0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTF3050EJ

BTF3050EJ

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    PG-TDSO-8-31_4.9X3.9MM-EP

  • 描述:

    BTF3050EJ

  • 数据手册
  • 价格&库存
BTF3050EJ 数据手册
BTF3050EJ Smart Low-Si de Power Switch 1 Overview Features • Single channel device • 3.3V and 5V compatible logic input • PWM switching capability 20kHz for 10-90% duty cycle • Electrostatic discharge protection (ESD) • Adjustable switching speed • Digital latch feedback signal • Very low power DMOS leakage current in OFF state • DMOS turn on capability in inverse current situation • Green Product (RoHS compliant) Potential applications • Suitable for resistive, inductive and capacitive loads • Replaces electromechanical relays, fuses and discrete circuits • Allows high inrush currents and active freewheeling Product validation Qualified for automotive applications. Product validation according to AEC-Q100/101. Description The BTF3050EJ is a 50 mΩ single channel Smart Low-Side Power Switch with in a PG-TDSO-8-31 package providing embedded protective functions. The power transistor is built by an N-channel vertical power MOSFET. The device is monolithically integrated. The BTF3050EJ is automotive qualified and is optimized for 12V automotive and industrial applications. Table 1 Product Summary Operating voltage range VOUT 3 .. 28 V Maximum battery voltage VBAT(LD) 40 V Operating supply voltage range VDD 3.0 .. 5.5 V Maximum input voltage VIN 5.5 V Maximum On-State resistance at Tj = 150°C, VDD = 5V, VIN = 5V RDS(ON) 100 mΩ Datasheet www.infineon.com/hitfet 1 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Overview Table 1 Product Summary (cont’d) Nominal load current IL(NOM) 4A Minimum current limitation IL(LIM) 10 A Minimum current limitation trigger level IL(LIM)TRIGGER 29 A Maximum OFF state load current at TJ ≤ 85°C IL(OFF) 2 µA Maximum stand-by supply current at TJ = 25°C IDD(OFF) 6 µA Type Package Marking BTF3050EJ PG-TDSO-8-31 F3050EJ Diagnostic Functions • Short circuit to battery • Over temperature shut down • Stable latching diagnostic signal Protection Functions • Over temperature shutdown with auto-restart • Active clamp over voltage protection of the output (OUT, cooling tab) • Current limitation • Enhanced short circuit protection Detailed Description The device is able to switch all kind of resistive, inductive and capacitive loads, limited by maximum clamping energy and maximum current capabilities. The BTF3050EJ offers dedicated ESD protection on the IN, VDD, ENABLE, STATUS and SRP pin which refers to the GND ground pin, as well as an over voltage clamping of the OUT to Source/GND. The over voltage protection gets activated during inductive turn off conditions or other over voltage events (like load dump). The power MOSFET is limiting the drain-source voltage, if it rises above the VOUT(CLAMP). The over temperature protection prevents the device from overheating due to overload and/or bad cooling conditions. The BTF3050EJ has an auto-restart thermal shutdown function. The device will turn on again, if input is still high, after the measured temperature has dropped below the thermal hysteresis. Datasheet 2 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 3.3 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 4.3.1 4.3.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Transient Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 5.1 5.2 5.3 5.4 5.5 5.5.1 5.5.2 5.6 5.7 5.8 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output On-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of ENABLE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional description of IN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistive Load Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adjustable Switching Speed / Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 16 16 17 17 18 19 20 20 6 6.1 6.2 6.3 6.4 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Voltage Clamping on OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Temperature Protection with Latched Fault Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Limitation / Short Circuit Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 22 25 7 7.1 7.2 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Functional Description of the STATUS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8 8.1 8.2 8.3 8.4 8.5 Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description of the SRP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 27 27 28 29 9 9.1 9.2 9.3 9.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 30 32 34 35 Datasheet 3 6 6 6 7 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch 10 10.1 10.2 10.3 10.4 Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Design and Layout Recommendations/Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 12 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Datasheet 4 37 37 49 51 52 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Block Diagram 2 Figure 1 Datasheet Block Diagram Block Diagram 5 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Pin Assignment 3 Pin Assignment 3.1 Pin Configuration Figure 2 3.2 Pin configuration Pin Definitions and Functions Pin Symbol I/O Function 1 IN Input If IN logic is high, switches ON the Power DMOS If IN logic is low, switches OFF the Power DMOS only if pin ENABLE is logic high 2 VDD Input Logic supply voltage, 3V to 5.5V 3 STATUS Input Reset of latches by microcontroller pull-up Output If STATUS logic is high, device is under normal operation If STATUS logic is low, device is in over temperature condition 4 SRP Input Slewrate control with external resistor 5 ENABLE Input If ENABLE logic is high, IN pin is enabled If ENABLE logic is low, IN pin is disabled and leakages are minimum 6,7,8 GND I/O SOURCE of power DMOS and Logic, GND pins must be connected together Cooling tab OUT I/O DRAIN of power DMOS. Connected to Load. Datasheet 6 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Pin Assignment 3.3 Voltage and Current Definition Figure 3 shows all external terms used in this data sheet, with associated convention for positive values. Figure 3 Datasheet Naming Definition of electrical parameters 7 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings1) TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Voltages Supply voltage VDD -0.3 – 5.5 V P_4.1.1 Output voltage VOUT – – 40 V P_4.1.2 Battery voltage for short circuit protection VBAT(SC) – – 31 V P_4.1.3 l = 0 or 5m RSC = 30 mΩ+ RCable RCable = l * 16 mΩ/m LSC = 5 µH + LCable LCable = l * 1 µH/m VDD =5V; VIN=5V; VENABLE=5V Battery voltage for load dump protection (VBAT(LD) = VA + VS with VA = 13.5V) VBAT(LD) – – 40 V 2) Ri = 2 Ω, RL = 4.7 Ω, td = 400 ms, suppressed pulse P_4.1.4 Input Voltage VIN -0.3 – 5.5 V – P_4.1.8 SRP pin Voltage VSRP -0.3 – 5.5 V VSRP ≤ VDD P_4.1.9 STATUS pin Voltage VSTATUS -0.3 – 5.5 V P_4.1.10 ENABLE pin Voltage VENABLE -0.3 – 5.5 V P_4.1.11 Load current |IL| – – IL(LIM) TJ < 150°C P_4.1.12 Power Dissipation PTOT – – 1.60 W DC operation,TA = 85°C,TJ < 150°C, IL = INOM P_4.1.47 Unclamped single inductive energy single pulse EAS – – 94 mJ IL(0) = IL(NOM) VBAT = 13.5 V Tj(0) = 150°C P_4.1.16 Unclamped repetitive inductive energy pulse with 10k cycles EAR(10k) – – 90 mJ IL(0) = IL(NOM) VBAT = 13.5 V Tj(0) = 85 °C P_4.1.26 1) Control pins voltages Power Stage Energies Datasheet 8 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch General Product Characteristics Table 2 Absolute Maximum Ratings1) (cont’d) TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Number mJ IL(0) = IL(NOM) VBAT = 13.5 V TJ(0) = 85 °C P_4.1.31 P_4.1.39 Min. Typ. Max. Unclamped repetitive inductive energy pulse with 100k cycles EAR(100k) – – 85 Operating temperature Tj -40 – +150 °C – Storage temperature Tstg -55 – +150 °C – VESD -2 – 2 kV HBM3) P_4.1.41 4 kV 3) HBM P_4.1.42 500 V CDM4) P_4.1.43 V 5) P_4.1.44 Temperatures ESD robustness ESD robustness (all pins) ESD robustness OUT pin vs. GND VESD -4 ESD robustness VESD -500 – ESD robustness corner pins VESD – -750 – 750 CDM 1) Not subject to production test, specified by design. 2) VBAT(LD) is setup without the DUT connected to the generator per ISO7637-1; Ri is the internal resistance of the load dump test pulse generator; td is the pulse duration time for load dump pulse (pulse 5) according ISO 7637-1, -2. 3) ESD robustness, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF) 4) ESD robustness, Charged Device Model “CDM” ESDA STM5.3.1 or JESD22-C101 5) ESD robustness, Charged Device Model “CDM” ESDA STM5.3.1 or JESD22-C101 Note: 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation Datasheet 9 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch General Product Characteristics 4.2 Table 3 Functional Range Functional Range Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number Supply Voltage Range for Nominal Operation VDD(NOR) 3.0 5.0 5.5 V P_4.2.1 Supply current continuous ON operation IDD(ON) – 1.3 2.5 mA P_4.2.4 Supply current continuous ON operation is specified forRSRP=0. It is lower (0.7mA typ) forRSRP=5.8k 1) Standby supply current (ambient) IDD(OFF) – 1.5 6 µA TJ = 25°C 1) P_4.2.8 Maximum standby supply current IDD(OFF)_150 (hot) – 6 14 µA TJ = 150°C P_4.2.9 Battery Voltage Range for Nominal Operation VBAT(NOR) 6 13.5 18 V 1) P_4.2.10 Extended Battery Voltage Range for Operation VBAT(EXT) 0 – 29 V parameter deviations P_4.2.11 possible SRP pin resistor for adjustable operation RSRP(NOR) 5 – 70 kΩ refer to graphic Figure 16 P_4.2.12 1) P_4.2.13 Pin can be left open P_4.2.14 normal and reset mode P_4.2.15 1) SRP pin resistor for fast operation RSRP(EXTF) 0 SRP pin resistor for slow operation RSRP(EXTS) STATUS Pin voltage operation range VSTATUS STATUS Pin Leakage current ISTATUS STATUS Pin voltage drop Fault STATUS Current Reset – 1.5 kΩ >160 – – kΩ -0.3 5.5 V 1) DIAGNOSIS Note: Datasheet – 1) – 1.5 12 µA VSTATUS ≤ 5V 1) P_4.2.17 VSTATUS(FAULT) 0.5 0.8 V ISTATUS(FAULT)=1mA P_4.2.18 ISTATUS(RESET) 5 – 7 mA P_4.2.19 Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 10 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch General Product Characteristics 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4 TJ = -40°C to +150°CVDD = 3.0 V to 5.5 VVBAT = 6 V to 18 Vall voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Junction to Case Junction to Ambient (2s2p) Junction to Ambient (1s0p+600mm2 Cu) Symbol RthJC RthJA(2s2p) RthJA(1s0p) Values Min. Typ. Max. – 3 – – – 35 46 – – Unit Note or Test Condition Number K/W 1) 2) P_4.3.3 K/W 1) 3) P_4.3.9 K/W 1) 4) P_4.3.14 1) Not subject to production test, specified by design 2) Specified RthJC value is simulated at natural convection on a cold plate setup (bottom of package is fixed to ambient temperature). TC = 85°C. Device is loaded with 1W power. 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the ex posed pad contacted the first inner copper layer. Ta = 85°C, Device is loaded with 1W power. 4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with additional heatspreading copper area of 600mm2 and 70 mm thickness. Ta = 85°C, Device is loaded with 1W power. Datasheet 11 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch General Product Characteristics 4.3.1 PCB set up The following PCB setup was implemented to determine the transient thermal impedance. The setup is according to JEDEC standard JESD51-2A and related. Figure 4 Cross-section JEDEC2s2p Figure 5 Cross-section JEDEC1s0p Figure 6 PCB layout, top view Datasheet 12 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch General Product Characteristics 4.3.2 Transient Thermal Impedance Figure 7 Typical transient thermal impedance ZthJA = f(tp), Ta = 85°C Value is according to Jedec JESD51-2,-7 at natural convection on FR4 boards; The product (Chip+Package) was simulated with the respective PCB setups, according to the JEDEC standard. Where applicable a thermal via array under the ex posed pad contacted the first inner copper layer. Device is dissipating 1 W power. Datasheet 13 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch General Product Characteristics Figure 8 Zth(JC) vs. duty cycle Figure 9 PCB 1sp0 - Rthja vs. cooling areas Datasheet 14 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Power Stage 5 Power Stage 5.1 Output On-state Resistance The on-state resistance depends on the supply voltage and on the junction temperature TJ. Figure 10 shows this dependencies in terms of temperature and voltage for the typical on-state resistance RDS(ON). The behavior in reverse polarity is described in chapter“Inverse Current Capability” on Page 20. Figure 10 Trend of On-State Resistance RDS(ON) = f(TJ), VDD = 5V or 3V, VIN = high At VIN= high the power DMOS switches ON with a dedicated slope. To achieve a reasonable RDS(ON)and the specified switching speed a 5V supply is required. 5.2 Functional description of ENABLE pin The physical digital input ENABLE allows power down mode when IN pin toggling is not needed. When ENABLE is set to logic low, the DMOS is switched off (regardless of the status of the input IN) and the device will be in Power Down mode. It allows the lowest possible leakage current through OUT and VDD pins. The STATUS pin will not be available during this stage and the device is reset. When the ENABLE pin is switched to logic high, the device logic and DMOS are available with full functionalities, after a dead time defined as masking time - tENABLE(MASKING)”(Table “tENABLE(MASKING)” on Page 36), . Then, depending on the status of the IN pin the DMOS is switched on or off, see Chapter 5.3 and Figure 11 “VOUT in relation to VENABLE and VIN” on Page 16. The STATUS pin will also be available. For the electrical characteristics see Table 8, Page 35. Datasheet 15 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Power Stage 5.3 Functional description of IN pin The IN pin is a digital input. As described in Chapter 5.2 using the physical IN pin requires the ENABLE pin to be set to logic high. If IN is set to logic low, the DMOS is switched off. If IN is set to logic high, the DMOS is switched on. In addition, an high frequency PWM signal source can be connected. At a frequency of 20kHz the duty cycle can be selected between 10% and 90%. . 5.4 Resistive Load Output Timing Figure 12 shows the typical timing when switching a resistive load. Figure 11 VOUT in relation to VENABLE and VIN Figure 12 Definition of Power Output Timing for Resistive Load Datasheet 16 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Power Stage 5.5 Inductive Load 5.5.1 Output Clamping When switching off inductive loads with low side switches, the drain-source voltage VOUT rises above battery potential, because the inductance intends to continue driving the current. To prevent unwanted high voltages the device has a voltage clamping mechanism to keep the voltage at VOUT(CLAMP). During this clamping operation mode the device heats up as it dissipates the energy from the inductance. Therefore the maximum allowed load inductance is limited. See Figure 13 and Figure 14 for more details. Figure 13 Output Clamp Circuitry Figure 14 Switching an Inductive Load Note: Datasheet Repetitive switching of inductive load by VDD instead of using the input is a not recommended operation and may affect the device reliability and reduce the lifetime. 17 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Power Stage 5.5.2 Maximum Load Inductance While demagnetization of inductive loads, energy has to be dissipated in the BTF3050EJ. This energy can be calculated by the following equation: ⎡VBAT − VOUT ( CLAMP) ⎤ ⎛ ⎞ RL × I L ⎟ + IL ⎥ × L × ln ⎜1 − E = VOUT ( CLAMP) × ⎢ ⎜ V −V ⎟ RL ⎢⎣ ⎥⎦ RL BAT OUT ( CLAMP ) ⎠ ⎝ (5.1) Following equation simplifies under assumption of RL = 0 E= ⎞ ⎛ 1 VBAT 2 ⎟ LI L × ⎜1 − ⎟ ⎜ V −V 2 BAT OUT ( CLAMP) ⎠ ⎝ (5.2) The figure below shows the inductance / current combination the BTF3050EJ can handle. For maximum single avalanche energy refer to EAS value in Table 2. Figure 15 Datasheet Maximum load inductance for single pulse L = f(IL), TJ,start = 150°C, VBAT = 13.5V 18 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Power Stage 5.6 Adjustable Switching Speed / Slew Rate In order to optimize electromagnetic emission, the switching speed of the MOSFET can be adjusted by connecting an external resistor between SRP pin and GND. This allows for balancing between electromagnetic emissions and power dissipation. Shorting the SRP pin to GND represents the fastest switching speed. Open pin represents the slowest switching speed. The accuracy of the switching speed adjustment is dependent on the precision of the external resistor used and on the parasitic capacitance on the SRP pin. It is recommended to use accurate resistors and place them as close as possible to the SRP pin with the shortest way possible to the GND of the device. Figure 16 shows the simplified relation between the resistor value and the switching times Figure 16 Typical simplified relation between switching time and RSRP resistor values used on SRP pin It is not recommended to change the slew rate resistance during switching (supplied device, VDD > VDD(UV_ON). Undefined switching times can result. If the SRP pin is externally pulled up above the normal SRP pin voltage VSRP (e.g. to VDD) the slowest slew rate settings apply. Datasheet 19 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Power Stage 5.7 Inverse Current Capability An inverse situation means the OUT pin is pulled below GND potential via the load and current flows in the Power DMOS intrinsic body diode. In certain application cases (for example in use in a bridge or half-bridge configuration) the body diode is used for freewheeling of an inductive load. In this case the device is still supplied but the inverse current is flowing from GND to OUT(drain). In inverse operation the body diode is dissipating power, which is defined by the driven current times the voltage drop on the body diode -VDS. In order to dissipate less power in inverse situation, a dedicated circuit has been implemented. The BTF3050EJ includes an inverse current detection circuit that allows to turn ON the Power DMOS while inverse current is present (active freewheeling) and disables all protections, e.g. current limitation, temperature shutdown or over voltage clamping. To do active freewheeling, both ENABLE and IN pin must be set to logic high. The timings are set to slow mode (open SRP pin), regardless of the SRP pin configuration. During inverse current condition the quiescent current of the circuit is the same as in normal operation if ENABLE=high (see Chapter 9.4). If ENABLE=low and the device is still supplied, the standby supply current in inverse increases compared to standby supply current in normal output current condition (see Table 8 “Electrical Characteristics: Supply and Input” on Page 35). The maximum admissible inverse current is -IL(NOM). 5.8 Characteristics See Table 9.1 “Power Stage” on Page 30 for electrical characteristics. Datasheet 20 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Protection Functions 6 Protection Functions The device provides embedded protection functions. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operation. Protection functions are not to be used for continuous or repetitive operation. Over temperature is indicated by a low active signal on the STATUS pin. 6.1 Over Voltage Clamping on OUT The BTF3050EJ is equipped with a voltage clamp circuitry that keeps the drain-source voltage VDS at a certain level VOUT(CLAMP). The over voltage clamping is overruling the other protection functions. Power dissipation has to be limited not to exceed the maximum allowed junction temperature. This function is also used in terms of inductive clamping. See also “Output Clamping” on Page 17 for more details. 6.2 Over Temperature Protection with Latched Fault Signal The device is protected against over temperature due to overload and/or bad cooling conditions by an integrated temperature sensor. The over temperature protection is available if the device is active, i.e. IN=high and ENABLE=high. The device incorporates an absolute (TJ(SD)) and a dynamic temperature limitation (ΔTJ(SW)). Triggering one of them will cause the output to switch off. The dynamic temperature limitation principle is developed in a separated Application Note for HITFET+. The switch off will be done with the fastest possible slew rate. The BTF3050EJ has a thermal-restart function. If IN pin is still high the device will turn on again after the junction temperature has dropped below the thermal hysteresis (ΔTJ_HYS). In case of detected overtemperature the fault signal will be set and the STATUS pin will be internally pulled down to VSTATUS(FAULT). This VSTATUS is independent from the IN signal, providing a stable fault signal (Logic “low”) to be read out by a micro controller. The latched fault signal needs to be reset by a pull-up signal (VSTATUS ≥ VSTATUS(RESET)) at the STATUS pin for a minimum duration of tRESET, provided that the junction temperature has decreased at least from the thermal hysteresis in the meantime. The latched fault signal can also be reset by setting ENABLE=low. See Chapter 6.4 for an overview of reset conditions. See “Diagnostics” on Page 26 for details on the feedback and reset function. Datasheet 21 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Protection Functions Figure 17 Thermal protective switch OFF scenario for case of overload or short circuit Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. 6.3 Overcurrent Limitation / Short Circuit Behavior BTF3050EJ provides a smart overcurrent limitation intended to protect against short circuit conditions while allowing also load inrush currents higher than the current limitation level. It has a current limitation level IL(LIM) which is triggered by a higher trigger level IL(LIM)TRIGGER. If the load current IL reaches the current limitation trigger level IL(LIM)TRIGGER, the internal current limitation will be activated and the device limits the current to a lower value IL(LIM). The IL(LIM)TRIGGER function has a latch behaviour, it happens once and is disabled until it is reset. Then, BTF3050EJ behaves as a normal auto-restart, current limiting device: It keeps heating up at IL(LIM) until the thermal shutdown temperature TJ(SD) is reached, then it turns off. Due to autorestart feature, the MOSFET turns on again after it drops in temperature below thermal hysteresis (∆TJ_HYS). If fault situation is still present, the current will be limited to IL(LIM) as the trigger feature is now disabled. The time to over temperature switch off strongly depends on the cooling conditions. To reset the IL(LIM)TRIGGER level feature, two conditions are necessary. The STATUS pin needs a pull-up signal (VSTATUS ≥ VSTATUS(RESET)) for a minimum duration of tRESET, and the IN pin must be in low state (VIN ≤ VIN(L)) at the same time. The IL(LIM)TRIGGER level feature can also be reset by setting ENABLE=low. See Chapter 6.4 for an overview of reset conditions. Figure 18 “Short circuit protection via current limitation and thermal switch off , with latched fault signal on STATUS” on Page 23 shows this behavior. Datasheet 22 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Protection Functions Figure 18 Short circuit protection via current limitation and thermal switch off , with latched fault signal on STATUS Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. Datasheet 23 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Protection Functions Behavior with overload current below current limitation trigger level The lower current limitation level IL(LIM) is also triggered by any thermal shutdown. It can be the case when a still current, below the overcurrent limitation trigger level (IL < IL(LIM)TRIGGER), provokes an over temperature shutdown. Any over temperature shutdown disables the IL(LIM)TRIGGER function. Figure 19 Note: Datasheet Example of overload behavior with thermal shutdown For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. 24 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Protection Functions 6.4 Reset conditions The following table gives the reset conditions of the latched STATUS signal and the IL(LIM)TRIGGER function. Additionally, both functions are reset when ENABLE=low, regardless of STATUS and IN pin states. Figure 20 Datasheet Reset conditions of latched STATUS signal and IL(LIM)TRIGGER function. 25 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Diagnostics 7 Diagnostics The BTF3050EJ provides a latched digital fault feedback signal on the STATUS pin triggered by an over temperature or dynamic temperature shutdown. 7.1 Functional Description of the STATUS pin The BTF3xxxEJ series provides digital status information via the STATUS pin to give an alarm feedback to a possible connected micro controller. See Figure 17 “Thermal protective switch OFF scenario for case of overload or short circuit” on Page 22. Normal operation mode In normal operation (no fault is detected) the STATUS pin is logic “high”. It is pulled up via an external Resistor with a recommended value of 4.7kΩ. Internally it is connected to an open drain MOSFET via an internal Resistor. Fault operation In case of a temperature shutdown the internal MOSFET of the BTF3xxxEJ series pulls the STATUS pin down to approx 0.5V, which a connected microcontroller would accept as logic “low” level signal for a 4.7kΩ pull-up resistor. This mode stays active independent from the input pin state or internal auto-restarts until it is reset. Reset Latch (external pull up) To reset the latched STATUS signal, the STATUS pin has to be pulled-up to VDD, for a minimum time of tRESET. The IN pin state does not matter to reset the latched STATUS signal. See Chapter 11 for an example of basic circuitry to use this digital feedback function. Reset IL(LIM)TRIGGER See Chapter 6.3 for detailed explanation on the function and Chapter 6.4 for a quick overview of reset mechanism. 7.2 Characteristics See Table 9.3 “Diagnostics” on Page 34 for electrical characteristics. Datasheet 26 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Supply and Input Stage 8 Supply and Input Stage 8.1 Supply Circuit The supply pin VDD is protected against ESD pulses as shown in Figure 21. The device supply is not internally regulated but directly taken from a external supply. Therefore a reverse polarity protected and buffered (3.0V..5.5V) voltage supply is required. To achieve a reasonable RDS(ON) and the specified switching speed a 5V supply is required. Figure 21 8.2 Supply Circuit Undervoltage Shutdown In order to ensure a stable and defined device behavior under all allowed conditions the supply voltage VDD is monitored. If the supply voltage VDD drops below the switch-off threshold VDD(TH), the power DMOS switches off. In this case ENABLE pin is pulled to low state and both latched STATUS and IL(LIM)TRIGGER level are reset (See Chapter 6.4, Reset conditions). All device functions are only specified for supply voltages above the supply voltage threshold VDD(TH)MAX. There is no fault feedback ensured for VDD < VDD(TH). 8.3 Input/Enable Circuit Figure 22 shows the IN pin circuit of the BTF3050EJ. Due to an internal pull-down it is ensured that the device switches off in case of open IN pin. A Zener structure protects the input circuit against ESD pulses. This structure is also valid for ENABLE pin. Datasheet 27 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Supply and Input Stage Figure 22 8.4 Simplified IN/ENABLE pin circuitry Functional Description of the SRP Pin The BTF3050EJ provides the possibility to adjust slewrate with an external resistor connected to the SlewRate-Preset pin (SRP). It defines the strength of the gate driver stage used to switch the power DMOS. The greater the resistor the lesser the current driven by the slew rate logic block to the gate driver block, which will result in a slower turn-on and turn-off. For details on this function please refer to “Adjustable Switching Speed / Slew Rate” on Page 19. Figure 23 Datasheet Simplified functional block diagram of SRP pin 28 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Supply and Input Stage 8.5 Characteristics Please see Table “INPUT” on Page 36, Table “ENABLE” on Page 36 for INPUT and ENABLE electrical characteristics. The timings Table shows slew rate for specific resistor values, for the SRP pin electrical characteristics please see Table “SRP” on Page 36. Datasheet 29 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Electrical Characteristics 9 Electrical Characteristics Note: Characteristics show the deviation of parameter at given input voltage and junction temperature. Typical values show the typical parameters expected from manufacturing and in typical application condition. All voltages and currents naming and polarity in accordance to Figure 3 “Naming Definition of electrical parameters” on Page 7 9.1 Power Stage See Chapter “Power Stage” on Page 15 for parameters description and further details. Table 5 Electrical Characteristics: Power Stage TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number Power Stage - Static Characteristics On-State resistance RDS(ON) – 45 – mΩ IL = IL(NOM); VDD = 5V; TJ = 25°C P_9.1.3 On-State resistance RDS(ON) – 87 100 mΩ IL = IL(NOM); VDD = 5V; TJ = 150°C P_9.1.8 Nominal load current IL(NOM) – 4 – A 1) TJ < 150°C; VDD = 5 V; P_9.1.33 OFF state load current, Output leakage current IL(OFF)25 – – 2 µA 2) P_9.1.38 OFF state load current, Output leakage current IL(OFF)150 – 1.2 4 µA VBAT = 18 V; VIN = 0 V; VDD = 5 V; TJ = 150°C P_9.1.43 -VDS – 0.8 1.5 V ID = - IL(NOM); VIN = 0 V P_9.1.50 VBAT = 13.5 V; VIN = 0 V; VDD = 5 V; TJ ≤ 85°C Reverse Diode Reverse diode forward voltage Power Stage - Dynamic characteristics - switching time adjustment VBAT = 13.5V, VDD = 5 V; resistive load: RL = 4.7Ω; CSRP-GND < 100 pF; see also Figure 12 “Definition of Power Output Timing for Resistive Load” on Page 16 Turn-on time tON(0) 0.45 1.35 2.8 µs Turn-off time tOFF(0) 0.8 µs Datasheet 30 2 4 RSRP = 0Ω P_9.1.51 RSRP = 0Ω P_9.1.55 3) 4) Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Electrical Characteristics Table 5 Electrical Characteristics: Power Stage (cont’d) TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Unit Note or Test Condition Min. Typ. Max. Number Turn-on delay time tDON(0) 0.15 0.35 0.8 µs RSRP = 0Ω P_9.1.59 Turn-off delay time tDOFF(0) 0.5 1 2 µs RSRP = 0Ω P_9.1.63 Turn-on output fall time tF(0) 0.3 1 2 µs RSRP = 0Ω P_9.1.67 Turn-off output rise time tR(0) 0.3 1 2 µs RSRP = 0Ω P_9.1.71 Turn-on Slew rate 5) -(DV/Dt)ON(0) 15 27 45 V/µs RSRP = 0Ω P_9.1.75 Turn-off Slew rate (DV/Dt)OFF(0) 15 27 45 V/µs RSRP = 0Ω P_9.1.79 Turn-on time tON(5k8) 1.3 2.7 4.5 µs RSRP = 5.8kΩ P_9.1.52 Turn-off time tOFF(5k8) 2 4 6 µs RSRP = 5.8kΩ P_9.1.56 Turn-on delay time tDON(5k8) 0.3 0.75 1.5 µs RSRP = 5.8kΩ P_9.1.60 Turn-off delay time tDOFF(5k8) 1 2 3 µs RSRP = 5.8kΩ P_9.1.64 Turn-on output fall time tF(5k8) 1 2 3 µs RSRP = 5.8kΩ P_9.1.68 Turn-off output rise time tR(5k8) 1 2 3 µs RSRP = 5.8kΩ P_9.1.72 Turn-on Slew rate -(DV/Dt)ON(5k8) 7 13 21 V/µs RSRP = 5.8kΩ P_9.1.76 Turn-off Slew rate (DV/Dt)OFF(5k8) 7 13 21 V/µs RSRP = 5.8kΩ P_9.1.80 Turn-on time tON(58k) 13 26 40 µs RSRP = 58kΩ P_9.1.53 Turn-off time tOFF(58k) 23 35 70 µs RSRP = 58kΩ P_9.1.57 Turn-on delay time tDON(58k) 3 6 10 µs RSRP = 58kΩ P_9.1.61 Turn-off delay time tDOFF(58k) 7 15 35 µs RSRP = 58kΩ P_9.1.65 Turn-on output fall time tF(58k) 10 20 30 µs RSRP = 58kΩ P_9.1.69 Turn-off output rise time tR(58k) 10 20 30 µs RSRP = 58kΩ P_9.1.73 Turn-on Slew rate -(DV/Dt)ON(58k) 0.7 1.4 2.1 V/µs RSRP = 58kΩ P_9.1.77 Turn-off Slew rate (DV/Dt)OFF(58k) 0.7 1.4 2.1 V/µs RSRP = 58kΩ P_9.1.81 Turn-on time tON(open) 40 80 130 µs Turn-off time tOFF(open) 55 110 190 µs Turn-on delay time tDON(open) 10 20 40 µs Datasheet Values 31 5) 5) 3) 4) 5) 5) 3) 4) 5) 5) RSRP = 200kΩ(open) P_9.1.54 3) RSRP = 200kΩ(open) P_9.1.58 4) RSRP = 200kΩ(open) P_9.1.62 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Electrical Characteristics Table 5 Electrical Characteristics: Power Stage (cont’d) TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Unit Note or Test Condition Min. Typ. Max. Turn-off delay time tDOFF(open) 25 50 100 µs RSRP = 200kΩ(open) P_9.1.66 Turn-on output fall time tF(open) 30 60 90 µs RSRP = 200kΩ(open) P_9.1.70 Turn-off output rise time tR(open) 30 60 90 µs RSRP = 200kΩ(open) P_9.1.74 Turn-on Slew rate -(DV/Dt)ON(open) 0.25 0.5 0.7 V/µs RSRP = 200kΩ(open) P_9.1.78 Turn-off Slew rate (DV/Dt)OFF(open) 0.25 0.5 0.7 V/µs RSRP = 200kΩ(open) P_9.1.82 1) 2) 3) 4) 5) Values Number 5) 5) Not subject to production test, calculated by RthJA and RDS(ON).(JEDEC2S2P) Not subject to production test, specified by design Not subject to production test, calculated by (tDON + tF) Not subject to production test, calculated by (tDOFF + tR) Not subject to production test, calculated slew rate between 90% and 50%; see Figure 12 “Definition of Power Output Timing for Resistive Load” on Page 16 9.2 Protection See Chapter “Protection Functions” on Page 21 for parameter description and further details. Note: Table 6 Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation Electrical characteristics: Protection TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V; VBAT = 6 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Thermal shut down Symbol Values Min. Unit Note or Test Condition Typ. Max. Number 1) Thermal shut down junction temperature TJ(SD) 150 175 200 °C 1) P_9.2.1 Thermal hysteresis ΔTJ_HYS – 15 – K 1) P_9.2.3 P_9.2.4 P_9.2.7 Dynamic temperature limitation ΔTJ(SW) – 70 – K 1) 40 – – V VIN = 0 V; IL= 10 mA; Over Voltage Protection / Clamping Drain clamp voltage Datasheet VOUT(CLAMP) 32 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Electrical Characteristics Table 6 Electrical characteristics: Protection (cont’d) TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V; VBAT = 6 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Number Min. Unit Note or Test Condition Typ. Max. Current limitation Current limitation trigger level IL(LIM)TRIGGER 29 43 58 A VIN = 5V; VDD = 5V; VEN=5V P_9.2.10 Current limitation level IL(LIM) 10 - 20 A VIN = 5V; VDD = 5V; VEN=5V settled value P_9.2.15 1) Not subject to production test, specified by design. Datasheet 33 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Electrical Characteristics 9.3 Diagnostics See Chapter “Diagnostics” on Page 26 for description and further details. Table 7 Electrical Characteristics: Diagnostics TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. STATUS pin voltage operation range VSTATUS -0.3 STATUS Pin voltage drop Fault Number Feedback pin – 5.5 V VSTATUS(FAULT) – 0.5 0.8 V ISTATUS(FAULT)=1mA P_9.3.2 STATUS Pin reset current ISTATUS(RESET) 5 – 7 mA – P_9.3.3 STATUS Pin reset threshold voltage VSTATUS(RESET) 0.9 2.0 2.5 V – P_9.3.6 STATUS Pin leakage current (85°C) ISTATUS(85) 1.5 6 µA VSTATUS ≤ 5.5V TJ ≤ 85°C P_9.3.4 STATUS Pin leakage current (150°C) ISTATUS(150) Fault feedback reset time tRESET 1) 20 6 12 µA VSTATUS ≤ 5V TJ = 150°C P_9.3.5 – – µs VSTATUS > VSTATUS(RESET) P_9.3.7 1) Not subject to production test, specified by design. Datasheet 34 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Electrical Characteristics 9.4 Supply and Input Stage See Chapter “Supply and Input Stage” on Page 27 for description and further details. Table 8 Electrical Characteristics: Supply and Input TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number Nominal supply voltage VDD(NOM) 3.0 5.0 5.5 V – P_9.4.1 Supply ON/OFF threshold voltage VDD(TH) 1.3 2.4 3.0 V VIN = 5.0V; VBAT=13.5V; P_9.4.2 VEN= 5V; VIN= 5V; Supply current, continuous ON operation IDD(ON) – 1.3 2.5 mA VDD = 5.0V; RSRP = 0Ω; VEN= 5V; IOUT(0) = IOUT(NOM) P_9.4.5 Supply current, inverse condition on OUT to GND, ON mode IDD_ON(-VOUT) – 0.7 2.5 mA VOUT < -0.3V; VDD = 5.5V; VEN= 5V; VIN= 5V; IL =-IL(NOM) P_9.4.9 Supply current, inverse condition on OUT to GND, OFF mode IDD_OFF(-VOUT) – – 200 µA VOUT < -0.3V; VDD= 5.5V; VEN= 5V; VIN= 0V; IL =-IL(NOM) P_9.4.10 Standby supply current IDD(OFF) – 1.5 6 µA 1) VIN = 0V; VDD = 5.0V; RSRP = 0Ω; VEN= 0V; TJ ≤ 85°C P_9.4.11 Standby supply current, maximum at 150°C IDD(OFF)_150 – 6 14 µA VIN = 0V; VDD = 5.0V; RSRP = 0Ω; VEN= 0V; TJ = 150°C P_9.4.12 Supply Datasheet 35 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Electrical Characteristics Table 8 Electrical Characteristics: Supply and Input (cont’d) TJ = -40°C to +150°C, VDD = 3.0 V to 5.5 V, VBAT = 6 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Number Input Voltage VIN -0.3 – 5.5 V – Low level input voltage VIN(L) -0.3 – 0.8 V – P_9.4.14 High level input voltage VIN(H) 2.0 – VDD V – P_9.4.15 Input voltage hysteresis VIN(HYS) – 200 – mV – P_9.4.16 Input pull down current IIN – – 160 µA 2.7V < VIN < 5.5V -0.3V < VDD < 5.5V P_9.4.17 Internal Input pull down resistor RIN(GND) 25 50 100 kΩ – P_9.4.18 ENABLE Voltage VENABLE -0.3 – 5.5 V – Low level ENABLE voltage VENABLE(L) -0.3 – 0.8 V – P_9.4.20 High level ENABLEvoltage VENABLE(H) 2.0 – VDD V – P_9.4.21 ENABLE voltage hysteresis VENABLE(HYS) – 200 – mV – P_9.4.22 ENABLE pull down current IENABLE – – 160 µA 2.7V < VIN < 5.5V -0.3V < VDD < 5.5V P_9.4.23 25 50 100 kΩ – P_9.4.24 tENABLE(MASKING) 4 8 16 µs – P_9.4.25 INPUT ENABLE Internal ENABLE pull down resistor RENABLE(GND) ENABLE masking time SRP SRP resistor range for adjustable operation RSRP(NOR) 5 – 70 KΩ 1) P_9.4.26 SRP resistor range for fast operation RSRP(EXTF) 0 – 1.5 KΩ 1) P_9.4.27 SRP resistor range for slow operation RSRP(EXTS) 160 – – KΩ 1) P_9.4.28 1) Not subject to production test, specified by design. Datasheet 36 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results 10 Characterization Results 10.1 Power Stage Figure 24 Datasheet RDS(ON) vs. VDD @ TJ=-40, 25, 85, 150°C, IL=IL(NOM); VIN= VENABLE= 5V; VDD= 3...5.5V; RSRP= 0Ω 37 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 25 IDD(ON) vs. RSRP @ TJ=-40, 25, 150°C, IL=IL(NOM); VIN = VENABLE= VDD= 5V Figure 26 RDS(ON) vs. TJ @ VDD=3V, 5V; VIN = VENABLE = 5V; TJ= -40, 25, 85, 150°C; Datasheet 38 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 27 Figure 28 Datasheet IL(OFF) vs. TJ @ VIN = 0V; VENABLE= VDD= 5V; TJ= -40, -20, 0, 25, 50, 85, 105, 125, 150°C; VBAT = 13.5V, 18V, 31V IL(OFF) vs. VBAT =0..40V @ TJ= -40, 25, 85, 150°C; VIN = 0V; VENABLE= VDD= 5V 39 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 29 Figure 30 Datasheet EAS vs. IL @ TJ(0)=25°C, 150°C, VBAT=13.5V; VIN = VENABLE = VDD= open; IL=IL(NOM) /4, IL(NOM)/2, IL(NOM), 2*IL(NOM) EAR_10k, _100k vs. IL @ TJ(0)=25°C, 105°C, VBAT= 13.5V; VIN = VENABLE = VDD= 5V; IL =IL(NOM), 2*IL(NOM) 40 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 31 Datasheet EAR vs. cycles @ TJ(0)=25°C, 105°C, VBAT = 13.5V; VIN = VENABLE = VDD= 5V; IL = IL(NOM), 2*IL(NOM) 41 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 32 Datasheet tF, tR, tDON, tDOFF vs. RSRP; VIN = VENABLE= VDD= 5V; VBAT= 13.5V; RL=4.7Ω; TJ = -40, 25, 150°C 42 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 33 Datasheet -(ΔV/Δt)ON, (ΔV/Δt)OFF vs. RSRP; VIN = VENABLE = VDD= 5V; VBAT = 13.5V; RL=4.7Ω; TJ= -40, 25, 150°C 43 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 34 Datasheet tF, tR, tDON, tDOFFvs. VDD=3..5.5V @ VBAT=13.5V; TJ= -40, 25, 150°C; RSRP = 5.8kΩ; VIN = VENABLE = 5V; RL=4.7Ω; 44 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 35 Datasheet tF, tR, tDON, tDOFF vs. VBAT=3..31V @ VDD=5V; VIN = VENABLE= VDD = 5V; RL = 4.7Ω; RSRP=5.8kΩ, open; TJ= -40, 25, 150°C 45 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 36 Datasheet Slewrates (-(ΔV/Δt)ON, (ΔV/Δt)OFF vs. VBAT @ TJ = -40, 25, 150°C; RL=4.7Ω; RSRP= 5.8kΩ; VIN = VDD = VENABLE= 5V; VBAT = 3..31V 46 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 37 Datasheet tF, tR, tDON, tDOFF vs. TJ= -40; 25; 150°C @ RSRP= 5.8kΩ; VIN= VENABLE = VDD = 5V; VBAT = 13.5V; RL= 4.7Ω 47 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 38 Datasheet tF, tR, tDON, tDOFF vs. RL @ RSRP= 5.8kΩ; VIN= VENABLE= VDD= 5V; VBAT = 13.5V; TJ = -40, 25, 150°C 48 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results 10.2 Protection Figure 39 TJ(SD) vs. VDD; VIN=VENABLE= 5V; VDD= 3V...5.5V; IL= 10mA Figure 40 VOUT(clamp) vs. TJ; VIN= 0V;VENABLE= VDD= 5V; IL= 10mA Datasheet 49 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 41 Figure 42 Datasheet IL(LIM)TRIGGER peak vs. VDD=3...5.5V@ TJ= -40, 25, 85, 150°C; VIN= PWM 5V in SOA; VENABLE= 5V; VBAT= 13.5V; RL= 4.7Ω IL(LIM) vs. VDD= 3V...5.5V @ TJ = -40, 25, 150°C; VENABLE=VIN= 5V; VBAT= 13.5V 50 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results 10.3 Diagnostics Figure 43 ISTATUS vs. VDD = 3V...5.5V@ TJ= -40, 25, 150°C; VENABLE= VIN= 5V; VBAT= 13.5V; Figure 44 VSTATUS in fault mode vs. VDD = 3V...5V@ TJ = -40, 25, 150°C; VIN = VENABLE= 5V; VBAT= 13.5V; Datasheet 51 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results 10.4 Supply and Input Stage Figure 45 VDD(TH) vs. TJ = -40, 25, 150°C; VIN=VENABLE= 5V; RL= 4.7Ω; VBAT= 13.5V; RSRP= 0Ω Figure 46 IDD(ON) vs. VDD = 3V...5.5V@ TJ = -40, 25, 85, 150°C; VIN = VENABLE = 5V; RSRP= 0Ω; VBAT = 13.5V; Datasheet 52 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 47 IDD(OFF) vs. TJ @ VDD = 3, 4, 5V; VIN = VENABLE = 0V; Figure 48 IIN vs. VIN = -0.3V...5.5V@ TJ = -40, 25, 150°C; VDD = VENABLE= 5V; Datasheet 53 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Characterization Results Figure 49 VIN(L), VIN(H) vs. TJ @ VDD = 5V; VENABLE= 5V; IL= 1.4 mA; RSRP= 0Ω; VIN= 0V...5.5V; VBAT= 13.5V; Figure 50 VEN(L), VEN(H) vs. TJ @ VDD = 5V; VBAT= 13.5V; IL= 1.4mA; RSRP= 0Ω; VEN= 0V...5.5V; VBAT= 13.5V; Datasheet 54 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. Application Diagram An application example with the BTF3050EJ is shown below. Figure 51 Note: Table 9 Simplified application diagram This is a very simplified example of an application circuit. The function must be verified in the real application. Pin description for simplified application diagram Reference Value Purpose RSTATUS 4.7kΩ Pulls-up the STATUS pin RSRP kΩ SRP resistor CSRP-GND < 100pF maximum permitted parasitic capacitance at the SRP pin CVDD 100nF Filter capacitor on supply pin Datasheet 55 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Application Information 11.1 Design and Layout Recommendations/Considerations As consequence of the fast switching times for high currents, special care has to be taken to the PCB layout. Stray inductances have to be minimized. The BTF3050EJ has no separate pin for power ground and logic ground. Therefore it is recommended to assure that the offset between the ground connection of the slew rate resistor and ground pin of the device (GND/SOURCE) is minimized. The resistor RSRP should be placed near to the device and directly connected to the GND pin of the device to avoid any influence of GND shift to the functionality of the SRP pin. In order to avoid influence on SRP functionality (e.g. switching times..) the maximum capacitance on SRP pin to GND (CSRP-GND) has to be less than 100pF. This has to be considered by a proper layout also taking into account of parasitic capacitors. It is recommended not to let the SRP pin floating. A maximum resistor of 200 kOhm to GND is recommended. Datasheet 56 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Package information 12 Package information Figure 52 PG-TDSO-8-31 1) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Further information on packages https://www.infineon.com/packages 1) Dimension in mm Datasheet 57 Rev. 1.0 2018-08-08 BTF3050EJ Smart Low-Side Power Switch Revision History 13 Revision History Revision Date Changes Rev. 1.0 2018-08-08 First Release Datasheet 58 Rev. 1.0 2018-08-08 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-08-08 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
BTF3050EJ 价格&库存

很抱歉,暂时无法提供与“BTF3050EJ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BTF3050EJ
    •  国内价格
    • 1+20.53080
    • 10+17.89560
    • 30+16.32960

    库存:19