0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTF3050TEATMA1

BTF3050TEATMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    DPAK-5L

  • 描述:

    IC PWR SWITCH N-CHAN 1:1 TO252-5

  • 数据手册
  • 价格&库存
BTF3050TEATMA1 数据手册
HITFET - BTF3050TE Smart Low-Side Power Switch 1 BTF3050TE Overview Application • • • Suitable for resistive, inductive and capacitive loads Replaces electromechanical relays, fuses and discrete circuits Most suitable for inductive loads as well as loads with inrush currents Features • • • • • • • • Single channel device Very low power DMOS leakage current in OFF state 3.3 V and 5 V compatible logic inputs Electrostatic discharge protection (ESD) Adjustable switching speed Digital Feedback Green Product (RoHS compliant) AEC Qualified PG-TO252-5 Description The BTF3050TE is a 50 mΩ single channel Smart Low-Side Power Switch in a PG-TO252-5 package providing embedded protective functions. The power transistor is built by a N-channel vertical power MOSFET. The device is monolithically integrated. The BTF3050TE is automotive qualified and is optimized for 12V automotive and industrial applications. Table 1 Product Summary VOUT VBAT(LD) VDD VIN RDS(ON) IL(NOM) IL(LIM)_TRIGGER IL(OFF) IDD(OFF) Operating voltage range Maximum load voltage Operating supply voltage range Maximum input voltage Maximum On-State resistance at TJ = 150°C, VDD = 5V Nominal load current Minimum current limitation trigger level Maximum OFF state load current at TJ ≤ 85 °C Maximum stand-by supply current at TJ = 25 °C Type Package BTF3050TE PG-TO252-5 Datasheet 3 .. 28 V 40 V 3.0 .. 5.5 V 5.5 V 100 mΩ 3.0 A 30 A 2 µA 6 µA Marking 1 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Overview Diagnostic Functions • • • Short circuit to battery Over temperature Stable latching diagnostic signal Protection Functions • • • • Over temperature shutdown with auto-restart Active clamp over voltage protection of the output Current limitation Enhanced short circuit protection Detailed Description The device is able to switch all kind of resistive, inductive and capacitive loads, limited by clamping energy (EAS) and maximum current capabilities. The BTF3050TE offers dedicated ESD protection on the IN, VDD and SRP pins which refers to the Ground pin, as well as an over voltage clamping of the output to Source/GND. The over voltage protection gets activated during inductive turn off conditions or other over voltage events (e.g. load dump). The power MOSFET is limiting the drain-source voltage, if it rises above the VOUT(CLAMP). The over temperature protection prevents the device from overheating due to overload and/or bad cooling conditions. The BTF3050TE has a thermal-restart function. The device will turn on again, if input is still high, after the measured temperature has dropped below the thermal hysteresis. Datasheet 2 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 3.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment BTF3050TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 4.3.1 4.3.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Transient Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 5.1 5.2 5.3 5.3.1 5.3.2 5.4 5.5 5.6 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output On-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistive Load Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse/Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adjustable Swtiching Speed / Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 12 13 13 14 14 15 16 6 6.1 6.2 6.3 6.4 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Voltage Clamping on OUTput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Protection with Latched Fault Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Limitation / Short Circuit Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 17 18 20 7 7.1 7.2 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Functional Description of the SRP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8 8.1 8.1.1 8.2 8.3 Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 23 23 24 9 9.1 9.2 9.3 9.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 26 27 29 10 10.1 10.2 10.3 10.4 Characterisation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic charactersitics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 30 32 39 42 11 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Datasheet 3 6 6 6 6 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Table of Contents 11.1 Design and Layout Recommendations/Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 12 Package Outlines BTF3050TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Datasheet 4 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Block Diagram 2 Block Diagram VDD OUT Supply Unit Over Voltage Protection Overtemperature Protection Gate Driving Unit IN Status Feedback Slewrate adjustment Unit SRP Short circuit detection / Current limitation ESD Protection GND BlockDiagram_5pin.emf Figure 1 Datasheet Block Diagram 5 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Pin Configuration 3 Pin Configuration 3.1 Pin Assignment BTF3050TE (top view) 6 (Tab) OUT 5 GND 4 SRP 3 OUT 2 VDD 1 IN PinConfig_DPAK5.emf Figure 2 Pin Configuration PG-TO252-5 3.2 Pin Definitions and Functions Pin Symbol Function 1 IN Input pin 2 VDD 5V supply pin 3,6 OUT Drain, Load connection for power DMOS 4 SRP Slew rate adjustment and digital status feedback 5 GND Ground, Source of power DMOS 3.3 Voltage and Current Definition Figure 3 shows all external terms used in this data sheet, with associated convention for positive values. VBAT V BAT VDD VDD IDD ZL R IN VDD I IN IN VIN I L, I D OUT I SRP VSRP SRP GND VOUT, VDS R SRP GND Figure 3 Datasheet Terms_5pin.emf Naming Definition of electrical parameters 6 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 2 Absolute Maximum Ratings1) TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Unit Note / Test Condition 5.5 V – 40 V internally clamped 28 V 1) Max. Voltages 4.1.1 Supply voltage 4.1.2 Output voltage 4.1.3 Battery voltage for short circuit protection 4.1.4 VDD -0.3 VOUT -0.3 VBAT(SC) – Battery voltage for load dump protection VBAT(LD) (VBAT(LD) = VA + VS with VA = 13.5V) – l = 0 ... 5m RSC = 30 mΩ + RCABLE RCABLE = l * 16 mΩ/m LSC = 5 µH + LCABLE LCABLE = l * 1 µH/m 40 V 2) RI = 2 Ω, RL = 4.5 Ω, tD = 400 ms, suppressed pulse Input and SRP Pins 4.1.5 Input Voltage 4.1.6 SRP pin Voltage VIN VSRP -0.3 5.5 V – -0.3 5.5 V VSRP < VDD |IL| – IL(LIM)_ A TJ < 150 °C 120 mJ IL(0) = IL(NOM) VBAT = 13.5 V TJ(0) = 150 °C IL(0) = 4.5A VBAT = 13.5 V TJ(0) = 105 °C Power Stage 4.1.7 Load current TRIGGER Energies 4.1.8 Unclamped single inductive energy single pulse EAS 4.1.9 Unclamped repetitive inductive energy pulse with 100k cycles EAR(100k) – 80 mJ TJ TSTG -40 +150 °C – -55 +150 °C – VESD VESD VESD -2 2 kV HBM3) -4 4 kV HBM3) -750 750 V CDM4) – Temperatures 4.1.10 Operating temperature 4.1.11 Storage temperature ESD Susceptibility 4.1.12 ESD susceptibility (all pins) 4.1.13 ESD susceptibility OUT pin vs. GND 4.1.14 ESD susceptibility 1) Not subject to production test, specified by design. Datasheet 7 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch General Product Characteristics 2) VBAT(LD) is setup without the DUT connected to the generator per ISO7637-1; RI is the internal resistance of the load dump test pulse generator; tD is the pulse duration time for load dump pulse (pulse 5) according ISO 7637-1, -2. 3) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF) 4) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1 Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation 4.2 Functional Range Table 3 Functional Range1) Pos. Parameter Symbol Unit Note / Test Condition Min. Typ. Max. 4.2.1 Supply Voltage Range for Normal Operation VDD(NOR) 3.0 5.0 5.5 V – 4.2.2 Supply current continuous ON operation IDD – 2.5 6 mA – 4.2.3 Standby supply current (ambient) IDD(OFF)_25 – IDD(OFF)_150 – VBAT(NOR) 8 1.5 6 µA TJ = 25 °C 6 14 µA TJ = 150°C 13.5 18 V – 4.2.6 Extended Battery Voltage Range for Operation VBAT(EXT) 3 – 28 V parameter deviations possible 4.2.7 SRP pin resistor for normal operation RSRP(NOR) 5 – 70 kΩ – 4.2.8 SRP pin resistor for extended operation RSRP(EXT) 0 – 600 Ω no latched fault available 4.2.4 Maximum standby supply current (hot) 4.2.5 Battery Voltage Range for Nominal Operation Limit Values 1) Not subject to production test, specified by design. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Datasheet 8 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch General Product Characteristics 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 4 Thermal resistance Pos. Parameter Symbol Limit Values 4.3.1 Junction to Case 4.3.2 Junction to Ambient (2s2p) 4.3.3 Junction to Ambient (1s0p+600mm2 Cu) RthJC – RthJA(2s2p) – RthJA(1s0p) – Min. Unit Note / Test Condition Typ. Max. 1.9 – K/W 1) 2) 25 – K/W 1) 3) 38 – K/W 1) 4) 1) Not subject to production test, specified by design 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins are fixed to ambient temperature). TC = 85 °C. Device is loaded with 1W power. 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Ta = 85 °C, Device is loaded with 1W power. 4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with additional heatspreading copper area of 600mm2 and 70 μm thickness. Ta = 85°C, Device is loaded with 1W power. 4.3.1 PCB set up The following PCB set up was implemented to determine the transient thermal impedance. 1,5 mm 70μm modelled (traces) 35μm, 100% metalization* 70μm, 5% metalization* Figure 4 Cross section JEDEC2s2p. 1,5 mm 70μm modelled (traces, cooling area) 70μm; 5% metalization* Figure 5 Datasheet Cross section JEDEC1s0p. 9 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch General Product Characteristics JEDEC 1s0p / Footprint JEDEC 2s2p JEDEC 1s0p / 600 mm² Figure 6 PCB layout 4.3.2 Transient Thermal Impedance Detail: Solder area 30 25 Zth-JA [K/W] 20 15 10 5 0 0,00001 0,0001 0,001 0,01 0,1 1 10 100 1000 10000 tp. [s] Figure 7 Datasheet Typical transient thermal impedance ZthJA = f(tp), Ta = 85 °C Value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70 mm Cu, 2 x 35 mm Cu). Where applicable a thermal via array under the ex posed pad contacted the first inner copper layer. Device is dissipating 1 W power. 10 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch General Product Characteristics 110 100 90 80 600mm 300mm Footprint Zth-JA [K/W] 70 60 50 40 30 20 10 0 0,00001 0,0001 0,001 0,01 0,1 1 10 100 1000 10000 tp. [s] Figure 8 Datasheet Typical transient thermal impedance ZthJA = f(tp), Ta = 85 °C Value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board. Device is dissipating 1 W power. 11 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Power Stage 5 Power Stage 5.1 Output On-state Resistance The on-state resistance depends on the supply voltage as well as on the junction temperature TJ. Figure 9 shows this dependencies in terms of temperature and voltage for the typical on-state resistance RDS(ON). The behavior in reverse polarity is described in chapter“Reverse/Inverse Current Capability” on Page 14. 130 110 3V RDS(ON) [mΩ} 90 5V 70 50 30 10 -40 -20 0 20 40 60 80 100 120 140 Tj [⁰C] Figure 9 Typical On-State Resistance, RDS(ON) = f(TJ), VDD = 5 V, VDD = 3V, VIN = high A high signal at the input pin causes the power DMOS to switch ON with a dedicated slope. To achieve a reasonable RDS(ON) and the specified switching speed a 5V supply is required. 5.2 Resistive Load Output Timing Figure 10 shows the typical timing when switching a resistive load. VIN V IN(H) V IN(L) t VOUT V BAT 90 % -(ΔV/Δt) ON ( ΔV/Δt) OFF 50 % 10 % tDON tF tDOFF tON Figure 10 Datasheet tR tOFF t Switching.emf Definition of Power Output Timing for Resistive Load 12 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Power Stage 5.3 Inductive Load 5.3.1 Output Clamping When switching off inductive loads with low side switches, the drain-source voltage VOUT rises above battery potential, because the inductance intends to continue driving the current. To prevent unwanted high voltages the device has a voltage clamping mechanism to keep the voltage at VOUT(CLAMP). During this clamping operation mode the device heats up as it dissipates the energy from the inductance. Therefore the maximum allowed load inductance is limited. See Figure 11 and Figure 12 for more details. VBAT ZL IL OUT (DMOS Drain) VOUT GND ( DMOS Source) IGND Figure 11 Output Clamp Circuitry . VIN t IOUT VOUT t VOUT( CLAMP) VBAT t Figure 12 Datasheet Switching an Inductive Load 13 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Power Stage Note: Repetitive switching of inductive load by VDD instead of using the input is a not recommended operation and may affect the device reliability and reduce the lifetime. 5.3.2 Maximum Load Inductance While demagnetization of inductive loads, energy has to be dissipated in the BTF3050TE. This energy can be calculated by the following equation: V BAT – V OUT(CLAMP) ⎛ RL ⋅ IL ⎞ L - ⋅ ln ⎜1 – --------------------------------------------------- ⎟ + I L ⋅ -----E = V OUT(CLAMP) ⋅ --------------------------------------------------RL V – V R ⎝ BAT L OUT(CLAMP) ⎠ Following equation simplifies under assumption of RL = 0 V BAT ⎞ 2 ⎛ 1 -⎟ E = --- LI L ⋅ ⎜ 1 – --------------------------------------------------2 V BAT – V OUT(CLAMP) ⎠ ⎝ Figure 13 shows the inductance / current combination the BTF3050TE can handle. For maximum single avalanche energy please also refer to EAS value in “Energies” on Page 7 1000000 100000 L [mH] 10000 1000 100 10 1 0,1 1 10 IL [A] Figure 13 Maximum load inductance for single pulse L = f(IL), TJ,start = 150 °C, VBAT = 13.5 V 5.4 Reverse/Inverse Current Capability A reverse battery situation means the OUT pin is pulled below GND potential to -VBAT via the load ZL. In this situation the load is driven by a current through the intrinsic body diode of the BTF3050TE and all protection, such as current limitation, over temperature or over voltage clamping, are inactive. In certain application cases (for example, usage in a bridge or half-bridge configuration) the intrinsic reverse body diode is used for freewheeling of an inductive load. In this case the device is still supplied but an inverse current is flowing from GND to OUT(drain) and the OUT will be pulled below GND. Datasheet 14 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Power Stage In inverse or reverse operation via the reverse body diode, the device is dissipating a power loss which is defined by the driven current and the voltage drop on the body diode -VDS. During inverse current, an increased supply current IDD flowing into VDD needs to be considered . The device might be reset by inverse current. 5.5 Adjustable Swtiching Speed / Slew Rate In order to optimize electromagnetic emission, the switching speed of the MOSFET can be adjusted by connecting an external resistor between SRP pin and GND. This allows for balancing between electromagnetic emissions and power dissipation. Shorting the SRP pin to GND represents the fastest switching speed. Open SRP pin represents the slowest switching speed. It is recommended to put a high ohmic resistor like 200kΩ on this SRP pin to GND. The accuracy of the switching speed adjustment is dependent on the precision of the external resistor used. It’s recommended to use accurate resistors. Figure 14 shows the simplified relation between the resistor value and the switching times. tON, tOFF undefined range (not recommended for operation) Undefined range for fault feedback 0 Figure 14 600 5k 5.8k 58k 70k 160k RSRP [Ω] Typical simplified relation between switching time and RSRP resistor values used on SRP pin (VBAT = 13.5V) It is not recommended to change the slew rate resistance during switching (supplied device, VDD > VDD(UV_ON)). Otherwise undefined switching behavior can occur. Slew Rate in Fault mode (fault signal set): Beside the normal slew rate function the SRP pin is also used as fault feedback output. In case of a latched fault caused by over temperature detection the SRP pin will be internally pulled to VDD. For details please refer to “Functional Description of the SRP Pin” on Page 21. In this operation mode (latched fault signal) the slew rate control by RSRP will be ignored and the switching speed (dynamic characteristics) will be set to fault mode default values . As long as the fault signal is set and the SRP-pin is not shorted to GND a fast default slew rate adjustment (like for RSRP = 5.8kΩ) will be applied to the device. Datasheet 15 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Power Stage If the SRP pin will be externally pulled up above the normal SRP pin voltage VSRP(NOR) (e.g. to VDD) the slowest slew rate settings will be applied. 5.6 Characteristics Please see “Power Stage” on Page 25 for electrical characteristic table. Datasheet 16 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Protection Functions 6 Protection Functions The device provides embedded protection functions. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not to be used for continuous or repetitive operation. Over temperature is indicated by a high-logic active fault signal on the SRP pin. 6.1 Over Voltage Clamping on OUTput The BTF3050TE is equipped with a voltage clamp circuitry that keeps the drain-source voltage VDS at a certain level VOUT(CLAMP). The over voltage clamping is overruling the other protection functions. Power dissipation has to be limited to keep the maximum allowed junction temperature. This function is also used in terms of inductive clamping. Please see also “Output Clamping” on Page 13 for more details. 6.2 Thermal Protection with Latched Fault Signal The device is protected against over temperature due to overload and/or bad cooling conditions by an integrated temperature sensor. The thermal protection is available if the device is active. . The device incorporates an absolute (TJ(SD)) and a dynamic temperature limitation (ΔTJ(SW)). Triggering one of them will cause the output to switch off. The switch off will be done with the fastest possible slew rate. The BTF3050TE has a thermal-restart function. If input (IN) is still high the device will turn on again after the junction temperature has dropped below the thermal hysteresis. In case of detected over temperature the fault signal will be set and the SRP pin will be internally pulled up to VDD. This state is latched independent on the IN signal, providing a stable fault signal to be read out by a micro controller. The latched fault signal needs to be reset by low signal (VSRP < VSRP(RESET)_MIN) at the SRP pin, provided that the junction temperature has decreased at least below the thermal hysteresis in the meantime. To reliably reset the latch the SRP pin needs to be pulled down with a minimum length of tRESET. As long as the fault signal is set and the SRP-pin is not shorted to GND a fast default slew rate adjustment (like for RSRP = 5.8kΩ) will be applied to the device. If the latched fault signal is not reset, the device logic stays active (also if IN = low) not entering the quiescent current mode and therefore reaching upper limits of normal supply current IDD. Please see “Diagnostics” on Page 21 for details on the feedback and reset function. Datasheet 17 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Protection Functions Dynamic thermal shutdown Auto restart IN VIN(H ) Absolute over temperature shutdown Auto restart no overload 0 Tj(DM OS ) Tj(SD ) t ΔTj (SD )_HY ΔTj (SW ) ΔTj(SW) Ta t VSR P V SR P(FAULT) VSR P (R ESET ) VSR P (NOR) ISR P ISPR (FAULT ) t 0 Error Status Latch ; (SRP pulled up internal ) Status Latched also at IN =low Status Latch reset (by external pull down of SRP ) t Thermal _fault _autores tart. emf Figure 15 Thermal protective switch OFF scenario for case of overload or short circuit Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant. 6.3 Overcurrent Limitation / Short Circuit Behavior This device is providing a smart overcurrent limitation which provides protection against short circuit conditions while allowing also load inrush currents higher than the current limitation level. To achieve this the device has a current limitation level IL(LIM) which is triggered by a higher trigger level IL(LIM)_TRIGGER. The condition short circuit is an overload condition to the device. If the load current IL reaches the current limitation trigger level IL(LIM)_TRIGGER the internal current limitation will be activated and the device limits the current to a lower value IL(LIM). The device starts heating up. When the thermal shutdown temperature TJ(SD) is reached, the device turns off. The time from the beginning of current limitation until the over temperature switch off depends strongly on the cooling conditions. If input is still high the device will turn on again after the measured temperature has dropped below the thermal hysteresis. The current limitation trigger is a latched signal. It will be only reset by input (IN) pin low and resetting the fault latch (SRP-pin = low (below reset threshold)) at the same time. This means if the input stays high all the time during short circuit the current will be limited to IL(LIM) the following pulses (during thermal restart). It also means that the output current is limited to the current limitation level IL(LIM) until the current limitation trigger is not reset. Figure 16 shows this behavior. Datasheet 18 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Protection Functions Occurrence of low-ohmic short circuit Reset fault and current limit by Drain current triggering IL (LIM )_T RIGGER -> current limit to IL( LIM ) „fault latch reset by SRP=low(external pulled down)“ and Thermal shut-down (dynamic); setting fault latch „IN=low“ and „DMOS off (ID=0A)“ Thermal restart after thermal shut down ; limited to current limitation level Restart into Restart into short normal load condition circuit Thermal shut-down (over temp.) IN VIN(H) 0 t ID VBAT /Zs c IL(LIM )_TRIGGER IL(LIM) Tj( DM OS) Tj(SD) t ΔTj(SD)_HY ΔTj(SW ) Ta VSRP t V SRP(FAULT ) VSRP (NOR) 0 tRESET t S hort_c ircuit.emf Figure 16 Short circuit protection via current limitation and thermal switch off , with latched fault signal on SRP (valid for RSRP = 5...70 kΩ) Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant. Behavior with overload current below current limitation trigger level The lower current limitation level IL(LIM) will be also triggered by an thermal shutdown. This could be the case in terms of overload with a current still below the overcurrent limitation trigger level (IL < IL(LIM)_TRIGGER). Datasheet 19 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Protection Functions Occurrence of overload (below current limitation trigger level) Thermal shut-down (e.g. dynamic); setting fault latch and current limitation trigger Thermal restart; limited to current limitation level IL (LIM ) Reset fault and current limit by „IN=low“ and „fault latch reset by SRP=low(external pulled down)“ Thermal restart into normal load condition Thermal shut- down(over temp.) IN VIN(H) 0 t ID IL(LIM )_TRIGGER V BAT /Zsc IL(LIM) Tj(DM OS) Tj(SD) ΔTj(SD)_HY ΔTj(SW) VSRP Ta t V SRP(FAULT ) VSRP (NOR) 0 Figure 17 external pull -down (VSR P < V SR P(R ESET ) tRESET t Overload.emf Example of overload behavior with thermal shutdown Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant. 6.4 Characteristics Figure 18 Please see “Protection” on Page 26 for electrical characteristic table. Datasheet 20 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Diagnostics 7 Diagnostics The BTF3050TE provides a latching digital fault feedback signal on the SRP pin triggered by an over temperature shutdown. Additionally the device features an adjustable slew rate via the SRP pin. 7.1 Functional Description of the SRP Pin The BTF3050TE provides digital status information via the combined status and Slew-Rate-Preset pin (SRP). This pin has three modes of operation: Normal operation mode (slew rate mode; low signal) The pin is used to define the switching speed of the BTF3050TE. A resistor to ground defines the strength of the gate driver stage used to switch the power DMOS. The SRP pin works as a controlled low voltage output with a normal voltage up to VSRP(NOR), driving from VDD a current out of the SRP-pin through the slew rate adjustment resistor. For details on this function please refer to “Adjustable Swtiching Speed / Slew Rate” on Page 15. The voltage on the SRP pin in normal operation mode is VSRP(NOR), signaling a low signal to the micro controller. Latched Feedback mode (internal pull-up to VDD; high signal) The pin is used to give an alarming feedback to the micro controller after an over temperature shut down. The SRP pin is pulled to VDD by an active internal pull-up source providing typical a current ISRP(FAULT), intend to signal a logic high to the micro controller. This mode stays active independent from the input pin state or internal restarts until it will be reset (see below). During this mode the slew rate of the device is set to a fast “fault” mode slew rate (similar to the switching times at RSRP = 5.8kΩ.)The latched fault/feedback mode and signal is available at slew rate resistors of 5kΩ < RSRP < 70kΩ. (please see also Figure 21 “Availability of latched fault/feedback mode in dependency of slew rate resistor RSRP” on Page 22) Reset Latch (external pull-down) The pin is used as an input pin to set the device back to normal mode and reset the fault latch. To reset the device the voltage on the SRP pin needs to be forced below the reset threshold VSRP(RESET) by an external pull down (e.g. using the micro controller I/O as pull-down). If the SRP pin will be pulled down below VSRP(RESET) for a minimum time of tRESET the logic resets the feedback latch, provided that its temperature has decreased at least the thermal hysteresis ΔTj(SW)_HYS in the meantime. If INput is pulled down as well the current limitation trigger level will be also reset (enabling high peak currents again). Figure 19 is showing the simplified circuitry used. As long as the latched fault signal is not reset, the device logic stays active (also if IN = low) not entering the quiescent current mode. Datasheet 21 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Diagnostics . V DD V BAT I DD ZL RIN VDD IN I/O Micro controller RIO ISRP I/O IL OUT SRP VOUT GND RSLEWRATE IGND GND Figure 19 SRP.emf Feedback and control of BTF3050TE Alternatively to a bidirectional pin, the micro controller can use a input and a output in parallel to drive the SRP pin. . VDD Fault latch R IO I SRP Slew rate I/O Micro controller R SLEWRATE Gate driver ZD Reset Fault Latch VSRP (RESET ) GND GND Figure 20 SRP_detail.emf Simplified functional block diagram of SRP pin No latched fault feedback Latched fault feedback available undefined 0 600 undefined 5k 70k RSRP [Ω] Figure 21 Availability of latched fault/feedback mode in dependency of slew rate resistor RSRP 7.2 Characteristics Please see “Diagnostics” on Page 27 for electrical characteristic table. Datasheet 22 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Supply and Input Stage 8 Supply and Input Stage 8.1 Supply Circuit The supply pin VDD is protected against ESD pulses as shown in Figure 22. The device supply is not internal regulated but directly taken from a external supply. Therefore a reverse polarity protected and buffered 5V (or 3.3V) voltage supply is required. To achieve a reasonable RDS(ON) and the specified switching speed, a 5V (or 3.3V) supply is required. 3.0V .. 5.5 V VDD Logic & Driver ESD protection GND Supply_Stage.emf Figure 22 Supply Circuit 8.1.1 Undervoltage Shutdown In order to ensure a stable and defined device behavior under all allowed conditions the supply voltage VDD is monitored. The output switches off, if the supply voltage VDD drops below the switch-off threshold VDD(TH). In this case also all latches will be reset. The device functions are only given for supply voltages above the supply voltage threshold VDD(TH). There is no failure feedback ensured for VDD < VDD(TH). 8.2 Input Circuit Figure 23 shows the input circuit of the BTF3050TE. Due to an internal pull-down it is ensured that the device switches off in case of open input pin. A Zener structure protects the input circuit against ESD pulses. As the BTF3050TE has a supply pin, the RDS(ON) of the power MOS is independent of the voltage on the IN pin (assumed VDD is sufficient). Datasheet 23 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Supply and Input Stage RIN Logic IN ON/OFF I IN ESD V uC V IN RIN(GND) GND Input.emf Figure 23 Simplified input circuitry 8.3 Characteristics Please see “Supply and Input Stage” on Page 29 for electrical characteristic table. Datasheet 24 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Electrical Characteristics 9 Electrical Characteristics Note: Characteristics show the deviation of parameter at given input voltage and junction temperature. Typical values show the typical parameters expected from manufacturing and in typical application condition. All voltages and currents naming and polarity in accordance to Figure 3 “Naming Definition of electrical parameters” on Page 6 9.1 Power Stage Please see Chapter “Power Stage” on Page 12 for parameter description and further details. Table 5 Electrical Characteristics: Power Stage TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Note / Test Condition Min. Typ. Max. RDS(ON) – 40 – mΩ – 80 100 mΩ IL(NOM) – 3.0 – A 9.1.3 OFF state load current, Output leakage IL(OFF) current – OFF state load current, Output leakage IL(OFF) current – – 1 μA OFF state load current, Output leakage IL(OFF) current – 1.5 4 μA – 1.0 – V – 0.8 – TJ = 25°C – 0.7 1.0 TJ = 150°C Power Stage - Static Characteristics 9.1.1 On-State resistance 9.1.2 Nominal load current IL = IL(NOM); VDD = 5V; Tj = 25 °C IL = IL(NOM); VDD = 5V; Tj = 150 °C 1) TJ < 150 °C; VDD = 5 V; – 2 μA 2) VOUT = VBAT= 13.5 V; VIN = 0 V; VDD = 5 V; TJ ≤ 85 °C VOUT = VBAT = 13.5 V; VIN = 0 V; VDD = 5 V; TJ = 25 °C VOUT = VBAT; VIN = 0 V; VDD = 5 V; TJ = 150 °C Reverse Diode 9.1.4 Reverse diode forward voltage -VDS TJ = -40°C ID = - IL(NOM); VIN = 0 V ID = - IL(NOM); VIN = 0 V ID = - IL(NOM); VIN = 0 V Datasheet 25 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Electrical Characteristics Table 5 Electrical Characteristics: Power Stage (cont’d) TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Note / Test Condition Min. Typ. Max. Power Stage - Dynamic characteristics - switching time adjustment VBAT = 13.5 V; VDD = 5 V; resistive load: RL = 4.7 Ω;CSRP-GND < 100 pF; see Figure 10 “Definition of Power Output Timing for Resistive Load” on Page 12 for definition details 9.1.5 Turn-on delay time 9.1.6 Turn-off delay time 9.1.7 Turn-on output fall time 9.1.8 Turn-off output rise time 9.1.9 Turn-on Slew rate 9.1.10 Turn-off Slew rate 3) 3) tDON tDOFF tF tR -(ΔV/Δt)ON (ΔV/Δt)OFF 2 4 7.5 μs RSRP = 0 Ω 2.5 5 8.5 μs RSRP = 5.8 kΩ 5 10 15 μs RSRP = 58 kΩ 2 4 7.5 μs RSRP = 0 Ω 2.5 5 8.5 μs RSRP = 5.8 kΩ 10 20 30 μs RSRP = 58 kΩ 0.65 1.3 2.0 μs RSRP = 0 Ω 1 2 3 μs RSRP = 5.8 kΩ 10 20 30 μs RSRP = 58 kΩ 0.65 1.3 2.0 μs RSRP = 0 Ω 1 2 3 μs RSRP = 5.8 kΩ 10 20 30 μs RSRP = 58 kΩ 11 22 33 V/µs RSRP = 0 Ω 7 13 21 V/µs RSRP = 5.8 kΩ 0.7 1.4 2 V/µs RSRP = 58 kΩ 11 22 33 V/µs RSRP = 0 Ω 7 13 21 V/µs RSRP = 5.8 kΩ 0.7 1.4 2 V/µs RSRP = 58 kΩ Power Stage - Dynamic characteristics - Failure mode (latched fault signal set) 4); 5) VBAT = 13.5V; VDD = 5V; resistive load: RL = 4.7 Ω;latched fault set; see Figure 10 “Definition of Power Output Timing for Resistive Load” on Page 12 for definition details; please refer to the Power Stage - Dynamic characteristics - switching time adjustment at RSRP = 5.8 kΩ (see above) 1) Not subject to production test, calculated by RthJA and RDS(ON). 2) 3) 4) 5) Not subject to production test, specified by design; tested at 25°C Not subject to production test, calculated slew rate between 90% and 50%; ΔV/Δt = (VOUT(90%) - VOUT(50%)) / |(t90% - t50%)| Not subject to production test, specified by design. In case of over temperature switch-off the fast slew rate like RSRP = 5.8 kΩ will be applied. 9.2 Protection Please see Chapter “Protection Functions” on Page 17 for parameter description and further details. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation Datasheet 26 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Electrical Characteristics Table 6 Electrical characteristics: Protection TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Thermal shut down Symbol Limit Values Min. Typ. Max. Unit Note / Test Condition 1) 9.2.1 Thermal shut down junction temperature TJ(SD) 150 175 200 °C 1) 9.2.2 Thermal hysteresis ΔTJ(SD)_HYS – 15 – K 1) 9.2.3 Dynamic temperature limitation ΔTJ(SW) – 70 – K 1) VOUT(CLAMP) 40 – – V VIN = 0 V; ID = 10 mA; VDD = 5V VIN = 5 V; VDD = 5V; VDS = VBAT VIN = 5 V; VDD = 5V; Over Voltage Protection / Clamping 9.2.4 Drain clamp voltage Current limitation 9.2.5 Current limitation trigger level IL(LIM)_TRIGGER 30 45 60 A 9.2.6 Current limitation level IL(LIM) 15 20 A 8 settled value; VDS = VBAT 1) Not subject to production test, specified by design. 9.3 Diagnostics Please see Chapter “Diagnostics” on Page 21 for description and further details. Table 7 Electrical Characteristics: Diagnostics TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Note / Test Condition Min. Typ. Max. Feedback pin 9.3.1 allowed SRP pin voltage operation range VSRP -0.3 – 5.5 V VSRP < VDD 9.3.2 SRP voltage in normal operation during slew rate adjustment mode VSRP(NOR) – 0.6 0.8 V – 9.3.3 SRP voltage in fault feedback mode (latched) VSRP(FAULT) 0.7 – 1 xVDD RSRP > 5 kΩ; 9.3.4 SRP pull-up current in fault feedback mode ISRP(FAULT) see also 9.3.4 fault feedback latched – 1.8 – mA VDD = 5 V; VBAT > 13.5 V internal limited 9.3.5 Slew rate resistor range for normal operation, latched fault feedback available Datasheet RSRP(NOR) 5 – 70 kΩ 1) latched fault available 27 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Electrical Characteristics Table 7 Electrical Characteristics: Diagnostics (cont’d) TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Note / Test Condition Ω 1) Min. Typ. Max. 9.3.6 Slew rate resistor range for extended operation, no latched fault feedback available RSRP(EXT) 9.3.7 Fault feedback reset threshold VSRP(RESET) 9.3.8 Fault feedback reset time tRESET 0 – 600 no latched fault available – 100 1.8 – – – V – µs 1) VSRP < VSRP(RESET); no over temperature 1) Not subject to production test, specified by design. Datasheet 28 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Electrical Characteristics 9.4 Supply and Input Stage Please see Chapter “Supply and Input Stage” on Page 23 for description and further details. Table 8 Electrical Characteristics: Supply and Input TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Note / Test Condition Min. Typ. Max. VDD(NOM) VDD(TH) 3.0 5.0 5.5 V – 1.3 1.7 3.0 V VIN = 5.0 V IDD(ON) – 2.5 4 mA device on-state VDD = 5.0 V RSRP = 0 Ω IL(0) = IL(NOM) Supply 9.4.1 Nominal supply voltage 9.4.2 Supply Undervoltage Shutdown Switch-on/off threshold voltage 9.4.3 Supply current, continuos ON operation no fault signal DC condition, VDD = 5.0 V 9.4.4 Supply current, continuos on operation with latched fault signal IDD(FAULT) 9.4.5 Supply current, inverse condition on OUT to GND IDD(-VOUT) – 33 – mA 1) 9.4.6 Standby supply current IDD(OFF) – 1.5 6 µA VIN = 0 V VDD = 5.0 V RSRP = 0 Ω Tj < 85 °C – 4.5 6 mA with fault signal ; VOUT < -0.3 V; no fault signal 9.4.7 Standby supply current, maximum at 150°C IDD(OFF)_150 – 6 14 µA VIN = 0 V VDD = 5.0 V RSRP = 0 Ω Tj = 150 °C no fault signal Input 9.4.8 Low level input voltage VIN(L) -0.3 – 0.8 V – 9.4.9 High level input voltage VIN(H) 2.0 – VDD V – 9.4.10 Input voltage hysteresis VIN(HYS) – 200 – mV – 9.4.11 Input pull down current IIN – – 160 µA 2.7V < VIN < 5.5V -0.3V < VDD < 5.5V 9.4.12 Internal Input pull down resistor RIN(GND) 25 50 100 kΩ – 1) Not subject to production test, specified by design. Datasheet 29 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 10 Characterisation Results Typical performance characteristics 10.1 Power Stage 160,00 140,00 120,00 RDS(ON) [mΩ] 100,00 80,00 150°C 60,00 85°C 40,00 25°C -40°C 20,00 0,00 2,00 2,50 3,00 3,50 4,00 4,50 5,00 5,50 6,00 VDD [V] Figure 24 Typical RDS(ON) vs. VDD @ IL=3A 1,6E-06 18V 1,4E-06 13.5V 1,2E-06 IL(OFF) [A] 1,0E-06 8,0E-07 6,0E-07 4,0E-07 2,0E-07 0,0E+00 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Tj [°C] Figure 25 Datasheet Typical IL(OFF) vs. Tj @ VIN = 0V, VBAT = 13.5V and 18V 30 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 10 EAS [J] 1 0,1 0,01 1 10 IL [A] Figure 26 Datasheet Maximum EAS vs. IL @ Tj(0)=150°C, VBAT=13.5V 31 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 10.2 Dynamic charactersitics: 30 delay ON, SRP 58 kOhm delay OFF, SRP 58 kOhm fall time, SRP 58 kOhm rise time, SRP 58 kOhm delay ON, SRP 5.8 kOhm delay OFF, 5.8 kOhm fall time, SRP 5.8 kOhm rise time, SRP 5.8 kOhm 25 time [us] 20 15 10 5 0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Tj [C] Figure 27 Typical fall time, rise time, delay on time, delay off time vs. Tj (-40..150°C) @ RSRP=5.8kΩ and 58kΩ) VDD=5V, VBAT=13.5, VIN=5V 18 Slew rate ON, SRP 58 kOhm Slew rate OFF, SRP 58 kOhm Slew rate ON, SRP 5.8 kOhm Slew rate OFF, 5.8 kOhm 16 14 Slew rate [V/us] 12 10 8 6 4 2 0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Tj [C] Figure 28 Datasheet Typical slew rate vs. Tj (-40..150°C) @ RSRP=5.8kΩ and 58kΩ 32 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 15 13 delay ON, -40°C, SRP 5.8 kOhm delay ON, 25°C, SRP 5.8 kOhm delay ON, 150°C, SRP 5.8 kOhm delay OFF, -40°C, SRP 5.8 kOhm delay OFF, 25°C, SRP 5.8 kOhm delay OFF, 150°C, SRP 5.8 kOhm 11 time [us] 9 7 5 3 1 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 -1 IL [A] Figure 29 Typical delay on time, delay off time vs. IL @ Tj (-40..150°C) RSRP=5.8kΩ 5 fall time, -40°C, SRP 5.8 kOhm fall time, 25°C, SRP 5.8 kOhm fall time, 150°C, SRP 5.8 kOhm rise time, -40°C, SRP 5.8 kOhm rise time, 25°C, SRP 5.8 kOhm rise time, 150°C, SRP 5.8 kOhm 4 time [us] 3 2 1 0 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 IL [A] Figure 30 Datasheet Typical fall time, rise time vs. IL @ Tj (-40..150°C) RSRP=5.8kΩ 33 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 25 slew rate ON, -40°C, SRP 5.8 kOhm slew rate ON, 25°C, SRP 5.8 kOhm slew rate ON, 150°C, SRP 5.8 kOhm slew rate OFF, -40°C, SRP 5.8 kOhm slew rate OFF, 25°C, SRP 5.8 kOhm slew rate OFF, 150°C, SRP 5.8 kOhm 20 Slew rate [V/us] 15 10 5 0 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 IL [A] Figure 31 Typical slew rate vs. IL @ Tj (-40..150°C) RSRP=5.8kΩ 35 delay ON, -40°C, SRP 58 kOhm delay ON, 25°C, SRP 58 kOhm delay ON, 150°C, SRP 58 kOhm delay OFF, -40°C, SRP 58 kOhm delay OFF, 25°C, SRP 58 kOhm delay OFF, 150°C, SRP 58 kOhm 30 time [us] 25 20 15 10 5 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 IL [A] Figure 32 Datasheet Typical delay on time, delay off time vs. IL @ Tj (-40..150°C) RSRP=58kΩ 34 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 40 fall time, -40°C, SRP 58 kOhm fall time, 25°C, SRP 58 kOhm fall time, 150°C, SRP 58 kOhm rise time, -40°C, SRP 58 kOhm rise time, 25°C, SRP 58 kOhm rise time, 150°C, SRP 58 kOhm time [us] 30 20 10 0 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 IL [A] Figure 33 Typical rise time, fall time vs. IL @ Tj (-40..150°C) RSRP=58kΩ 3 slew rate ON, -40°C, SRP 58 kOhm slew rate ON, 25°C, SRP 58 kOhm slew rate ON, 150°C, SRP 58 kOhm slew rate OFF, -40°C, SRP 58 kOhm slew rate OFF, 25°C, SRP 58 kOhm slew rate OFF, 150°C, SRP 58 kOhm 2,5 Slew rate [V/us] 2 1,5 1 0,5 0 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 IL [A] Figure 34 Datasheet Typical slew rate vs. IL @ Tj (-40..150°C) RSRP=58kΩ 35 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results delay ON, -40°C delay ON, 25°C delay ON, 150°C delay OFF, -40°C delay OFF, 25°C delay OFF, 150°C 40 35 Time [us] 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 VBAT [V] Figure 35 Typical delay on time, delay off time vs. VBAT @ Tj (-40..150°C), IL=I(NOM), RSRP=58kΩ fall time, -40°C fall time, 25°C fall time, 150°C rise time, -40°C rise time, 25°C rise time, 150°C 40 35 30 Time [us] 25 20 15 10 5 0 0 5 10 15 20 25 30 35 40 VBAT [V] Figure 36 Datasheet Typical rise time, fall time vs. VBAT @ Tj (-40..150°C), IL=I(NOM), RSRP=58kΩ 36 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results slew rate ON, -40°C slew rate ON, 25°C slew rate ON, 150°C slew rate OFF, -40°C slew rate OFF, 25°C slew rate OFF, 150°C 5,0 4,5 4,0 Slew rate [V/us] 3,5 3,0 2,5 2,0 1,5 1,0 0,5 0,0 0 5 10 15 20 25 30 35 40 VBAT [V] Figure 37 Typical slew rate vs. VBAT @ Tj (-40..150°C), IL=I(NOM), RSRP=58kΩ delay ON, -40°C delay OFF, -40°C delay ON, 25°C delay OFF, 25°C delay ON, 150°C delay OFF, 150°C 25 Time [us] 20 15 10 5 0 3 3,5 4 4,5 5 5,5 VDD [V] Figure 38 Datasheet Typical delay on time, delay off time vs. VDD @ Tj (-40..150°C), RL=4.5 Ω, RSRP=58kΩ 37 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results fall time, -40°C rise, -40°C fall, 25°C rise, 25°C fall, 150°C rise, 150°C 40 35 Time [us] 30 25 20 15 10 5 0 3 3,5 4 4,5 5 5,5 VDD [V] Figure 39 Datasheet Typical rise time, fall time vs. VDD @ Tj (-40..150°C), RL=4.5 Ω, RSRP=58kΩ 38 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 10.3 Protection 190 Tj(SD) [°C] 180 170 160 150 3 4 5 6 5 6 VDD[V] Figure 40 Typical Tj(SD) vs VDD @ IL=10mA 20 Tj(SD)_HY [°C] 15 10 5 0 3 4 VDD[V] Figure 41 Datasheet Typical Tj(SD)_HYS vs VDD @ IL=10mA 39 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 60 10 mA 1 mA 55 VOUT(CLAMP) [V] 50 45 40 35 30 -50 0 50 100 150 Tj [C] Figure 42 Typical VOUT(CLAMP) vs Tj 20 18 VDD = 6V 16 IL(LIM) [A] VDD = 5.5V VDD = 5V 14 VDD = 4V 12 10 -40 -20 0 20 40 60 80 100 120 Tj [C] Figure 43 Datasheet Typical IL(LIM) vs Tj @ VDD=4...6V 40 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 20 IL(LIM) [A] 18 16 14 12 10 3 3,5 4 4,5 5 5,5 VDD [V] Figure 44 Typical IL(LIM) vs.VDD @ Tj=25°C 80 70 ID(lLIM)_TRIGGER [A] 60 -40°C 50 25°C 40 150°C 30 20 10 0 0 2 4 6 8 10 L [uH] Figure 45 Datasheet Typical IL(LIM)_TRIGGER vs. L @ Tj = (-40, 25, 150°C) 41 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 10.4 Supply and Input Stage 5 VDD(TH) [V] 4 3 fall 2 rise 1 0 -40 0 40 80 120 160 Tj [C] Figure 46 Typical VDD(TH) vs Tj @ RL=4.5Ω 1,00 0,80 IDD [mA] 0,60 150°C 25°C 0,40 -40°C 0,20 0,00 0 1 2 3 4 5 6 VDD [V] Figure 47 Datasheet Typical IDD(ON) vs. VDD @ Tj = (-40, 25, 150°C), VIN=5V 42 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 14 Vdd=6V 12 Vdd=5.5V IDD(OFF) [uA] 10 8 Vdd=5V 6 Vdd=4V 4 2 Vdd=3V 0 -40 0 40 80 120 160 Tj [°C] Figure 48 Typical IDD(OFF) vs. Tj @ VDD = 3, 4, 5V, RRSP=0Ω 150 150°C 25°C -40°C 120 IIN [uA] 90 60 30 0 0 1 2 3 4 5 6 VIN [V] Figure 49 Datasheet Typical IIN vs. VIN @ Tj = (-40, 25, 150°C) 43 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Characterisation Results 50 RIN(GND) [K:] 48 46 44 42 40 -40 0 40 80 120 160 Tj [°C] Figure 50 Typical RIN(GND) vs. Tj 3,0 Vdd=5V, (H) 2,5 VIN [V] Threshold Vdd=4V, (H) 2,0 Vdd=3V, (H) 1,5 Vdd=5V, (L) 1,0 Vdd=4V, (L) 0,5 Vdd=3V, (L) 0,0 -40 0 40 80 120 160 Tj [°C] Figure 51 Datasheet Typical VIN(TH) vs. Tj @ VDD = 3V, 4V, 5V 44 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. Application Diagram An application example with the BTF3050TE is shown below. VBAT Voltage Regulator IN Load OUT Micro controller VDD optional: e.g. 100nF VDD OUT RX IN I/O PWM I/O Status/ Reset GND RuC-SRP < 470R SRP * * Figure 52 GND RSRP Consider design recomendations for parasitic CSRP-GND Simplified application diagram Note: This is a very simplified example of an application circuit. The function must be verified in the real application. 11.1 Design and Layout Recommendations/Considerations As consequence of the fast switching times for high currents, special care has to be taken to the PCB layout. Stray inductances have to be minimized. The BTF3050TE has no separate pin for power ground and logic ground. Therefore it is recommended to assure that the offset between the ground connection of the slew rate resistor and ground pin of the device (GND/SOURCE) is minimized. The resistor RSRP should be placed near to the device and directly connected to the GND pin of the device to avoid any influence of GND shift to the functionality of the SRP pin. In order to avoid influence on SRP functionality (e.g. switching times) the maximum parasitic capacitance between the SRP line and GND (CSRP-GND) has to be less than 100pF. It is strongly recommended to not let the SRP pin floating. A maximum resistor of 200 kohm to GND is recommended. Datasheet 45 Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Package Outlines BTF3050TE 12 Package Outlines BTF3050TE PG-TO252-5 (Transistor Outline Package) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Datasheet 46 Dimensions in mm Rev. 1.1, 2018-08-28 HITFET - BTF3050TE Smart Low-Side Power Switch Revision History 13 Revision History Revision Date Changes Rev. 1.1 2018-08-28 Figure 24. Typo corrected on “x” axis. RDS(ON) VS VDD Figure 25 and 26 duplicated. Figure 26 deleted Figure 49. remove 85°C from conditions Package Outlines corrected according to PG-TO252-5-11 dimensions Added Ω symbol for RSRP and RL unit in characterisation chapter Update front cover and back cover page templates Rev. 1.0 2014-07-21 Datasheet released Datasheet 47 Rev. 1.1, 2018-08-28 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-08-28 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
BTF3050TEATMA1 价格&库存

很抱歉,暂时无法提供与“BTF3050TEATMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BTF3050TEATMA1
  •  国内价格
  • 2500+5.52975
  • 5000+5.38812
  • 7500+5.32043

库存:9330

BTF3050TEATMA1
  •  国内价格
  • 10+9.47347
  • 20+9.30268
  • 100+9.13502
  • 250+8.97048
  • 500+8.81011

库存:9330