0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGPH40F

IRGPH40F

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO247

  • 描述:

    IGBTFAST1200V29ATO-247AC

  • 数据手册
  • 价格&库存
IRGPH40F 数据手册
PD - 9.764 IRGPH40F INSULATED GATE BIPOLAR TRANSISTOR Features Fast Speed IGBT C • Switching-loss rating includes all "tail" losses • Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve VCES = 1200V VCE(sat) ≤ 3.3V G @VGE = 15V, I C = 17A E n-channel Description Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications. TO-247AC Absolute Maximum Ratings Parameter VCES IC @ T C = 25°C IC @ T C = 100°C ICM ILM VGE EARV PD @ T C = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 1200 29 17 58 58 ±20 15 160 65 -55 to +150 V A V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight C-273 Min. Typ. Max. — — — — — 0.24 — 6 (0.21) 0.77 — 40 — Units °C/W g (oz) Revision 0 IRGPH40F Electrical Characteristics @ TJ = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ Min. Typ. Max. Units Conditions 1200 — — V VGE = 0V, I C = 250µA 20 — — V VGE = 0V, IC = 1.0A — 1.3 — V/°C VGE = 0V, I C = 1.0mA — 2.5 3.3 IC = 17A V GE = 15V — 3.2 — V IC = 29A See Fig. 2, 5 — 3.0 — IC = 17A, T J = 150°C 3.0 — 5.5 VCE = VGE, IC = 250µA — -13 — mV/°C VCE = VGE, IC = 250µA 5.0 11 — S VCE = 100V, I C = 17A — — 250 µA VGE = 0V, V CE = 1200V — — 1000 VGE = 0V, V CE = 1200V, T J = 150°C — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Min. — — — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 45 67 IC = 17A 11 16 nC VCC = 400V See Fig. 8 17 26 VGE = 15V 33 — TJ = 25°C 17 — ns IC = 17A, V CC = 960V 250 490 VGE = 15V, R G = 10Ω 210 390 Energy losses include "tail" 1.0 — 3.0 — mJ See Fig. 9, 10, 11, 14 4.0 7.5 32 — TJ = 150°C, 20 — ns IC = 17A, V CC = 960V 480 — VGE = 15V, R G = 10Ω 450 — Energy losses include "tail" 8.3 — mJ See Fig. 10, 14 13 — nH Measured 5mm from package 1200 — VGE = 0V 75 — pF VCC = 30V See Fig. 7 15 — ƒ = 1.0MHz Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) Repetitive rating; pulse width limited by maximum junction temperature. VCC=80%(V CES), VGE=20V, L=10µH, R G= 10Ω, ( See fig. 13a ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. C-274 Pulse width 5.0µs, single shot. IRGPH40F 40 LO A D C U R RE NT (A ) For bo th: Tria ngular w ave: D uty cyc le: 50% TJ = 12 5°C T s ink = 90°C G ate drive as spec ifie d Pow er D issipation = 35W 30 C lam p voltage: 80% of rated Sq uare w ave: 20 60% of rated voltage 10 Id e a l d iod e s 0 0.1 1 10 100 f, F re quency (kH z) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=I RMS of fundamental; for triangular wave, I=I PK) 1000 IC , C ollector-to-E mitter C urrent (A ) I C , C o lle ctor-to-E m itter C urre nt (A ) 100 TJ = 2 5°C TJ = 15 0 °C 10 V G E = 15 V 20 µs P UL S E W ID TH 1 1 100 TJ = 15 0°C 10 TJ = 25 °C 1 0.1 V C C = 10 0 V 5 µs P U L S E W ID TH 0.01 5 10 10 15 V G E , G ate-to -E m itter V o lta ge (V ) V C E , C o llector-to-Em itter V oltage (V) Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics C-275 20 IRGPH40F 5.0 V G E = 15 V V C E , C ollec tor-to -E m itte r V o lta ge (V ) M axim um DC C ollector C urrent (A ) 30 20 10 V G E = 1 5V 8 0µ s P U LS E W IDTH I C = 3 4A 4.0 I C = 1 7A 3.0 I C = 8.5 A 2.0 0 25 50 75 100 125 -60 150 -40 -20 0 20 40 60 80 100 120 14 0 160 T C , C as e T em pe ra ture (°C ) T C , C ase Tem perature (°C ) Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature T herm al Response (Z th JC ) 1 D = 0 .5 0 0.2 0 0.1 0.1 0 PD M 0 .05 0.0 2 t t2 N o te s: 1 . D u ty fa c to r D = t 0.0 1 0.01 0.00001 1 SIN G LE P UL SE (TH ER MA L R E SP O NS E ) 1 / t 2 2 . P e a k TJ = P D M x Z thJ C + T C 0.0001 0.001 0.01 0.1 1 t 1 , R ectangular Pulse D uration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case C-276 10 IRGPH40F 24 0 0 V G E , G a te-to-E m itte r V o ltag e (V ) 20 0 0 C, C apacitance (pF) 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc 16 Cies 16 0 0 V C E = 40 0V I C = 17 A 12 Coes 12 0 0 800 Cres 400 0 8 4 0 1 10 100 0 10 V C E , C o llector-to-Em itter V oltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage VC C VG E TC IC 30 40 50 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 100 = 9 60 V = 15 V = 25°C = 1 7A To ta l S w itc hing Lo ss es (m J) Total S w itching Losses (m J) 4 .8 20 Q g , T o tal G a te C h a rg e (n C ) 4 .6 4 .4 4 .2 4 .0 R G = 10 Ω V G E = 1 5V V C C = 96 0V I C = 34 A 10 I C = 17 A I C = 8.5 A 1 0.1 0 10 20 30 40 50 60 -60 R G , G ate R es istance (Ω ) W Fig. 9 - Typical Switching Losses vs. Gate Resistance -40 -20 0 20 40 60 80 100 120 140 160 TC , C ase Tem perature (°C ) Fig. 10 - Typical Switching Losses vs. Case Temperature C-277 IRGPH40F RG TC VCC VGE 20 1000 = 10 Ω = 1 50°C = 96 0V = 1 5V I , C o llec to r-to-E m itter C urren t (A ) 15 10 5 VGGE E= 20 V T J = 12 5°C 100 S A FE O P E RA TIN G A RE A 10 1 C T o ta l S w itc hin g L o s s e s (m J ) 25 0.1 0 0 10 20 30 40 1 10 100 1000 V C E , C o llec to r-to -E m itte r V o lta g e (V ) I C , C o lle c to r-to -E m itte r C u rre n t (A ) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Refer to Section D for the following: Appendix G: Section D - page D-9 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 3 - JEDEC Outline TO-247AC (TO-3P) C-278 Section D - page D-13 10000 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRGPH40F 价格&库存

很抱歉,暂时无法提供与“IRGPH40F”相匹配的价格&库存,您可以联系我们找货

免费人工找货