0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFS3307ZPBF

IRFS3307ZPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT404

  • 描述:

    MOSFET N-CH 75V 120A D2PAK

  • 数据手册
  • 价格&库存
IRFS3307ZPBF 数据手册
PD - 97214D IRFB3307ZPbF IRFS3307ZPbF IRFSL3307ZPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) D G Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability S D 75V 4.6mΩ 5.8mΩ 128A 120A c D D G D S S G G D2Pak IRFS3307ZPbF TO-220AB IRFB3307ZPbF D S TO-262 IRFSL3307ZPbF G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) VGS d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw f dv/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy d Units c c 128 90 120 512 230 1.5 ± 20 6.7 -55 to + 175 A W W/°C V V/ns °C 300 x x 10lbf in (1.1N m) e 140 See Fig. 14, 15, 22a, 22b g mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA RθJA www.irf.com Parameter k Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 k Junction-to-Ambient (PCB Mount) , D2Pak jk Typ. Max. ––– 0.50 ––– ––– 0.65 ––– 62 40 Units °C/W 1 08/19/11 IRFB/S/SL3307ZPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage RG(int) IDSS Internal Gate Resistance Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 75 ––– ––– 2.0 ––– 0.094 4.6 ––– ––– ––– 5.8 4.0 ––– 0.70 ––– ––– ––– ––– ––– 20 250 100 -100 ––– ––– ––– ––– Conditions V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 75A V VDS = VGS, ID = 150μA g d Ω μA nA VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i 320 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 79 19 24 55 15 64 38 65 4750 420 190 440 410 ––– 110 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 50V, ID = 75A ID = 75A VDS = 38V VGS = 10V ID = 75A, VDS =0V, VGS = 10V VDD = 49V ID = 75A RG = 2.6Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 60V VGS = 0V, VDS = 0V to 60V g ns pF g j h Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM di Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.050mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. 2 Min. Typ. Max. Units ––– ––– 128 ––– ––– c 512 A Conditions MOSFET symbol showing the integral reverse D G S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V VR = 64V, ––– 33 50 ns TJ = 25°C TJ = 125°C IF = 75A ––– 39 59 di/dt = 100A/μs ––– 42 63 nC TJ = 25°C TJ = 125°C ––– 56 84 ––– 2.2 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g g „ ISD ≤ 75A, di/dt ≤ 1570A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400μs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. ‰ Rθ is measured at TJ approximately 90°C. www.irf.com IRFB/S/SL3307ZPbF 1000 1000 100 BOTTOM VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 100 4.5V 10 BOTTOM 4.5V 10 ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 175°C Tj = 25°C 1 1 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 100 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics 1000 100 T J = 175°C T J = 25°C 10 1 VDS = 25V ≤60μs PULSE WIDTH 0.1 ID = 72A VGS = 10V 2.0 1.5 1.0 0.5 2 3 4 5 6 7 8 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 72A C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 10000 Ciss Coss 1000 Crss 10.0 VDS= 60V VDS= 38V VDS= 15V 8.0 6.0 4.0 2.0 0.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 10 20 30 40 50 60 70 80 90 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFB/S/SL3307ZPbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 100 T J = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100μsec 100 1msec 10msec 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 1 2.0 ID, Drain Current (A) 120 100 80 Limited By Package 40 20 0 50 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 140 25 100 Id = 5mA 95 90 85 80 75 70 65 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 10. Drain-to-Source Breakdown Voltage Fig 9. Maximum Drain Current vs. Case Temperature 1.2 EAS , Single Pulse Avalanche Energy (mJ) 600 1.0 Energy (μJ) 0.8 0.6 0.4 0.2 0.0 ID 15A 26A BOTTOM 75A TOP 500 400 300 200 100 0 20 30 40 50 60 70 80 VDS, Drain-to-Source Voltage (V) 4 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 60 10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 11. Typical COSS Stored Energy 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFB/S/SL3307ZPbF Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ τ3 0.2313 Ci= τi/Ri Ci i/Ri 1E-005 0.009191 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Ri (°C/W) τi (sec) 0.1164 0.000088 0.3009 0.001312 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Δ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 0.01 Duty Cycle = Single Pulse 0.05 10 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 150 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 75A 125 100 75 50 25 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB/S/SL3307ZPbF 20 IF = 48A V R = 64V 4.0 3.0 2.5 ID = 150μA ID = 250μA ID = 1.0mA ID = 1.0A 2.0 1.5 1.0 10 5 0 0.5 -75 -50 -25 0 0 25 50 75 100 125 150 175 200 200 400 600 800 1000 T J , Temperature ( °C ) diF /dt (A/μs) Fig 16. Threshold Voltage vs. Temperature Fig. 17 - Typical Recovery Current vs. dif/dt 20 420 IF = 72A V R = 64V IF = 48A V R = 64V 340 TJ = 25°C TJ = 125°C QRR (A) 15 IRR (A) TJ = 25°C TJ = 125°C 15 3.5 IRR (A) VGS(th), Gate threshold Voltage (V) 4.5 10 5 TJ = 25°C TJ = 125°C 260 180 100 0 20 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 420 IF = 72A V R = 64V QRR (A) 340 TJ = 25°C TJ = 125°C 260 180 100 20 0 200 400 600 800 1000 diF /dt (A/μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB/S/SL3307ZPbF D.U.T Driver Gate Drive ƒ - ‚ „ - - * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 21a. Unclamped Inductive Test Circuit LD Fig 21b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1μs Duty Factor < 0.1% td(on) Fig 22a. Switching Time Test Circuit tr td(off) tf Fig 22b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 23a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 23b. Gate Charge Waveform 7 IRFB/S/SL3307ZPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/
IRFS3307ZPBF 价格&库存

很抱歉,暂时无法提供与“IRFS3307ZPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货