0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLD5098EPXUMA1

TLD5098EPXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TSSOP14

  • 描述:

    LITIX

  • 数据手册
  • 价格&库存
TLD5098EPXUMA1 数据手册
LITIX™ Power TLD5098EP- Multitopology LITIX™ Power DC/DC Controller IC 1 Overview Description The TLD5098EP is a flexibly usable DC/DC boost controller with built in diagnosis and protection features especially designed to drive LEDs. It is designed to support fixed current and fixed voltage configurations in multiple topologies such as Boost, Buck, Buck-Boost, SEPIC and Flyback by simply adjusting the external components. The TLD5098EP drives a low side n-channel power MOSFET from an internal 5 V linear regulator. The switching frequency is adjustable in the range from 100 kHz to 500 kHz and can also be synchronized to an external clock source. The TLD5098EP can be flexibly dimmed by means of analog and PWM dimming; an enable function reduces the shut-down current consumption to IQ_OFF < 10 µA. The current mode control scheme of this device provides a stable regulation loop maintained by small external compensation components. Additionally an integrated soft start feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments. LBO DBO VIN VIN = 4.5V to 45V CIN TDIM2 S CBO D DZ ILED G RDIM2 TSW 14 IN VIVCC SWO 2 SWCS 4 RFB VREF RCS RDIM1 VIVCC RA 10 SET PWMI Digital Dimming 13 Clock / Spread Spectrum 3 OVFB 9 ROVH IC1 TLD5098 RB IC2 Microcontroller (e.g. XC866) SGND 11 FREQ / SYNC 8 COMP VIVCC 1 D5 RPOL DPOL D6 D7 FBL 7 D8 PWMO PWMO RCOMP D2 D4 6 CIVCC CCOMP RFREQ D1 D3 FBH IVCC EN / PWMI Short to GND ROVL TDIM1 5 D9 GND D10 12 LED load seperated via wire harness Figure 1 Typical application: Boost LED driver with short circuit protection circuitry Type Package Marking TLD5098EP PG-TSDSO-14 TLD5098 Datasheet www.infineon.com 1 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Potential applications Potential applications • Automotive exterior and interior lighting • General illumination • General purpose current/voltage controlled DC/DC driver Features • Fixed current or fixed voltage configuration in Boost, Buck, Buck-Boost, SEPIC and Flyback topology • Drives low-side external n-Channel switching MOSFET from internal 5 V voltage regulator • Flexible switching frequency range, 100 kHz to 500 kHz or synchronization with external clock source • Wide input voltage range from 4.5 V to 45 V • Enable & PWM function with very low shutdown current: IQ_OFF < 10 µA and internal start-up • Analog dimming and PWM dimming feature to adjust average LED current • PWMO Gate driver for PWM dimming and output disconnection • Integrated protection and diagnostic functions • 300 mV high-side current sense • Available in a small thermally enhanced 14-pin PG-TSDSO-14 package (RoHS compliant) Table 1 Product summary Feature Symbol Range Nominal supply voltage range VIN 8 V ... 34 V Extended supply voltage range VIN 4.5 V ... 45 V VIVCC > VIVCC,RTH,d ; parameter deviations possible Switching frequency range fFREQ 100 kHz ... 500 kHz oscillator frequency adjustment range 250 kHz ... 500 kHz synchronization frequency capture range Maximum duty cycle Dmax,fixed 91% ...95% fixed frequency mode Dmax,synced 88% synchronization mode Typical gate driver peak sourcing current ISWO,SRC 380 mA Typical gate driver peak sinking current ISWO,SNK 550 mA Protection and diagnostic functions • Open circuit detection • Output overvoltage protection • Short to GND protection • Overtemperature shutdown • Electrostatic discharge (ESD) protection Product validation Qualified for automotive applications. Product validation according to AEC-Q100/101. Datasheet 2 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Table of contents Table of contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 5.1 5.2 Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6 6.1 6.2 6.3 Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical performance characteristics of oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7.1 7.2 Enable and dimming function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 8.1 8.2 Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9 9.1 9.2 Protection and diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10 10.1 10.2 10.3 Analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Purpose of analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11.1 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 12 Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Datasheet 3 14 14 15 16 28 28 28 32 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Block diagram 2 Block diagram IN LDO 14 13 IVCC 2 SWO 4 SWCS 3 SGND 9 OVFB 6 FBH 7 FBL 5 PWMO Power on reset Internal supply EN / PWMI 1 EN_INT/ PWM_INT On/Off logic Power switch gate driver Soft start Oscillator FREQ/SYNC 11 PWM generator Slope comp. Thermal protection SET 10 Switch current error amplifier Leading edge blanking Overvoltage protection Reference current generator Open load + Short to GND detection COMP Feedback voltage error amplifier 8 EN_INT/ PWM_INT Dimming switch gate driver 12 GND Figure 2 Datasheet Block diagram TLD5098EP 4 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Pin configuration 3 Pin configuration 3.1 Pin assignment IVCC 1 14 IN SWO 2 13 EN/PWMI SGND 3 12 GND SWCS 4 11 FREQ/SYNC PWMO 5 10 SET FBH 6 FBL 7 EP Figure 3 Pin configuration TLD5098EP 3.2 Pin definitions and functions Table 2 Pin definition and function 9 OVFB 8 COMP # Symbol Direction Function 1 IVCC Output Internal LDO Used for internal biasing and gate drive. Bypass with external capacitor. Pin must not be left open 2 SWO Output Switch gate driver Connect to gate of external switching MOSFET 3 SGND – Current Sense Ground Ground return for switch current sense 4 SWCS Input Current Sense Detects the peak current through switch 5 PWMO Output PWM Dimming Connect to gate of external MOSFET 6 FBH Input Voltage Feedback Positive Non inverting Input (+) 7 FBL Input Voltage Feedback Negative Inverting Input (-) 8 COMP Input Compensation Connect R and C network to pin for stability Datasheet 5 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Pin configuration Table 2 Pin definition and function # Symbol Direction Function 9 OVFB Input Overvoltage Protection Feedback Connect to resistive voltage divider to set overvoltage threshold 10 SET Input Analog Dimming Load current adjustment Pin. Pin must not be left open. If analog dimming feature is not used connect to IVCC pin 11 FREQ / SYNC Input Frequency Select or Synchronization Connect external resistor to GND to set frequency. Or apply external clock signal for synchronization within frequency capture range 12 GND – Ground Connect to system ground 13 EN / PWMI Input Enable or PWM Apply logic HIGH signal to enable device or PWM signal for dimming LED 14 IN Input Supply Input Supply for internal biasing EP – Exposed Pad Connect to external heat spreading GND Cu area (e.g. inner GND layer of multilayer PCB with thermal vias) Datasheet 6 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP General product characteristics 4 General product characteristics 4.1 Absolute maximum ratings TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Table 3 Absolute maximum ratings1) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Voltage IN Supply input VIN -0.3 – 45 V – P_4.1.1 EN / PWMI Enable or PWM input VEN -40 – 45 V – P_4.1.2 FBH-FBL; Feedback Error Amplifier Differential VFBH-VFBL -40 – 61 V The maximum delta P_4.1.3 must not exceed 61 V. Differential signal (not referred to GND) FBH; VFBH Feedback error amplifier positive input -40 – 61 V The difference between VFBH and VFBL must not exceed 61 V, refer to P_4.1.3 P_4.1.4 FBL VFBL Feedback error amplifier negative input -40 – 61 V The difference between VFBH and VFBL must not exceed 61 V, refer to P_4.1.3 P_4.1.5 mA t < 100 ms, VFBH-VFBL = 0.3 V P_4.1.6 FBH and FBL current IFBL, IFBH OVFB Overvoltage feedback input VOVP -0.3 – 5.5 V – P_4.1.7 OVFB Overvoltage feedback input VOVP -0.3 – 6.2 V t < 10 s P_4.1.8 SWCS Switch current sense input VSWCS -0.3 – 5.5 V – P_4.1.9 SWCS Switch current sense input VSWCS -0.3 – 6.2 V t < 10 s P_4.1.10 SWO Switch gate drive output VSWO -0.3 – 5.5 V – P_4.1.11 Datasheet 1 7 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP General product characteristics Table 3 Absolute maximum ratings1) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number SWO Switch gate drive output VSWO -0.3 – 6.2 V t < 10 s P_4.1.12 SGND Current sense switch GND VSGND -0.3 – 0.3 V – P_4.1.13 COMP Compensation input VCOMP -0.3 – 5.5 V – P_4.1.14 COMP Compensation input VCOMP -0.3 – 6.2 V t < 10 s P_4.1.15 FREQ / SYNC; Frequency and synchronization input VFREQ / VSYNC -0.3 – 5.5 V – P_4.1.16 FREQ / SYNC; Frequency and synchronization input VFREQ / VSYNC -0.3 – 6.2 V t < 10 s P_4.1.17 PWMO PWM dimming output VPWMO -0.3 – 5.5 V – P_4.1.18 PWMO PWM dimming output VPWMO -0.3 – 6.2 V t < 10 s P_4.1.19 SET VSET -0.3 – 45 V – P_4.1.20 IVCC Internal linear voltage regulator output VIVCC -0.3 – 5.5 V – P_4.1.21 IVCC Internal linear voltage regulator output VIVCC -0.3 – 6.2 V t < 10 s P_4.1.22 Junction temperature TJ -40 – 150 °C – P_4.1.23 Storage temperature Tstg -55 – 150 °C – P_4.1.24 -2 – 2 kV HBM2) P_4.1.25 2) Temperature ESD Susceptibility ESD resistivity of all pins VESD,HBM ESD resistivity of IN, VESD,HBM EN/PWMI, FBH, FBL and SET pin to GND -4 – 4 kV HBM P_4.1.26 ESD resistivity -500 – 500 V CDM3) P_4.1.27 V 3) P_4.1.28 ESD resistivity corner pins VESD_CDM VESD_CDM -750 – 750 CDM 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002 3) ESD susceptibility, Charged Device Mode “CDM” according to AECQ100-011 Datasheet 8 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP General product characteristics Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 1. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Functional range Table 4 Functional range Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number P_4.2.1 Extended supply voltage range VIN 4.5 – 45 V 1) Nominal supply voltage range VIN 8 – 34 V – P_4.2.2 Feedback voltage input VFBH;VFBL 3 – 60 V – P_4.2.3 Junction temperature TJ -40 – 150 °C – P_4.2.4 VIVCC > VIVCC,RTH,d 1) Not subject to production test, specified by design Note: Datasheet Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 9 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP General product characteristics 4.3 Thermal resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For further information visit https://www.jedec.org Table 5 Thermal resistance Parameter Junction to Case Symbol RthJC Junction to Ambient RthJA Values Min. Typ. Max. – 16 – – 53 – Unit Note or Test Condition Number K/W 1)2) P_4.3.1 K/W 1)3) 2s2p P_4.3.2 1s0p + 600 mm2 P_4.3.3 1s0p + 300 mm2 P_4.3.4 Junction to Ambient RthJA – 71 – K/W 1)3) Junction to Ambient RthJA – 83 – K/W 1)3) 1) Not subject to production test, specified by design 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to ambient temperature). TA = 25°C dissipates 1 W 3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board;The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has 2 outer copper layers (2 x 70 µm Cu) and 2 inner copper layers (2 x 35 µm Cu), A thermal via (diameter = 0.3 mm and 25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and second outer layer (bottom) of the JEDEC PCB. TA=25°C, IC dissipates 1 W Datasheet 10 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Switching regulator 5 Switching regulator 5.1 Description The TLD5098EP regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The constant output current is especially useful for light emitting diode (LED) applications. The switching regulator function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode controller uses the peak current through the external power switch and error in the output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode controller provides a PWM signal to an internal gate driver which then outputs to an external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over tSS (P_5.2.9) to minimize potential overvoltage at the output. OV FB OVFB 9 H when OVFB >1.25V Vref =1.25V FBH 6 FBL 7 SET UV IVCC High when IVCC < 4.0V COMP 8 x1 EA Current Comp gmEA High when lEA - ISLOPE - ICS > 0 OFF when H IEA 0 if SET < 1.6V 0 10 Low when TJ > 175 °C 1 − 0.1 5 Vref =0.3V Soft start Vref =4.0V NOR R & > 1 Output Stage OFF when Low Gate Driver Supply R FREQ/ SYNC Figure 4 Datasheet 11 I ISLOPE Slope Comp S t Clock & Error-FF Q Q & Q 2 SWO Current Sense PWM-FF Q 1 IVCC Gate Driver S Oscillator & INV 1 NAND 2 & ICS 4 SWCS 3 SGND Switching regulator block diagram 11 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Switching regulator 5.2 Electrical characteristics VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 6 Electrical characteristics: Switching regulator Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Feedback reference VREF voltage 0.29 0.30 0.31 V refer to Figure 30 VREF = VFBH - VFBL VSET = 5 V ILED = 350 mA P_5.2.1 Feedback reference VREF voltage 0.057 0.06 0.063 V refer to Figure 30 VREF = VFBH - VFBL VSET = 0.4 V ILED = 70 mA P_5.2.2 Feedback reference VREF_offset voltage offset – – 5 mV refer to Figure 18 and Figure 30 VREF = VFBH - VFBL VSET = 0.1 V VOUT > VIN P_5.2.3 Voltage line regulation (∆VREF / VREF) – / ∆VIN – 0.15 %/V refer to Figure 30 VIN = 8 V to 19 V; VSET = 5 V; ILED = 350 mA P_5.2.4 Voltage load regulation (∆VREF / VREF) – / ∆IBO – 5 %/A refer to Figure 30 VSET = 5 V; ILED = 100 to 500 mA P_5.2.5 Switch peak overcurrent threshold VSWCS 130 150 170 mV VFB = VFBL = 5 V VCOMP = 3.5 V P_5.2.6 Maximum duty cycle DMAX,fixed 91 93 95 % Fixed frequency mode P_5.2.7 Maximum duty cycle DMAX,sync 88 – – % Synchronization mode P_5.2.8 Soft start ramp 350 1000 1500 µs VFBH rising from 5% to 95% of VFB, typ. P_5.2.9 IFBH IFBH Feedback high input current 38 46 54 µA VFBH -VFBL= 0.3 V P_5.2.10 IFBL Feedback low input current 15 21 27 µA VFBH -VFBL = 0.3 V P_5.2.11 10 50 100 µA VSWCS= 150 mV P_5.2.12 Regulator tSS IFBL Switch current sense ISWCS input current Datasheet 12 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Switching regulator Table 6 Electrical characteristics: Switching regulator Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Input undervoltage shutdown VIN,off 3.5 – 4.5 V VIN decreasing P_5.2.13 Input voltage startup VIN,on – – 4.85 V VIN increasing P_5.2.14 Gate driver for external switch Gate driver peak sourcing current ISWO,SRC – 380 – mA 1) VSWO = 1 V to 4 V P_5.2.15 Gate driver peak sinking current ISWO,SNK – 550 – mA 1) VSWO = 4 V to 1 V P_5.2.16 Gate driver output rise time tR,SWO – 30 60 ns 1) CGATE = 3.3 nF; VSWO = 1 V to 4 V P_5.2.17 Gate driver output fall time tF,SWO – 20 40 ns 1) CGATE = 3.3 nF; VSWO = 4 V to 1 V P_5.2.18 Gate driver output voltage VSWO 4.5 – 5.5 V 1) P_5.2.19 CGATE = 3.3 nF 1) Not subject to production test, specified by design Datasheet 13 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Oscillator and synchronization 6 Oscillator and synchronization 6.1 Description Rfreq vs. switching frequency The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an external resistor the following formula can be applied. (6.1) 1 R FREQ = (141 ⋅ 10 − 12 ⎡ s ⎢⎣ Ω ⎤ ⎛ ⎡1 ⎤ ⎞ ⎥⎦ ) ⋅ ⎜ f FREQ ⎢⎣ s ⎥⎦ ⎟ ⎝ ⎠ ( − 3 . 5 ⋅ 10 3 [Ω ])[Ω ] In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz. TLD5098 FREQ /SYNC Oscillator Multiplexer 11 Clock Frequency Detector VCLK PWM Logic Gate driver 2 SWO RFREQ Figure 5 Oscillator and synchronization block diagram and simplified application circuit TSYNC = 1 / fSYNC VSYNC tSYNC,PWH VSYNC,H VSYNC,L t Figure 6 Datasheet Synchronization timing diagram 14 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Oscillator and synchronization 6.2 Electrical characteristics VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 7 Electrical characteristics: Oscillator and synchronization Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition RFREQ = 20 kΩ Oscillator Oscillator frequency fFREQ 250 300 350 kHz Oscillator frequency adjustment range fFREQ 100 – 500 kHz FREQ / SYNC supply current IFREQ – – -700 µA VFREQ = 0 V P_6.2.3 Frequency voltage VFREQ 1.16 1.24 1.32 V fFREQ = 100 kHz P_6.2.4 Synchronization fSYNC frequency capture range 250 – 500 kHz Synchronization signal high logic level valid VSYNC,H 3.0 – – V 1)2) P_6.2.6 Synchronization signal low logic level valid VSYNC,L – – 0.8 V 1)2) P_6.2.7 Synchronization signal logic high pulse width tSYNC,PWH 200 – – ns 1)2) P_6.2.8 P_6.2.1 P_6.2.2 Synchronization P_6.2.5 1) Synchronization of external PWM ON signal to falling edge 2) Not subject to production test, specified by design Datasheet 15 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Oscillator and synchronization 6.3 Typical performance characteristics of oscillator 600 500 fFREQ [kHz] 400 TJ = 25°C 300 200 100 0 0 10 20 30 40 50 60 70 80 RFREQ [kΩ ] Figure 7 Datasheet Switching frequency fSW versus frequency select resistor to GND RFREQ 16 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Enable and dimming function 7 Enable and dimming function 7.1 Description The enable function powers the device on or off. A valid logic “low”signal on enable pin EN/PWMI powers “off” the device and current consumption is less than IQ_OFF (P_7.1.14). A valid logic “high” enable signal on enable pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which ensures that the IC is shut down and the power switch is off in case the enable pin EN is left open. In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM) input signal that is fed through to the internal gate driver. The EN/PWMI enables and disables the gate driver for the main switch during PWM operation. PWM dimming an LED is a commonly practiced dimming method and can prevent color shift in an LED light source. The enable and PWM input function share the same pin. Therefore a valid logic “low” signal at the EN/PWMI pin needs to differentiate between an enable power “off” or a PWM dimming “low” signal. The device differentiates between enable off and PWM dimming signal by requiring the enable off at the EN/PWMI pin to stay “low” for the “Enable turn off delay time” (tEN,OFF,DEL P_7.1.6). LBO DBO CBO IN 14 Enable Microcontroller EN / PWMI RFB 13 Enable / PWMI Logic LDO Enable 1 Gate Driver 2 IVCC SWO TSW RSWCS PWMI Figure 8 Datasheet Gate Driver 5 PWMO TDIM Block diagram and simplified application circuit enable and LED dimming 17 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Enable and dimming function tEN,START TPWMI tPWMI,H tEN,OFF,DEL VEN/PWMI VEN/PWMI,ON VEN/PWMI,OFF t VIVCC VIVCC,ON VIVCC,RTH t VPWMO TFREQ = VSWO t 1 fFREQ t Power On Normal Dim Normal Dim Normal SWO On PWMO Off SWO On PWMO Off SWO On PWMO On SWO Off PWMO On SWO Off PWMO On Figure 9 Timing diagram enable and LED dimming 7.2 Electrical characteristics Power Off Delay Time Power Off IQ < 10 μA VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 8 Electrical characteristics: Enable and dimming Parameter Symbol Values Min. Typ. 3.0 – Unit Note or Test Condition Number V – P_7.1.1 Max. Enable / PWM Input Enable/PWMI turn on threshold VEN/PWMI,ON Enable/PWMI turn off threshold VEN/PWMI,OFF – Enable/PWMI hysteresis VEN/PWMI,HYS 50 – 0.8 V – P_7.1.2 200 400 mV 1) P_7.1.3 Enable/PWMI high input current IEN/PWMI,H – – 30 µA VEN/PWMI = 16.0 V P_7.1.4 Enable/PWMI low input current IEN/PWMI,L – 0.1 1 µA VEN/PWMI = 0.5 V P_7.1.5 Enable turn off delay time tEN,OFF,DEL 8 10 12 ms – P_7.1.6 PWMI min duty time tPWMI,H 4 – – µs – P_7.1.7 Enable startup time tEN,START 100 – – µs 1) P_7.1.8 Datasheet 18 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Enable and dimming function Table 8 Electrical characteristics: Enable and dimming Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. PWMO gate driver peak IPWMO,SRC sourcing current – 230 – mA 1) PWMO gate driver peak IPWMO,SNK sinking current – 370 – mA 1) VPWMO = 4 V to 1 V P_7.1.10 PWMO gate driver output rise time tR,PWMO – 50 100 ns 1) CGATE = 3.3 nF; VPWMO = 1 V to 4 V P_7.1.11 PWMO gate driver output fall time tF,PWMO – 30 60 ns 1) CGATE = 3.3 nF; VPWMO = 4 V to 1 V P_7.1.12 PWMO gate driver output voltage VPWMO 4.5 – 5.5 V 1) CGATE = 3.3 nF P_7.1.13 Current consumption, shutdown mode IQ_OFF – – 10 µA VEN/PWMI = 0.8 V; TJ ≤ 105°C; VIN = 16 V P_7.1.14 Current consumption, active mode IQ_ON – – 7 mA 2) Gate driver for dimming Switch VPWMO = 1 V to 4 V P_7.1.9 Current consumption VEN/PWMI ≥ 4.75 V; P_7.1.15 IBO = 0 mA; VSWO = 0% duty cycle 1) Not subject to production test, specified by design 2) Dependency on switching frequency and gate charge of external switches Datasheet 19 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Linear regulator 8 Linear regulator 8.1 Description The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up to ILIM,min (P_8.1.2). An external output capacitor with ESR lower than RIVCC,ESR (P_8.1.5) is required on pin IVCC for stability and buffering transient load currents. During normal operation the external MOSFET switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switches. Integrated undervoltage protection for the external switching MOSFET An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold (VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel MOSFET. IN 14 1 IVCC Linear regulator EN / PWMI Figure 10 Datasheet 13 Gate drivers Voltage regulator block diagram and simplified application circuit 20 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Linear regulator 8.2 Electrical characteristics VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 9 Electrical characteristics: Line regulator Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Output voltage VIVCC 4.85 5 5.15 V 6 V ≤ VIN≤ 45 V P_8.1.1 0.1 mA ≤ IIVCC ≤ 40 mA Output current limitation ILIM 51 – 90 mA VIN = 13.5 V VIVCC = 4.5 V P_8.1.2 Drop out voltage VDR – – 0.5 V VIN = 4.5 V IIVCC = 25 mA P_8.1.3 IVCC buffer capacitor CIVCC 0.47 1 100 µF 1)2) P_8.1.4 IVCC buffer capacitor ESR RIVCC, ESR – – 0.5 Ω 1) P_8.1.5 Undervoltage reset headroom VIVCC,HDRM 100 – – mV VIVCC decreasing VIVCC - VIVCC,RTH,d P_8.1.6 IVCC undervoltage reset switch-off threshold VIVCC,RTH,d 3.6 – 4.0 V 3) P_8.1.7 IVCC undervoltage reset switch-on threshold VIVCC,RTH,i – – 4.5 V VIVCC increasing VIVCC decreasing P_8.1.8 1) Not subject to production test, specified by design 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum. 3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case the threshold voltage of MOSFET must be considered. Datasheet 21 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Protection and diagnostic functions 9 Protection and diagnostic functions 9.1 Description The TLD5098EP has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. Additionally the FBH and FBL potential is monitored and in case the LED load short circuits to GND (see description Figure 16) the regulator stops the operation and protects the system. In case any of the six fault conditions occur the PWMO and IVCC signal will change to an active logic “low” signal to communicate that a fault has occurred (detailed overview in Figure 11 and Figure 12 below). Figure 12 illustrates the various open load and open feedback conditions. In case of an overtemperature condition the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C (TJ,SD P_9.2.2). After cooling down the IC will automatically restart. Thermal shutdown is an integrated protection function designed to prevent IC destruction and is not intended for continuous use in normal operation (Figure 14). To calculate the proper overvoltage protection resistor values an example is given in Figure 15. Input Protection and diagnostic circuit Output Output overvoltage Open load OR Open feedback SWO and PWMO gate driver off Short to GND Overtemperature OR Linear regulator off Input undervoltage Figure 11 Datasheet Protection and diagnostic function block diagram 22 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Protection and diagnostic functions Table 10 Diagnosis truth table1) Input Output Condition Level SWO PWMO IVCC Sw High or Sw Active True Low Low Active False Sw High or Sw Active True Low Low Active False Sw High or Sw Active True Low Low Active Overvoltage at output False Open load Open feedback Short to GND at LED chain False Sw High or Sw Active True Low Low Active Overtemperature False Sw High or Sw Active True Low Low Shutdown Sw High or Sw Active Low Low Shutdown Undervoltage at input False True 1) Sw = Switching; False = Condition does NOT exist; True = Condition does exist VBO Open circuit 3 TLD5098 Open circuit 1 ROVH Fault threshold voltage VREF 1 Open FBH -20 to -100 mV 2 Open FBL 0.5 to 1.0 V 3 Open VBO -20 to -100 mV 4 Open PWMO Detected by overvoltage Open circuit 2 9 D1 ROVL VOVFB,TH Fault condition D2 D3 Feedback voltage error amplifier FBH FBL VREF D4 6 7 D5 + VREF - D6 Max Threshold = 1.0 V D7 D8 Min Threshold = 0.5 V D9 D10 Typical VREF = 0.3 V Open circuit 4 TDIM Max Threshold = -20 mV Min Threshold = -100 mV PWMO 5 Figure 12 Datasheet Open FBL OVFB Open circuit condition Open FBH Open VBO Overvoltage comparator RFB Output open circuit conditions Open load and open feedback conditions 23 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Protection and diagnostic functions Startup Normal VIVCC Thermal shutdown Overvoltage Open load / feedback 1 2 3 Shutdown VIVCC,RTH,i VIVCC,RTH,d TJ t Tj,SD,HYST 1 TJ,SD VBO VOVFB,HYS t 2 VOVFB ≥ VOVFB,TH VIN 3 VFBH-VFBL t VREF,2 tSS tSS 0.3 V Typ t VREF,1 VPWMO t Figure 13 Datasheet Open load, overvoltage and overtemperature timing diagram 24 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Protection and diagnostic functions VEN/PWMI H L t TJ TJSD ΔT TJSO t TA VSWO t ILED Ipeak t VPWMO t Device OFF Figure 14 Normal operation Overtemp fault ON Overtemp ON fault Overtemp ON fault Overtemp fault Device overtemperature protection behavior VOVFB example: VOUT,max = 40V VOVP,max 1.25mA ROVH TLD5098 OVFB VOVFB,TH 9 ROVL GND Overvoltage protection active 40V ≅ 33.2kΩ 1.25mA 1kΩ 1.25V 1.25V Overvoltage protection disabled 12 t Figure 15 Datasheet Overvoltage protection description 25 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Protection and diagnostic functions Short to GND protection for high-side return applications (B2B) from Figure 26 The FBH and FBL pins features a short to GND detection threshold (VFBL, FBH_S2G). If the potential on these pins is below this threshold the device stops its operation. This means that the PWMO signal changes to inactive state (low potential) and the corresponding p-channel (TDIM2) is switched off accordingly and protects the LED chain. For the B2B application some external components are needed to ensure a low potential during a short circuit event. D1 and D2 are low power diodes (eg. BAS16-03W) and the resistor Rlim ( eg. 10 kΩ) is needed to limit the current through this path. The diode D3 should be a high power diode and is needed to protect the RFB and the FBH and FBL pins in case of an short circuit to GND event. This short circuit detection and protection concept considers potential faults for LED chains (LED modules) which are separated from the ECU via two wires (at the beginning and at the end of the LED chain). If the short circuit condition disappears, the device will re-start with a soft start. CBO D1 Vbat Rlim wire harness RFB CIN VFBL,FBH D2 wire harness LED module Dn D3 60 V Short to GND TDIM2 D1 Normal operation Short to GND LBO TDIM1 DBO ISW PWMO TSW SWO FBH FBL SGND TLD5098 Figure 16 Datasheet VOUT 3V VFBL,FBH_S2G SWCS IN ILED Device working with parameter deviations Short circuit detected on FBH/FBL t Short circuit to GND protection 26 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Protection and diagnostic functions 9.2 Electrical characteristics VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 11 Electrical characteristics: Protection and diagnosis Parameter Symbol Values Min. Unit Note or Test Condition Number P_9.2.1 Typ. Max. – 2 V refer to Figure 16 VFBH = VFBL decreasing Short circuit protection FBH and FBL shortcircuit fault sensing common mode range VFBL,FBH_S2G 1.5 Temperature protection Overtemperature shutdown TJ,SD 160 175 190 °C 1) refer to Figure 14 P_9.2.2 Overtemperature shutdown hystereses TJ,SD,HYST – 15 – °C 1) P_9.2.3 Overvoltage protection Output overvoltage feedback threshold increasing VOVFB,TH 1.21 1.25 1.29 V refer to Figure 15 P_9.2.4 Output overvoltage feedback hysteresis VOVFB,HYS 50 – 150 mV 1) Output Voltage decreasing P_9.2.5 Overvoltage reaction time tOVPRR 2 – 10 µs Output Voltage increasing P_9.2.6 Overvoltage feedback input current IOVFB -1 0.1 1 µA VOVFB = 1.25 V P_9.2.7 Open load and open feedback diagnostics Open load/feedback threshold VREF,1,3 -100 – -20 mV refer to Figure 12 P_9.2.8 VREF = VFBH-VFBL Open circuit 1 or 3 Open feedback threshold VREF,2 0.5 – 1 V VREF = VFBH-VFBL Open circuit 2 P_9.2.9 1) Specified by design; not subject to production test Note: Datasheet Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 27 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Analog dimming 10 Analog dimming This pin influences the “feedback voltage error amplifier” by generating an internal current accordingly to an external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected to IVCC or external > 1.6 V supply. Different application scenarios are described in Figure 19. This pin can also go outside of the ECU for instance if a thermistor is connected on a separated LED module and the “Analog dimming input” is used to thermally protect the LEDs. For reverse battery protection of this pin an external series resistor should be placed to limit the current. 10.1 Purpose of analog dimming 1. It is difficult for LED manufacturers to deliver LEDs which have the same brightness, colorpoint and forward voltage class. Due to this relatively wide spread of the crucial LED parameters automotive customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must preselect the LEDs to deliver the requested colorpoint class. These preselected LEDs are matched in terms of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET at the SET pin. 2. If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one hardware which should be able to handle different load current conditions (e.g. 80 mA to 400 mA) to cover different applications. To achieve this average LED current adjustment the analog dimming is a crucial feature. 10.2 Description Application example Desired LED current = 400 mA. For the calculation of the correct feedback resistor RFB the following equation can be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6 V. (10.1) I LED = VREF V 0.3V → RFB = REF → RFB = = 750mΩ RFB I LED 400mA Related electrical parameter is guaranteed with VSET = 5 V (P_5.2.1) A decrease of the average LED current can be achieved by controlling the voltage at the SET pin (VSET) between 0.1 V and 1.6 V. The mathematical relation is given in the formula below: (10.2) I LED = VSET − 0.1V 5 ⋅ RFB Refer to the concept drawing in Figure 18. If VSET is equal to or smaller than 50 mV, the switching activity is stopped and ILED = 0 A Datasheet 28 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Analog dimming VFBH-FBL [mV] Typ. 300 Analog dimming enabled = Figure 17 VSET [V] 1.6 0.05 0.10 0 Analog enabled − 0.1 5∙ = Basic relationship between VREF and VSET voltage VREF VOUT RFB ILED FBL FBH 6 7 IFBL IFBH R2 R1 VINT VBANDGAP = 1.6V VREF_OFFSET + + + - - Feedback voltage error amplifier ISET SET 10 VSET ISET n*ISET R3 100mV COMP GND 8 12 CCOMP RCOMP Figure 18 Datasheet Concept drawing analog dimming 29 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Analog dimming Multi-purpose usage of the analog dimming feature 1. A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin of the TLD5098EP. The integrated voltage regulator (VIVCC) can be used to supply the µC or external components if the current consumption does not exceed 20 mA. 2. The analog dimming feature is directly connected to the input voltage of the system. In this configuration the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing (increasing) the switching duty cycle if VIN drops to a lower potential. This causes an increase of the input current consumption. If applications require a decrease of the LED current in respect to VIN variations this setup can be chosen. 3. The usage of an external resistor divider connected between IVCC (integrated 5 V regulator output and gate buffer pin) SET and GND can be chosen for systems without µC on board. The concept allows to control the LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor (Thermistor) to protect the LED loads from thermal destruction can be connected additionally. 4. If the analog dimming feature is not needed the SET pin must be connected directly to > 1.6 V potential (e.g. IVCC potential) 5. Instead of a DAC the µC can provide a PWM signal and an external R-C filter produces a constant voltage for the analog dimming. The voltage level depends on the PWM frequency (fPWM) and duty cycle (DC) which can be controlled by the µc software after reading the coding resistor placed at the LED module. Datasheet 30 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Analog dimming +5V 1 2 CIVCC Vbb 1 14 IVCC D/A-Output 10 IN RSET2 SET 10 μC SET VSET VSET RSET1 GND Cfilter GND 12 12 3 4 VIVCC = +5V 1 RSET2 Rfilter CIVCC 10 VSET RSET1 VIVCC = +5V IVCC 1 CIVCC 10 SET Cfilter GND VSET ~ VIVCC 12 IVCC Cfilter SET GND 12 5 +5V 1 IVCC 10 SET CIVCC PWM PWM output Rfilter μC (e.g. XC866) Cfilter VSET GND 12 Figure 19 Datasheet Analog dimming in various applications 31 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Analog dimming 10.3 Electrical characteristics VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless otherwise specified) Table 12 Electrical characteristics: Protection and diagnosis Parameter SET programming range Symbol VSET Values Min. Typ. Max. 0 – 1.6 Unit Note or Test Condition Number V 1) P_10.3.1 refer to Figure 17 1) Specified by design; not subject to production test. Datasheet 32 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Application information 11 Application information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. LBO DBO VIN VIN = 4.5V to 45V CIN TDIM2 S CBO D DZ ILED G RDIM2 TSW 14 IN SWO 2 SWCS 4 RFB VREF RCS RDIM1 VCC or VIVCC PWM VSET Analog Dimming 10 Rfilter IC2 Microcontroller (e.g. XC866) SET 3 OVFB 9 ROVH IC1 TLD5098 Cfilter PWMI 13 EN / PWMI Spread Spectrum 11 FREQ / SYNC 8 COMP Short to GND ROVL IVCC D2 D4 6 1 D5 CIVCC RPOL DPOL D6 D7 CCOMP FBL 7 D8 PWMO PWMO RFREQ D1 D3 FBH Digital Dimming STATUS SGND RCOMP TDIM1 5 D9 GND D10 12 LED load seperated via wire harness Figure 20 Figure 21 Datasheet Boost to Ground application circuit - B2G (Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - 10 White Osram LUW H9GP LED 10 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 DZ 5V or 10V Vishay ZENER Diode 1 DPOL 80V Diode Infineon BAS1603W Diode 1 CIN, CBO 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML Inductor 1 RDIM1+2, RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 4 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TSW 100V N-ch, 35A Infineon IPG20N10S4L-22 Transistor 1 TDIM1, TDIM2 60V Dual N-ch (3.1A) and P-ch. enh. (2A) Infineon BSO615CG Transistor 1 alternativ: 100V N-ch (0.37A), Infineon BSP123 Transistor 1 alternativ: 60V P-ch (1.9A) Infineon BSP171P Transistor 1 Bill of Materials for B2G application circuit 33 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Application information L1 DBO CSEPIC VIN VIN = 4.5V to 45V CIN ISW RFB L2 VREF CBO TSW IN SWO 2 SWCS 4 ILED D1 RCS VCC or VIVCC PWM Analog Dimming 10 IC2 Microcontroller (e.g. XC866) SET OVFB 9 D2 D4 ROVL IC1 TLD5098 Cfilter PWMI D5 D6 D7 Digital Dimming 13 EN / PWMI Spread Spectrum 11 FREQ / SYNC 8 COMP STATUS 3 D3 VSET Rfilter SGND ROVH FBH 6 FBL 7 CCOMP DPOL IVCC Number of LEDs could be variable independent from VIN: → BUCK-BOOST configuration 14 Dn RPOL 1 CIVCC RFREQ RCOMP PWMO PWMO TDIM 5 GND 12 Figure 22 SEPIC application circuit (Buck - Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - n White Osram LUW H9GP LED variable DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 DPOL 80V Diode Infineon BAS1603W Diode 1 CSEPIC 3.3 uF, 20V EPCOS X7R, Low ESR Capacitor 1 CIN , CBO 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 2 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1uF , 6.3V EPCOS X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 L1 , L2 Figure 23 Datasheet 47 uH Coilcraft MSS1278T-473ML Inductor 2 alternativ: 22uH coupled inductor Coilcraft MSD1278-223MLD Inductor 1 RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPD35N10S3L-26 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Bill of Materials for SEPIC application circuit 34 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Application information DBO VIN VIN = 4.5V to 45V L1 CIN ISW RFB L2 VREF CBO TSW 14 IN SWO 2 SWCS 4 ILED RCS VCC or VIVCC 9 D1 D2 10 Rfilter SET D3 ROVL IC1 TLD5098 Cfilter PWMI D4 D5 D6 Digital Dimming 13 EN / PWMI Output 11 FREQ / SYNC 8 COMP STATUS OVFB ROVH VSET Analog Dimming IC2 Microcontroller (e.g. XC866) 3 FBH 6 FBL 7 D7 CCOMP DPOL IVCC Number of LEDs could be variable independent from VIN: → BUCK-BOOST configuration PWM SGND RPOL Dn 1 CIVCC RFREQ RCOMP PWMO GND PWMO 12 Figure 24 TDIM 5 Flyback application circuit (Buck - Boost configuration) Reference Designator Value Manufacturer Part Number D1 - n White Osram DBO Schottky , 3 A, 100 VR Vishay CBO 3.3 uF, 50V (100V) CIN Type Quantity LUW H9GP LED variable SS3H10 Diode 1 EPCOS X7R, Low ESR Capacitor 1 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 47 nF EPCOS X7R Capacitor 1 CIVCC 1 uF , 6.3V EPCOS X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 L1 , L2 1 µH / 9 uH EPCOS Transformer EHP 16 Inductor 1 RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 2 DPOL 80 V Diode Infineon BAS1603W Diode 1 RFB 820 mΩ, 1% Isabellenhütte SMS – Power Resistor Resistor 1 RFREQ 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 1 ROVH 56.2 kΩ, 1% Panasonic ERJ3EKF5622V Resistor 1 ROVL 1.24 kΩ, 1% Panasonic ERJ3EKF1241V Resistor 1 RCS 5 mΩ, 1% Isabellenhütte SMS - Power Resistor Resistor 1 TDIM,TSW Dual N-ch enh. (60V, 20A) Infineon IPG20N06S4L-26 Transistor 1 alternativ: 100V N-ch, 35A Infineon IPG20N10S4L-22 Transistor 2 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 2 Figure 25 Datasheet Bill of Materials for Flyback application circuit 35 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Application information CBO DSC1: Low Power Diode Rlim:10kΩr ange DSC2: Low Power Diode RFB TDIM2 VIN = 4.5V to 45V CIN D3 Power Schottky Diode DZ D1 Dn Number of LEDs could be variable independent from VIN: à BUCK-BOOST configuration Short to GND RDIM2 RDIM1 Short to GND ILED DBO LBO ISW TDIM1 PWMO VOUT PWMO 5 VCC or VIVCC PWM Rfilter STATUS FBH 7 FBL 14 IN 10 SET 2 SWCS 4 SGND 3 OVFB 9 RCS ROVH VSET Analog Dimming IC2 Microcontroller (e.g. XC866) 6 TSW SWO Cfilter IC1 TLD5098 PWMI Digital Dimming 13 EN / PWMI Spread Spectrum 11 FREQ / SYNC ROVL COMP 8 IVCC 1 CCOMP CIVCC GND RFREQ RCOMP 12 Figure 26 Boost to Battery application circuit - B2B (Buck - Boost configuration) Reference Designator Value Manufacturer Part Number Type Quantity D1 - n White Osram LUW H9GP Diode variable DBO , D3 Schottky , 3 A, 100 VR Vishay SS3H10 Diode 2 DSC1 , DSC2 Low Power Diode Infineon BAS16-03W Diode 2 DZ Zener Diode -- -- Diode 1 CBO 100 uF, 80V Panasonic EEVFK 1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP, RDIM1, RDIM2, Rlim 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 4 RFB 820 mΩ, 1% Panasonic ERJ14BQFR82U Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 ROVH 33.2 kΩ, 1% Panasonic ERJP06F5102V Resistor 1 ROVL 1 kΩ, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mΩ, 1% Panasonic ERJB1CFR05U Resistor 1 TDIM1,TDIM2 60V Dual N-ch (3.1A) and P-ch. enh. (2A) Infineon BSO615CG Transistor 1 alternativ: 100V N-ch (0.37A), Infineon BSP123 Transistor 1 alternativ: 60V P-ch (1.9A) Infineon BSP171P Transistor 1 N-ch, OptiMOS-T2 100V, 35A Infineon IPD35N10S3L-26 _plus _BOM_B2B_T TransistorApplicationdrawing 1 LD5098 _March2012.vsd alternativ: 60V N-ch, 30A Infineon IPD30N06S4L-23 Transistor 1 alternativ : 60V N-ch, 2.6A Infineon BSP318S Transistor 1 TSW Figure 27 Datasheet Bill of Materials for B2B application circuit 36 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Application information DBO D1 CBO TDIM2 VIN = 4.5V to 45V DZ RDIM2 14 BUCK Setup: VIN > VOUT VCC or VIVCC VSET Analog Dimming 10 IC1 TLD5098 Cfilter PWMI 13 Spread Spectrum RFB PWMO 5 FBH 6 TDIM1 SET Rfilter Digital Dimming LBO RDIM1 IN PWMO IC2 Microcontroller (e.g. XC866) VREF S CIN PWM D2 ILED EN / PWMI 11 FREQ / SYNC 8 COMP FBL 7 IVCC 1 CIVCC RPOL RPOL TSW SWO SWCS 2 SGND 3 OVFB 9 4 RCS STATUS CCOMP PWMO RFREQ RCOMP GND 12 Figure 28 Buck application circuit Reference Designator Value Manufacturer Part Number Type Quantity D1 -2 White Osram LE UW Q9WP LED 2 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 DZ 10V Vishay Zener Diode Diode 1 DPOL 80V Diode Infineon BAS1603W Diode 1 CBO 4.7 uF, 50V EPCOS X7R Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK 1H101GP Capacitor 1 CCOMP 47 nF EPCOS X7R Capacitor 1 CIVCC 1 uF , 6.3V EPCOS MLCC CCNPZC105KBW X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 L1 22 µH Coilcraft MSS1278T Inductor 1 RDIM1+2, RCOMP, RPOL 10 kΩ, 1% Panasonic ERJ3EKF1002V Resistor 4 RFB 820 mΩ, 1% Isabellenhütte SMS – Power Resistor Resistor 1 RFREQ 20 kΩ, 1% Panasonic ERJ3EKF2002V Resistor 1 RCS 50 mΩ, 1% Isabellenhütte SMS - Power Resistor Resistor 1 TDIM1 60V, 0.28A Infineon BSS138 Transistor 1 TDIM2 -60V, -1.9A Infineon BSP171 Transistor 1 100V N-ch, 35A Infineon IPG20N10S4L-22 Transistor 1 alternativ: 60V N-ch, 30A Infineon IPD30N06S4L-23 Transistor 1 TSW Figure 29 Datasheet Bill of Materials for Buck application circuit 37 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Application information IBO DRV VIN L1 VBATT DBO LBO C2 C1 ILoad CBO ISW CIN VBO constant VOUT RL 1 TSW 2 SWO IN 14 3 SWCS IVCC RCS VCC or VIVCC CIVCC RST Output 10 SGND 4 OVFB 9 ROVH SET ROVL IC1 TLD5098 IC2 Microcontroller (e.g. XC866) Output 13 EN / PWMI Output 11 FREQ / SYNC 8 COMP RFB1 FBH 6 FBL 7 PWMO 5 RFB2 VREF CCOMP RFREQ GND RCOMP RFB3 12 Figure 30 Boost voltage application circuit Reference Designator Value Manufacturer Part Number Type Quantity D1 - 10 White Osram LW W5AP Diode 10 DBO Schottky, 3 A, 100 VR Vishay SS3H10 Diode 1 CBO 100 uF, 80V Panasonic EEVFK1K101Q Capacitor 1 CIN 100 uF, 50V Panasonic EEEFK1H101GP Capacitor 1 CCOMP 10 nF, 16V EPCOS X7R Capacitor 1 CIVCC 1 uF, 6.3V Panasonic X7R Capacitor 1 IC1 -- Infineon TLD5098 IC 1 IC2 -- Infineon XC866 IC 1 LBO 100 uH Coilcraft MSS1278T-104ML_ Inductor 1 RCOMP 10 kohms, 1% Panasonic ERJ3EKF1002V Resistor 1 RFB1,RFB3 51 kohms, 1% Panasonic ERJ3EKF5102V Resistor 1 RFB2 1 kohms, 1% Panasonic ERJ3EKF1001V Resistor 1 RFREQ, RST 20 kohms, 1% Panasonic ERJ3EKF2002V Resistor 2 ROVH 33.2 kohms, 1% Panasonic ERJ3EKF3322V Resistor 1 ROVL 1 kohms, 1% Panasonic ERJ3EKF1001V Resistor 1 RCS 50 mohms, 1% Panasonic ERJB1CFR05U Resistor 1 TSW N-ch, OptiMOS-T2 100V Infineon IPD35N10S3L-26 Transistor 1 Figure 31 Bill of Materials for Boost voltage application circuit Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the external components must be done accordingly to specific application requirements. Datasheet 38 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Application information 11.1 Further application information • For further information you may contact http://www.infineon.com/ • Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline Theory and Practice” Datasheet 39 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Package outlines &  & [ 6($7,1* &23/$1$5,7< 3/$1( s s  ' [   $% & [ %27720 9,(: $ ,1'(; 0$5.,1*         %  s s s   [ *$8*( 3/$1(  [  s ' rr  0$;  s  s 67$1'2)) Package outlines  12   ' $%  '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2)  0$; 3(5 6,'(  '$0%$5 352786,21 6+$// %( 0$;,080 00 727$/ ,1 (;&(66 2) /($' :,'7+ $// ',0(16,216 $5( ,1 81,76 00 7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62  352-(&7,21 0(7+2'  > @ Figure 32 Outline PG-TSDSO-14 Green product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Further information on packages https://www.infineon.com/packages Datasheet 40 Rev. 1.00 2018-12-13 LITIX™ Power TLD5098EP Revision history 13 Revision history Revision Date Changes 1.00 2018-12-13 Initial datasheet Datasheet 41 Rev. 1.00 2018-12-13 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-12-13 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference LITIX™ Power TLD5098EP Rev.1.00 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
TLD5098EPXUMA1 价格&库存

很抱歉,暂时无法提供与“TLD5098EPXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货