0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MAX77301EWA+T

MAX77301EWA+T

  • 厂商:

    AD(亚德诺)

  • 封装:

    25-WFBGA,WLCSP

  • 描述:

    ICLI-IONCHARGERWLP

  • 数据手册
  • 价格&库存
MAX77301EWA+T 数据手册
EVALUATION KIT AVAILABLE Click here to ask about the production status of specific part numbers. MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration General Description Benefits and Features The MAX77301 is a JEITA-compliant* lithium-ion linear battery charger that operates from a USB port, a dedicated charger, or universal adapter. The IC integrates independent battery charge switch, current sense circuit, MOSFET pass elements, thermal regulation circuitry, and eliminates the external reverse-blocking Schottky diode to create the simplest and smallest USB-compliant charging solution. ● Enables Charging from a USB Port ● Automatic Detection of Adapter Type ● Input Current Up to 1500mA and Charging Current Up to 900mA ● Enumeration Without Processor Intervention ● Supports USB Low-Speed and Full-Speed ● Compliant with USB 2.0 Specification and Battery Charging Specification (Revision 1.1) ● Compliant with Next Generation Low-Voltage Li-Ion Battery Profiles ● Input Overvoltage Protection Up to 16V ● Smart Power Selector™ Allows Power Path Operation with Discharged or No Battery ● Battery Detection Including Packs with Open Protectors ● Thermal Regulation Prevents Overheating ● LED Indicator for Charge Done, Precharge, and Time/ Temperature Error ● Serial (400kHz) I2C-Compatible Interface ● 6µA (typ) Shutdown Current ● 2.44mm x 2.44mm, 25-Bump WLP Package The IC includes automated detection of charge adapter type, making it possible to distinguish USB 2.0 device, USB charger, dedicated charger devices as well as standard input adapters. When enumeration is enabled, the IC automatically negotiates with a USB host, making it possible to achieve the highest-charging current available from a USB 2.0 device or USB charger without processor intervention. The adapter type detection is compliant with USB 2.0 as well as battery charging Specification Revision 1.1. The IC controls the charging sequence for single-cell Li+ batteries from battery detection, prequalification, fast charge, top-off, and charge termination. Charging is controlled using constant current, constant voltage and constant die-temperature (CCCVCTj) regulation for safe operation under all conditions. The IC is also compliant with JEITA battery charging requirements. The Smart Power Selector feature makes the best use of limited USB or adapter power. Battery charge current is set independent of the input current limit. Power not used by the system charges the battery. The battery assists the input source when needed. System voltage is maintained by allowing the application to operate without a battery, a discharged battery, or a dead battery. Automatic input selection switches the system from battery to external power. The I2C interface provides full programmability of battery charge characteristics, input current limit, and protection features. This provides flexibility for use with a wide range of adapter and battery sizes. Other features include undervoltage lockout (UVLO), overvoltage protection (OVP), charge status and fault flags, input power-OK monitor, charge timer, 3.3V/10mA auxiliary output, and an external power-on switch. Applications • Smartphones, Bluetooth Headsets • AR/VR Glasses • Hearables, Wearables • Portable Devices 19-6556; Rev 1; 12/20 Ordering Information appears at end of data sheet. Simplified Operating Circuit VBUS 4.0V TO 6.6V (+16V OVP) BUS I2 C D+ D- SYS CONTROL LOGIC USB INTERFACE OSC CHARGE AND SYS LOAD SWITCH BATT SYSTEM LOAD 1-CELL LI-ION MAX77301 Smart Power Selector is a trademark of Maxim Integrated Products, Inc. *U.S. Patent # 6,507,172 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration TABLE OF CONTENTS General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Simplified Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Data Contact Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Interrupt Request (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 USB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 D+ and D- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Low/Full Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Adapter Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 USB Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Keyboard Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Wake-Up and USB Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 USB Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Smart Power Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 System Load Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Input Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Setting Input Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Minimum VSYS Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Input Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Power Monitor Output (UOK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Battery Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Charge Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Charge Termination (EOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 CHG_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 IBUS_DEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Charge Status (CHG_STAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 www.maximintegrated.com Maxim Integrated | 2 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration TABLE OF CONTENTS (CONTINUED) Battery Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Automatic Detection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 NTC Detection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Thermistor Input (THM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Thermal Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 External Clock (Full Speed Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 USB Low-Speed Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 External Crystal or Ceramic Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Clock Timing Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 External Power-On Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ESD Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 IEC 61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 I2C Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 I2C Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 I2C Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 www.maximintegrated.com Maxim Integrated | 3 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration LIST OF FIGURES Figure 1. Block Diagram and Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 2. Power-On Reset State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 3. Adapter Detection Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 4. Adapter Detection Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 5. Enumeration Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 6. USB BUS Traffic: Low-Speed Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 7. USB BUS Traffic: Full-Speed Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 8. Smart Power Selector Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 9. Input Current Limit Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 10. SYS Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 11. Charge Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 12. Charger State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 13. Battery Detection State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 14. Battery Present Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 15. JEITA Battery Safety Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 16. EXT_PWRON State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 17. Human Body ESD Test Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 18. Human Body Model Current Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 19. IEC61000-4-2 ESD Test Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 20. I2C Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 21. I2C Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 22. I2C START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 23. I2C Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 24. I2C Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 25. I2C Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 26. Recommended PCB Layout for Full Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 27. Recommended PCB Layout for Low Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 www.maximintegrated.com Maxim Integrated | 4 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration LIST OF TABLES Table 1. Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 2. Adapter Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 3. Device Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 4. VBUS Valid Input Range (Rising) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 5. UOK States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6. CHG_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 7. IBUS_DEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 8. CHG_STAT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 9. I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 10. CHIP_ID (Register 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 11. CHIP_REV (Register 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 12. STATUS_A (Register 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 13. STATUS_B (Register 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 14. STATUS_C (Register 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 15. EVENT_A (Register 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 16. EVENT_B (Register 0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 17. IRQ_MASK_A (Register 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 18. IRQ_MASK_B (Register 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 19. USB_CNTL (Register 0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 20. BAT_CNTL (Register 0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 21. IBUS_CNTL (Register 0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 22. CHARGER_CNTL_A (Register 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 23. CHARGER_CNTL_B (Register 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 24. CHARGER_TMR (Register 0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 25. CHARGER_VSET (Register 0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 26. CHARGER_JEITA (Register 0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 27. PRODUCT_ID_A (Register 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 28. PRODUCT_ID_B (Register 0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 29. VENDOR_ID_A (Register 0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 30. VENDOR_ID_B (Register 0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 www.maximintegrated.com Maxim Integrated | 5 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Absolute Maximum Ratings BUS_ to AGND .................................................... -0.3V to +16.0V INT_3V3 to AGND .................................................... -0.3V to +6V CHG_TYPE, IBUS_DEF, ENU_EN_HW, IRQ, D+, D-, UOK, CHG_STAT, BAT_, SYS_, CEN, STDB_EN_HW to AGND................................................................. -0.3V to +0.6V XIN, THM, XOUT, to AGND ................ -0.3V to VINT_3V3 + 0.3V EXT_PWRON, SDA, SCL to AGND .......... -0.3V to (VSYS + 0.3V DGND to AGND..................................................... -0.3V to +0.3V IBUS and ISYS Continuous Current (Note 1) ............ 2200mARMS IBAT Continuous Current (Note 1) ............................ 1800mARMS Continuous Power Dissipation (TA = +70ºC) WLP (derate 19.2mW/ºC above +70ºC). ..............................................1538mW Operating Temperature......................................... -40ºC to +85ºC Junction Temperature ....................................................... +150ºC Storage Temperature Range .............................. -65ºC to +150ºC Soldering Temperature (reflow) ........................................ +260ºC Note 1: IBUS = IBUS_A + IBUS_B; ISYS = ISYS_A + ISYS_B; IBAT = IBAT_A + IBAT_B Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Information WLP Package Type 25 WLP (0.4mm pitch) Package Code W252H2+1 Outline Number 21-0453 Land Pattern Number Refer to Application Note 1891 THERMAL RESISTANCE, FOUR-LAYER BOARD Junction-to-Ambient Thermal Resistance (θJA) 52°C/W Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Electrical Characteristics (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 6.6 V 14 V 50 ms USB-TO-SYS PREREGULATOR USB Operating Range VBUS USB Standoff Voltage USB_OK Debounce Timer www.maximintegrated.com Initial VBUS voltage before enabling charger 4.0 VBAT = VSYS = 0V, IBUS < 800μA tUSB_DB Time from BUS within valid range until UOK goes high impedance 30 Maxim Integrated | 6 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Electrical Characteristics (continued) (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER SYMBOL USB Undervoltage Lockout Threshold CONDITIONS IDETECT IENUMERATE USB Input Supply Current (Notes 3, 4) ISUSPEND MAX Before initial detection of external device 3.85 4.0 4.15 UOK logic-low, VBUS falling, customer UVLO For > 500mA adapter and except for ILIM [2:0] = 000, 111 3.40 3.55 3.70 USB 2.0 low-power device 3.75 3.9 4.05 USB 2.0 highpower device 3.95 4.1 4.25 UOK logic-low, VBUS rising, 100mV hysteresis 6.7 6.9 7.1 Charge type detection, ISYS = IBAT = 0mA 0.5 USB 2.0 enumeration in progress, ISYS = IBAT = 0mA 100 Suspended mode, ISYS = IBAT = 0mA, VSTDB_EN_HW = 0V 0.5 TA = 0ºC to +85ºC IUSB_100mA USB 2.0 low-power device detected IUSB_500mA 102.5 USB 2.0 highpower device detected 500 USB 2.0 low-power device detected IENU During USB enumeration, TA = +25ºC 80 90 98 IUSB_LP USB 2.0 low-power device detected, TA = +25ºC 80 90 98 IUSB_HP USB 2.0 high-power device detected 455 475 490 ILIM = 000, TA = +25ºC 80 90 98 ILIM = 001 (default) 455 475 490 ILIMIT During suspend 600 ILIM = 011 700 ILIM = 100 900 ILIM = 101 1000 ILIM = 110, TA = +25ºC (Note 3) 1344 1500 1650 ILIM = 110, TA = -40ºC to +85ºC 1324 1500 1700 200 320 VBAT 50mV VBAT 20mV VBUS = 5V, ISYS = 400mA VSYS_to VBAT_ Reverse Regulation When SYS is in regulation and charging stops, VSYS_ falling, 50mV typical hysteresis V V mA 0 ILIM = 010 VBUS_ to VSYS_ OnResistance UNITS 100 TA = -40ºC to +85ºC ISUS USB Input Current Limit www.maximintegrated.com TYP UOK logic-low, VBUS rising, 100mV hysteresis UOK logic-low, VBUS falling USB Overvoltage Protection Threshold MIN VBAT 80mV mA mI Maxim Integrated | 7 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Electrical Characteristics (continued) (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER SYMBOL Input Limiter Soft-Start Time Thermal-Limit Start Temperature CONDITIONS MIN Input current ramp time TDIE_LIM 100 μs 90 THERM _REG = 10 110 SYS Regulation Voltage VBAT > 3.45V, ISYS = 1mA to 1.6A TDIE_LIM + 10ºC ºC 5 %/ºC 140mV + 210mV + VBAT VBAT V_SYS = 00 VBUS = 6V, ISYS = 1mA to 1.6A ºC 120 ISYS reduction/die temperature VSYS_UVLO 50 100 Thermal-Limit Gain Undervoltage Lockout UNITS THERM _REG = 01 THERM _REG = 11 VSYS_MIN MAX THERM_REG = 00 Thermal-Limit Triggers IRQ Minimum SYS Regulation Voltage TYP 3.4 V_SYS = 01 TA = +25ºC 4.2 4.35 4.524 V_SYS = 02 TA = -40ºC to +85ºC 4.185 4.35 4.524 V_SYS = 10 4.4 V_SYS = 11 4.5 VBUS_ = 5.5V rising 3.0 VBUS_ = 5.5V falling V 2.6 2.85 3.1 55 80 V V CHARGER BAT-to-SYS OnResistance BAT Undervoltage Lockout (Register 0x10h, Bit 7 = 0) VBAT = 4.2V, ISYS = 200mA VBAT_UVLO_F VBAT falling BAT_UVLO_VPRE Q = 1 (register 0x10h) 2.15 2.40 2.65 VBAT_UVLO_R VBAT rising BAT_UVLO_VPRE Q = 1 (register 0x10h) 2.45 2.70 2.95 VBAT_UVLO_F VBAT falling BAT_UVLO_VPRE Q = 0 (default, register 0x10h) 1.60 1.85 2.10 VBAT_UVLO_R VBAT rising BAT_UVLO_VPRE Q = 0 (default, register 0x10h) 1.85 2.10 2.35 Charger Soft-Start Time V 1 BAT Leakage Current VBAT = 4.2V mI ms VBUS not connected 2 6 VBUS connected, VCEN = 0V 6 15 μA PRECHARGE MODE BAT Precharge Current www.maximintegrated.com IPCHG VBAT > 1.4V (Note 5) 50 mA Maxim Integrated | 8 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Electrical Characteristics (continued) (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX VBAT_PCHG_F VBAT falling BAT_UVLO_VPRE Q = 1 (register 0x10h) 2.60 2.70 2.80 VBAT_PCHG_R VBAT rising BAT_UVLO_VPRE Q = 1 (register 0x10h) 2.70 2.80 2.95 VBAT_PCHG_F VBAT falling BAT_UVLO_VPRE Q = 0 (default, register 0x10h) 2.05 2.15 2.25 VBAT_PCHG_R VBAT rising BAT_UVLO_VPRE Q = 0 (default, register 0x10h) 2.15 2.25 2.40 BAT Prequalification Threshold UNITS V FAST-CHARGE MODE BAT Charge-Current Set Range IFCHG VBAT_FCHG_R BAT Fast-Charge Threshold VBAT_FCHG_H YS IFCHG = 000 100 IFCHG = 010 (default) 200 IFCHG = 001 300 IFCHG = 110 370 IFCHG = 111 450 IFCHG = 011 600 IFCHG = 100 800 IFCHG = 101 900 VBAT rising threshold, where charging current IFCHG is reduced to ITCHG VBAT hysteresis, the falling threshold where charging current is increased to IFCHG is: VBAT_FCHG_HYS = VBAT_FCHG_R VBAT_FCHG_F BAT_FCHG = 00 3.8 BAT_FCHG = 01 3.9 BAT_FCHG = 10 (default) 3.88 4 BAT_FCHG = 11 4.1 BAT_FCHG_HYS = 00 150 BAT_FCHG_HYS = 01 (default) 200 BAT_FCHG_HYS = 10 250 BAT_FCHG_HYS = 11 300 mA 4.12 V mV TOP-OFF CHARGE MODE Top-Off Charge Current ITCHG VBAT > 1.4V (Note 5) TCHG = 00 0.4 x IFCHG TCHG = 01 0.6 x IFCHG TCHG = 10 TCHG = 11 (default) www.maximintegrated.com 0.8 x mA IFCHG 1.0 x IFCHG Maxim Integrated | 9 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Electrical Characteristics (continued) (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER Charge DONE Qualification (Note 3) SYMBOL ICHG_DONE CONDITIONS MIN CHG_DONE = 000 10 CHG_DONE = 001 20 BAT Regulation Voltage (MAX77301A) BAT Recharge Threshold VBAT_REG VBAT_REG VBAT_RECHG MAX CHG_DONE = 010 30 40 50 CHG_DONE = 011 37.5 50 62.5 45 60 75 CHG_DONE = 100 (default) CHG_DONE = 101 80 CHG_DONE = 110 100 CHG_DONE = 111 BAT Regulation Voltage (MAX77301) TYP IBAT_ = 0mA IBAT_ = 0mA With respect to VBAT_REG UNITS mA 120 BAT_REG = 00 4.05 BAT_REG = 01 4.10 BAT_REG = 10 4.15 BAT_REG = 11 (default) TA = +25ºC 4.179 4.200 4.221 BAT_REG = 11 (default) TA = 0ºC to +85ºC 4.158 4.200 4.242 BAT_REG = 00 4.25 BAT_REG = 01 4.30 BAT_REG = 10 4.35 BAT_REG = 11 (default) TA = +25ºC 4.378 4.40 4.422 BAT_REG = 11 (default) TA = 0ºC to +85ºC 4.356 4.40 4.444 BAT_RECHG = 00 (default) -350 BAT_RECHG = 10 -300 BAT_RECHG = 01 -250 BAT_RECHG = 11 -200 PCHG_TMR = 00 30 PCHG_TMR = 01 60 PCHG_TMR = 10 (default) 120 PCHG_TMR = 11 240 FCHG_TMR = 00 75 FCHG_TMR = 01 150 FCHG_TMR = 10 300 FCHG_TMR = 11 (default) 600 V V mV CHARGE TIMER Prequalification Timer Fast-Charge Timer www.maximintegrated.com tPCHG tFCHG From start of precharge until end of prequalification charge model (Figure 11) From start of fast charge until maintains charge (Figure 11) Minutes Minutes Maxim Integrated | 10 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Electrical Characteristics (continued) (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER Maintain-Charge Timer SYMBOL tMTCHG CONDITIONS (Figure 12) MIN TYP MTCHG_TMR = 10 (default) 0 MTCHG_TMR = 01 15 MTCHG_TMR = 00 30 MTCHG_TMR = 11 60 Timer Accuracy -30 MAX UNITS Minutes +30 % Timer Extend Threshold Percentage of charge current below which timer clock operates at half speed 50 % Timer Suspend Threshold Percentage of charge current below which timer clock pauses 20 % INSERTION AND REMOVAL DETECTION BAT Discharge Current IDIS 1V ≤ VBAT ≤ 4.2V, CBAT ≤ 10μF BAT Discharge Time tDIS Discharge timer expires if VBAT drop > VBAT_UVLO threshold, battery cap ≤ 10μF Charge Debounce Timer tDB Delay before checking charge done Battery Detecting Current 0.375 1.125 150 mA ms 100 150 200 ms 1 3 5 mA IDM_SINK 50 100 150 μA IDP_SRC 7 IBAT_DET Charging in prograss (precharge, fastcharge or maintain charge); if IBAT < IBAT_DET = battery absence ADAPTER TYPE DETECTION D- Current Sink D+ Current source D- Weak Current Sink IDM_CD_PD μA μA D+ Source Voltage VDP_SRC 0.5 0.6 0.7 V D+ Detection Threshold VDAT_REF 0.25 0.32 0.40 V D- Logic-High Threshold VDM_IH 0.8 2.0 V D+ Logic-High Threshold VDP_IH 0.8 2.0 V D+/D- Detection Threshold D- Pulldown Resistor IDP_SRC = 200μA 13 0.1 DP_25% DM_25% Detection threshold for custom chargers as % of VBUS 23.75 25.0 26.25 DM_34% Detection threshold for custom chargers as % of VBUS 32.3 34 35.7 DP_47% DM_47% Detection threshold for custom chargers as % of VBUS 44.65 47.00 49.4 DP_60% DM_60% Detection threshold for custom chargers as % of VBUS 57 60 63 RDM_DWN % 14.25 24.8 kΩ D- Pullup Resistor RDM_PU External resistor = 33Ω, low speed only 1.425 1.500 1.575 kΩ D+ Pullup Resistor RDP_PU External resistor = 33Ω, full speed only 1.425 1.500 1.575 kΩ 200 330 600 kΩ D+ Charger Detection Pullup Resistor RDP_CD_PU Data Contact Detection Debounce Timer tDCD_DBNC www.maximintegrated.com RDP_CD_PU connected to INT_3V3 30 ms Maxim Integrated | 11 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Electrical Characteristics (continued) (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS D+ Source On Time tDP_SRC_ON 100 ms D+ Source to HighCurrent Time tDP_SRC_HC 40 ms Time from start of enumeration process until enumeration 10 s Time from suspend mode until it reenumerates, RWU_EN = 1 100 ms Time from failed enumeration to adapter type detection reenabled, nENU_EN = 0 3 s Detecting Time D+/D- open power source nENU_EN = 1 100 ms Enumeration Fail to Reconnect Timer Time from enumeration fail at 500mA until enumeration is retried at 100mA or time from enumeration fail at 100mA until reconnect timer is started 87 ms Enumeration Time Limit Reenumeration Timer Reconnect Timer tENUM tRE_ENUM tFAULT tENU_FAULT XIN, XOUT PINS Oscillator Frequency Accuracy Internal oscillator (low speed), TA = +25ºC XIN, XOUT Input Capacitance With external crystal (full speed) XIN Input Current With external crystal (full speed) 5.91 6.00 3 0.667 x VINT_3V XIN Logic-High Input Voltage 6.09 pF 10 FA VINT_3V V 3 3 XIN Logic-Low Input Voltage MHz 0.4 V THERMISTOR MONITOR (THM) THM Hot Threshold T4 VTHM raising, 2% hysteresis 32.2 % of VINT_3V3 THM Warm Threshold T3 VTHM raising, 2% hysteresis 46.5 % of VINT_3V3 THM Cool Threshold T2 VTHM falling, 2% hysteresis 81.9 % of VINT_3V3 THM Cold Threshold T1 VTHM falling, 2% hysteresis 88.7 % of VINT_3V3 VTHM falling, 2% hysteresis 3.4 % of VINT_3V3 High impedance when no BUS or THM is disabled 500 kΩ THM Disable Threshold THM Input Impedance THM Input Leakage THMZIN THM = AGND THERM_EN = 0 TA = +25ºC THM = AGND THERM_EN = 1 TA = +85ºC -1 0.001 +1 μA 0.01 EXT_PWRON Logic-Low Output Voltage www.maximintegrated.com Sinking 10mA 35 100 mV Maxim Integrated | 12 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Electrical Characteristics (continued) (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER SYMBOL CONDITIONS tEXT_PWR_RE Time where EXT_PWRON is highimpedance during transition between two EXT_PWRON low states 63 Logic-Low Output Voltage Sinking 10mA 35 Blink Period for Temperature Suspend Mode 50% duty cycle, battery present 1.5 s Blink Period for Timeout Mode 50% duty cycle, battery present 0.15 s High-Impedance Time SET MIN TYP MAX UNITS ms CHARGER STATUS (CHG_STAT) 100 mV LOGIC I/O: UOK, CEN, ENU_EN_HW Logic Input Voltage High level 1.3 High level for SDA and SCL 1.4 V Low level Logic Input-Leakage Current VBUS = 0V to 5.5V Logic-Low Output Voltage (CHG_TYPE, IRQ, UOK, Only) Sinking 10mA 0.4 TA = +25ºC 0.001 TA = +85ºC 0.01 1 35 100 TA = +25ºC 0.001 1 TA = +85ºC 0.01 μA mV Logic-High OutputLeakage Current (CHG_TYPE, IRQ, UOK, Only) VSYS = 5.5V UOK Blink Period During USB Suspend Only for USB automatically entering suspend mode, 50% duty cycle 1.5 s UOK Blink Period with Open D+/D- Detected 50% duty cycle 0.15 s μA I2C INTERFACE (See Figure 20) (Note 3) Clock Frequency Bus-Free Time Between START and STOP 400 tBUF Hold Time Repeated START Condition kHz 1.3 μs 0.6 μs SCL Low Period tLOW 1.3 μs SCL High Period tHIGH 0.6 μs Setup Time Repeated START Condition tSU_STA 0.6 μs SDA Hold Time tHD_DAT 0 μs SDA Setup Time tSU_DAT 100 μs Maximum Suppressed Pulse Width www.maximintegrated.com Width of spikes that must be suppressed by the input filter of both SDA and SCL signals 50 ns Maxim Integrated | 13 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Electrical Characteristics (continued) (THM = AGND, CEN = INT_3V3, VBAT = 4.2V, VBUS_, EXT_PWRON, UOK, IRQ, CHG_TYPE, and CHG_STAT are unconnected, TA = -40ºC to +85ºC, unless otherwise noted. Typical values are at TA = +25ºC.) (Note 2 ) PARAMETER Setup Time for STOP Condition SYMBOL CONDITIONS MIN TYP MAX UNITS tSU_STO 0.6 μs |VD+ - VD-| 0.2 V USB DATA INTERFACE Differential-Receiver Input Sensitivity Differential-Receiver Common-Mode Voltage 0.8 D+, D- Input Impedance 300 D+, D- Output Low Voltage VOL RLOAD = 1.5kΩ from VD- to 3.6V D+, D- Output High Voltage VOH RLOAD = 15kΩ from D+ and D- to AGND Driver Output Impedance Excludes external resistor 2.5 kΩ 2.8 2 V 7 0.3 V 3.6 V 11 I BUS Idle Time tIDLE Only valid when an adapter type is detected as a USB 2.0 device; time BUS is inactive until charging current is reduced to ISUSPEND 3 ms USB Host Remote Wake-Up Timer tRWU Time delay from suspend mode until it requests the host for a remote wake-up 100 ms D+, D- Rise Time (Note 3) tRISE D+, D- Fall Time (Note 3) tFALL Rise/Fall-Time Matching (Note 3) Output-Signal Crossover Voltage CL = 50pF to 600pF, low speed only 75 250 CL = 50pF, full speed only 4 20 CL = 50pF to 600pF, low speed only 75 250 CL = 50pF to 600pF, full speed only 4 20 CL = 50pF to 600pF, low speed only 80 120 CL = 50pF to 600pF, full speed only 90 110 CL = 50pF to 600pF, low speed only 1.3 2.0 V VBUS = 5V, IINT_3V3 = 0 to 10mA 3.0 3.6 V ns ns % INT_3V3 REGULATOR INT_3V3 Voltage 3.3 ESD PROTECTION (D+, D-, BUS_) Human Body Model BUS bypassed with 1μF to AGND ±8 kV Note 3: Specifications are 100% production tested at TA = +25ºC. Limits over the operating temperature range are guaranteed by design and characterization. Note 4: Guaranteed by design. Limits not production tested. Note 5: Sum of input current limit and current used for INT_3V3. Note 6: Maximum charging current is adaptively regulated to IILIM - ISYS though maximum ICHG. www.maximintegrated.com Maxim Integrated | 14 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Typical Operating Characteristics (Circuit of [[Figure 1. Block Diagram and Typical Application Circuit]], TA = +25ºC unless otherwise noted.) VB US INPUT SUPPL Y CURRENT v s . V B US (FUL L SPEED) 1000 800 600 400 1000 800 600 400 200 STDB_EN_HW = AGND 0 6 8 10 12 16 14 VBUS (V) 4 3 2 1 4 6 8 10 12 14 VBAT = 4.2V CEN = AGND 1400 1200 8 10 12 800 600 400 2 4 6 8 10 12 BUS UNCONNECTED, SDA = SCL = AGND, CEN = INT_3V3 0 14 3.0 3.5 VBAT (V) www.maximintegrated.com 4.0 4.5 16 1000 800 600 400 0 2.0 2 4 6 8 10 12 14 16 VBUS (V) CHA RGE CURRENT v s . B A TTERY VOL TA GE (L OW-POWER MODE) 1.5 1.0 100 90 80 70 60 50 40 30 20 0.5 VBAT = 3.6V, CEN = INT_3V3 BUS UNCONNECTED 10 0 0 2.5 14 1200 16 MAX77301 toc08 2.5 LEAKAGE CURRENT (µA) MAX77301 toc07 0.5 12 VBAT = 4.2V CEN = INT_3V3 1400 B A TTERY L EA K A GE CURRENT v s . T E MP E R A T U R E 1.0 10 0 0 B A T T E R Y L E A K A GE C U R R E N T v s . B A T T E R Y V OL T A GE 1.5 8 1600 VBUS (V) 2.0 6 200 VBUS (V) 2.5 4 VB US INPUT SUPPL Y CURRENT v s . VB US (CHA RGER DISA B L ED) 1000 16 14 2 VBUS (V) CHARGE CURRENT (mA) 6 400 0 0 4 600 16 200 0 LEAKAGE CURRENT (µA) 2 1600 INPUT SUPPLY CURRENT (µA) MAX77301 toc04 INPUT SUPPLY CURRENT (mA) BAT UNCONNECTED CEN = INT_3V3 2 800 VB US INPUT SUPPL Y CURRENT v s . VB US (CHA RGER DISA B L ED) 6 0 1000 VBUS (V) VB US INPUT SUPPL Y CURRENT v s . VB US (CHA RGER ENA B L ED) 5 1200 0 0 INPUT SUPPLY CURRENT (µA) 4 MAX77301 toc05 2 1400 200 0 0 MAX77301 toc03 1200 MAX77301 toc09 200 1400 1600 MAX77301 toc06 1200 MAX77301 toc02 1400 1600 INPUT SUPPLY CURRENT (µA) MAX77301 toc01 INPUT SUPPLY CURRENT (µA) 1600 VB US INPUT SUPPL Y CURRENT v s . VB US (L OW SPEED) INPUT SUPPLY CURRENT (µA) VB US INPUT SUPPL Y CURRENT v s . VB US (SUSPEND MODE) -40 -15 10 35 TEMPERATURE (°C) 60 85 2.0 2.5 3.0 3.5 4.0 4.5 BATTERY VOLTAGE (V) Maxim Integrated | 15 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Typical Operating Characteristics (continued) (Circuit of [[Figure 1. Block Diagram and Typical Application Circuit]], TA = +25ºC unless otherwise noted.) 100 50 150 100 MAX77301 toc12 200 220 215 50 210 205 200 195 190 185 0 4.0 4.5 180 2.0 2.5 BATTERY VOLTAGE (V) 4.206 4.204 4.202 4.200 4.198 SYS OUTPUT VOLTAGE (V) 4.208 THM = GND (DISABLED) 4.194 -15 -10 35 60 4.450 4.425 4.400 4.375 4.350 4.325 4.300 4.275 4.250 4.225 4.200 4.175 4.150 4.125 4.100 4.075 4.050 4 80 60 40 20 0 500 1000 ISYS (mA) www.maximintegrated.com 1500 5 6 7 2000 4.3 SYSTEM LOAD SWITCH IN DROPOUT 3.9 3.8 3.7 4.35 4.30 4.20 4.15 4.10 3.00 3.50 3.75 4.00 4.25 4.50 4.6 1500 2000 VBAT = 4.2V 4.4 VSYS SUPPLEMENTED BY VBUS 4.2 4.0 3.8 3.6 3.4 3.2 1000 3.25 SYS OUTPUT VOL TA GE v s . L OA D CURRENT (USB HIGH-POWER MODE) 3.0 ISYS (mA) VBUS = 5V VSYS = 4.35V 4.00 3.5 500 ISYS = 100mA 4.25 3.6 0 ISYS = 0mA 4.40 4.05 VSYS SUPPLEMENTED BY VBUS 4.0 85 VBATT (V) VBAT = 4.2V 4.1 60 4.45 8 4.5 4.2 35 4.50 VBUS (V) 4.4 -10 SYS OUTPUT VOL TA GE v s . B A T T E R Y V OL T A GE VBAT = 4.2V 3 SYS OUTPUT VOLTAGE (V) 100 0 -15 TEMPERATURE (°C) SYS OUTPUT VOL TA GE v s . L OA D CURRENT (USB L OW-POWER MODE) MAX77301 toc16 SYS DROP OUTPUT VOLTAGE (mV) 120 -40 ISYS = 20mA 85 B A T-SYS VOL TA GE DROP v s . SYS CURRENT BUS DISCONNECTED VBAT = 3.6V 4.5 ISYS = 0mA TEMPERATURE (°C) 140 4.0 SYS OUTPUT VOL TA GE v s . VB US MAX77301 toc13 BATTERY REGULATION VOLTAGE (V) 4.210 -40 3.5 BATTERY VOLTAGE (V) B A TTERY REGUL A TION VOL TA GE v s . A MB IENT TEMPERA TURE 4.196 3.0 SYS OUTPUT VOLTAGE (V) 3.5 SYS OUTPUT VOLTAGE (V) 3.0 MAX77301 toc14 2.5 MAX77301 toc17 2.0 MAX77301 toc15 0 IFCHG = 200mA MAX77301 toc18 150 MAX77301 toc11 200 250 CHARGE CURRENT (mA) MAX77301 toc10 250 CHARGE CURRENT (mA) CHA RGE CURRENT v s . A MB IENT TEMPERA TURE CHA RGE CURRENT v s . B A TTERY VOL TA GE (1A DEDICA TED CHA RGER) CHARGE CURRENT (mA) CHA RGE CURRENT v s . B A TTERY VOL TA GE (HIGH-POWER MODE) SYSTEM LOAD SWITCH IN DROPOUT 0 500 1000 1500 2000 ISYS (mA) Maxim Integrated | 16 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Typical Operating Characteristics (continued) (Circuit of [[Figure 1. Block Diagram and Typical Application Circuit]], TA = +25ºC unless otherwise noted.) 4.2 4.1 3.20 3.15 SYSTEM LOAD SWITCH IN DROPOUT 3.05 VBAT = 4.2V, SONY UB-10 0 500 1500 3 2000 MAX77301 toc22 4 5 6 7 0.20 700 0.18 3.8 400 3.6 300 3.4 200 IBAT BATTERY = 1830mA-h IFCHG = 600mA 100 IBAT (mA) 500 VBAT HEADROOM VOLTAGE (V) 600 0.16 0.14 0.10 VBUS ISYS = 150mA 0.08 VBUS ISYS = 0mA 0.06 0.04 0 100 VBUS ISYS = 300mA 0.12 200 300 EYE DIA GRA M (L OW SPEED) MAX77301 toc23 3.6 3.1 2.6 2.1 1.6 1.1 50 100 150 200 0 250 DEDICA TED CHA RGER CONNECT MAX77301 toc24 3.5 3.0 VBUS 2.5 VSYS 2.0 2.0 3.0 4.0 1.0 MAX77301 toc25a 5V/div VBUS 5V/div IBUS 0.5A/div VD+ 0.5 2V/div VD+ 2V/div 2V/div 0 -0.5 VD0 1.0 2.0 3.0 4.0 5.0 TIME (x 10^ -8) s www.maximintegrated.com 6.0 7.0 8.0 6.0 5V/div 2V/div 1.5 5.0 DEDICA TED CHA RGER CONNECT MAX77301 toc25 4.0 1.0 TIME (x 10^ -7) s IBAT (mA) EYE DIA GRA M (FUL L SPEED) D+, D- SIGNALS (V) 0 50 100 150 200 250 300 350 400 450 0.1 0 TIME (MINUTES) 100 TIME (MINUTES) 0 400 200 0.6 0.02 3.0 0 IBAT BATTERY = 1830mA-h IFCHG = 300mA ICHG_DONE = 40mA 0 8 D+, D- SIGNALS (V) 4.2 3.2 300 HEA DROOM VOL TA GE v s . B A TTERY CURRENT SYS VOL TA GE = 4.35V, IFCHG = 200m A CHA RGE PROFIL E (HIGH-POWER USB CHA RGER) 4.0 3.6 VBUS (V) ISYS (mA) 4.4 400 3.0 3.10 1000 3.8 3.2 MAX77301 toc22a 3.7 500 VBAT 3.4 VBAT = 4V, IBAT = 200mA REWORK REMOVED FOR THIS MEASUREMENT 700 600 4.0 3.10 3.9 3.8 VBAT (V) 4.2 3.25 4.0 MAX77301 toc21 4.4 VBAT (V) 4.3 3.30 INT_3V3 (V) SYS OUTPUT VOLTAGE (V) 4.4 B A TTERY CHA RGE PROFIL E MAX77301 toc20 VSYS SUPPLEMENTED BY VBUS MAX77301 toc19 4.5 INT_3V3 VOL TA GE v s . B US VOL TA GE 3.35 IBAT (mA) SYS OUTPUT VOL TA GE v s . L OA D CURRENT (DEDICA TED CHA RGER) DEDICATED CHARGER RSYS = 25Ω VBAT = 3.6V 200ms/div VD- SONY U50A RSYS = 25Ω VBAT = 3.6V 200ms/div Maxim Integrated | 17 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Typical Operating Characteristics (continued) (Circuit of [[Figure 1. Block Diagram and Typical Application Circuit]], TA = +25ºC unless otherwise noted.) DEDICA TED CHA RGER DISCONNECT MAX77301 toc26 VBUS MAX77301 toc26a MAX77301 toc27 5V/div IBUS VSYS 0.5A/divVBUS 5V/div VBAT = 3.6V RSYS = 25Ω VD+ VD+ 2V/div VD- USB HIGH-POWER 2.0 CONNECT DEDICA TED CHA RGER DISCONNECT 5V/div VBUS 2V/div SONY U50A RSYS = 25Ω VBAT = 3.6V VD- 2V/div IBUS 2V/div VD+ VD200ms/div 200ms/div VBUS 5V/div IBUS VBAT = 3.6V RSYS = 25Ω 2V/div 0 MAX77301 toc30 VBUS 5V/div 5V/div 0 100mA /div 0 I 100mA /div BUS 2V/div VD+ U S B R E S U ME ( F R O M S U S P E N D ) MAX77301 toc29 MAX77301 toc28 VBUS 400ms /div USB SUSPEND (GUI) USB HIGH-POWER 2.0 DISCONNECT 2V/div VD+ 0 0 100mA /div IBUS VD+ 2V/div 0 0 0 2V/div 2V/div VD- 0 200ms /div www.maximintegrated.com VD- 0 20ms/div 0 VD- 0 20ms/div Maxim Integrated | 18 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Pin Configuration TOP VIEW (BUMPS ON BOTTOM) + MAX77301 1 2 3 4 5 IBUS_DEF CHG_TYPE BAT_A SYS_A BUS_A ENU_EN_HW EXT_PWRON BAT_B SYS_B BUS_B A B XIN SDA UOK STDB_EN_HW AGND XOUT SCL CEN CHG_STAT D+ IRQ THM INT_3V3 DGND D- C D E WLP (0.4mm PITCH) Pin Description PIN A1 NAME IBUS_DEF FUNCTION Logic Input that Sets Input Current Limit. Only valid when enumeration is disabled or D+/D- are open. Logic-high programs the ILIM[2:0] register value. Logic-low sets the input current limit at 100mA. Low Input current limit = 100mA High A2 A3, B3 CHG_TYPE BAT_A BAT_B Input current limit = ILIM[2:0] (default = 500mA) Open-drain Output. Used to signal to the processor the current capability of the external adapter. Connect this pin to ground if not used. CHG_TYPE ADPATER TYPE Low USB 2.0 host 100mA or ILIM = 100mA High impedance ILIMIT ≥ 500mA Li+ Battery Connection (VBAT). Connect a single-cell Li+ battery from VBAT to ground. Bypass VBAT to DGND with a 10μF X5R or X7R ceramic capacitor. Both BAT_A and BAT_B must be connected together externally. System Supply Output (VSYS). Connect SYS_A and SYS_B to the system load. A4, B4 SYS_A SYS_B When a valid voltage is present at VBUS, VSYS is programmed by the greater of register V_SYS[1:0] or VBAT + 0.14V (typ). When VBUS is not present the SYS voltage is set to the battery voltage minus a small voltage drop determined by the system load. Bypass VSYS to DGND with a 10μF X5R or X7R ceramic capacitor. SYS_A and SYS_B must be connected together externally. www.maximintegrated.com Maxim Integrated | 19 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Pin Description (continued) PIN A5, B5 B1 NAME BUS_A BUS_B ENU_EN_H W FUNCTION USB Power Input (VBUS). Connect input power source to BUS_A and BUS_B. Bypass VBUS to DGND with a 10μF X5R or X7R ceramic capacitor. BUS_A and BUS_B must be connected together externally. Automatic Enumeration Enable. ENU_EN_HW is a logic-low input used to enable USB enumeration. Connect ENU_EN_HW to AGND to allow the IC to automatically perform enumeration. Connect to INT_3V3 or drive logic-high to disable automatic enumeration and enable adapter detection. In case of USB host/hub, do not initiate USB enumeration, but set input current according to IBUS_DEF. The nENU_EN_HW_MASK bit is used to determine if nENU_EN is controlled by ENU_EN_HW logic input or if controlled by I2C directly. B2 EXT_PWRO N Open-Drain Output. Used to enable other parts of the system when valid supply is present. Connect this pin to ground if not used. Crystal Oscillator Input. C1 XIN For full-speed operation, connect XIN to one side of a parallel resonant 12MHz ±0.25% crystal and a 33pF capacitor to AGND. XIN can also be driven by an external clock referenced to INT_3V3. For low-speed operation only, a crystal or clock signal is not required. Connect XIN to AGND and connect XOUT to INT_3V3. In this case the internal oscillator is used, and only low-speed operation is supported. C2 C3 C4 SDA Data Input for I2C Serial Interface. Connect an external 2.2kΩ pullup resistor from SDA to the logic supply. SDA is high impedance when off. UOK Active-Low Adapter Type Detection. UOK is an open-drain output that pulls low when adapter detection is successfully completed. In USB suspend mode, UOK flashes with a duty cycle of 50% and a period of 1.5s. When D+/D- open is detected and bit nENU_EN = 1, the UOK pin flashes with a duty cycle of 50% and a period of 0.15s. When no adapter is detected, UOK is high impedance. Connect this pin to ground if not used. STDB_EN_H W Standby Mode Enable. STDB_EN_HW is a logic-low input used to force the IC into suspend mode. Connect STDB_EN_HW to INT_3V3 or drive logic high for automatic detect mode. In automatic detect mode the IC determines when to enter suspend mode depending on the status of SUS_EN register and USB conditions. The nSTDB_EN_HW_MASK bit determines if nSTDB_EN is controlled by STDB_EN_HW logic input or if controlled by I2C directly. C5 AGND Analog Ground. Connect AGND to quiet ground, including crystal oscillator and INT_3V3 ground nodes. Crystal Oscillator Output. D1 XOUT For full-speed operation, connect XOUT to one side of a parallel resonant 12MHz ±0.25% crystal and a 33pF capacitor to AGND. Connect XOUT unconnected if XIN is driven by an external clock. For low-speed operation only, a crystal or clock signal is not required. Connect XOUT to INT_3V3 and connect XIN to AGND. In this case the internal oscillator is used, and only low-speed operation is supported. D2 D3 SCL Clock Input for Serial Interface. Connect an external 2.2kΩ pullup resistor from SCL to the logic supply. SCL is high impedance when off. CEN Charger Enable Input. Logic-high input used to control charge status. Connect CEN to logic-high to enable battery charging when a valid source is connected at VBUS. Connect to AGND or drive logiclow to disable battery charging. The CEN_MASK bit is used to determine if CHG_EN is controlled by CEN logic input or if controlled by I2C directly. www.maximintegrated.com Maxim Integrated | 20 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Pin Description (continued) PIN D4 NAME FUNCTION CHG_STAT Charge Status Output. Logic-low open drain output indicating battery charging. When a temperature fault is detected, the output is pulsed at 50% duty cycle with a period of 1.5s. When a charge timer fault is detected CHG_STAT is pulsed at 50% duty cycle with a period of 0.15s. When no battery is connected, CHG_STAT is pulsed at a 0.1s period and 10%–20% duty cycle. Connect this pin to ground if not used. D5 D+ USB D+ Signal. Connect a 33Ω resistor between D+ a USB connector to add signal integrity. E1 IRQ Interrupt Request. Logic-low open-drain output that indicates when an interrupt has occurred. E2 THM Thermistor Input. Battery temperature detect input. Connect a negative temperature coefficient (NTC) thermistor close to the battery pack. Connect the other thermistor lead to AGND. Connect a pullup resistor from THM to INT_3V3 (47kΩ pullup resistor is recommended with a 100kΩ thermistor). Connect to AGND to disable this feature. Note the thermistor and pullup resistor are required for battery NTC detection mode. E3 INT_3V3 3.3V Logic Supply Output. Connect a 1μF capacitor from INT_3V3 to AGND. The output is rated for up to a 10mA load. The INT_3V3 output is active whenever a valid voltage is present on BUS_ pins. E4 DGND Digital Ground. Connect DGND to power ground, including input capacitor, system capacitor, and battery capacitor ground nodes. E5 D- www.maximintegrated.com USB D- Signal. Connect a 33Ω resistor between D- a USB connector. Maxim Integrated | 21 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Detailed Description VBUS_A VBUS_B USB POWER MANAGEMENT SYS_A SYS_B 10µF TO SYSTEM LOAD 22µF MAX77301 1kΩ 5.6V SET INPUT CURRENT LIMIT ILIM 10kΩ INT_3V3 SUPPLY INT_3V3 1µF VBUS RD+ D+ RDD- D+ ISYS_ SET INPUT CURRENT LIMIT ILIM CHARGER DEVIATION Li+ BATTERY CHARGER ILIM ISYS IC THERMAL ICHG REGULATION ICHG_MAX USB ADAPTER TYPE DETECTION AND ENUMERATION EXTERNAL POWER-ON TRIGGER EXT_PWRON CHARGER CURRENT VOLTAGE CONTROL BAT_A BAT_B BAT+ D- 10µF NO BAT DETECTION BAT- GND THERMISTOR MONITOR JEITA I2C CLOCK IRQ AUTOMATIC SUSPEND MODE FORCED SUSPEND MODE SYS_EN_HW AUTOMATIC ENUMERATION DISABLED AUTOMATIC ENUMERATION ENABLED ENU_EN_HW 100mA /ILIM 2:0 INPUT CURRENT LIMIT ISUS/100mA INPUT CURRENT LIMIT NTC 47kΩ I2C DATA 500mA+ INPUT CURRENT LIMIT 100mA MAX INPUT CURRENT LIMIT THM USB/I2C INTERFACE LOGIC CHARGE TIMER OTP OPTIONS INT_3V3 CHG_STAT POR TIME AND TEMP ERROR INDICATOR CHARGER STATUS CEN CHG_TYPE CHARGER ENABLED CHARGER DISABLED XIN INT_3V3 IBUS_DEF OSC XOUT DGND AGND INT_3V3 LOW SPEED FULL SPEED Figure 1. Block Diagram and Typical Application Circuit www.maximintegrated.com Maxim Integrated | 22 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Overview The MAX77301 is a USB-compliant linear battery charger that operates from a USB port, a dedicated charger, or a universal adapter. The IC provides automatic detection of adapter type and enumeration with a USB host. All power switches and charging circuitry is integrated. The IC is capable of negotiating more than 100mA of charging current from a USB host or hub without processor intervention. Alternatively, the IC automatically detects a dedicated charger and sets the input current limit accordingly. The battery charge current and the input current limit can be set up to 900mA and 1500mA, respectively. If enumeration is disabled or a nonvalid adapter is connected to the IC the current depends on the logic level of IBUS_DEF (IBUS_DEF logic-low sets the current limit to 100mA; logic-high sets the current limit to register value ILIM[2:0] (default = 500mA). Data Contact Detection USB plugs are designed so that when the plug is inserted into the receptacle, the power pins make contact before the data pins make contact. This ensures that BUS voltage is applied to data pin contact. To detect when the data pins have made contact, the data pins are prebiased so at least one of the data pins changes state. When this change is detected, the IC is allowed to check which type of port is attached. The IC has two different modes of operation during the data contact detection. The first mode allows up to 3s (see the Electrical Characteristics table) for the D+/D- to be connected. If D+/D- are still open after 3s, an interrupt is issued and the IC allows the input current to be user defined. The IC continues to monitor D+ and D- for connection. The second mode occurs when enumeration is disabled. In this mode, the IC initiates with user defined current limit and then transitions to the ideal charging current determined by the USB enumeration engine. Power-On Reset To guarantee the correct startup, the IC triggers power-on reset when a valid adapter or battery is detected. Power-on reset ensures that all I2C registers are set to the default values. When only a battery is connected to the IC and the battery voltage is above VBAT_UVLO_F all internal circuitry is powered down except the internal BAT to SYS switch, UVLO comparator, and I2C. If the battery voltage drops below VBAT_UVLO_F, the I2C interface and the BAT to SYS switch are disabled. If a valid power source is present at the BUS input, the mode of operation depends on the battery voltage. For battery voltage above VBAT_UVLO_F: The system is supported by battery power when the external adapter current limit is exceeded. For battery voltage below VBAT_UVLO_F: The system cannot be supported by an external adapter and battery power. The IC enters fault mode and the charger input current is disabled. This is done to ensure that system does not continuously attempt to start up with an underpowered adapter. Exit this mode by disconnecting the adapter. Use this mode to disconnect the charger. Interrupt Request (IRQ) IRQ is an active-low, open-drain output signal that indicates an interrupt event has occurred and status information is available in the EVENT_ and STATUS_ registers. Interrupts indicate temperature and voltages and current fault conditions. Events are triggered by a state change in the associated register. The event registers are reset to default condition when read. When the EVENT_ registers are read in page mode the IRQ is not released until the last bit been read. New interrupt events are held until a complete read of all registers has occurred. www.maximintegrated.com Maxim Integrated | 23 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration USB Interface An integrated USB peripheral controller provides autoenumeration in full-speed and low-speed modes. The USB controller completes the following tasks: ● Adapter type detection, or ● USB enumeration with USB type inputs With no crystal oscillator, the IC operates in USB lowspeed mode. An external 12MHz crystal oscillator and decouling capacitors are required for USB full-speed mode. This flexibility allows the IC to interface with any USB connector type. USB_OK = 0 USB_OK = 0 SHUTDOWN VBAT > VBAT_UVLO_R OR USB_OK = 1 VBAT < VBAT_UVLO_F AND USB_OK = 0 VBAT < VBAT_UVLO_F USB_OK = 0 VBAT < VBAT_UVLO_F AND USB_OK = 0 P OR RESET ALL I2C REGISTER TO DEFAULT VALUE VBAT > VBAT_UVLO_R AND USB_OK = 0 IDL E MODE I2C ENABLED (ONLY SELECTED REGISTERS ACTIVE. ALL NONACTIVE REGISTERS ARE RESET.) VBAT < VBAT_UVLO_R AND USB_OK = 1 VBAT > VBAT_UVLO_R AND USB_OK = 1 USB_OK = 1 USB_OK = 0 F A U L T M OD E CHARGER OFF I2C DISABLED ILIM = 1 AT SYS < VSYS_UVLO A CTIVE MODE WITH BATTERY I2C ENABLED STDB_EN_HW = LOW VBAT < VBAT_UVLO_F VBAT > VBAT_UVLO_R STDB_EN_HW = HIGH ILIM = 1 AT SYS < VSYS_UVLO A CTIVE MODE WITH NO BATTERY OR DISCHARGED BATTERY I2C ENABLED STDB_EN_HW = LOW STDB_EN_HW = HIGH USB_OK = 0 STA NDB Y MODE WITH BATTERY I2C ENABLED ILIM = 0 VBAT < VBAT_UVLO_F VBAT > VBAT_UVLO_R STA NDB Y MODE WITH NO BATTERY OR DISCHARGED BATTERY I2C ENABLED ILIM = 0 Figure 2. Power-On Reset State Diagram www.maximintegrated.com Maxim Integrated | 24 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Table 1. Status Registers PIN CONTROL REGISTER STATUS REGISTER STDB_EN_HW 0x09 ENU_EN_HW       0x09 0x04 0x04 DESCRIPTION During power-on reset of the IC, the logic status of the input STDB_EN_HW is used to set the default value of nSTDB_EN. The standby control is always controlled by the value of the nSTDB_EN I2C bit. The nSTDB_EN bit can be set using HW input STDB_EN_HW or by writing directly to the nSTDB_EN bit using I2C. The mode of operation is determined by nSTDB_EN_MASK. Setting this bit to 0 forces the nSTDB_EN to always be equal to the logic input STDB_EN_HW. Setting nSTDB_ EN_MASK to 1 disables the STDB_EN_HW logic input and only I2C can be used to change the value of the nSTDB_EN bit. The status of STDB_EN_HW can always be read from register 0x04h. During power-on reset of the IC, the logic status of the input ENU_EN_HW is used to set the default value of nENU_EN. The enable of automatic enumeration is always controlled by the value of the ENU_EN I2C bit. The nENU_EN bit can be set using HW input ENU_EN_HW or by writing directly to the nENU_EN bit using I2C. The mode of operation is determined by the nENU_EN_MASK. Setting this bit to 0 forces nENU_EN to always be equal to the logic input nENU_EN_HW. Setting nENU_EN_ MASK to 1 disables the ENU_EN_HW logic input so only I2C can be used to change the value of the nENU_EN bit. The status of ENU_EN_HW can always be read using the nENU_EN_HW in 0x04h. When the nENU_EN bit = 1, the logic stat on the IBUS_DEF pin sets the input current limit for certain type of chargers. This type of charger is: ● D+/D- open ● nENU_EN is set to 1 and adapter type is DCP or SDP For this type of adapter, the input current limit is set to following: IBUS_DEF CEN XIN/XOUT N/A 0x04 0x0C 0x04 N/A 0x04 IBUS_DEF = L 100mA IBUS_DEF = H Determined by contents of register, ILIM[2:0] During power-on reset of the IC, the logic status of CEN is used to used to set the default value of CHG_EN. The status of the charger is always equal to the CHG_EN bit. The CHG_EN bit can be set using HW input CEN or by writing directly to the CHG_EN bit using I2C. The mode of operation is determined by the CEN_MASK. Setting the CEN_MASK bit to 0 forces CHG_EN to always be equal to the logic input CEN. Setting CEN_MASK to 1 disables CEN so only I2C can be used to change the value of the CHG_EN bit. The status of CEN can always be read using the CEN in 0x04h. The FS_DET bit register 0x04 is used to read the status of the external crystal connection. A 0 indicates only low speed operation is active. A 1 indicates full speed is supported. Table 2. Adapter Type ADAPTER TYPE OUTPUT VOLTAGE OUTPUT CURRENT Dedicated charger 4.75V to 5.25V at ILOAD < 500mA 2.0V to 5.25V for ILOAD < 500mA 500mA to 1.8A Charger downstream port 4.75V to 5.25V at ILOAD < 500mA 2.0V to 5.25V for ILOAD < 500mA 500mA to 900mA for low speed, full speed, and full speed 500mA to 1.5A for low speed and full speed Apple 500mA 4.75V to 5.25V at ILOAD < 500mA 500mA (max) Apple 1A 4.75V to 5.25V at ILOAD < 1A 1A (max) www.maximintegrated.com Maxim Integrated | 25 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Table 2. Adapter Type (continued) ADAPTER TYPE OUTPUT VOLTAGE OUTPUT CURRENT Apple 2A 4.75V to 5.25V at ILOAD < 2A 2A (max) Sony 500mA 4.75V to 5.25V at ILOAD < 500mA 500mA (max) Sony 500mA Type B 4.75V to 5.25V at ILOAD < 500mA 500mA (max) USB 2.0 low power 4.25V to 5.25V 100mA (max) USB 2.0 high power 4.75V to 5.25V 500mA (max) D+ and DD+ and D- are the I/O data pins for the internal USB transceiver. These pins are ESD protected up to ±8kV. Connect D+ and D- to a USB B or custom connector through external 33Ω series resistors. The IC automatically configures D+/Dwith an automatic switchable 1.5kΩ pullup resistor for D- for low-speed and D+ for full-speed. Low/Full Speed The IC can operate as a low-speed or a full-speed slave device. Full-speed mode requires an external 12MHz crystal oscillator connected to XIN and XOUT. The IC has an 6MHz internal clock for use in low-speed mode. For low-speed mode, tie XIN and the AGND pin and XOUT to the INT_3V3 pin. Adapter Detection Upon insertion, the IC identifies the type of adapter. Adapter types include: ● ● ● ● ● Dedicated charger Noncompliant dedicated chargers Charger downstream port (host or hub) USB 2.0 (host or hub) low power USB 2.0 (host or hub) high power The IC determines the adapter type and programs the appropriate current limit and battery charge level, as shown in Figure 3. Low-Power Mode The nSTDB_EN bit forces the system to operate from battery power. The current drawn in this mode is less than 500nA for the low-speed mode and 2.5mA for the fullspeed mode. In this mode, the D+ and D- lines are high impedance. The I2C interface is maintained. www.maximintegrated.com Maxim Integrated | 26 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration USB Suspend According to USB 2.0 specifications, when a USB host stops sending traffic for more than 3ms, the peripheral must enter a power-down state called SUSPEND after no more than 10ms of inactivity. Once suspended, the peripheral must have enough of its internal logic active to recognize the host’s resume signaling, or for generating remote wakeup. When no activity is present on D+/D- for 3ms (typ) ,the IC automatically enters suspend mode to be complaint with the USB specification. To enter suspend mode, SUS_EN must be enabled by a logic 1 in register 0x09h. When entering suspend mode, the charger is disabled and SYS is powered from BAT to reduce the input current drawn from BUS to less than 500μA. In low-speed suspend state, the bus is IDLE: D+ is low and D- is kept high by a pullup resistor. In full-speed suspend state, the bus is IDLE: D- is low and D+ is kept high by a pullup resistor. During suspend mode, UOK pulses with a 1.5s period and 50% duty cycle. USB_OK = 0 FROM ANY CONDITION CHG_TYPE = 0000, DISABLE VDP_SRC, DISABLE IDP_SRC, DISABLE IDM_SINK, DISABLE RDM_PU, DISABLE IDM_PD, DISABLE RDP_CD_PU, nUOK = H, IBUS_DET[1:0] = 00 USB_OK = 1 NO YES DEBOUNCE tUSB_DB nSTDBY_EN = 0 FROM ANY CONDITION AND USB_OK = 1 nDET_DONE_IRQ = 1, CHG_TYPE = 0000 DISABLE DM_PU/DP_PU, DISABLE VDP_SRC, DISABLE IDP_SRC, DISABLE IDM_SINK, DISABLE RDM_PU, DISABLE IDM_PD, DISABLE RDP_CD_PU, UOK = H IBUS_DET[1:0] = 00 nSTDB_EN = "0" YES NO ENABLE RDM_DWN START TIMER NO CHG_TYPE = 0111, nUOK = L, DET_DONE_IRQ = 1, IBUS_DET = IBUS_DEF YES CHG_TYPE = 0111, nUOK = L, DET_DONE_IRQ = 1, IBUS_DET[1:0] = 11 YES DP > 60% DISABLE RDM_DWN DELAY, tDCD_DBNC NO NO DM > 34% YES TIMER > tFAULT YES UOK = 50% DUTY T = 0.15SEC CHG_TYPE_DET = 1100 DET_DONE_IRQ = 1 RESTART TIMER IBUS_DET = IBUS_DEF UOK = L CHG_TYPE_DET = 1100 DET_DONE_IRQ = 1 IBUS_DET = IBUS_DEF NO YES ENABLE IDM_SINK DELAY, tDCD_DBNC 47% < DP < 60% 25% < DM < 47% DM > VDAT_REF, DEBOUNCE, tDCD_DBNC DISABLE RDM_DWN ENABLE IDP_SRC, ENABLE IDM_SINK NO NO NO CHG_TYPE = 0101, nUOK = L, DET_DONE_IRQ = 1, IBUS_DET[1:0] = 11 YES 25% < DP < 47% 47% < DM < 60% CHG_TYPE = 1010, nUOK = L, DET_DONE_IRQ = 1, IBUS_DET[1:0] = 10 YES NO CHG_TYPE = 0100, nUOK = L, DET_DONE_IRQ = 1, IBUS_DET[1:0] = 10 YES 25% < DP < 47% 47% < DM < 47% CHG_TYPE = 1011, nUOK = L, DET_DONE_IRQ = 1, IBUS_DET[1:0] = 11 NO CHG_TYPE = 0111, nUOK = L DET_DONE_IRQ = 1 IBUS_DET = IBUS_DEF NO DP > 60% DP < VDP_IH DEBOUNCE tDCD_DBNC NO YES NO DISABLE IDP_SRC DISABLE IDM_SINK nENU_EN = 1 AND DCD_EN = 0 YES DISABLE IDP_SRC DP > 25% YES CHG_TYPE = 0111, nUOK = L, DET_DONE_IRQ = 1 IBUS_DET = IBUS_DEF CHG_TYPE = 0111, nUOK = L DET_DONE_IRQ = 1 IBUS_DET = IBUS_DEF ENABLE VDP_SRC DELAY tDP_SRC_ON YES DM > VDM_IH NO CONTINUED ON FIGURE 3b CONTINUED ON FIGURE 3b CONTINUED ON FIGURE 3b Figure 3. Adapter Detection Flow Chart www.maximintegrated.com Maxim Integrated | 27 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration CONTINUED FROM FIGURE 3a CONTINUED FROM FIGURE 3a CONTINUED FROM FIGURE 3a YES DM > VDAT_REF NO DISABLE VDP_SRC, DISABLE IDM_SINK, ENABLE IDM_CD_PD, ENABLE RDP_CD_PU DELAY tDP_SRC_HC NO CHG_TYPE = 1101, DET_DONE_IRQ = 1 YES DISABLE IDM_PD DISABLE DP_CD_PU DM > VDM_IH CHG_TYPE = 0001 DET_DONE_IRQ = 1 YES DISABLE VDP_SRC, DISABLE IDM_SINK, IBUS_DET[1:0] = 01, DELAY tDP_SRC_HC ENABLE DM_PU/DP_PU NO UOK = L IBUS_DET = IBUS_DEF ENUMERATION SUCCEEDED DISABLE IDM_CD_PD, DISABLE RDP_CD_PU ENABLE DM_PU/DP_PU, IBUS_DET[1:0] = 01 DISABLE DM_PU/DP_PU, nUOK = ENUM_FLT = 1, CHG_TYPE = 0000 IBUS_DET[1:0]= 00, DELAY TFAULT NO CHG_TYPE = 0001 UOK = L IBUS_DET= IBUS_DEF nUOK = L NO DISABLE IDM_CD__PD, DISABLE RDP_CD_PU CHG_TYPE = 0011, UOK = L DET_DONE_IRQ = 1. IBUS_DET[1:0] = 11 nENU_EN = 1 YES nENU_EN = 1 NO YES DISABLEDM_PU/PD_PU UOK = H ENUM_FLT = 1 CHG_TYPE = 0000 IBUS_DET[1:0] = 00 DELAY tFAULT IBUS_DET[1:0] = 01 OR 10 CHG_TYP = 1000 OR 1001 UOK = L ENUM_FLT = 0 DET_DONE_IRQ = 1 ENUMERATION SUCCEEDED YES CHG_TYPE = 0010, ENUM_FLT = 0 DET_DONE_IRQ = 1, nUOK = L IBUS_DET[1:0] = 11 NO USB SUSPEND? YES NO USB SUSPEND? YES SUS_EN = 0 YES NO YES IBUS_DET[1:0] = 0 SUS_IRQ = 1 UOK = 50% DUTY T=1.5sec SUS_EN = 0 RESUMES_IRQ = 1 NO IBUS_DET[1:0] = 00, SUS_IRQ = 1 nUOK = 50% DUTY, T = 1.5sec RESUME_IRQ = 1 YES USB HOST D+/D- H TO L TRANSITION YES NO DELAY TRWU INITIATE RESUME NO DELAY TRWU INITIATE RESUME CHARGE DONE RWU SUPPORTED BY HOST? NO NO YES YES NO YES RWU SUPPORTED BY HOST? RWU_EN = 1 CHARGE DONE YES NO YES USB HOST D+/D- H TO L TRANSITION NO RWU_EN = 1 NO YES DELAY TRE_ENUM DELAY TRE_ENUM Figure 4. Adapter Detection Flow Chart www.maximintegrated.com Maxim Integrated | 28 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration ENUMERATION INITIATED ILIM = 500mA SEND CONNECT YES NO t < tENUM YES DISABLE DM_PU LOW SPEED DP_PU FULL SPEED NO IC IS IN CONFIGURED STATUS YES ENUM_500mA DELAY tENU_FAULT ILIM = 100mA ENABLE DM_PU LOW SPEED DP_PU FULL SPEED NO t < tENUM YES DISABLE DM_PU DELAY tENU_FAULT ENUM_FAIL NO IC IS IN CONFIGURED STATUS YES ENUM_100mA RETURN TO MAIN LOOP Figure 5. Enumeration Flow Chart Keyboard Test Mode In normal operation, keyboard test mode is disabled. This function is only used during USB certification. Writing a 1 to the KB_TM_EN bit while writing a 0 to nENU_EN_HW_MASK enters keyboard test mode and disables the logic input ENU_EN_HW. Toggling this logic input while in keyboard test mode sends a mute command that is used to generate traffic on the USB interface as well as verification of golden tree commands. www.maximintegrated.com Maxim Integrated | 29 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Wake-Up and USB Resume The IC can wake up from suspend mode four ways: ● By setting nSTDB_EN to 0 followed by 1 to initiate redetection of the adapter type. ● If nSTDB_EN is 1 and SUS_EN is 1, the IC monitors the bus activity on the D+/D- line. If the host resumes bus activity the IC detects this as a 1 to 0 transition on D+/D-. Once this occurs, the device restarts the oscillator and waits for it to stabilize. ● Remote wake-up can be enabled by the host during the enumeration process. Once suspended the state of the battery charger is monitored. If the charger is not in the DONE state, the IC initiates a remote wake-up signal. If the charger is in the DONE state, a remote wake-up is not initiated until the RESTART threshold is reached. When the IC initiates a remote wake-up, it first restarts the oscillator and waits for the oscillator to stabilize. Then it sends the remote wake-up event to signal the host that it needs to be driven out of the suspend status. ● If RWU_EN is a logic 1 in register 0x09 and the remote wake-up feature has not been set by the host during enumeration, the IC waits tRE_ENUM after entering suspend mode, then disconnects the pullup resistor from D+ or D- and reinitiates the charger-type detection. USB Enumeration When the USB 2.0 host/hub or charger downstream port detects a peripheral (MAX77301), it interrogates the device to learn about its capabilities and requirements, and configures it to bring it online. This process is known as enumeration. USB bus enumeration identifies and assigns unique addresses to the devices connected to the bus. Once the IC detects VBUS is valid for tUSB_DB, the IC initiates the detection process to determine the type of device connected. If the device is a USB 2.0 host/hub or charger downstream port and nENU_EN is logic 0, the IC connects a 1.5kΩ pullup resistor from D- (low speed) or D+ (full speed) to INT_3V3. If nENU_EN is set to 1, the pullup resistor from D-/D+ to INT_3V3 is disabled and the current limit is set according to IBUS_DEF logic input. During enumeration the host sends multiple requests to the device (MAX77301) requesting for a descriptor (stored in ROM table data) that defines the device. The enumeration is managed by the IC’s serial interface engine (SIE) without any processor intervention. The SIE supports the following features: ● ● ● ● ● ● ● USB 2.0 low speed (1.5Mb/s), D- pulls high to indicate to the host that it is a low-speed device Full speed (12Mb/s) operation, D+ pulls high to indicate to the host that it is a full-speed device Human interface device (HID) in the consumer page (the IC does not require any custom driver) 8 bytes endpoint zero (control endpoint) 1 byte endpoint one (INT-IN endpoint) USB suspend/resume support Remote wake-up capability At the end of enumeration (if successful), the IC is ready to transfer data (if needed) and enabled to sink the negotiated current from BUS. Figure 6 shows USB bus traffic as captured by a CATC USB bus analyzer. The traces show a PC (host) enumerating the peripheral. Notice that the LS field indicates the low-speed (1.5Mb/s) operation of IC’s low-speed configuration. 1. The host uses the default CONTROL endpoint EP0 (shown in the ENDP boxes) to send request to the device. The host initially sends requests to address 0 (shown in the ADDR boxes) to communicate with a device to which it has not yet assigned a unique address. 2. The host begins by sending a Get_Descriptor_Device request (Transfer 0 in Figure 6). It does this to determine the maximum packet size of the device’s EP0 buffer. The host then resets the device by issuing a bus reset (packet 69). 3. In Transfer 1, the host assigns a unique address to the peripheral by using the Set_Address request. The assigned address depends on how many other USB host/hubs are currently attached to the host. In this case, the address assigned to our peripheral device is 3. Thereafter, the IC responds only to requests directed to address 3. This address remains in force until the host does a bus reset or the device is disconnected. Notice that the peripheral address field (ADDR) in the bus traces change from 0 to 3 after Transfer 1. 4. In transfers 2 to 11, the host asks for various descriptors. The device FSM needs to determine from the eight setup bytes which descriptor to send, use this information to access one of several character arrays (ROMs) representing www.maximintegrated.com Maxim Integrated | 30 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration the descriptor arrays. 5. In transfer 12, the host requests the device to use the specified configuration (1) and the device enters the Configured state. According to the USB 2.0 specification, a bus powered device can be either low power (it cannot draw more than 100mA) or high power (it cannot draw more than 500mA). All devices must default to low power: the transition to high power is under software control (running on the host side). It is the responsibility of software to ensure adequate power is available before allowing devices to consume high-power. The IC initiates enumeration by asking for 500mA of current. If the IC does not enter configured status before the tENUM (10s typ), it interprets this as an indication that the host is not able to support the requested current. The IC disconnects the pullup resistor on D-/D+, respectively, waits for tENU_FAULT and then retries to enumerate, but now as a low current device (100mA). If the IC has still not reached the configured status after tENUM, the IC assumes that either the host is nonresponsive or a wrong adapter type is detected. In this case, the IC disables the pullup resistor on D- if it is configured as low speed and D+ if configured as full speed, waits for tENU_FAULT + tFAULT before starting the adapter detection process again. Figure 7 shows the USB traffic captured during the full-speed enumeration. Notice the field FS indicates the full-speed (12Mb/s) operation. www.maximintegrated.com Maxim Integrated | 31 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 0 S GE T 0 0 GET_DESCRIPTOR DEVICE TYPE 0x0000 DEVICE DESCRIPTOR 6.80ms 00002.2673 4787 PACKET DIR RESET TIME TIME STAMP 69 _> 25.881ms 52.919ms 00002.2722 1739 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX wLENGTH TIME TIME STAMP 1 S SET 0 0 SET_A DDRESS NEW ADDRESS 3 0x0000 0 46.999ms 00002.3145 4675 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 2 S GE T 3 0 GET_DESCRIPTOR DEVICE TYPE 0x0000 DEVICE DESCRIPTOR 6.000ms 00002.3521 4587 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 3 S GE T 3 0 GET_DESCRIPTOR CONFIGURATION TYPE, INDEX O 0x0000 CONFIGURATION DESCRIPTOR 5.000ms 00002.3569 4579 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 4 S GE T 3 0 GET_DESCRIPTOR CONFIGURATION TYPE, INDEX O 0x0000 4 DESCRIPTORS 21.000ms 00002.3609 4563 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 5 S GE T 3 0 GET_DESCRIPTOR STRING TYPE, L A NGID CODES, REQUESTED LANGUAGE ID 0x0000 LANG SUPPORTED 5.000ms 00002.3777 4539 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 6 S GE T 3 0 GET_DESCRIPTOR STRING TYPE, INDEX 1 LANGUAGE ID 0x0409 USB CHARGER 8.000ms 00002.3817 4515 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 7 S GE T 3 0 GET_DESCRIPTOR STRING TYPE, LANGID CODES REQUESTED LANGUAGE ID 0x0000 LANG SUPPORTED 5.000ms 00002.3881 4499 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 8 S GE T 3 0 GET_DESCRIPTOR STRING TYPE, INDEX 1 LANGUAGE ID 0x0409 USB CHARGER 11.013 ms 00002.3921 4491 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 9 S GE T 3 0 GET_DESCRIPTOR DEVICE TYPE 0x0000 DEVICE DESCRIPTOR 5.986ms 00002.4009 5299 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 10 S GE T 3 0 GET_DESCRIPTOR CONFIGURATION TYPE, INDEX O 0x0000 CONFIGURATION DESCRIPTOR 5.000ms 00002.4057 4459 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 11 S GE T 3 0 GET_DESCRIPTOR CONFIGURATION TYPE, INDEX O 0x0000 4 DESCRIPTORS 8.000ms 00002.4097 4451 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX wLENGTH TIME TIME STAMP 12 S SET 3 0 SET_CONFIGURATION NEW CONFIGURATION 1 0x0000 0 18.999ms 00002.4161 4435 TRANSFER L CONTROL A DDR ENDP D Tp R bREQUEST wVALUE wINDEX wLENGTH STA L L TIME TIME STAMP 13 S SET 3 0 H_>D C I 0x 0A 0x0000 0x0000 0 0x08 3.000ms 00002.4313 4403 TRANSFER L CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME TIME STAMP 14 S GE T 3 1 GET_DESCRIPTOR REPORT_DESCRIPTOR TYPE 0x0000 REPORT DESCRIPTOR 15.000ms 00002.4337 4395 TRANSFER L INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME TIME STAMP 15 S IN 3 1 1 8.009ms 00002.4457 4371 TRANSFER L INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME TIME STAMP 16 S IN 3 1 1 7.991ms 00002.4521 4899 TRANSFER L INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME TIME STAMP 17 S IN 3 1 1 8.000ms 00002.4585 4339 TRANSFER L INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME TIME STAMP 18 S IN 3 1 1 8.000ms 00002.4649 4323 TRANSFER L INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME TIME STAMP 19 S IN 3 1 1 8.009ms 00002.4713 4307 TRANSFER L INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME TIME STAMP 20 S IN 3 1 1 7.991ms 00002.4777 4843 Figure 6. USB BUS Traffic: Low-Speed Enumeration www.maximintegrated.com Maxim Integrated | 32 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS 1 S SET 0 0 GET_DESCRIPTOR DEVICE TYPE 0x0000 DEVICE DESCRIPTOR RESET IDLE 26.370ms 6627 TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE TIME 1 S SET 0 0 SET_A DDRESS NEW ADDRESS 1 47.002ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME 2 S GE T 1 0 GET_DESCRIPTOR DEVICE TYPE 0x0000 DEVICE DESCRIPTOR 6.000ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPT0RS TIME 3 S GE T 1 0 GET_DESCRIPTOR CONFIGURATION TYPE 0x0000 CONFIGURATION DESCRIPTOR 5.000ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPT0RS TIME 4 S GE T 1 0 GET_DESCRIPTOR CONFIGURATION TYPE 0x0000 4 DESCRIPTORS 9.000ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX STA L L TIME 5 S GE T 1 0 GET_DESCRIPTOR DESCRIPTOR TYPE 0X06, INDEX 0 0x0000 0x78 3.001ms TRANSFER F CONTROL A DDR ENDP bREQUEST 6 S GE T 1 0 GET_DESCRIPTOR TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPT0RS TIME 7 S GE T 1 0 GET_DESCRIPTOR STRING TYPE, INDEX 1 LANGUAGE ID 0x0409 STRING: USB CHARGER 8.000ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPT0RS TIME 8 S GE T 1 0 GET_DESCRIPTOR STRING TYPE, L A NGID CODES REQUESTED LANGUAGE ID 0x0000 0x0409 5.001ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPTORS TIME 9 S GE T 1 0 GET_DESCRIPTOR STRING TYPE, INDEX 1 LANGUAGE ID 0x0409 STRING: USB CHARGER 30.001ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPT0RS TIME 10 S GE T 1 0 GET_DESCRIPTOR DEVICE TYPE 0x0000 DEVICE DESCRIPTOR 6.001ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPT0RS TIME 11 S GE T 1 0 GET_DESCRIPTOR CONFIGURATION TYPE, INDEX O 0x0000 CONFIGURATION TYPE, INDEX O 8.000ms TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX DESCRIPT0RS TIME 12 S GE T 1 0 GET_DESCRIPTOR CONFIGURATION TYPE 0x0000 4 DESCRIPTORS 8.000ms TRANSFER F CONTROL A DDR ENDP bREQUEST 13 S SET 1 0 SET_CONFIGURATION TRANSFER F CONTROL A DDR ENDP bREQUEST wVALUE wINDEX STA L L TIME 14 S SET 1 0 0x0A 0x0000 0x0000 0x78 3.000ms TRANSFER 15 F CONTROL bREQUEST wVALUE wINDEX DESCRIPTORS TIME GET A DDR 1 ENDP S 0 GET_DESCRIPTOR DESCRIPTOR TYPE 0x22, INDEX 0 0x0000 HID REPORT DESCRIPTOR 16.001ms TRANSFER F INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME 16 S IN 1 1 32.001ms TRANSFER F INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME 17 S IN 1 1 1 32.001ms TRANSFER F INTERRUPT A DDR ENDP BYTES TRANSFERRED TIME 18 S IN 1 1 1 32.001ms TRANSFER F INTERRUPT A DDR ENDP 19 S IN BYTES TRANSFERRED 1 1 1 1 wVALUE STRING TYPE. L A NGID CODES REQUESTED wVALUE wINDEX DESCRIPT0RS TIME LANGUAGE ID 0x0000 0x0409 5.000ms TIME NEW CONFIGURATION 1 20.001ms TIME 0ns Figure 7. USB BUS Traffic: Full-Speed Enumeration Table 3. Device Descriptor FIELD LENGTH (BITS) OFFSET (BITS) DECODED HEX VALUE 8 0 0x12 0x12 Descriptor size is 18 bytes. DEVICE descriptor type. bLength DESCRIPTION bDescriptorType 8 8 0x01 0x01 bcdUSB 16 16 0x0200 0x0200 bDeviceClass 8 32 0x00 0x00 Each interface specifies its own class information bDeviceSubClass 8 40 0x00 0x00 Each interface specifies its own subclass information bDeviceProtocol 8 48 0x00 0x00 No protocols the device basis bMaxPacketSize0 8 56 0x08 0x08 Maximum packet size for end point zero is 8 idVendor 16 64 * * www.maximintegrated.com Device compliant to the USB specification version 2.00 Vendor ID is set using I2C interface* Maxim Integrated | 33 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Table 3. Device Descriptor (continued) LENGTH (BITS) OFFSET (BITS) DECODED HEX VALUE idProduct 16 80 * * bcdDevice 16 96 0x0100 0x0100 iManufacturer 8 112 0x00 0x00 The device does not have the string descriptor describing the manufacturer iProduct 8 120 0x01 0x01 The product stringed descriptor index is 1 iSerialNumber 8 128 0x00 0x00 The device does not have the string descriptor describing the serial number bNumConfigurations 8 136 0x01 0x01 The device has 1 possible configuration FIELD DESCRIPTION Product ID is set using I2C interface* The device release number is 1.00 code is 0x0100 *Contact factory for available preset values. Smart Power Selector The Smart Power Selector seamlessly distributes power among the external BUS input, the battery BAT, and the system load SYS (Figure 8). The Smart Power Selector basic functions are: ● With both an external adapter and battery connected: a) When the system load requirements are less than the input current limit, the battery is charged with residual power from the input. b) When the system load requirements exceed the input current limit, the battery supplies supplemental current to the load. ● When the battery is connected and there is no external power input, the system is powered from the battery. ● When an external power input is connected and there is no battery, the system is powered from BUS. BUS VSYS Q1 CHARGE CURRENT LOAD CURRENT Q2 CHARGE AND SYS LOAD SWITCH SYSTEM LOAD BAT 1-CELL Li+ MAX77301 GND Figure 8. Smart Power Selector Block Diagram System Load Switch An internal 200mΩ (typ) MOSFET connects SYS to BAT (Q2 of Figure 8) when no voltage source is available on BUS. When an external source is detected at BUS, this switch opens and SYS is powered from the input source through the input current limiter. The SYS to BAT switch also prevents VSYS from falling below VBAT when the system load exceeds the input current limit. If VSYS drops to VBAT due to the current limit, the load switch turns on so the load is supported by the battery. If the system load continuously exceeds the input current limit the battery is not charged. This is useful for handling loads that are nominally below the input current limit, but have high current peaks exceeding the input current limit. During these peaks battery energy is used, but at all other times the battery charges. The user can select undervoltage and precharge settings as required by new, low voltage lithium-ion, or standard lithium-ion batteries. The battery undervoltage lockout and precharge threshold voltages are identified in the Electrical Characteristics table and can be toggled through the BAT_CNTL register (0x10), bit 7. www.maximintegrated.com Maxim Integrated | 34 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Input Limiter The input limiter distributes power from the external adapter to the system load and battery charger. In addition to the input limiter’s primary function of passing power to the system load and charger, it performs several additional functions to optimize use of available power: Invalid BUS voltage protection: If VBUS is above the overvoltage threshold (VBUS_OVP), the IC enters overvoltage protection (OVP). OVP protects the IC and downstream circuitry from high-voltage stress up to 16V at BUS. During OVP, INT_3V3 remains on and an interrupt is sent to the host. During OVP, the charger turns off and the system load switch closes, allowing the battery to power SYS. VBUS is also invalid if it is less than VBAT, or less than the USB undervoltage threshold (VBUS_UVLO_F). With an invalid input voltage, the system load switch closes, allowing the battery to power SYS. BUS input current limit: The BUS input current is limited to prevent input overload. The input current limit is automatically selected to match the capabilities of the source, whether it’s a 100mA/500mA USB 2.0 source, a 500mA to 2.0A dedicated adapter, or a charger downstream port. Thermal limiting: The IC reduces the input current by 5%/ºC when its die temperature exceeds TDIE_LIM. The system load (ISYS) has priority over charger current, so the input current is first reduced by lowering the charge current. If the junction temperature reaches TDIE_LIM +20ºC no input current is drawn from BUS and the battery powers the entire system load. Setting Input Current Limit The input current limit is set with IBUS_DET_SW of register 0x0A. See Figure 9. The IC automatically sets the initial value of IBUS_DET_SW according to the device detected. This value can be overwritten using I2C interface if different input current is desired. If IBUS_DET_SW is set to ILIM the input current limit is set to the value specified in ILIM of register 0x0A. This gives the user more options to meet specific needs. Minimum VSYS Threshold The minimum VSYS regulating threshold is programmable using V_SYS of register 0x0A. The VSYS is adapted to the battery voltage, maintaining a value of 140mV (typ) above VBAT with the minimum voltage determined by the value programmed in V_SYS. See Figure 10. The V_SYS minimum voltage regulation reduces the ripple on VSYS during peak load conditions where the input current limit is tripped. The minimum VSYS regulating threshold is programmable by V_SYS bits. The VSYS is adapted to the battery voltage with a delta value of VSYS 140mV (typ) above VBAT with a minimum voltage determined by V_SYS. The voltage on V_SYS is maintained at or above the programmed voltage. This allows the system to operate with a discharged or damaged battery and provides at the optimum voltage setpoint. Input Current Limit If the connected adapter is a USB 2.0 device, the input current limit is default set to 100mA by default. The IC proceeds to enumerate to determine if the external USB host/hub is a low- or high-power device and set the input current limit to 100mA or 500mA, respectively. For a dedicated charger, charger downstream port, or generic adapter, the optimum current limit is set for the specific value. When the input current limit is reached, the battery charge current is reduced so as to maintain the system load with- out exceeding the input current limit. If the charge current is reduced to zero and ISYS exceeds the input current limit, VSYS begins to fall. When VSYS drops to 50mV above VBAT, the SYS to BAT switch turns on, powering the system load from the battery during the load peak. www.maximintegrated.com Maxim Integrated | 35 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration INPUT CURRENT LIMIT I_LIM 2:0 100mA 500m A 600mA 700mA 900mA 1000mA 1500mA RESERVED 000 001 010 011 100 101 110 111 IBUS_DET_SW REGISTER 0x05 IS U S 100mA 500mA I_LIM 00 01 10 11 Figure 9. Input Current Limit Settings Power Monitor Output (UOK) UOK is an open-drain output that pulls low when VBUS is valid and a valid adapter type is detected. This event also issues an interrupt to the host and sets a flag in the event register. The UOK monitor has several different thresholds, depending of type of adapter detected. See Table 4. The initial detection threshold allows all type of adapters to be detected on BUS. Once the type of adapter is determined the UVLO threshold is changed. ● For any USB 2.0 device, the UVLO thresholds are set to be compliant with USB specification. ● In adaptive mode, the UVLO threshold is lowered to VSYS + 150mV to allow for supporting collapsing charger types that allow the IC to operate with lower power dissipation. Note: Since the BUS UVLO threshold is changed after initial detection of the device type there are conditions where the IC can toggle between BUS valid and not valid. This is an indication of that the adapter is not within the specified limits. Soft-Start To prevent input transients that can cause instability in the USB power source, the rate of change of input current and charge current is limited. When a valid USB 2.0 input is connected, the input current limit is ramped from 0 to 100mA in 50μs. Once enumeration is complete the current can be ramped to 500mA or to the new input current limit value in 50μs. 140mV (typ) ADAPTIVE REGULATION MIN V_SYS VSYS VBAT VBAT = 2.5V TIME Figure 10. SYS Regulation Table 4. VBUS Valid Input Range (Rising) UVLO (V) Initial VBUS detection (VBUS rising) 4.0 (typ) For USB 2.0 low power (VBUS falling) 3.9 (typ) For USB 2.0 high power (VBUS falling) 4.1 (typ) www.maximintegrated.com OVLO (V) 6.9 (typ) (VBUS rising) Maxim Integrated | 36 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Table 5. UOK States BUS STATUS UOK BEHAVIOR Valid adapter detected on BUS Low (continuous) Suspended mode Pulses low with 1.5s period and 50% duty cycle D+/D- open detected and nENU_EN = 1 Pulses low with 0.15s period and 50% duty cycle No valid adapter detected High impedance When the charger is enabled, the charge current ramps from zero to the final value in typically 1.5ms. Charge current also ramps when transitioning to fast charge from prequalification and when changing the USB charge current from 100mA to 500mA. Battery Charger The battery charger has several different states of operation as shown in the charge profile (Figure 11) and state diagram (Figure 12). ● Prequalification: Prequalification is used to gently charge a deeply discharged battery until its voltage is high enough to safely begin fast charge. Prequalification occurs while the battery voltage is below VBAT_PCHG and the battery is charged at maximum IPCHG. If IPCHG > ILIM, then the charging current is determined by the ILIM (input current limit). Prequalification mode prevents charging a Li+ battery at a high rate when it is fully discharged, which can cause the battery to become unstable and potentially dangerous and can also reduce life cycle of the Li+ battery. The user can select precharge and undervoltage settings as required by new, low voltage lithium-ion, or standard lithium-ion batteries. The battery undervoltage lockout and precharge threshold voltages are identified in the Electrical Characteristics table and can be toggled through the BAT_CNTL register (0x10), bit 7. ● Fast charge: In fast-charge mode, the maximum charging current is set to IFCHG. The actual charging current is also constrained by the input current limit, so the charge current is the lesser of IFCHG and ILIM-ISYS. ● Top-off charge: Top-off mode begins when the battery voltage reaches the set point. During top-off, the battery voltage is regulated and the charge current declines. This prevents overcharging of the battery, and also minimizes the power dissipation in the battery. ● Maintains charge: The charger enters this mode when the charging current has dropped below ICHG_ DONE threshold. The charger continues to charge for tMTCHG time to insure battery is fully charged before charger is disabled. ● Charge done: Charger is disabled and only engages again if the battery voltage drops below the VBAT_RECHG threshold. www.maximintegrated.com Maxim Integrated | 37 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration VCHG_REG VBAT_FCHG_R IFCHG 60% x IFCHG ICHG_DONE VBAT_PCHG_R IPCHG PRECHARGE t < tPCHG FAST CHARGE TOPOFF t < tFCHG MAINTAINS CHARGE CHARGE DONE TIME t = tMTCHG Figure 11. Charge Profile www.maximintegrated.com Maxim Integrated | 38 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration NO VA L ID VB US VBUS_UVLO > VBUS_ OR VBUS_OVP < VBUS_ FROM ANY STATE UOK = HIGH-Z CHG_STAT = HIGH-Z CHG_STAT = 000 ICHG = 0mA VBUS_UVLO < VBUS < VBUS_OVP C H A R GE R OF F UOK = LOW CHG_STAT = HIGH-Z CHG_STAT = 000 ICHG = 0mA CHARGER ENABLED FROM ANY STATE CHARGER ENABLED P R E QU A L UOK = LOW CHG_STAT = LOW CHG_STAT = 010 ICHG = IPCHG tCHG_TIMER > tPCHG VBAT > VPCHG_R RESET CHARGE TIMER VBAT < VPCHG_F RESET CHARGE TIMER FA ULT UOK = LOW CHG_STAT = 0.15s BLINKING CHG_STAT = 111 ICHG = 0mA FA ST CHA RGE VBAT < VBAT_FCHG_F UOK = LOW CHG_STAT = LOW CHG_STAT = 011 *ICHG = IFCHG tCHG_TIMER > tFCHG VBAT > VBAT_FCHG_R TOPOFF C H A R GE UOK = LOW CHG_STAT = LOW CHG_STAT = 100 ICHG = ITCHG VBAT < VPCHG_F RESET CHARGE TIMER ICHG > ICHG_DONE RESET CHARGE TIMER MA INTA IN C H A R GE UOK = LOW CHG_STAT = LOW CHG_STAT = 101 ICHG < ICHG_DONE tCHG_TIMER > tMTCHG VBAT < VBAT_REG + VBAT_RECHG RESET CHARGE TIMER C H A R GE DONE UOK = LOW CHG_STAT = HIGH-Z CHG_STAT = 110 ICHG = 0mA tCHG_TIMER > tFCHG ICHG < ICHG_DONE AND IBUS < ILIM tDIE < tDIE_LIM RESET CHARGE TIMER *CHARGE TIMER SLOWED DOWN BY X2 IF: ICHG < IFCHG/2 AND PAUSED IF: ICHG < IFCHG/5 FROM ANY CHARGING STATE TTHM_COLD < TA TTHM_COLD > TA OR < TTHM_HOT TTHM_HOT < TA TEMPERATURE SUSPEND UOK = LOW CHG_STAT = 1.5s BLINKING CHG_STAT = 001 ICHG = 0mA CHARGE TIMER PAUSED Figure 12. Charger State Diagram Charge Enable The charger is enabled using either logic input CEN or with I2C bit CHG_EN, determined by the state of the CEN_MASK bit. Set nCEN_MASK to 0 to enable the use of the logic input CEN. Drive CEN logic-high to enable the charger or logic-low to disable the charger. Set nCEN_MASK to 1 to control charger enable by writing directly to the CHG_EN bit. Write 1 to CHG_EN to enable the charger or 0 to disable the charger. Enabling or disabling the charger does not affect VSYS. In many systems, there is no need for the system controller www.maximintegrated.com Maxim Integrated | 39 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration (typically a microprocessor) to disable the battery charger, because the IC’s Smart Power Selector circuitry independently manages charging and USB-battery power handover. Charge Termination (EOC) When the charger is in top-off mode and the charge current falls below the charge done threshold (ICHG_DONE), an interrupt is sent to the host. Charging continues in maintains-charge mode for tMTCHG and then enters the DONE state where charging stops. ICHG_DONE and tMTCHG are programmable through I2C. Note that if charge current falls to ICHG_DONE as a result of the input current limit or thermal regulation, the charger does not enter the DONE state. For the charger to enter DONE, charge current must be less than ITERM, the charger must be in top-off mode (voltage regulation), and the input current limit or thermal regulation must not be reducing charge current. The charger exits the DONE state and top-off or fast-charge resumes if the battery voltage subsequently drops by VBAT_RECHG. While in fast-charge mode, a large system load or device self-heating can cause the IC to reduce charge current. Under these circumstances, the fast-charge timer adjusts to ensure that adequate charge time is still allowed. Consequently, the fast-charge timer is slowed by 2x if charge current is reduced below 50% of the programmed fast-charge level. If charge current is reduced to below 20% of the programmed level, the fast charge timer is paused. The fast-charge timer is not adjusted when the charger is in top-off mode where charge current reduces due to current tapering under normal charging. The timer settings are programmable through I2C and if the timer expires, charging is terminated and an interrupt is sent to the host and a flag is set in the event register. To exit a fault state, toggle CEN, CHG_EN, or remove and reconnect the BUS input source. CHG_TYPE CHG_TYPE is an open-drain output that is used to signal to the processor the current capability of the external adapter. CHG_TYPE is low for 100mA or high-impedance for 500mA or greater. Table 6. CHG_TYPE CHG_TYPE INPUT CURRENT LIMIT (mA) 0 100 or less 1 500 or more IBUS_DEF The IBUS_DEF input is only valid when nENU_EN is set to 1 or when D+/D- are unconnected. In this case, the adapter type detection is activated. If the adapter type is detected as a USB 2.0 device, the input current is set to IBUS_DEF value and does not initiate USB enumeration. See Table 7. Table 7. IBUS_DEF IBUS_DEF, nENU_EN = 1 OR D+/D- OPEN INPUT CURRENT LIMIT 0 100mA 1 ILIM Charge Status (CHG_STAT) The charge status is indicated by an open-drain output CHG_STAT. See Table 8. A temperature fault or timers expiring changes the charge state immediately and thus changes the output status. Table 8. CHG_STAT Output CHARGER STATUS CHG_STAT BEHAVIOR Charge in progress Low (continuous) Charge suspend (due to temperature fault(s)) Pulses with 1.5s period and 50% duty cycle Timer fault Pulses with 0.15s period and 50% duty cycle Charge done High impedance www.maximintegrated.com Maxim Integrated | 40 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Table 8. CHG_STAT Output (continued) CHARGER STATUS CHG_STAT BEHAVIOR Battery removed Pulses with 0.1s period, 10%-20% duty cycle Battery Detection The IC reliably detects insertion and removal of battery packs under various conditions. This includes battery packs with open or closed protection circuit. A normal Li-ion battery pack includes protection circuitry that ensures the battery is protected against overload. If an overload occurs, the protection circuitry opens its internal MOSFETs making the battery pack output high impedance. To reset the protection, a voltage must be applied to the battery pack. The protector detects this and closes the MOSFETs after a time delay. When a valid power source is detected on BUS the battery detection state machine is enabled. The first task is to determine the type of detection method used for predicting battery present condition. The two methods are automatic detection and NTC detection. The type of algorithm used is determined by the I2C bit BAT_DET_CNTL. Any change in the state of this bit reinitiates the detection algorithm as shown in Figure 13. FROM ANY CONDITION UPDATE OF BAT_DET_CNTL BAT_DET_CNTL = 0 AUTODETECTION MODE INITIAL MODE BAT_DET_CNTL = 1 NTC DETECTION MODE BAT_DET = 1 NTC DETECTED NTC NOT DETECTED NTC DETECTION MODE BAT_DET = 0 Figure 13. Battery Detection State Diagram www.maximintegrated.com Maxim Integrated | 41 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration FROM ANY CONDITION BAT_DET_CNTL CHANGED FROM 1 TO 0 FROM ANY CONDITION USB_OK = 0 OR ILIM = 1 OR CHG_STAT = [000; 001; 111] AUTO DETECTION MODE BAT_DET = 1 USB_OK = 1 ILIM = 0 CHG_STAT ≠ [000; 001;111] NO NO YES DELAY tDB YES IBAT > IBAT_DET DEBOUNCE tDB NO SUSPEND CHARGER ENABLE IDIS DELAY TDIS DISABLE IDIS VBAT > VBAT_UVLO NO ENABLE CHARGER BAT_DET = 0 YES ENABLE CHARGER ICHG > IBAT_DET DEBOUNCE tDB BAT_DET = 1 CHG_STAT = 110 NO YES YES NO Figure 14. Battery Present Flow Chart Automatic Detection Mode Automatic battery detection is used when the BAT_DET_ CNTL bit is cleared. The automatic detection starts by discharging the battery with IDIS for tDIS. Then it looks at the battery voltage. If the battery voltage is above VBAT_UVLO_F, it indicates that a battery is present. If the battery voltage is below VBAT_UVLO_F then no battery is detected. Automatic detection continues to monitor VBAT as long as one of the following conditions exists: ● USB_OK = 0 no valid device connected to BUS ● ILIM = 1 input current limit active www.maximintegrated.com Maxim Integrated | 42 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration ● CHG_STAT = [000, charger disabled: 001, charger in temperature suspend; 111 charger fault] If none of the conditions above exist, automatic detection continues into the next phase. In the second phase the charger is enabled for tDB. This is to allow a battery pack with open protection circuits to detect the presence of the charger and reset itself. After the tDB if the charging current is less than IBAT_DET it indicates that no battery is present. In this case the IC suspends the charger and discharges the battery with a current sink of IDIS for tDIS. If only a capacitor is present at BAT, the capacitor is discharged during the tDIS. After tDIS the battery voltage is compared to recharge threshold. If VBAT is still above 2.4V, it indicates that a battery is present and the charger is enabled again. If the battery voltage drops below the restart threshold this indicates that no battery is present, the status is latched into the I2C register, and the automatic battery detection algorithm now only monitors the charging current. As long as the charging current is below IBAT_DET, it indicates that no battery is present. If the charging current increases above IBAT_DET, the algorithm restarts the battery detection. If the automatic detection algorithm determines that a battery is present and that charger is in the DONE state, no further action is taken as long as the charge remains in the DONE state (CHG_STAT is 110). NTC Detection Mode In NTC detection mode, the THM input is used to determine when a battery is connected. NTC detection mode is used when the THERM_EN and BAT_DET_CNTL bits are set. If BAT_DET_CNTL = 1 and THERM_EN = 0, the IC presumes that battery is present and sets BAT_DET to 1. NTC detection monitors the voltage on the THM input to determine if an external NTC is present or not. This information is used to control the status of BAT_DET. See Figure 13. Thermistor Input (THM) VTHM is monitored to provide battery temperature information to the charge controller. The JEITA temperature profiles shown in Figure 15 utilize a 47kΩ bias resistor between the INT_3V3 and THM pins. The thermistor is a 100kΩ NTC NTC-type beta of 4250K, which is tied from NTC to ground. The IC is compliant with the JEITA specification for safe use of secondary lithium ion batteries (A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook type Personal Computers, JEITA and Battery Association of Japan, April 20, 2007). Once the JEITA parameters have been initialized for a given system, no software interaction is required. The four temperature thresholds change the battery charger operation: T1, T2, T3, and T4. When the thermistor input exceeds the extreme temperatures (< T1 or > T4), the charger shuts off and all respective charging timers are suspended. While the thermistor remains out of range, no charging occurs, and the timer counters hold their state. When the thermistor input comes back into range, the charge timers continue to count. The middle thresholds (T2 and T3) do not shut the charger off, but have the capability to adjust the current/voltage targets to maximize charging while reducing battery stress. T1 T2 T3 T4 C T1 T2 0 10 T3 T4 45 60 VREG 100 -100mV 75 IFCHG (%) VBAT_REG_OFFSET 50 -125mV -150mV 25 -175mV 0 10 25 TEMPERATURE (°C) 45 60 75 25 75 TEMPERATURE (°C) Figure 15. JEITA Battery Safety Regions The behavior when the battery temperature is between T1 and T2 is controlled by THM_T1_T2 and the behavior when it is between T3 and T4 is controlled by THM_T3_T4. The JEITA specification recommends that systems reduce all loading on the battery when the battery temperature www.maximintegrated.com Maxim Integrated | 43 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration exceeds the maximum battery temperature for discharge (TMD). The IC generates an interrupt and sets the WHIGH_BAT_T_IRQ bit when the battery temperature exceeds the T4 threshold. If the THM disable threshold is exceeded, an interrupt is generated and the BAT_DET_IRQ bit is cleared in the event register. If the thermistor functionality is not required, clearing the THERM_EN disables temperature sensing and the thermistor input is then high impedance. The IC is compatible with a 100kΩ thermistor with a β of 4250K. The general relation of thermistor resistance to temperature is defined by the following equation: 1 1 RT = R25 × θ{β( T + 273 − 298 )} where RT is the resistance in Ω of the thermistor at temperature T in Celsius, R25 is the resistance in Ω of the thermistor at +25ºC, β is the material constant of the thermistor (typically ranges from 3000K to 5000K), and T is the temperature of the thermistor in ºC. Thermal Overload Protection Thermal overload protection limits total power dissipation in the IC. If the junction temperature exceeds 160ºC, the device turns off, allowing the IC to cool. Continuous thermal-overload can result in a pulsed charge current ondition. Thermal overload protection operates independent of the thermal regulation feature for additional protection. Typically, thermal regulation prevents the die temperature from reaching the point where thermal overload protection is activated. External Clock (Full Speed Only) USB 2.0 full-speed operation requires that the system clock of the transceiver is within ±2500ppm, over temperature, aging, etc. Therefore, an external crystal, resonator, or clock source is required to stay within this limit. The IC local oscillator and internal digital clocks are derived from the reference clock at the XIN input. USB Low-Speed Operation For USB low-speed operation, the internal GMz clock can be used and no external crystal or external source is required. Connect XIN to AGND and XOUT pin to INT_3V3 pin to enable USB low-speed mode. External Crystal or Ceramic Resonator XIN and XOUT connect to an external 12MHz crystal or ceramic resonator. Connect 33pF load capacitors from both XIN/ XOUT to analog ground. Requirements for the external resonator/crystal for full speed: Frequency: 12MHz ±0.25% CLOAD: 33pF ±20% Drive level: 200μW Series resonance resistance: 60Ω (max), 30Ω (typ) Note: Series resonance resistance is the resistance observed when the resonator is in the series resonant condition. This is a parameter often stated by quartz crystal vendors and is called R1. When a resonator is used in the parallel resonant mode with an external load capacitance, as is the case with the IC’s oscillator circuit, the effective resistance is sometimes stated. The effective resistance at the loaded frequency of oscillation is: REFF = R1[1 + ( C CO LOAD )] 2 where R1 is the series resonance resistance, CO is the crystal capacitance, and CLOAD is the external load capacitance. For typical CO and CLOAD values, the effective resistance can be greater than R1 by a factor of 2. External Clock The IC can also be driven from an external clock. The external clock can be a digital level square wave or sinusoidal and can be directly coupled to XIN without the need for additional components. If the peaks of the reference clock are above VINT_3V3 or below ground, the clock signal must be driven through a DC-blocking capacitor (approximately 33pF) www.maximintegrated.com Maxim Integrated | 44 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration connected to XIN. The external clock source can be enabled using either the UOK or INT_3V3 signals depending on if the clock source is active-low or active-high enabled. Clock Timing Accuracy USB 2.0 specification requires the system clock to be within ±2500ppm over temperature, aging, etc. It is recommended to use a clock source with tighter initial accuracy to ensure that over time an accuracy of ±2500ppm is maintained. External Power-On Signal The EXT_PWRON output is used to enable power to other external circuits. EXT_PWRON is an open-drain output, and is high impedance when no battery is detected or when a valid adapter is detected. If a valid battery is detected, the IC pulls EXT_PWRON low. This signal can be used to enable other parts of the system. If a valid adapter is connected to the system while the battery is below the VBAT_UVLO threshold, the EXT_PWRON transitions from high impedance to low as soon as the adapter type is determined and UOK goes from high impedance to low. From battery only or adapter only mode, the IC can enter adapter and battery mode, for this to occur, the IC must detect a valid battery and at the same time a valid adapter type on the VBUS input. Once this occurs the IC generates a 63ms high-impedance pulse on EXT_PWRON. This signal can be used to wake up the remainder of the system. See Figure 16 for the EXT_PWRON state diagram. ESD Protection D+, D-, and VBUS_ possess extra protection against static electricity to protect the IC up to ±8kV (HBM). The ESD structures withstand high ESD in all operating modes: normal operation, suspend mode, and powered down. BUS requires 1μF ceramic capacitors connected to ground as close to BUS_A and BUS_B as possible. www.maximintegrated.com Maxim Integrated | 45 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration SHUTDOWN CONDITION BAT_DET = 0 nUOK = 1 EXT_PWRON = HI-Z VBAT > VBAT_UVLO_F + VBAT_UVLO_HYS nUOK = 1 VBAT < VBAT_UVLO_F B ATTERY ONLY MODE BAT_DET = 1 nUOK = 1 EXT_PWRON = L nUOK = 0 A DA PTER A ND B ATTERY MODE BAT_DET = 1 nUOK = 0 EXT_PWRON = L nUOK = 0 nUOK = 1 BAT NOT PRESENT DETECTED A DA PTER ONLY MODE BAT_DET = 0 nUOK = 0 EXT_PWRON = L BAT PRESENT DETECTED EXT_PWRON = HI-Z DELAY 500µS Figure 16. EXT_PWRON State Diagram ESD Test Conditions ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results. The Figure 17 shows the Human Body Model, and Figure 18 shows the current waveform generated when discharged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which then discharges into the test device through a 1.5kΩ resistor. RD 1.5kΩ CHARGE-CURRENT LIMIT RESISTOR HIGHVOLTAGE DC SOURCE CS 100pF DISCHARGE RESISTANCE STORAGE CAPACITOR DEVICE UNDER TEST Figure 17. Human Body ESD Test Models www.maximintegrated.com Maxim Integrated | 46 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration IP 100% 90% IR PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) AMPERES 36.8% 10% 0 0 tRL TIME tDL CURRENT WAVEFORM Figure 18. Human Body Model Current Waveform RC 50MΩ TO 100MΩ CHARGE-CURRENT LIMIT RESISTOR HIGHVOLTAGE DC SOURCE CS 150pF RD 330Ω DISCHARGE RESISTANCE STORAGE CAPACITOR DEVICE UNDER TEST Figure 19. IEC61000-4-2 ESD Test Model IEC 61000-4-2 The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The major difference between tests done using the Human Body Model and IEC 61000-4-2 is a higher peak current in IEC 61000-4-2, due to lower series resistance. Hence, the ESD withstand voltage measured to IEC 61000-4-2 generally is lower than that measured using the Human Body Model. Figure 18 shows the IEC 61000-4-2 model. The Contact-Discharge method connects the probe to the device before the probe is charged. The Air-Gap Discharge test involves approaching the device with a charged probe. I2C Functional Description An I2C-compatible, 2-wire serial interface controls the charger settings as well as read back of adapter detection. The serial bus consists of a bidirectional serial-data line (SDA) and a serial-clock input (SCL). The IC is a slave-only device, relying upon a master to generate a clock signal. The master initiates data transfer to and from the IC and generates SCL to synchronize the data transfer. I2C is an open-drain bus. Both SDA and SCL are bidirectional lines, connected to a positive supply voltage through a pullup resistor. They both have Schmitt triggers and filter circuits to suppress noise spikes on the bus to assure proper device operation. A bus master initiates communication with the IC as a slave device by issuing a START condition followed by the IC address. The IC address byte consists of 7 address bits and a read/ write bit (RW). After receiving the proper address, the IC issues an acknowledge bit by pulling SDA low during the ninth clock cycle. www.maximintegrated.com Maxim Integrated | 47 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration I2C Slave Address A bus master initiates communication with a slave device (MAX77301) by issuing a START condition followed by the slave address. The slave address byte consists of 7 address bits (0b0000010) followed by a read/write bit (R/W). So the complete address byte is 0x05 for read operations and 0x04 for write operations. After receiving the proper address, the IC issues an acknowledge by pulling SDA low during the ninth clock cycle. SDA tSU,STA tSU,DAT tLOW tBUF tHD,STA tHD,DAT tSU,STO tHIGH SCL tHD,STA tR tF START CONDITION REPEATED START CONDITION STOP CONDITION START CONDITION Figure 20. I2C Interface Timing Diagram I2C Bit Transfer Each data bit, from the most significant bit to the least significant bit, is transferred one by one during each clock cycle. During data transfer, the SDA signal is allowed to change only during the low period of the SCL clock and it must remain stable during the high period of the SCL clock (Figure 21). SCL SDA START CONDITION (S) DATA LINE STABLE DATA VALID DATA ALLOWED TO CHANGE STOP CONDITION (P) Figure 21. I2C Bit Transfer www.maximintegrated.com Maxim Integrated | 48 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration START and STOP Conditions Both SCL and SDA remain high when the bus is not busy. The master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the IC, it issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 22). Both START and STOP conditions are generated by the bus master. SDA SCL START CONDITION STOP CONDITION Figure 22. I2C START and STOP Conditions Acknowledge The acknowledge bit is used by the recipient to handshake the receipt of each byte of data (Figure 23). After data transfer, the master generates the acknowledge clock pulse and the recipient pulls down the SDA line during this acknowledge clock pulse so that the SDA line stays low during the high duration of the clock pulse. When the master transmits the data to the IC, it releases the SDA line and the IC takes the control of the SDA line and generates the acknowledge bit. When SDA remains high during this ninth clock pulse, this is defined as the not acknowledge signal. The master can then generate either a STOP (P) condition to abort the transfer, or a REPEATED START (Sr) condition to start a new transfer. SDA BY MASTER D7 D6 D0 NOT ACKNOWLEDGE SDA BY SLAVE ACKNOWLEDGE SCL 1 START CONDITION 2 8 9 CLOCK PULSE FOR ACKNOWLEDGEMENT Figure 23. I2C Acknowledge www.maximintegrated.com Maxim Integrated | 49 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Write Operations The IC recognizes the write byte protocol as defined in the SMBus specification and shown in section A of Figure 24. The write byte protocol allows the I2C master device to send 1 byte of data to the slave device. The write byte protocol requires a register pointer address for the subsequent write. The IC acknowledges any register pointer even though only a subset of those registers actually exists in the device. The write byte protocol is as follows: 1. 2. 3. 4. 5. 6. 7. 8. 9. The master sends a START command. The master sends the 7-bit slave address followed by a write bit (0x04). The addressed slave asserts an acknowledge by pulling SDA low. The master sends an 8-bit register pointer. The slave acknowledges the register pointer. The master sends a data byte. The slave updates with the new data. The slave acknowledges the data byte. The master sends a STOP condition. LEGEND MASTER TO SLAVE SLAVE TO MASTER a) WRITING TO A SINGLE REGISTER WITH THE WRITE BYTE PROTOCOL 1 7 1 1 8 S SLAVE ADDRESS 0 A NUMBER OF BITS 1 8 1 1 REGISTER POINTER A DATA A P 8 1 8 1 8 1 A DATA X + 1 A R/W b) WRITING TO MULTIPLE REGISTERS 1 S 7 SLAVE ADDRESS 1 1 0 A REGISTER POINTER X A DATA X R/W 8 1 8 1 DATA X + n - 1 A DATA X + n A NUMBER OF BITS NUMBER OF BITS P Figure 24. I2C Write Operations In addition to the write-byte protocol, the IC can write to multiple registers as shown in section B of Figure 24. This protocol allows the I2C master device to address the slave only once and then send data to a sequential block of registers starting at the specified register pointer. Use the following procedure to write to a sequential block of registers: 1. 2. 3. 4. 5. 6. 7. 8. 9. The master sends a START command. The master sends the 7-bit slave address followed by a write bit (0x04). The addressed slave asserts an acknowledge by pulling SDA low. The master sends the 8-bit register pointer of the first register to write. The slave acknowledges the register pointer. The master sends a data byte. The slave updates with the new data. The slave acknowledges the data byte. Steps 6 to 8 are repeated for as many registers in the lock, with the register pointer automatically incremented each time. 10. The master sends a STOP condition. www.maximintegrated.com Maxim Integrated | 50 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Read Operations The method for reading a single register (byte) is shown in section A of Figure 25. To read a single register: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. The master sends a START command. The master sends the 7-bit slave address followed by a write bit (0x04). The addressed slave asserts an acknowledge by pulling SDA low. The master sends an 8-bit register pointer. The slave acknowledges the register pointer. The master sends a repeated START condition. The master sends the 7-bit slave address followed by a read bit (0x05). The slave assets an acknowledge by pulling SDA low. The slave sends the 8-bit data (contents of the register). The master assets an acknowledge by pulling SDA low. The master sends a STOP condition. LEGEND MASTER TO SLAVE SLAVE TO MASTER A. READING A SINGLE REGISTER 1 S 7 SLAVE ADDRESS 1 1 8 0 A REGISTER POINTER 1 1 A Sr 7 1 1 SLAVE ADDRESS 1 A R/W 1 1 DATA 8 A P 8 1 DATA X A NUMBER OF BITS R/W B. READING MULTIPLE REGISTERS 1 7 1 1 8 1 1 7 S SLAVE ADDRESS 0 A REGISTER POINTER X A Sr SLAVE ADDRESS R/W 1 1 1 A NUMBER OF BITS R/W 8 DATA X+1 1 A 8 DATA X+n-1 1 8 A DATA X+n 1 1 NUMBER OF BITS A P Figure 25. I2C Read Operations In addition, the IC can read a block of multiple sequential registers as shown in section B of Figure 25. Use the following procedure to read a sequential block of registers: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. The master sends a START command. The master sends the 7-bit slave address followed by a write bit (0x04). The addressed slave asserts an acknowledge by pulling SDA low. The master sends an 8-bit register pointer of the first register in the block. The slave acknowledges the register pointer. The master sends a repeated START condition. The master sends the 7-bit slave address followed by a read bit (0x05). The slave assets an acknowledge by pulling SDA low. The slave sends the 8-bit data (contents of the register). The master assets an acknowledge by pulling SDA low. Steps 9 and 10 are repeated for as many registers in the block, with the register pointer automatically incremented each time. 12. The master sends a STOP condition. www.maximintegrated.com Maxim Integrated | 51 MAX77301/MAX77301A JEITA-Compliant, Li+ Charger with Smart Power Selector, Automatic Detection, and USB Enumeration Table 9. I2C Register Map FUNCTI ON R/W ADDRE SS BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 CHIP_I D R 0x00 DIE_TYPE[7:4] DIE_TYPE[3:0] CHIP_R EV R 0X01 DASH[3:0] MASK_SET[3:0] STATU S_A R 0x02 CHG_TYPE[3:0] STATU S_B R 0x03 SUS ILIM Reserve d STATU S_C R 0x04 IBUS_D EF nENU_E N_ HW BAT_DE T CHG_STAT[2:0] ENUM_ FLT USB_O K THERM_STAT[2:0] nSTDB_ EN_HW nCEN THER_ SD Reserve d HW_OU T_ IRQ HW_IN_ IRQ BIT 0 FS_DET nUOK nEXT_ PWR_O N BAT_ DET_IR Q CHG_ STAT_IRQ THERM _ REG_IR Q TIME_O UT_ IRQ EVENT_ A R 0x05 DET_D ONE_ IRQ EVENT_ B R 0x06 SUS_IR Q RESUM E_ IRQ ILIM_IR Q ENUM_ FLT_IR Q BUS_O K_ IRQ WHIGH_BAT_ T_IRQ HIGH_B AT_ T_IRQ LOW_B AT_ T_IRQ 0x07 DET_D ONE_ IRQ_MA SK Reserve d HW_OU T_ IRQ_MA SK HW_IN_ I RQ_MA SK BAT_DE T_ IRQ_MA SK CHG_STAT_ IRQ_MASK THERM _REG_ IRQ_MA SK TIME_O UT_ IRQ_MA SK RESUM E_ IRQ_MA SK ILIM_IR Q_ MASK ENUM_ FLT_ IRQ_MA SK BUS_O K_ IRQ_MA SK WHIGH_BAT_ T_IRQ_MASK HIGH_B AT_T_ IRQ_MA SK LOW_B AT_T_ IRQ_MA SK nSTDB_ EN nSTDB_ EN_ HW_MA SK nENU_E N nENU_EN_ HW_MASK DCD_E N KB_TM_ EN IRQ_MA SK_A R/W IRQ_MA SK_B R/W 0x08 SUS_IR Q_ MASK USB_C NTL R/W 0x09 RWU_E N SUS_E N IBUS_C NTL R/W 0x0A IBUS_LI M V_SYS[1:0] ILIM[2:0] IBUS_DET_SW[1:0 ] CHARG ER_CN TL_A R/W 0x0B Reserve d TCHG[1:0] IFCHG[2:0] THERM_REG[1:0] CHARG ER_ CNTL_B R/W 0x0C THERM _EN BAT_DE T_ MASK BAT_DE T_ CNTL CHARG E_TMR R/W 0x0D Reserve d Reserve d MTCHG_TMR[1:0] FCHG_TMR[1:0] PCHG_TMR[1:0] CHARG ER_VS ET R/W 0x0E BAT_RECHG[1:0] BAT_REG[1:0] BAT_FCHG_HYS[1:0] BAT_FCHG[1:0] CHARG ER_JEI TA R/W 0x0F VBAT_0
MAX77301EWA+T 价格&库存

很抱歉,暂时无法提供与“MAX77301EWA+T”相匹配的价格&库存,您可以联系我们找货

免费人工找货