29 28 Name X X X X Default 3 2 1 0 Ln1DnGate Ln1IdleGate Ln1Force1 Ln1Force0 11 10 9 8 Ln2DnGate Ln2IdleGate Ln2Force1 Ln2Force0 19 18 17 16 Ln3DnGate Ln3IdleGate Ln3Force1 Ln3Force0 27 26 25 24 Ln4DnGate Ln4IdleGate Ln4Force1 Ln4Force0 0x0D for each lane Ln[4:1]DnGate 0 = Do not gate data off to Link layer when SerDes Training done status is low for lane N 1 = Gate data off to Link layer when SerDes Training done status is low for lane N Definition Ln[4:1]IdleGate 0 = Do not gate data off to Link layer when SerDes Idle detect is high for lane N 1 = Gate data off to Link layer when SerDes Idle detect is high for lane N Ln[4:1]Force[1:0] 00, 11 = Reserved 01 = Deactivate training for Lane N 10 = Activate training for Lane N 0x060B 1 CfgMisc Configure Miscellaneous for all Lanes Bit 7 6 Name X X Default 0 0 Definition 5 4 PhyWMde1 PhyWMde0 0 0 3 2 1 0 X BCast Reserved Reserved 0 1 0 0 PhyWMde[1:0] 00 = Buffer upper 3 bytes and transfer all 4 bytes on a write to LSB for the 32-bit interface on the PHY 01 = Buffer lower 3 bytes and transfer all 4 bytes on a write to MSB for the 32-bit interface on the PHY 10 = Enable individual byte writes to the SerDes PHY 11 = Reserved BCast 0 = SPI writes to one SerDes PHY are not broadcasted to all lanes 1 = SPI writes to one SerDes PHY are broadcasted to all lanes www.maximintegrated.com Maxim Integrated │  91 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface SERDES Common Registers Definition and Description (continued) ADDRESS BYTE 0x0640 4 REGISTER NAME EIntLn Bit DESCRIPTION SerDes Phy Logic Interrupt Enable 7 6 5 4 3 Name X X X X X Bit 15 14 13 12 11 Name X X X X X Bit 23 22 21 20 19 Name X X X X X Bit 31 30 29 28 27 Name X X X X X Default 0x0644 4 Interrupt enable for the corresponding bit in StatusLn register EMuteLn SerDes Phy Logic DAC Mute Enable 7 6 5 4 3 Name X X X X X Bit 15 14 13 12 11 Name X X X X X Bit 23 22 21 20 19 Name X X X X X Bit 31 30 29 28 27 Name X X X X X Default Definition www.maximintegrated.com 1 Ln1SigDet Ln1TrainDn 10 9 Ln2SigDet Ln2TrainDn 18 17 Ln3SigDet Ln3TrainDn 26 25 Ln4SigDet Ln4TrainDn 0 Ln1Phy 8 Ln2Phy 16 Ln3Phy 24 Ln4Phy 0x00000000 Definition Bit 2 2 1 Ln1SigDet Ln1TrainDn 10 9 Ln2SigDet Ln2TrainDn 18 17 Ln3SigDet Ln3TrainDn 26 25 Ln4SigDet Ln4TrainDn 0 Ln1Phy 8 Ln2Phy 16 Ln3Phy 24 Ln4Phy 0x00000000 DAC Mute enable enable for the corresponding bit in StatusLn register Maxim Integrated │  92 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface SERDES Common Registers Definition and Description (continued) ADDRESS BYTE 0x0648 4 REGISTER NAME StatusLn Bit DESCRIPTION SerDes Phy Logic Status 7 6 5 4 3 Name X X X X X Bit 15 14 13 12 11 Name X X X X X Bit 23 22 21 20 19 Name X X X X X Bit 31 30 29 28 27 Name X X X X X Default 2 1 Ln1SigDet Ln1TrainDn 10 9 Ln2SigDet Ln2TrainDn 18 17 Ln3SigDet Ln3TrainDn 26 25 Ln4SigDet Ln4TrainDn 0 Ln1Phy 8 Ln2Phy 16 Ln3Phy 24 Ln4Phy 0xXXXXXXXX Ln[4:1]SigDet 0 = SerDes Idle not Detected on Lane N 1 = SerDes Idle Detected on Lane N Definition Ln[4:1]TrainDn 0 = SerDes Training Not Done on Lane N 1 = SerDes Training Done on Lane N Ln[4:1]Phy 0 = PHY interrupt for Lane N is not set 1 = PHY interrupt for Lane N is set www.maximintegrated.com Maxim Integrated │  93 MAX5871 ADDRESS BYTE 0x0700 8 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface REGISTER NAME CfgCMU Bit DESCRIPTION Serdes CMU Configuration Register – to configure the different JESD204B rate 7 6 5 4 15 14 13 12 Name Bit 23 22 21 20 Bit Bit 31 30 29 Bit Bit 11 10 9 8 19 18 17 16 28 26 25 24 34 33 32 27 Reserved 39 38 37 Reserved 47 36 FBDIV 46 45 Name Name 0 Reserved Name Name 1 Reserved Name Bit 2 Reserved Name Bit 3 35 VCOSEL 44 43 Reserved 42 41 40 50 49 48 57 56 Reserved 55 54 53 52 Cref_divsel1p0 63 Reserved 62 Name 51 61 60 59 Reserved Default 58 cd_tune1p0 64'h0000000000000000 cd_tune1p0 3'b000 – 10G Mode 3'b100 – 7G Mode 3'b111 – 6G Mode Definition Cref_divsel1p0 2'b00 – JESD204B internal reference div-1 2'b01 – JESD204B internal reference div-2 2'b10 – JESD204B internal reference div-4 2'b11 – JESD204B internal reference div-8 FBDIV 2'b00 – divide by 40 default 2'b01 – divide by 80 2'b10 – Reserved 2'b 11 – divide by 20 VCOSEL 2'b00 – 10G Mode 2'b10 – 7G Mode 2'b11 – 6G Mode www.maximintegrated.com Maxim Integrated │  94 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Applications Information Typical Configuration The overall configuration of the MAX5871 includes setting up the clocking as described in the following sections and setting all other configurations before or after that. Configuration registers other than the clocking includes the DSP, JESD204B Clock Multiplier Unit (CMU), SerDes, and Rx Link registers. MAX5871 Flow Chart The following is the overall flowchart from power-up to DAC output enable. Some of the intermediate steps are mode specific and described below. Power Up Chip Reset Clock Setup Power Up Ramp up power for all supplies and this does not require any particular order. Chip Reset Assert chip reset RESETB for 1μs. After reset release, either monitor the INTB pin to go low or poll the DSP. STATUS.TRDY bit to go high. This indicates that device trimming is complete and is ready for configuration. Clock Setup Clock setup includes configuring the clock sources for the DAC, DSP, and JESD204B functions. The clocking depends on the required setup including the following. This also includes the JESD204B subclass mode since it determines how the FIFOs come up centered in a known state. 1) DAC PLL usage 2) Device Clock availability for JESD204B function FIFO Resets 3) DSP interpolation rate For JESD204B Subclass-0 with device clock used for generating the sample clock, the following clock setup is required Mode Setup DAC PLL config DSP.CfgPLL1/2/3 Interrupt/Mute Enables Device Clock config LNK.CfgLinkSet.ddiv[1:0] Start Data Clear and Check Statuses Unmute DAC www.maximintegrated.com DSP Interpolation config DSP.CfgDSP.R[3:0] DSP Synchronization config DSP.CfgSYNC.ClkDivSync=1 Maxim Integrated │  95 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface For JESD204B Subclass-0 with DSP used for generating the sample clock, the following clock setup is required. DAC PLL config DSP.CfgPLL1/2/3 DSP Interpolation config DSP.CfgDSP.R[3:0] RxLink Sample Clock config LNK.CfgLinkSrc.rclk=1 For JESD204B Subclass-1 with DSP used for generating the sample clock and an asynchronous SYSREF, the following clock setup is required. DAC PLL config DSP.CfgPLL1/2/3 SYSREF Synchronous? NO DSP Synchronization config DSP.CfgSYNC.DSP_Async=1 DSP.CfgSYNC.ClkDivSync=1 YES DSP Synchronization config DSP.CfgSYNC.DSP_Async=1 SYNCN retime config LNK.CfgSYNCN.ret=0 For JESD204B Subclass-1 with device clock used for generating the sample clock and a synchronous SYSREF to device clock, the following clock setup is required. DAC PLL config DSP.CfgPLL1/2/3 SYNCN retime config LNK.CfgSYNCN.ret=0 DSP Interpolation config DSP.CfgDSP.R[3:0] RxLink Sample Clock config LNK.CfgLinkSrc.rclk=1 DSP Synchronization config DSP.CfgSYNC.ClkDivSync=1 RxLink Subclass config LNK.CfgLinkSet.sclass=1 Device Clock config LNK.CfgLinkSet.ddiv[1:0] LNK.CfgLinkSet.sclass=1 RxLink SYSREF config LNK.CfgSYSREF.smode=10b DSP Interpolation config DSP.CsfgDSP.R[3:0] FIFO Resets SYSREF Synchronous? NO YES RxLink SYSREF config LNK.CfgSYSREF.smode=10b www.maximintegrated.com RxLink SYSREF config LNK.CfgSYSREF.smode=10b After the clock modes are setup and after a sufficient wait time for the DAC PLL to lock, the DSP clock divider needs to be reset and then the Rx Link and DSP FIFOs need to be centered through configuration in Subclass-0 mode or SYSREF in Subclass-1 mode. Maxim Integrated │  96 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Subclass-0 with Device Clock Reset Clock Divider GLB.CfgDev.CDrst=1 Subclass-1 with Device Clock (and Synchronous SYSREF) Or Subclass-1 without Device Clock (and Asynchronous SYSREF) Remove Clock Divider reset GLB.CfgDev.CDrst=0 Reset DSp FIFO DSP.CfgDsp.RstFIFO=1 DSP.CfgDsp.RstDSP=1 Pulse SYSREF Mode Setup Setup device modes other than DAC PLL, clocking, synchronization, and resets. Remove DSP FIFO resets DSP.CfgDsp.RstFIFO=0 DSP.CfgDsp.RstDSP=0 Subclass-0 without Device Clock Reset Clock Divider GLB.CfgDev.CDrst=1 Interrupt/Mute Enables Enable internal DAC mute and interrupt enables in the JESD204B RxLink and DSP registers. Start Data Start JESD204B link data carrying the signal. Remove Clock Divider reset GLB.CfgDev.CDrst=0 Clear and Check Statuses Clear all the latched statuses enabled for internal DAC mute and interrupt. Reset DSP/FIFO DSP.CfgDSP.RstDSP=1 Remove DSP/FIFO resets DSP.CfgDSP.RstDSP=0 www.maximintegrated.com Unmute DAC Reset DAC mute register bit (DSP.CfgChipOM.Mute) to enable the DAC output. Maxim Integrated │  97 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface JESD204B Rx Link and DSP Clocking DAC CLOCK div-by INTERPOLATION RATIO % DAC CLOCK DSP INPUT FIFO PLL DSP SAMPLE CLOCK Rx Link 1 0 Rx Link LANE FIFOs CLKP/N % LNK.CfgLinkSrc.rclk Rx LANE CLOCK Figure 40. Rx Link and DSP Clocking Subclass-0 with Device Clock When there is a device clock present on the CLKP/N pins, the Rx Link sample clock is generated from it and the DSP input FIFO removes the phase difference between this Rx Link sample clock and DSP sample clock. This mode is set by LNK.CfgLinkSrc.rclk=0. The DSP sample clock is stable when the DAC clock is stable through or bypassing the DAC PLL and Interpolation Mode is set via DSP.CfgDSP.R[4:0]. The Rx Link sample clock is stable when the device clock divide mode is selected via LNK. CfgLinkSet.ddiv[1:0]. Once these clocks for the DSP Input FIFO are stable, it needs to be reset to be centered. The Rx Link Lane FIFOs are controlled by the Subclass-0 www.maximintegrated.com behavior with minimum latency through the FIFO. The FIFO latency can be increased via LNK.CfgILAD[5:0] in sample clock period increments. The following is the required configuration order for this mode to be stable. 1) Configure DAC PLL registers if DAC PLL is used (DSP.CfgPLL) 2) Configure RxLink device clock divide factor (LNK. CfgLinkSet.ddiv[1:0]) 3) Set interpolation mode and reset input FIFO (DSP. CfgDSP.R[3:0], DSP.CfgDSP.RstFIFO) 4) Remove DSP Input FIFO reset (DSP.CfgDSP.RstFIFO) Maxim Integrated │  98 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Subclass-0 without Device Clock When there is no device clock present on CLKP/N pins, the RxLink sample clock is sourced from the DSP sample clock clock. This mode is set by LNK.CfgLinkSrc.rclk=1. The DSP sample clock is stable when DAC clock is stable through or bypassing the DAC PLL and interpolation Mode is set via DSP.CfgDSP.R[4:0]. Once this clock for the DSP Input FIFO (same write and read clock) is stable, it needs to be centered by disabling and enabling the FIFO with an adjusted read pointer. The RxLink lane FIFOs are controlled by the subclass0 behavior with minimum latency through the FIFO. The FIFO latency can be increased via LNK.CfgILAD[5:0] in sample clock period increments. The following is the required configuration order for this mode to be stable. 1) Configure DAC PLL registers if DAC PLL is used (DSP.CfgPLL) 2) Set interpolation mode (DSP.CfgDSP.R[3:0]) 3) Set the RxLink clock mode (LNK.CfgLinkSrc.rclk=1) 4) Disable the input FIFO and set FIFO read pointer (DSP.CfgFIFO.Off=1, DSP.CfgFIFO.RdPtrAdj[3:0]=6) 5) Enable the input FIFO (DSP.CfgFIFO.Off=0) 6) Disable SYNCN retiming to device clock (LNK.CfgSYNCN.ret=0) Subclass-1 with Device Clock This is the true JESD204B Subclass1 mode with the SYSREF input synchronous to CLKP/N (device clock) input. The RxLink sample clock is generated from a divide down of device clock. The DSP input FIFO removes the phase difference between the RxLink sample clock and the DSP sample clock. This mode is set by LINK. CfgLinkSrc.rclk=0. The DSP sample clock is stable when DAC clock is stable through or bypassing the DAC PLL and interpolation Mode is set via DSP.CfgDSP.R[4:0]. The RxLink sample clock is stable when the device clock divide mode is selected via LINK.CfgLinkSet.ddiv[1:0]. The Subclass1 deterministic delay process including the LINK.CfgILAD[5:0] sets the RxLink FIFO depths followed by a reset of the DSP input FIFO through the DSP clock divider. The following is the required configuration order for this mode to be stable. 1) Configure DAC PLL registers if DAC PLL is used (DSP.CfgPLL) www.maximintegrated.com 2) Enable DSP clock-divider reset from RxLink (DSP. CfgSYNC.ClkDiv_Sync=1) 3) Set interpolation mode (DSP.CfgDSP.R[3:0]) 4) Set RxLink device clock divide factor and subclass1 mode (LNK.CfgLinkSset.ddiv[1:0], LNK.CfgLinkSet. sclass[1:0]=01) 5) Enable SYSREF pulses to set RxLink LMFC boundary (LNK.CfgSYSREF.smode[1:0]=10) Subclass-1 without Device Clock This is a pseudo JESD204B Subclass1 mode with the SYSREF input asynchronous to the CLKP/N input. The RxLink sample clock is sourced from the DSP sample clock. This mode is set by LNK.CfgLinkSrc.rclk=1. The DSP sample clock is stable when DAC clock is stable through or bypassing the DAC PLL and interpolation mode is set via DSP.CfgDSP.R[4:0]. The SYSREF signal centers the DSP Input FIFO through the DSP clock divider followed by the Subclass1 deterministic delay process including the LNK.CfgILAD[5:0] setting RxLink FIFO depths. DSP input FIFO should not be reset through the DSP.CfgDSP.RstFIFO or DSP.CfgDSP.RstDSP in this mode. The SYSREF signal can be a continuous clock or a one-shot pulse. The following is the required configuration order for this mode to be stable. 1) Configure DAC PLL registers if DAC PLL is used (DSP.CfgPLL) If SYSREF is a continuous clock-like signal: 2) Enable first SYSREF pulse to reset DSP clock divider (DSP.CfgSYNC.DSP_ASync=1) If SYSREF is a one-shot pulse: 2) Enable continuous SYSREF pulses to reset DSP clock divider (DSP.CfgSYNC.DSP_ASync=1, DSP. CfgSYNC.ClkDiv_Sync=1) 3) Disable SYNCN retiming to device clock (LNK.CfgSYNCN.ret=0) 4) Set interpolation mode (DSP.CfgDSP.R[3:0]) 5) Set the RxLink clock mode (LNK.CfgLinkSrc.rclk=1) 6) Set RxLink SYSREF mode (LNK.CfgMDS.rclk=1) 7) Set Subclass1 mode (LNK.CfgLinkSet.sclass[1:0]=01) 8) Enable SYSREF pulses to set RxLink LMFC boundary (LNK.CfgSYSREF.smode[1:0]=10) Maxim Integrated │  99 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface MAX5871 Configuration 0x0002,0x00; //GLB.CfgDev.CDrst=0 The MAX5871 can be configured by following the examples below. There are two groups of registers: fixed and variable. The fixed group of registers given in this example should be used independent of your application. The variable group of registers given in this example should be modified based on the MAX5871 register definition and description for your application, such as DAC sampling rate, DAC clock input, interpolation ratio, SerDes data rate, JESD204B format, and interrupt handling. 0x0002,0x00; //GLB.CfgDev.CDrst=0 MAX5871 Example Configuration Option-1 0x0407,0x00; //LNK.CfgSYNCN.ret=0 Application requirement 0x0002,0x00; //GLB.CfgDev.CDrst=0 0x0002,0x00; //GLB.CfgDev.CDrst=0 0x0002,0x00; //GLB.CfgDev.CDrst=0 0x0002,0x00; //GLB.CfgDev.CDrst=0 0x0002,0x04; //GLB.CfgDev.CDrst=1 0x0002,0x00; //GLB.CfgDev.CDrst=0 0x041F,0x04; //LNK.CfgILAmfs.mfsel=4 0x0421,0x03; //LNK.CfgILAsn.snum=3 DAC Rate = 5898.24MHz 0x040A,0x0D; //LNK.CfgMLFS.L=4, F=0, S=0, M=1 SerDes Rate = 7372.8Mbps 0x042C,0x0F; //LNK.CfgLnEn.ln=1111b CLKP/N Rate = 1474.56MHz 0x0418,0x0F; //LNK.CfgILALck.lksel=1111b Equivalent I or Q Sample Rate = 737.28Msps 0x041A,0x05; //LNK.CfgILAD.idly=10 JESD204B LFS = 411 0x0414,0x1C; //LNK.CfgLinkCtl.lcoren=1, fcoren=1, dynfadj=1 Interpolation = 8x NCO Frequency = 800MHz 0x0000,0x99; //GLB.CfgIFA.4Wire=1, SftRst=1 (selfclearing) 0x0010,0x0A; //fDAC=1010b //DVAL is 32, RVAL is 8, PVAL is 1 0x0181,0x08; //DSP.CfgPLL2.DVAL[1:0]=00b, RVAL0=0, PVAL=1, Bypass=0 0x0182,0x11; //DSP.CfgPLL3.VCOSel=1, DVAL[3:2]=10b, RVAL1=0 0x0180,0x03; //DSP.CfgPLL1.DigTune=1, Reserved=1 0x015A,0x80; //DSP.CfgSYNC.DSP_ASync=1 0x0101,0xB0; //DSP.CfgDSP.R=1011b 0x0427,0x10; //LNK.CfgMDS.rclk=1 0x0412,0x01; //LNK.CfgLinkSrc.rclk=1 0x0402,0x01; //LNK.CfgLinkSet.sclass=01b 0x042D,0x06; //LNK.CfgFIFO.minfd=6 0x042E,0x1A; //LNK.CfgFIFO.maxfd=26 0x0600,0x00; //SER.CfgRst.Rst=0 0x0606,0x03; //SER.CfgRate.RxRateSel=11b 0x0607,0x01; //SER.CfgTrainLn.Ln1IdleGate=0, Ln1DnGate=0 0x0608,0x01; //SER.CfgTrainLn.Ln2IdleGate=0, Ln2DnGate=0 0x0609,0x01; //SER.CfgTrainLn.Ln3IdleGate=0, Ln3DnGate=0 0x060A,0x01; //SER.CfgTrainLn.Ln4IdleGate=0, Ln4DnGate=0 0x060B,0x04; //SER.CfgMisc.BCast=1 0x0704,0x38; //SER.CfgCMU.VCOSEL=10b, FBDIV=11b 0x0706,0x40; //SER.CfgCMU.Cref_divsel1p0=01b 0x0707,0x04; //SER.CfgCMU.cd_tune1p0=100b 0x0403,0x18; //LNK.CfgSYSREF.rsync=1, smode=10b www.maximintegrated.com Maxim Integrated │  100 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface 0x082F,0x08; 0x080E,0x15; 0x082E,0x1F; 0x080D,0x02; 0x082D,0x00; 0x080C,0x4E; 0x082C,0x00; 0x0813,0x42; 0x0867,0x00; 0x0812,0x00; 0x0866,0x00; 0x0811,0x20; 0x0865,0x0C; 0x0810,0x7D; 0x0864,0x00; 0x0817,0xFB; 0x084B,0xFF; 0x0816,0x0A; 0x084A,0x77; 0x0815,0x19; 0x0849,0xFD; 0x0814,0xE9; 0x0848,0x40; 0x081B,0x00; 0x0803,0x02; 0x081A,0x00; 0x0802,0x10; 0x0819,0x07; 0x0801,0x21; 0x0818,0x75; 0x0800,0x08; 0x081F,0x80; 0x0807,0x04; 0x081E,0xFF; 0x0806,0xAF; 0x081D,0x08; 0x0805,0x40; 0x081C,0x00; 0x0804,0x00; 0x0823,0x07; 0x0857,0xFC; 0x0822,0x20; 0x0856,0x01; 0x0821,0x10; 0x0855,0x00; 0x0820,0x00; 0x0854,0x35; 0x0827,0x00; 0x0863,0x00; 0x0826,0x3F; 0x0862,0x54; 0x0825,0x10; 0x0861,0x00; 0x0824,0x00; 0x0860,0x06; 0x0833,0x1F; 0x0893,0x00; 0x0832,0x7F; 0x0892,0x51; 0x0831,0x20; 0x0891,0x23; 0x0830,0x00; 0x0890,0x26; 0x088F,0x00; 0x080B,0x0C; 0x088E,0x00; 0x080A,0x87; 0x088D,0x80; 0x0809,0xD3; 0x088C,0x80; 0x0808,0xFF; 0x08AB,0x00; 0x080F,0x4C; 0x08AA,0x04; www.maximintegrated.com Maxim Integrated │  101 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface 0x08A9,0x43; 0x0869,0x2A; 0x08A8,0x01; 0x0868,0x25; 0x083F,0xAF; 0x086F,0xC0; 0x083E,0x34; 0x086E,0x00; 0x083D,0xAF; 0x086D,0x02; 0x083C,0x80; 0x086C,0xEE; 0x0843,0x00; //Status 0x0873,0x00; 0x0842,0x00; 0x0872,0x00; 0x0841,0x00; 0x0871,0x00; 0x0840,0x00; 0x0870,0x00; 0x0847,0x10; 0x087B,0x00; 0x0846,0x00; 0x087A,0x7F; 0x0845,0x80; 0x0879,0xD5; 0x0844,0x80; 0x0878,0x56; 0x0853,0x2A; 0x087F,0xC5; 0x0852,0x8B; 0x087E,0x46; 0x0851,0x40; 0x087D,0x1C; 0x0850,0x20; 0x087C,0x17; 0x085F,0x7F; 0x0102,0x1C; //DSP.CfgNCOF0=1Ch 0x085E,0x01; 0x0103,0xC7; //DSP.CfgNCOF1=C7h 0x085D,0x3F; 0x0104,0x71; //DSP.CfgNCOF2=71h 0x085C,0xFF; 0x0105,0x45; //DSP.CfgNCOF3=45h 0x084F,0x00; 0x0101,0xB1; //DSP.CfgDSP.R=1011b, NCOLoad=1 0x084E,0x40; 0x0100,0x45; //DSP.CfgChipOM.RclkM=2, DFMT=1, Mute=1 0x084D,0x00; 0x084C,0x18; 0x086B,0x00; 0x086A,0x00; www.maximintegrated.com 0x000F,0x01; //GLB.CfgIFC.Xfer=1 0x0000,0x3C; //DSP.CfgChipOM.RclkM=2, DFMT=1, Mute=0 Maxim Integrated │  102 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface JESD204B Subclass-1 SYSREF Signal Functionality There are two modes of JESD204B Subclass-1 operation: synchronous SYSREF mode and asynchronous SYSREF mode. The synchronous SYSREF mode is as described in the standard with SYSREF timed synchronously to the device clock. The asynchronous SYSREF mode does not require a device clock and so SYSREF has no timing reference. The JESD204B sample clock is sourced from the DSP in this case. Synchronous SYSREF Mode As described for the JESD204B Subclass-1 deterministic delay, the SYSREF input signal is synchronous to the device clock input (CLKP/N) and the sample clock is sourced from the device clock. The SYSREF signal can be generated from a clock generator module in which case the SYSREF will be a divided down version of the device clock. Register configurations exist as below to respond to either the first SYSREF pulse or all SYSREF pulses. LNK.CfgSYSREF.smode[1:0] – when smode[1] is high, all SYSREF pulses are acted upon. When smode[1] is low, only the first SYSREF pulse after smode[0] is www.maximintegrated.com toggled 0->1 will be acted upon. If CfgSYSREF.ignore_en is set, then the ignore function is given a higher priority smode[1:0]=01 will enable first SYSREF only after the CfgSIGN.ign[7:0] pulses are ignored. This is required for the case of the device clock frequency being higher than what is supported by the MAX5871 and SYSREF timing to the device clock is not truly synchronous. An uncertainty of one device clock in sampling SYSREF is allowed in this case. If all SYSREF pulses are enabled, the internal frame/multiframe clocks may not be stable and so only one SYSREF pulse needs to be enabled for link establishment. In the case where multiple converters need to be aligned, a register write to enable a single SYSREF pulse may not be suitable as the synchronization of these register writes may be harder. This can be handled by using a hardware enable of SYSREF through the SYSREF_EN pin as shown in the timing diagram below. LNK.CfgSYSREF.senext – When this bit is set, the CfgSYSREF.smode[1:0] are ignored and the external pin sysref_en is used instead. This allows for better timing control of enabling SYSREF pulses to affect LMFC. Maxim Integrated │  103 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Asynchronous SYSREF Mode In this mode, a device clock is not required and SYSREF is used for JESD204B Subclass1 mode through the DSP. The DSP generates the sample clock and a synchronous signal to replace the JESD204B RxLink SYSREF input. This mode is enabled by setting the following configuration register bits. LNK.CfgLinkSrc.rclk – when set, the sample clock is sourced from RCLK input instead of the device clock. Along with setting this bit high, an equivalent bit in the DSP, CfgSync.DSP_ASync, needs to be set to ignore the VALID output from this block and instead use the SYNCO output (SYSREF passed through) and generate RSYNC based on it. This affects the multi-DAC synchronization and the CfgMDS.rclk also needs to be set for the link to replace SYSREF with RSYNC at the same time RCLK is used for sample clock. LNK.CfgMDS.rclk – when set, RSYNC input from DSP/ DAC replaces the SYSREF input for multi-DAC synchronization when there is no device clock supplied. This bit should be used in conjunction with CfgLinkSrc.rclk. DSP.CfgSync.DSP_ASync – when set, asynchronous SYSREF reset to the DSP is enabled. The SYSREF_EN input signal is ignored in this mode, the SYSREF_EN pin (also called SYSREFEN) should be connected to the VDD2 supply. The same issue described in the synchronous SYSREF mode exists here if SYSREF is a continuous clock-like signal due to its asynchronous timing. Instead, if SYSREF is generated as a one-shot pulse, then the register bit DSP.CfgSync.ClkDiv_Sync should be set high for the DSP to respond to all the SYSREF pulses as shown below. DSP.CfgSync.ClkDiv_Sync – when set and DSP_ Async=1, enable continuous asynchronous SYSREF reset to the clock-divider block. When cleared and DSP_ Async=1, enable first asynchronous SYSREF reset to the clock-divider block. If the SYSREF signal is generated as a continuous clock, then the register bit DSP.CfgSync.ClkDiv_Sync should be set low for the DSP to respond to one of the SYSREF pulses as shown below. SYSREF_Gate SYSREF_Int Figure 41. Asynchronous SYSREF Mode with One-Shot Pulse SYSREF_Gate SYSREF_Int Figure 42. Asynchronous SYSREF Mode with Continuous Pulses www.maximintegrated.com Maxim Integrated │  104 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Applications Guidelines DAC PLL Consideration Power supply AVCLK is the most sensitive clock. To achieve specified DAC performance, this supply should NOT be shared with other 1.0V supplies. It should absolutely not be shared with digital VDD 1.0V supply. Connections to PLL_COMP(A12) and VCOBYP(B11)— loop filter for the PLL (see Figure 29). Place external components on the PCB layer opposite the CLK and OUTPUT circuits to prevent them from coupling. The recommended filter between PLL_COMP(A12) and VCOBYP(B11) is 650Ω in series with 4.7nF. The capacitor, C1, reduces noise from GND(A11) to VCOBYP(B11). Place C1 directly under the balls/vias of the package to make this loop as small as possible. The exact values of C1 and C2 vary because they depend on PCB layout, and may or may not be required for optimal performance. Power-On RESETB and SPI Configuration Pin SDO Consideration Power Sequence The MAX5871 typically does not require a specific power sequence on which power supplies should be up first, and which is next. It is recommended that all the supplies are powered up around the same time. Power Supply AVCLK During the initial power-on, the RESETB pin should be held low during the power-on of the device. In addition, RESETB has an internal pulldown resistor about 32kΩ. This pin should be pull-high after all the power supplies are completely on. Another way to handle the RESETB is to pull the RESETB to low after the power supplies are fully up, and then pull the RESETB to high. There is a delay time required after the RESETB is high to SPI configuration can be started. The delay time is to allow the device finishing the initialization process. The delay is related to the CLKP/N frequency. It is about 250μs with CLKP/N device clock frequency of 1.47GHz. Delay Time TD_DivRst Estimation Adding proper delay time before resetting the internal divider is important to make sure that the internal divider starts with a stable clock after the DAC PLL (or external CLKP/N) is fully locked and settled. The minimum time is estimated as (220/PFD_FREQ), where PFD_FREQ is the input frequency of the DAC PLL phase frequency detector in PLL on mode. For example, when CLKP/N frequency is at 982.68MHz, the reference divider RVAL is set to be 1/4, PFD_FREQ = 982.68/4 = 245.67MHz. The TD_DivRst is estimated as 4.3ms. Pin DACREF Consideration The 1.27kΩ resistor from FSADJ (B2) should connect directly to DACREF (B1). This should be placed on the same side as the MAX5871 package and as close as possible to the package. Also, 1μF capacitors connected to REFIO(A1) and CSBP (A2) should connect to DACREF, not GND. These should also be placed on the same layer as the DAC package, avoiding VIAs in all these traces if possible. DACREF is not connected to GND externally. www.maximintegrated.com In 4-wire SPI interface mode, SDO is used as a data output. When connecting multiple SDOs together using CSB to access the MAX5871, it is recommended to have a pullup 10kΩ resistor on the input of FPGA or ASIC to prevent floating (need a different term) bus. When SDO is not selected, it outputs tri-state (need a different term due to copyright issues), Clock Requirement The MAX5871 can be operated with DAC PLL ON or DAC PLL OFF. When DAC PLL is OFF, a clock requirement document is available upon request. When DAC PLL is ON, the DAC PLL bandwidth is set to around 100kHz. It means that any phase noise/jitter of the reference clock at frequency offsets higher than 100kHz will be filtered out by the PLL loop and its impact on the DAC performance will be minimal. However, for offsets smaller than 100kHz, the reference clock phase noise will dominate. At those offsets, the reference clock phase noise will be translated to the DAC output phase noise according to the formula: PNout [dBc/Hz] = PNref [dBc/Hz] + 20 x log(fC/fREF) Where: PNout – DAC output phase noise PNref – PLL reference clock phase noise fC – DAC output frequency fREF – PLL reference clock frequency In addition to the reference clock phase noise and jitter, the allowable spur level in the reference clock spectrum should be calculated using graphs and equations that are available upon request. Maxim Integrated │  105 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface NCO Frequency PRBS Sequence NCO frequency can have two types of errors from the NCO and DAC clocks used. One type of error is from NCO itself due to finite word length. The frequency error can be calculated by ferror = fdesired - fDAC/((218) x (233) x 2). This is about 1.11μHz error at 5GHz DAC clock rate that is negligible. PRBS7 and PRBS 23 are supposed to be inverted according to Table 3 in http://www.xilinx.com/support/ documentation/application_notes/xapp884_PRBS_ GeneratorChecker.pdf Register DFW has 19 bits and NFW has 18 bits. To minimize NCO frequency error, DFW can be always programmed to 0x3FFFF and set NFW based on the fractional portion of the calculated FCW. This limits the NCO frequency error to 1.11μHz. The MATLAB code however can give an error of 0Hz if possible. Another error is related to DAC input sampling clock. The NCO synthesizes frequency, which is an exact faction of the DAC core clock frequency. That fraction value can be calculated using equation provided in the data sheet. Any percentage error in the DAC input clock, either with PLL enabled or disabled will result in the same percentage error at the NCO output. For example, if the DAC input clock has a tolerance of 10ppm, the NCO output frequency will also have a tolerance of 10ppm. The DAC PLL does not introduce any frequency error once it is locked. The PLL output frequency is exactly equal to the input reference frequency multiplied by the selected PLL multiplication factor. Latency There are two types of latencies in MAX5871: JESD204B latency and DAC latency. The JESD204B Rx link layer includes a lane processing latency and this combined with the transmit link latency and the channel latency, the Subclass-1 deterministic delay should be set through the MAX5871 configuration. This process is to be characterized from silicon evaluation. The lane processing delay portion of the JESD204B RxLink is 200 SerDes bit clocks. In addition to this, there would be a FIFO delay in sample clock periods as configured for Subclass1 deterministic delay. The DAC latency is given in the Electrical Characteristics table in the unit of DAC clock periods. Turn off JESD204B Transmitter The MAX5871 JESD204B consists of both receiver and transmitter blocks. The transmitter is only for manufacturer test purposes. To make sure the transmitters are turned off to save power consumption, the following configuration can be used: The MAX5871 Rx PHY has an option to invert the data by setting PHY.MISC_REG2.Rx_parallel_data_invert (bit 4). DSP FIFO Reading When reading the DSP FIFO register, the number of ones indicates the FIFO level. The 0x1F depth indicates that the level is 5, meaning that the read pointer is behind the write pointer by 5. The FIFO level should be used only for debug. The error conditions are DSP.STATUS. FCOL and DSP.STATUS.F1A while the third status DSP. STATUS.F2A is a warning condition (close to overflow or underflow, one specifically can be determined through DSP.iFIFOLevel). DAC Output Impedance Model and Matching Network The DAC output impedance model is available in an s-parameter file that can be used to design an output matching network if needed. For the best engineering practice, the following guidelines can help in the output PCB design: ●● DAC OUTP and OUTN routes to the matching network should be as short as possible. From the matching network to any filter should be as short as possible. ●● DAC OUTP and OUTN should be routed symmetrically to eliminate any mismatch. ●● The environment around OUTP and OUTN should be symmetrical. This means that the environment on one signal needs to match the other signal. ●● If OUTP and OUTN cannot be made to be short trace routes, then the routes need to match length with mirror symmetry and 50Ω routed impedance. ●● When crossing other signals/supplies routed on other layers, OUTP and OUTN should cross at a 90-degree angle to these signals/supplies. ●● OUTP and OUTN should be routed on an outer board layer and away from supply decoupling. ●● AVCLK network should not be placed and routed in the proximity of OUTP and OUTN. Write 0x0849 = 0xC1 to turn off SerDes TX www.maximintegrated.com Maxim Integrated │  106 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Thermal Considerations The use of as much ground plane as possible on the component layer is recommended for the PCB design. The system design should make use of additional heatsinking directly in contact with the MAX5871 to improve the thermal performance. The thermal numbers are based on JEDEC standard 51-12. All the application thermal modeling is required at the system design. A Delphi model is available for system thermal simulation. www.maximintegrated.com Ordering Information PART MAX5871EXE+ TEMP RANGE PIN-PACKAGE -40ºC to +85ºC 144-FCCSP +Denotes a lead-free/RoHS-compliant package. Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PIN-PACKAGE PACKAGE CODE 144 FCCSP X14400F+1 OUTLINE LAND PATTERN NO. NO. 21-0732 — Maxim Integrated │  107 MAX5871 16-Bit, 5.9Gsps Interpolating and Modulating RF DAC with JESD204B Interface Revision History REVISION NUMBER REVISION DATE 0 1 DESCRIPTION PAGES CHANGED 3/15 Initial release 7/19 Updated Electrical Characteristics, Pin Description table, Figure 11, DSP configuration table, and MAX5871 Configuration 9, 20, 30, 66, 100–104 — For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2019 Maxim Integrated Products, Inc. │  108
MAX5871EXE+ 价格&库存

很抱歉,暂时无法提供与“MAX5871EXE+”相匹配的价格&库存,您可以联系我们找货

免费人工找货