0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF7737L2TRPBF

IRF7737L2TRPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    DirectFET™L6

  • 描述:

    MOSFET N-CH 40V 31A DIRECTFET

  • 数据手册
  • 价格&库存
IRF7737L2TRPBF 数据手册
PD - 96414 IRF7737L2TRPbF IRF7737L2TR1PbF DirectFET® Power MOSFET ‚ V(BR)DSS 40V RDS(on) typ. 1.5mΩ max. 1.9mΩ ID (Silicon Limited) 156A Qg 89nC • Advanced Process Technology • Optimized for Industrial Motor Drive, DC-DC and other Heavy Load Applications Exceptionally Small Footprint and Low Profile High Power Density Low Parasitic Parameters Dual Sided Cooling Repetitive Avalanche Capability for Robustness and Reliability • Lead Free, RoHS Compliant and Halogen Free • • • • • D SC M2 S S S S S D DirectFET® ISOMETRIC L6 Applicable DirectFET® Outline and Substrate Outline  SB G S M4 L4 L6 L8 Description The IRF7737L2PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging technology to achieve exceptional performance in a package that has the footprint of a DPak (TO-252AA) and only 0.7 mm profile. The DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual sided cooling to maximize thermal transfer. This HEXFET® Power MOSFET is designed for applications where efficiency and power density are of value. The advanced DirectFET® packaging platform coupled with the latest silicon technology allows the IRF7737L2PbF to offer substantial system level savings and performance improvement specifically in motor drive, high frequency DC-DC and other heavy load applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance and low Qg per silicon area. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for high current applications. Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. Max. Parameter VDS VGS ID @ TC = 25°C ID @ TC = 100°C ID @ TA = 25°C ID @ TC = 25°C IDM PD @TC = 25°C PD @TA = 25°C EAS EAS (tested) IAR EAR TP TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Power Dissipation Power Dissipation Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Peak Soldering Temperature Operating Junction and Storage Temperature Range f f e f e g h g g Units 40 ± 20 156 110 31 315 624 83 3.3 104 386 h V A W mJ See Fig.18a, 18b, 16, 17 270 -55 to + 175 A mJ °C Thermal Resistance Parameter Typ. Max. Units Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Can Junction-to-PCB Mounted Linear Derating Factor HEXFET® is a registered trademark of International Rectifier. ––– 12.5 20 ––– ––– 45 ––– ––– 1.8 0.5 °C/W RθJA RθJA RθJA RθJCan RθJ-PCB www.irf.com fl e j k f 0.56 W/°C 1 10/27/11 IRF7737L2TR/TR1PbF Static Characteristics @ TJ = 25°C (unless otherwise stated) Parameter V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage ΔVGS(th)/ΔTJ Gate Threshold Voltage Coefficient gfs RG IDSS Forward Transconductance Gate Resistance Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. 40 ––– ––– 0.03 ––– ––– ––– 2.0 ––– 100 ––– ––– ––– ––– ––– 1.5 3.0 -10 ––– 0.6 ––– ––– ––– ––– 1.9 4.0 ––– ––– ––– 5 250 100 -100 Units Conditions V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 94A V VDS = VGS, ID = 150μA mV/°C VDS = 10V, ID = 94A S i Ω μA nA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V Dynamic Characteristics @ TJ = 25°C (unless otherwise stated) Parameter Qg Total Gate Charge Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 89 18 8 34 29 42 39 12 19 22 14 5469 1193 534 4296 1066 1615 134 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Units Conditions VDS = 20V, VGS = 10V ID = 94A nC nC ns See Fig.11 VDS = 16V, VGS = 0V VDD = 20V, VGS = 10V ID = 94A RG = 1.8Ω i VGS = 0V VDS = 25V pF ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz VGS = 0V, VDS = 32V, f=1.0MHz VGS = 0V, VDS = 0V to 32V Diode Characteristics @ TJ = 25°C (unless otherwise stated) IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge g ƒ Surface mounted on 1 in. square Cu (still air). Min. Typ. Max. ––– ––– 156 ––– ––– 624 ––– ––– ––– ––– 35 32 1.3 53 48 ‰ Mounted to a PCB with small clip heatsink (still air) Units A V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. IS = 94A, VGS = 0V IF = 94A, VDD = 20V di/dt = 100A/μs i D G S i ‰ Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) Notes  through Š are on page 10 2 www.irf.com IRF7737L2TR/TR1PbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 1 4.5V 100 BOTTOM 4.5V 10 ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 25°C Tj = 175°C 1 0.1 0.1 1 10 0.1 100 6 ID = 94A 4 3 T J = 125°C 2 1 T J = 25°C 0 4 6 8 10 12 14 16 10 100 Fig 2. Typical Output Characteristics RDS(on), Drain-to -Source On Resistance ( mΩ) RDS(on), Drain-to -Source On Resistance (m Ω) Fig 1. Typical Output Characteristics 5 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 18 2.8 2.5 TJ = 125°C 2.2 1.9 1.6 TJ = 25°C 1.3 Vgs = 10V 1.0 20 5 30 55 80 105 130 155 180 205 ID, Drain Current (A) VGS, Gate -to -Source Voltage (V) Fig 4. Typical On-Resistance vs. Drain Current Fig 3. Typical On-Resistance vs. Gate Voltage 1000 2.0 VDS = 25V ≤60μs PULSE WIDTH RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 T J = -40°C TJ = 25°C TJ = 175°C 10 1 1.8 ID = 94A VGS = 10V 1.6 1.4 1.2 1.0 0.8 0.6 3 4 5 6 7 VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 8 -60 -40 -20 0 20 40 60 80 100120140160180 TJ , Junction Temperature (°C) Fig 6. Normalized On-Resistance vs. Temperature 3 IRF7737L2TR/TR1PbF 1000 ISD, Reverse Drain Current (A) VGS(th) , Gate threshold Voltage (V) 5.5 4.5 3.5 ID = 1.0A ID = 1.0mA ID = 250μA ID = 150μA 2.5 T J = -40°C TJ = 25°C TJ = 175°C 100 10 VGS = 0V 1.0 1.5 -75 -50 -25 0 0.2 25 50 75 100 125 150 175 Fig 7. Typical Threshold Voltage vs. Junction Temperature 300 0.8 1.0 1.2 Fig 8. Typical Source-Drain Diode Forward Voltage 100000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 250 T J = 25°C C oss = C ds + C gd C, Capacitance (pF) Gfs, Forward Transconductance (S) 0.6 VSD, Source-to-Drain Voltage (V) T J , Temperature ( °C ) 200 150 T J = 175°C 100 10000 Ciss Coss 1000 Crss V DS = 10V 50 380μs PULSE WIDTH 0 100 0 20 40 60 80 100 120 140 160 1 ID,Drain-to-Source Current (A) 12 160 VDS= 32V VDS= 20V VDS= 8V 140 ID, Drain Current (A) 10 100 Fig 10. Typical Capacitance vs.Drain-to-Source Voltage 14 ID= 94A 10 VDS, Drain-to-Source Voltage (V) Fig 9. Typical Forward Transconductance Vs. Drain Current VGS, Gate-to-Source Voltage (V) 0.4 8 6 4 2 120 100 80 60 40 20 0 0 0 25 50 75 100 125 25 50 75 100 125 150 175 QG, Total Gate Charge (nC) T C , Case Temperature (°C) Fig.11 Typical Gate Charge vs.Gate-to-Source Voltage Fig 12. Maximum Drain Current vs. Case Temperature 4 www.irf.com IRF7737L2TR/TR1PbF 450 EAS , Single Pulse Avalanche Energy (mJ) ID, Drain-to-Source Current (A) 10000 OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 100μsec 100 1msec 10msec 10 DC Tc = 25°C Tj = 175°C Single Pulse 1 0.10 1 10 ID 13A 24A BOTTOM 94A 400 TOP 350 300 250 200 150 100 50 0 100 25 VDS, Drain-to-Source Voltage (V) 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 13. Maximum Safe Operating Area Fig 14. Maximum Avalanche Energy vs. Temperature Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.1 0.02 0.01 0.05 τJ 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri 0.0001 τ3 τ3 τ4 τ4 0.00501 τ 0.93035 τi (sec) 18.81575 0.022853 0.17759 0.000126 0.68769 0.00313 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 16. Typical Avalanche Current Vs.Pulsewidth www.irf.com 5 IRF7737L2TR/TR1PbF EAR , Avalanche Energy (mJ) 120 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 94A 100 80 60 40 20 0 25 50 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 16, 17). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 15) Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 17. Maximum Avalanche Energy Vs. Temperature V(BR)DSS 15V tp DRIVER L VDS D.U.T RG VGS 20V + - VDD IAS tp A 0.01Ω I AS Fig 18a. Unclamped Inductive Test Circuit Fig 18b. Unclamped Inductive Waveforms Id Vds L VCC DUT 0 20K 1K Vgs S Vgs(th) Fig 19a. Gate Charge Test Circuit V DS V GS RG Qgodr RD Qgd Qgs2 Qgs1 Fig 19b. Gate Charge Waveform D.U.T. VDS + - V DD 90% 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) Fig 20a. Switching Time Test Circuit 6 tr t d(off) tf Fig 20b. Switching Time Waveforms www.irf.com IRF7737L2TR/TR1PbF DirectFET® Board Footprint, L6 (Large Size Can). Please see AN-1035 for DirectFET® assembly details and stencil and substrate design recommendations G = GATE D = DRAIN S = SOURCE D D S D www.irf.com S G D S D S S S D 7 IRF7737L2TR/TR1PbF DirectFET™ Outline Dimension, L6 Outline (LargeSize Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS CODE A B C D E F G H J K L L1 L2 M P R METRIC MIN MAX 9.05 9.15 6.85 7.10 5.90 6.00 0.55 0.65 0.58 0.62 1.18 1.22 0.98 1.02 0.73 0.77 0.38 0.42 1.35 1.45 2.55 2.65 3.95 4.05 5.35 5.45 0.68 0.74 0.09 0.17 0.02 0.08 IMPERIAL MIN MAX 0.356 0.360 0.270 0.280 0.232 0.236 0.022 0.026 0.023 0.024 0.046 0.048 0.039 0.040 0.029 0.030 0.015 0.017 0.053 0.057 0.100 0.104 0.155 0.159 0.210 0.214 0.027 0.029 0.003 0.007 0.001 0.003 DirectFET™ Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRF7737L2TR/TR1PbF DirectFET® Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. (ordered as IRF7737L2TR). For 1000 parts on 7" reel, order IRF7737L2TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4000) TR1 OPTION IMPERIAL METRIC METRIC CODE MIN MIN MAX MAX MIN MAX 12.992 A 330.00 N.C N.C 177.80 N.C B 0.795 20.20 20.20 N.C N.C N.C C 0.504 12.80 0.520 12.98 13.20 13.50 D 0.059 1.50 N.C 1.50 N.C 2.50 E 3.900 99.00 3.940 62.48 100.00 N.C F N.C N.C N.C 22.40 0.880 N.C G 0.650 N.C 16.40 0.720 18.40 N.C H 0.630 16.00 15.90 0.760 19.40 N.C (QTY 1000) IMPERIAL MIN MAX 7.000 N.C 0.795 N.C 0.331 0.50 0.059 N.C 2.460 N.C N.C 0.53 N.C N.C 0.630 N.C LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 4.69 11.90 0.476 12.10 0.154 3.90 0.161 4.10 0.623 0.642 15.90 16.30 0.291 0.299 7.40 7.60 0.283 7.20 0.291 7.40 0.390 9.90 0.398 10.10 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRF7737L2TR/TR1PbF Part number Package Type IRF7737L2TRPbF IRF7737L2TR1PbF DirectFET2 Large Can DirectFET2 Large Can Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 1000 Note "TR" suffix "TR1" suffix † Qualification Information Industrial Qualification level †† (per JEDEC JESD47F††† guidelines) Comments: This family of products has passed JEDEC’s Industrial qualification. IR’s Consumer qualification level is granted by extension of the higher Industrial level. Moisture Sensitivity Level MSL1 DFET2 (per JEDEC J-STD-020D†††) Yes RoHS Compliant † †† ††† Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes:  Click on this section to link to the appropriate technical paper. ‚ Click on this section to link to the DirectFET® Website. ƒ Surface mounted on 1 in. square Cu board, steady state. „ TC measured with thermocouple mounted to top (Drain) of part. … Repetitive rating; pulse width limited by max. junction temperature. † Starting TJ = 25°C, L = 0.024mH, RG = 50Ω, IAS = 94A. ‡ Pulse width ≤ 400μs; duty cycle ≤ 2%. ˆ Used double sided cooling, mounting pad with large heatsink. ‰ Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Š Rθ is measured at TJ of approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd. , El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2011 10 www.irf.com
IRF7737L2TRPBF 价格&库存

很抱歉,暂时无法提供与“IRF7737L2TRPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货