0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XE161FL12F80VAAFXUMA1

XE161FL12F80VAAFXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    VFQFN48

  • 描述:

    IC MCU 16BIT 96KB FLASH 48VQFN

  • 数据手册
  • 价格&库存
XE161FL12F80VAAFXUMA1 数据手册
16-Bit Architecture XE161FL, XE161HL 16-Bit Single-Chip Real Time Signal Controller XE166 Family / Econo Line Data Sheet V1.2 2012-07 Microcontrollers Edition 2012-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 16-Bit Architecture XE161FL, XE161HL 16-Bit Single-Chip Real Time Signal Controller XE166 Family / Econo Line Data Sheet V1.2 2012-07 Microcontrollers XE161FL, XE161HL XE166 Family / Econo Line XE161xL Data Sheet Revision History: V1.2 2012-07 Previous Versions: V1.0 2010-12, V1.1 2011-09 Page Subjects (major changes since last revision) 52, 53 The value of absolute sum of overload currents parameter in absolute maximum rating parameter and operating conditions tables are switched. 74 Table description on coding of bit field LEVxV is updated. Trademarks C166™, TriCore™ and DAVE™ are trademarks of Infineon Technologies AG. We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com Data Sheet V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Table of Contents Table of Contents 1 1.1 1.2 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Definition of Feature Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 2.1 2.2 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Checker Module (MCHK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Unit (CC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Units CCU6x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Serial Interface Channel Modules (USIC) . . . . . . . . . . . . . . . . . MultiCAN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Window Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 22 25 27 27 28 29 30 33 35 39 41 42 44 45 45 46 47 48 49 4 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 4.3.2 4.3.3 4.4 4.5 4.6 4.7 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Range definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters for Upper Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters for Lower Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 52 53 55 55 56 58 60 62 66 72 75 77 Data Sheet 1 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Table of Contents 4.7.1 4.7.2 4.7.2.1 4.7.2.2 4.7.2.3 4.7.3 4.7.4 4.7.5 4.7.6 5 5.1 5.2 5.3 Data Sheet Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wakeup Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting and Changing the Operating Frequency . . . . . . . . . . . . . . External Clock Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pad Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . Debug Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 78 79 82 82 83 85 88 92 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Summary of Features 16-Bit Single-Chip Real Time Signal Controller XE161xL (XE166 Family) 1 Summary of Features For a quick overview and easy reference, the features of the XE161xL are summarized here. • • • • • • High-performance CPU with five-stage pipeline and MPU – 12.5 ns instruction cycle @ 80 MHz CPU clock (single-cycle execution) – One-cycle 32-bit addition and subtraction with 40-bit result – One-cycle multiplication (16 × 16 bit) – Background division (32 / 16 bit) in 21 cycles – One-cycle multiply-and-accumulate (MAC) instructions – Enhanced Boolean bit manipulation facilities – Zero-cycle jump execution – Additional instructions to support HLL and operating systems – Register-based design with multiple variable register banks – Fast context switching support with two additional local register banks – 16 Mbytes total linear address space for code and data – 1,024 Bytes on-chip special function register area (C166 Family compatible) – Integrated Memory Protection Unit (MPU) Interrupt system with 16 priority levels providing 64 interrupt nodes – Selectable external inputs for interrupt generation and wake-up – Fastest sample-rate 12.5 ns Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space Clock generation from internal or external clock sources, using on-chip PLL or prescaler Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas On-chip memory modules – 2 Kbytes on-chip dual-port RAM (DPRAM) – 6 Kbytes on-chip data SRAM (DSRAM) – 4 Kbytes on-chip program/data SRAM (PSRAM) – Up to 160 Kbytes on-chip program memory (Flash memory) – Memory content protection through Error Correction Code (ECC) for Flash memory and through parity for RAMs Data Sheet 3 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Summary of Features • • • • • • • • • On-Chip Peripheral Modules – Synchronizable 12-bit A/D Converter with up to 10 channels, conversion time below 1 μs, optional data preprocessing (data reduction, range check), broken wire detection – 16-channel general purpose capture/compare unit (CC2) – Two capture/compare units for flexible PWM signal generation (CCU6x) – Multi-functional general purpose timer unit with 5 timers – Up to 4 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface – On-chip MultiCAN interface (Rev. 2.0B active) with up to 32 message objects (Full CAN/Basic CAN) on 2 CAN nodes and gateway functionality – On-chip system timer and on-chip real time clock Single power supply from 3.0 V to 5.5 V Power reduction and wake-up modes with flexible power management Programmable window watchdog timer and oscillator watchdog Up to 33 general purpose I/O lines On-chip bootstrap loaders Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards On-chip debug support via Device Access Port (DAP), Single-Pin DAP (SPD) or JTAG interface 48-pin Green VQFN package, 0.5 mm (10.7 mil) pitch Ordering Information The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies: • • • the function set of the corresponding product type the temperature range1): – SAF-…: -40°C to 85°C – SAK-…: -40°C to 125°C the package and the type of delivery. For ordering codes for the XE161xL please contact your sales representative or local distributor. 1) Not all derivatives are offered in all temperature ranges. Data Sheet 4 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Summary of Features 1.1 Device Types The following XE161xL device types are available and can be ordered through Infineon’s direct and/or distribution channels. Table 1 Synopsis of XE161xL Device Types 1) Derivative Flash Memory2) PSRAM DSRAM3) Capt./Comp. ADC4) Interfaces4) Modules Chan. XE161FL-12FxV 96 Kbytes 4 Kbytes 6 Kbytes CC2 CCU60/3 10 2 CAN Nodes, 4 Serial Chan. XE161HL-12FxV 96 Kbytes 4 Kbytes 6 Kbytes CC2 CCU60/3 10 4 Serial Chan. XE161FL-20FxV 160 Kbytes 4 Kbytes 6 Kbytes CC2 CCU60/3 10 2 CAN Nodes, 4 Serial Chan. XE161HL-20FxV 160 Kbytes 4 Kbytes 6 Kbytes CC2 CCU60/3 10 4 Serial Chan. 1) x is a placeholder for available speed grade in MHz. Can be 66 or 80. 2) Specific information about the on-chip Flash memory in Table 3. 3) All derivatives additionally provide 2 Kbytes DPRAM. 4) Specific information about the available channels in Table 5. Data Sheet 5 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Summary of Features 1.2 Definition of Feature Variants The XE161xL types are offered with several Flash memory sizes. Table 3 and Table 4 describe the location of the available Flash memory. Table 3 Continuous Flash Memory Ranges Total Flash Size 1st Range1) 2nd Range 3rd Range 160 Kbytes C0’0000H … C0’EFFFH C1’0000H … C2’0FFFH C4’0000H … C4’7FFFH 96 Kbytes C0’0000H … C0’EFFFH C1’0000H … C1’0FFFH C4’0000H … C4’7FFFH 1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH). Table 4 Flash Memory Module Allocation (in Kbytes) Total Flash Size Flash 01) Flash 1 160 128 32 96 64 32 1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH). The XE161xL types are offered with different interface options. Table 5 lists the available channels for each option. Table 5 Interface Channel Association Total Number Available Channels / Message Objects 10 ADC0 channels CH0, CH2, CH3, CH4, CH8, CH9, CH16, CH17, CH19, CH20 2 CAN nodes CAN0, CAN1 32 message objects 4 serial channels U0C0, U0C1, U1C0, U1C1 Data Sheet 6 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information 2 General Device Information The XE161xL series (16-Bit Single-Chip Real Time Signal Controller) is a part of the Infineon XE166 Family of full-feature singlechip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM. VAREF VAGND (1) VDDIMVDDPB VSS (1) (2) (3) (3) XTAL1 XTAL2 Port 10 12 bit Port 2 12 bit Port 5 6 bit Port 6 3 bit PORST TRST SPD/DAP/ Debug JTAG 2 bit TESTM 1 / 2 / 4 bit via Port Pins MC_XY _LOGSYMB 48 Figure 1 Data Sheet XE161xL Logic Symbol 7 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information 2.1 Pin Configuration and Definition 48 47 46 45 44 43 42 41 40 39 38 37 PORST XTAL1 XTAL2 P10.12 P10.10 VDDIM VSS VDDPB P10.9 P10.8 P10.7 P10.6 The pins of the XE161xL are described in detail in Table 6, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package. 1 2 3 4 5 6 7 8 9 10 11 12 VQFN48 36 35 34 33 32 31 30 29 28 27 26 25 P10.5 P10.4 P10.3 P10.2 P10.1 P10.0 P2.13 P2.10 P2.9 P2.8 P2.7 P2.6 P5.4 P5.8 P5.9 P2.0 P2.1 VDDIM VSS VDDPB P2.2 P2.3 P2.4 P2.5 13 14 15 16 17 18 19 20 21 22 23 24 TESTM TRST P6.3 P6.1 P6.0 VSS VDDPB VAREF VAGND P5.0 P5.2 P5.3 MC_XY_PIN48 Figure 2 Data Sheet XE161xL Pin Configuration (top view) 8 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Key to Pin Definitions • • Ctrl.: The output signal for a port pin is selected by bit field PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to 1x00B, output O1 is selected by 1x01B, etc. Output signal OH is controlled by hardware. Type: Indicates the pad type and its power supply domain (B, M). – St: Standard pad – Sp: Special pad e.g. XTALx – DA: Digital IO and analog input – In: Input only pad – PS: Power supply pad Table 6 Pin Definitions and Functions Pin Symbol Ctrl. Type Function 1 TESTM I In/B Testmode Enable Enables factory test modes, must be held HIGH for normal operation (connect to VDDPB). An internal pullup device will hold this pin high when nothing is driving it. 2 TRST I In/B Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XE161xL’s debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pulldown device will hold this pin low when nothing is driving it. 3 P6.3 O0 / I St/B Bit 3 of Port 6, General Purpose Input/Output CCU63_COU O1 T62 St/B CCU63 Channel 2 Output T3OUT O2 St/B GPT12E Timer T3 Toggle Latch Output U1C1_SELO 0 O3 St/B USIC1 Channel 1 Select/Control 0 Output U1C1_DX2D I St/B USIC1 Channel 1 Shift Control Input ADC0_REQT I RyF St/B External Request Trigger Input for ADC0/1 Data Sheet 9 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 4 P6.1 O0 / I DA/B Bit 1 of Port 6, General Purpose Input/Output 5 ADC0_CH17 I DA/B Analog Input Channel 17 for ADC0 EMUX1 O1 DA/B External Analog MUX Control Output 1 (ADC0) T3OUT O2 DA/B GPT12E Timer T3 Toggle Latch Output U1C1_DOUT O3 DA/B USIC1 Channel 1 Shift Data Output ADC0_REQT I RyE DA/B External Request Trigger Input for ADC0 CCU63_CTR APB I DA/B CCU63 Emergency Trap Input U1C1_DX0A I DA/B USIC1 Channel 1 Shift Data Input DA/B ESR1 Trigger Input 6 ESR1_6 I P6.0 O0 / I DA/B Bit 0 of Port 6, General Purpose Input/Output ADC0_CH16 I EMUX0 O1 11 12 DA/B Analog Input Channel 16 for ADC0 DA/B External Analog MUX Control Output 0 (ADC0) CCU63_COU O2 T61 DA/B CCU63 Channel 1 Output BRKOUT DA/B OCDS Break Signal Output O3 ADC0_REQG I TyG 10 Type Function DA/B External Request Gate Input for ADC0 U1C1_DX0E I DA/B USIC1 Channel 1 Shift Data Input P5.0 I In/B Bit 0 of Port 5, General Purpose Input ADC0_CH0 I In/B Analog Input Channel 0 for ADC0 P5.2 I In/B Bit 2 of Port 5, General Purpose Input ADC0_CH2 I In/B Analog Input Channel 2 for ADC0 TDI_A I In/B JTAG Test Data Input P5.3 I In/B Bit 3 of Port 5, General Purpose Input ADC0_CH3 I In/B Analog Input Channel 3 for ADC0 T3INA I In/B GPT12E Timer T3 Count/Gate Input Data Sheet 10 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 13 P5.4 I In/B Bit 4 of Port 5, General Purpose Input ADC0_CH4 I In/B Analog Input Channel 4 for ADC0 CCU63_T12 HRB I In/B External Run Control Input for T12 of CCU63 T3EUDA I In/B GPT12E Timer T3 External Up/Down Control Input TMS_A I In/B JTAG Test Mode Selection Input 14 15 16 P5.8 I In/B Bit 8 of Port 5, General Purpose Input ADC0_CH8 I In/B Analog Input Channel 8 for ADC0 CCU6x_T12H I RC In/B External Run Control Input for T12 of CCU60/3 CCU6x_T13H I RC In/B External Run Control Input for T13 of CCU60/3 P5.9 I In/B Bit 9 of Port 5, General Purpose Input ADC0_CH9 I In/B Analog Input Channel 9 for ADC0 CC2_T7IN I In/B CAPCOM2 Timer T7 Count Input P2.0 O0 / I DA/B Bit 0 of Port 2, General Purpose Input/Output CCU63_CC6 0 O2 DA/B CCU63 Channel 0 Output RxDC0C I DA/B CAN Node 0 Receive Data Input CCU63_CC6 0INB I DA/B CCU63 Channel 0 Input ADC0_CH19 I DA/B Analog Input Channel 19 for ADC0 T5INB I DA/B GPT12E Timer T5 Count/Gate Input Data Sheet 11 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 17 P2.1 O0 / I DA/B Bit 1 of Port 2, General Purpose Input/Output 21 22 Type Function TxDC0 O1 DA/B CAN Node 0 Transmit Data Output CCU63_CC6 1 O2 DA/B CCU63 Channel 1 Output CCU63_CC6 1INB I DA/B CCU63 Channel 1 Input ADC0_CH20 I DA/B Analog Input Channel 20 for ADC0 T5EUDB I DA/B GPT12E Timer T5 External Up/Down Control Input ESR1_5 I DA/B ESR1 Trigger Input 5 ERU_0A0 I DA/B External Request Unit Channel 0 Input A0 P2.2 O0 / I St/B Bit 2 of Port 2, General Purpose Input/Output TxDC1 O1 St/B CAN Node 1 Transmit Data Output CCU63_CC6 2 O2 St/B CCU63 Channel 2 Output CCU63_CC6 2INB I St/B CCU63 Channel 2 Input ESR2_5 I St/B ESR2 Trigger Input 5 ERU_1A0 I St/B External Request Unit Channel 1 Input A0 P2.3 O0 / I St/B Bit 3 of Port 2, General Purpose Input/Output U0C0_DOUT O1 St/B USIC0 Channel 0 Shift Data Output CCU63_COU O2 T63 St/B CCU63 Channel 3 Output CC2_CC16 O3 / I St/B CAPCOM2 CC16IO Capture Inp./ Compare Out. ESR2_0 I St/B ESR2 Trigger Input 0 U0C0_DX0E I St/B USIC0 Channel 0 Shift Data Input U0C1_DX0D I St/B USIC0 Channel 1 Shift Data Input RxDC0A I St/B CAN Node 0 Receive Data Input Data Sheet 12 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 23 P2.4 O0 / I St/B 24 25 Type Function Bit 4 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output CC2_CC17 O3 / I St/B CAPCOM2 CC17IO Capture Inp./ Compare Out. ESR1_0 I St/B ESR1 Trigger Input 0 U0C0_DX0F I St/B USIC0 Channel 0 Shift Data Input RxDC1A I St/B CAN Node 1 Receive Data Input P2.5 O0 / I St/B Bit 5 of Port 2, General Purpose Input/Output U0C0_SCLK OUT O1 St/B USIC0 Channel 0 Shift Clock Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output CC2_CC18 O3 / I St/B CAPCOM2 CC18IO Capture Inp./ Compare Out. U0C0_DX1D I St/B USIC0 Channel 0 Shift Clock Input ESR1_10 I St/B ESR1 Trigger Input 10 P2.6 O0 / I St/B Bit 6 of Port 2, General Purpose Input/Output U0C0_SELO 0 O1 St/B USIC0 Channel 0 Select/Control 0 Output U0C1_SELO 1 O2 St/B USIC0 Channel 1 Select/Control 1 Output CC2_CC19 O3 / I St/B CAPCOM2 CC19IO Capture Inp./ Compare Out. CLKIN1 I St/B Clock Signal Input 1 U0C0_DX2D I St/B USIC0 Channel 0 Shift Control Input RxDC0D I St/B CAN Node 0 Receive Data Input ESR2_6 I St/B ESR2 Trigger Input 6 Data Sheet 13 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 26 P2.7 O0 / I St/B Bit 7 of Port 2, General Purpose Input/Output U0C1_SELO 0 O1 St/B USIC0 Channel 1 Select/Control 0 Output U0C0_SELO 1 O2 St/B USIC0 Channel 0 Select/Control 1 Output CC2_CC20 O3 / I St/B CAPCOM2 CC20IO Capture Inp./ Compare Out. U0C1_DX2C I St/B USIC0 Channel 1 Shift Control Input ESR2_7 I St/B ESR2 Trigger Input 7 RxDC1C I St/B CAN Node 1 Receive Data Input U1C0_DX0A I St/B USIC1 Channel 0 Shift Data Input 27 28 29 Type Function P2.8 O0 / I St/B Bit 8 of Port 2, General Purpose Input/Output U0C1_SCLK OUT O1 St/B USIC0 Channel 1 Shift Clock Output EXTCLK O2 St/B Programmable Clock Signal Output CC2_CC21 O3 / I St/B CAPCOM2 CC21IO Capture Inp./ Compare Out. U0C1_DX1D I USIC0 Channel 1 Shift Clock Input P2.9 O0 / I St/B St/B Bit 9 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output TxDC1 O2 St/B CAN Node 1 Transmit Data Output CC2_CC22 O3 / I St/B CAPCOM2 CC22IO Capture Inp./ Compare Out. C1 I St/B Configuration Pin 1 TCK_A I St/B DAP0/JTAG Clock Input P2.10 O0 / I St/B Bit 10 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output U0C0_SELO 3 O2 St/B USIC0 Channel 0 Select/Control 3 Output CC2_CC23 O3 / I St/B CAPCOM2 CC23IO Capture Inp./ Compare Out. U0C1_DX0E I St/B USIC0 Channel 1 Shift Data Input CAPINA I St/B GPT12E Register CAPREL Capture Input Data Sheet 14 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 30, P2.13 O0 / I St/B 31 32 33 Type Function Bit 13 of Port 2, General Purpose Input/Output U1C1_DOUT O1 St/B USIC1 Channel 1 Shift Data Output CCU63_COU O2 T60 St/B CCU63 Channel 0 Output U1C1_DX0B I St/B USIC1 Channel 1 Shift Data Input U1C0_DX0B I St/B USIC1 Channel 0 Shift Data Input P10.0 O0 / I St/B Bit 0 of Port 10, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output CCU60_CC6 0 O2 St/B CCU60 Channel 0 Output CCU60_CC6 0INA I St/B CCU60 Channel 0 Input ESR1_2 I St/B ESR1 Trigger Input 2 U0C0_DX0A I St/B USIC0 Channel 0 Shift Data Input U0C1_DX0A I St/B USIC0 Channel 1 Shift Data Input U1C1_DX0C I St/B USIC1 Channel 1 Shift Data Input P10.1 O0 / I St/B Bit 1 of Port 10, General Purpose Input/Output U0C0_DOUT O1 St/B USIC0 Channel 0 Shift Data Output CCU60_CC6 1 O2 St/B CCU60 Channel 1 Output CCU60_CC6 1INA I St/B CCU60 Channel 1 Input U0C0_DX0B I St/B USIC0 Channel 0 Shift Data Input U0C0_DX1A I St/B USIC0 Channel 0 Shift Clock Input P10.2 O0 / I St/B Bit 2 of Port 10, General Purpose Input/Output U0C0_SCLK OUT O1 St/B USIC0 Channel 0 Shift Clock Output CCU60_CC6 2 O2 St/B CCU60 Channel 2 Output CCU60_CC6 2INA I St/B CCU60 Channel 2 Input U0C0_DX1B I St/B USIC0 Channel 0 Shift Clock Input Data Sheet 15 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 34 P10.3 O0 / I St/B 35 36 37 Type Function Bit 3 of Port 10, General Purpose Input/Output CCU60_COU O2 T60 St/B CCU60 Channel 0 Output U0C0_DX2A St/B USIC0 Channel 0 Shift Control Input I U0C1_DX2A I St/B USIC0 Channel 1 Shift Control Input RxDC1D I St/B CAN Node 1 Receive Data Input P10.4 O0 / I St/B Bit 4 of Port 10, General Purpose Input/Output U0C0_SELO 3 O1 St/B USIC0 Channel 0 Select/Control 3 Output CCU60_COU O2 T61 St/B CCU60 Channel 1 Output U0C0_DX2B I St/B USIC0 Channel 0 Shift Control Input U0C1_DX2B I St/B USIC0 Channel 1 Shift Control Input ESR1_9 I St/B ESR1 Trigger Input 9 P10.5 O0 / I St/B Bit 5 of Port 10, General Purpose Input/Output U0C1_SCLK OUT O1 St/B USIC0 Channel 1 Shift Clock Output CCU60_COU O2 T62 St/B CCU60 Channel 2 Output U0C1_DX1B I St/B USIC0 Channel 1 Shift Clock Input P10.6 O0 / I St/B U0C0_DOUT O1 Bit 6 of Port 10, General Purpose Input/Output St/B USIC0 Channel 0 Shift Data Output U1C0_DOUT O2 St/B USIC1 Channel 0 Shift Data Output U1C0_SELO 0 O3 St/B USIC1 Channel 0 Select/Control 0 Output U0C0_DX0C I St/B USIC0 Channel 0 Shift Data Input U1C0_DX2D I St/B USIC1 Channel 0 Shift Control Input CCU6x_CTR APA I St/B CCU60/CCU63 Emergency Trap Input U1C0_DX0F I St/B USIC1 Channel 0 Shift Data Input Data Sheet 16 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 38 P10.7 O0 / I St/B 39 Type Function Bit 7 of Port 10, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output CCU60_COU O2 T63 St/B CCU60 Channel 3 Output CCU63_COU O3 T61 St/B CCU63 Channel 1 Output U0C1_DX0B I St/B USIC0 Channel 1 Shift Data Input CCU60_CCP I OS0A St/B CCU60 Position Input 0 T4INB I St/B GPT12E Timer T4 Count/Gate Input P10.8 O0 / I St/B Bit 8 of Port 10, General Purpose Input/Output U0C0_MCLK OUT O1 St/B USIC0 Channel 0 Master Clock Output U0C1_SELO 0 O2 St/B USIC0 Channel 1 Select/Control 0 Output U1C0_SCLK OUT O3 St/B USIC1 Channel 0 Shift Clock Output CCU60_CCP I OS1A St/B CCU60 Position Input 1 U0C0_DX1C St/B USIC0 Channel 0 Shift Clock Input I BRKIN_B I St/B OCDS Break Signal Input T3EUDB I St/B GPT12E Timer T3 External Up/Down Control Input U1C0_DX1A I St/B USIC1 Channel 0 Shift Clock Input ESR2_11 I St/B ESR2 Trigger Input 11 Data Sheet 17 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 40 P10.9 O0 / I St/B Bit 9 of Port 10, General Purpose Input/Output U0C0_SELO 4 O1 St/B USIC0 Channel 0 Select/Control 4 Output U0C1_MCLK OUT O2 St/B USIC0 Channel 1 Master Clock Output TxDC1 O3 44 45 46 Type Function St/B CAN Node 1 Transmit Data Output CCU60_CCP I OS2A St/B CCU60 Position Input 2 TCK_B I St/B DAP0/JTAG Clock Input T3INB I St/B GPT12E Timer T3 Count/Gate Input P10.10 O0 / I St/B Bit 10 of Port 10, General Purpose Input/Output U0C0_SELO 0 O1 St/B USIC0 Channel 0 Select/Control 0 Output CCU60_COU O2 T63 St/B CCU60 Channel 3 Output U1C0_DOUT O3 St/B USIC1 Channel 0 Shift Data Output U0C0_DX2C I St/B USIC0 Channel 0 Shift Control Input TDI_B I St/B JTAG Test Data Input U0C1_DX1A I St/B USIC0 Channel 1 Shift Clock Input P10.12 O0 / I St/B Bit 12 of Port 10, General Purpose Input/Output U1C0_DOUT O1 St/B USIC1 Channel 0 Shift Data Output U0C0_DOUT O2 St/B USIC0 Channel 0 Shift Data Output CCU63_COU O3 T62 St/B CCU63 Channel 2 Output TDO_A OH St/B DAP1/JTAG Test Data Output SPD_0 I/OH St/B SPD Input/Output C0 I St/B Configuration Pin 0 U0C0_DX0D I St/B USIC0 Channel 0 Shift Data Input U1C0_DX0C I St/B USIC1 Channel 0 Shift Data Input U1C0_DX1E I St/B USIC1 Channel 0 Shift Clock Input XTAL2 O Sp/M Crystal Oscillator Amplifier Output Data Sheet 18 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 47 XTAL1 I Sp/M Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage VDDIM. ESR2_9 I St/B ESR2 Trigger Input 9 48 PORST I In/B Power On Reset Input A low level at this pin resets the XE161xL completely. A spike filter suppresses input pulses 100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pullup device will hold this pin high when nothing is driving it. 8 VAREF VAGND VDDIM - PS/B Reference Voltage for A/D Converters ADC0 - PS/B Reference Ground for A/D Converters ADC0 - PS/M Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details. All VDDIM pins must be connected to each other. 7, 20, 41 VDDPB - PS/B Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent VDDP/VSS pin pairs as close as possible to the pins. 6, 19, 42 VSS - PS/-- Digital Ground All VSS pins must be connected to the ground-line or ground-plane. 9 18, 43 Data Sheet 19 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line General Device Information 2.2 Identification Registers The identification registers describe the current version of the XE161xL and of its modules. Table 7 XE161xL Identification Registers Short Name Value Address SCU_IDMANUF 1820H 00’F07EH SCU_IDCHIP 2801H 00’F07CH SCU_IDMEM 3028H 00’F07AH SCU_IDPROG 1313H 00’F078H JTAG_ID 001D’6083H --- Data Sheet 20 Notes V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Functional Description 3 Functional Description The architecture of the XE161xL combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication. The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see Figure 3). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XE161xL. The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XE161xL. DPRAM DMU Flash Memory OCDS Debug Support DSRAM CPU PMU IMB PSRAM MAC Unit LXBUS Controller WWD System Functions Clock, Reset, Power Control MPU Interrupt & PEC RTC LXBus MCHK ADC0 Module GPT CC2 Module CCU6 x Modules 8-/10- / 12 -Bit 5 Timers 16 Chan. 3+1 Chan. each Peripheral Data Bus Interrupt Bus USICx Modules Multi CAN 2 Chan. each Analog and Digital General Purpose IO (GPIO) Ports MC_L-SERIES_BLOCKDIAGRAM Figure 3 Data Sheet Block Diagram 21 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Functional Description 3.1 Memory Subsystem and Organization The memory space of the XE161xL is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space. Table 8 XE161xL Memory Map 1) Address Area Start Loc. End Loc. Area Size2) IMB register space FF’FF00H FF’FFFFH 256 bytes Reserved F0’0000H FF’FEFFH < 1 Mbyte Minus IMB registers. Reserved for EPSRAM E8’1000H EF’FFFFH 508 Kbytes Mirrors EPSRAM Emulated PSRAM E8’0000H E8’0FFFH up to 4 Kbytes With Flash timing. Reserved for PSRAM E0’1000H E7’FFFFH 508 Kbytes PSRAM E0’0000H E0’0FFFH up to 4 Kbytes Program SRAM. Reserved for Flash C4’8000H DF’FFFFH 1760 Kbytes Flash 1 C4’0000H C4’7FFFH Reserved for Flash C2’1000H C3’FFFFH 124 Kbytes Flash 0 C0’0000H C2’0FFFH 40’0000H BF’FFFFH 8 Mbytes 21’0000H 3F’FFFFH 1984 Kbytes Reserved 20’B800H 20’FFFFH 18 Kbytes USIC0-1 alternate regs. 20’B000H 20’B7FFH 2 Kbytes Accessed via LXBus Controller MultiCAN alternate regs. 20’8000H 20’AFFFH 12 Kbytes Accessed via LXBus Controller Reserved 20’5000H 20’7FFFH 12 Kbytes USIC0-1 registers 20’4000H 20’4FFFH 4 Kbytes Accessed via LXBus Controller MultiCAN registers 20’0000H 20’3FFFH 16 Kbytes Accessed via LXBus Controller External memory area 01’0000H 1F’FFFFH 1984 Kbytes SFR area 00’FE00H 00’FFFFH 0.5 Kbytes Dual-port RAM (DPRAM) 00’F600H 00’FDFFH 2 Kbytes Reserved for DPRAM 00’F200H 00’F5FFH 1 Kbytes External memory area External IO area Data Sheet 4) 22 Notes Mirrors PSRAM 32 Kbytes 132 Kbytes3) V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Functional Description Table 8 XE161xL Memory Map (cont’d)1) (cont’d) Address Area Start Loc. End Loc. Area Size2) ESFR area 00’F000H 00’F1FFH 0.5 Kbytes XSFR area 00’E000H 00’EFFFH 4 Kbytes Data SRAM (DSRAM) 00’C800H 00’DFFFH 6 Kbytes Reserved for DSRAM 00’8000H 00’C7FFH 18 Kbytes External memory area 00’0000H 00’7FFFH 32 Kbytes Notes 1) Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses. 2) The areas marked with “ VDDP or VIN < VSS) the voltage on VDDP pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Data Sheet 52 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.1.1 Operating Conditions The following operating conditions must not be exceeded to ensure correct operation of the XE161xL. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed. Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable. Table 13 Operating Conditions Parameter Symbol Voltage Regulator Buffer Capacitance for DMP_M CEVRM External Load Capacitance CL SR Values Unit Min. Typ. Max. 1.0 − 4.7 μF − 203) − pF Note / Test Condition 1)2) SR pin out driver= default 4) System frequency Overload current for analog inputs6) fSYS SR − IOVA SR -2 Overload current for digital IOVD SR -5 inputs6) Overload current coupling KOVA factor for analog inputs7) CC − − Data Sheet 53 − 80 MHz 5) − 5 mA not subject to production test − 5 mA not subject to production test 2.5 x 10-4 1.5 x 10-3 - IOV< 0 mA; not 1.0 x 10-6 1.0 x 10-4 - subject to production test IOV> 0 mA; not subject to production test V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 13 Operating Conditions (cont’d) Parameter Symbol Overload current coupling KOVD factor for digital I/O pins CC Values Unit Typ. Max. − 1.0 x 10-2 3.0 x 10-2 IOV< 0 mA; not 1.0 x 10-4 5.0 x 10-3 IOV> 0 mA; not − subject to production test subject to production test Σ|IOV| SR − − 30 mA Digital core supply voltage VDDIM for domain M8) CC − 1.5 − V − 5.5 V 0 − V Absolute sum of overload currents Note / Test Condition Min. Digital supply voltage for IO pads and voltage regulators VDDP SR 3.0 Digital ground voltage VSS SR − not subject to production test 1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each VDDIM pin to keep the resistance of the board tracks below 2 Ohm. Connect all VDDIM pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time. 2) Use one Capacitor for each pin. 3) This is the reference load. For bigger capacitive loads, use the derating factors listed in the PAD properties section. 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (CL). 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 66 MHz devices are marked ...F66L. 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin ((IOV < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1. 7) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error current adds to the respective pins leakage current (IOZ). The amount of error current depends on the overload current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it.The total current through a pin is |ITOT| = |IOZ| + (|IOV| KOV). The additional error current may distort the input voltage on analog inputs. Data Sheet 54 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 8) Value is controlled by on-chip regulator. 4.2 Voltage Range definitions The XE161xL timing depends on the supply voltage. If such a dependency exists the timing values are given for 2 voltage areas commonly used. The voltage areas are defined in the following tables. Table 14 Upper Voltage Range Definition Parameter Symbol Values Min. Digital supply voltage for IO pads and voltage regulators Table 15 VDDP SR 4.5 Max. 5.0 5.5 Note / Test Condition V Lower Voltage Range Definition Parameter Symbol Digital supply voltage for IO pads and voltage regulators VDDP SR 3.0 Values Min. 4.2.1 Unit Typ. Unit Typ. Max. 3.3 4.5 Note / Test Condition V Parameter Interpretation The parameters listed in the following include both the characteristics of the XE161xL and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column “Symbol”: CC (Controller Characteristics): The logic of the XE161xL provides signals with the specified characteristics. SR (System Requirement): The external system must provide signals with the specified characteristics to the XE161xL. Data Sheet 55 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.3 DC Parameters These parameters are static or average values that may be exceeded during switching transitions (e.g. output current). The XE161xL can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range. Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range. During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms. Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage. The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application. The pads of the XE161xL are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in Section 4.7.4. Data Sheet 56 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Pullup/Pulldown Device Behavior Most pins of the XE161xL feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application. The specified current values indicate how to load the respective pin depending on the intended signal level. Figure 12 shows the current paths. The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values. VDDP Pullup Pulldown VSS MC_XC2X_PULL Figure 12 Data Sheet Pullup/Pulldown Current Definition 57 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.3.1 DC Parameters for Upper Voltage Area Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. Note: Operating Conditions apply. Table 16 is valid under the following conditions: VDDP≤ 5.5 V; VDDPtyp. 5 V; VDDP≥ 4.5 V Table 16 DC Characteristics for Upper Voltage Range Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. − − 10 pF not subject to production test − − V RS= 0 Ohm Pin capacitance (digital inputs/outputs). CIO CC Input Hysteresis1) HYS CC 0.11 x VDDP Absolute input leakage current on pins of analog ports2) |IOZ1| CC − 10 200 nA VIN> VSS ; VIN< VDDP Absolute input leakage current for all other pins. |IOZ2| CC − 0.2 5 μA − 0.2 10 μA − − μA − − 30 μA TJ≤ 110 °C; VIN> VSS ; VIN< VDDP TJ≤ 150 °C; VIN> VSS ; VIN< VDDP VIN≥ VIHmin (pulldown_ena bled); VIN≤ VILmax (pullup_enable d) VIN≥ VIHmin (pullup_enable d); VIN≤ VILmax (pulldown_ena bled) 0.7 x − 2)3) Pull Level Force Current4) |IPLF| SR 220 Pull Level Keep Current5) |IPLK| SR Input high voltage (all except XTAL1) VIH SR Data Sheet VDDP 58 VDDP + V 0.3 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 16 DC Characteristics for Upper Voltage Range (cont’d) Parameter Symbol Values Unit Min. Typ. Max. -0.3 − 0.3 x Input low voltage (all except XTAL1) VIL SR Output High voltage6) VOH CC VDDP - − Note / Test Condition V VDDP − V IOH≥ IOHmax − V IOH≥ IOHnom 7) IOL≤ IOLnom 8) IOL≤ IOLmax 1.0 VDDP - − 0.4 Output Low Voltage6) VOL CC − − 0.4 V − − 1.0 V 1) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions. 2) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple (VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor KOV. 3) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level (DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation which applies for maximum temperature. 4) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device. 5) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level. 6) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit. 7) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. 8) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. Data Sheet 59 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.3.2 DC Parameters for Lower Voltage Area Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. Note: Operating Conditions apply. Table 17 is valid under the following conditions: VDDP≥ 3.0 V; VDDPtyp. 3.3 V; VDDP≤ 4.5 V Table 17 DC Characteristics for Lower Voltage Range Parameter Symbol Values Pin capacitance (digital inputs/outputs). CIO CC Input Hysteresis1) HYS CC 0.07 x Unit Note / Test Condition Min. Typ. Max. − − 10 pF not subject to production test − − V RS= 0 Ohm VDDP Absolute input leakage current on pins of analog ports2) |IOZ1| CC − 10 200 nA VIN> VSS ; VIN< VDDP Absolute input leakage current for all other pins. |IOZ2| CC − 0.2 2 μA − 0.2 6 μA − − μA − 10 μA TJ≤ 110 °C; VIN> VSS ; VIN< VDDP TJ≤ 150 °C; VIN> VSS ; VIN< VDDP VIN≥ VIHmin (pulldown_ena bled); VIN≤ VILmax (pullup_enable d) ; VIN≥ VIHmin (pullup_enable d); VIN≤ VILmax (pulldown_ena bled) 2)3) Pull Level Force Current4) |IPLF| SR 150 Pull Level Keep Current5) Data Sheet |IPLK| SR − 60 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 17 DC Characteristics for Lower Voltage Range (cont’d) Parameter Symbol Values Min. Typ. 0.7 x − Input high voltage (all except XTAL1) VIH SR Input low voltage (all except XTAL1) VIL SR Output High voltage6) VOH CC VDDP - − VDDP Note / Test Condition VDDP + V 0.3 − -0.3 Unit Max. 0.3 x V VDDP − V IOH≥ IOHmax − V IOH≥ IOHnom 7) IOL≤ IOLnom 8) IOL≤ IOLmax 1.0 VDDP - − 0.4 Output Low Voltage6) VOL CC − − 0.4 V − − 1.0 V 1) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions. 2) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple (VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor KOV. 3) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level (DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation which applies for maximum temperature. 4) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device. 5) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level. 6) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit. 7) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. 8) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. Data Sheet 61 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.3.3 Power Consumption The power consumed by the XE161xL depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components: • • The switching current IS depends on the device activity The leakage current ILK depends on the device temperature To determine the actual power consumption, always both components, switching current IS and leakage current ILK must be added: IDDP = IS + ILK. Note: The power consumption values are not subject to production test. They are verified by design/characterization. To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered. The given power consumption parameters and their values refer to specific operating conditions: • • Active mode: Regular operation, i.e. peripherals are active, code execution out of Flash. Stopover mode: Crystal oscillator and PLL stopped, Flash switched off, clock in most parts of domain DMP_M stopped. Note: The maximum values cover the complete specified operating range of all manufactured devices. The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity. After a power reset, the decoupling capacitors for VDDIM are charged with the maximum possible current. For additional information, please refer to Section 5.2, Thermal Considerations. Note: Operating Conditions apply. Data Sheet 62 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 18 Parameter Switching Power Consumption Symbol Power supply current ISACT (active) with all peripherals CC active and EVVRs on Values Unit Note / Test Condition 6 + 0.5 8 + x fSYS1) 0.75 x mA power_mode= active ; voltage_range= both 2)3)4) 0.7 mA power_mode= stopover ; voltage_range= both Min. Typ. − Max. fSYS1) Power supply current in ISSO CC − stopover mode, EVVRs on 2.0 1) fSYS in MHz 2) The pad supply voltage pins (VDDPB) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched. 3) Please consider the additional conditions described in section "Active Mode Power Supply Current". 4) The pad supply voltage only has a minor influence on this parameter. Active Mode Power Supply Current The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XE161xL’s subsystem. Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers. A small current is consumed because the drivers’ input stages are switched. Data Sheet 63 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters IS [mA] 80 ISACTmax 70 60 ISACTtyp 50 40 30 20 10 20 40 80 60 fSYS [MHz] MC_XC2XL_IS Figure 13 Supply Current in Active Mode as a Function of Frequency Note: Operating Conditions apply. Table 19 Parameter Leakage Power Consumption Symbol Leakage supply current1)2) ILK1 CC Values Unit Note / Test Condition 0.04 mA 0.4 1.1 mA 1.7 4.9 mA 3.5 10.7 mA TJ= 25 °C TJ= 85 °C TJ= 125 °C TJ= 150 °C Min. Typ. Max. − 0.03 − − − 1) The supply current caused by leakage depends mainly on the junction temperature and the supply voltage. The temperature difference between the junction temperature TJ and the ambient temperature TA must be taken into account. As this fraction of the supply current does not depend on device activity, it must be added to other power consumption values. 2) All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP and all outputs (including pins configured as outputs) are disconnected. Data Sheet 64 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Leakage Power Consumption Calculation The leakage power consumption can be calculated according to the following formulas: ILK1 = 470,000 + e-α with α = 5000 / (273 + B×TJ) Parameter B must be replaced by • • 1.0 for typical values 1.3 for maximum values ILK [mA] ILK1max 12 10 8 6 ILK1typ 4 2 -50 0 50 100 125 150 TJ [°C] MC_XC2XL_ILKN Figure 14 Leakage Supply Current as a Function of Temperature Data Sheet 65 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.4 Analog/Digital Converter Parameters These parameters describe the conditions for optimum ADC performance. Note: Operating Conditions apply. Table 20 ADC Parameters for All Voltage Ranges Parameter Symbol Switched capacitance at an analog input CAINSW Values Min. Typ. Max. − 9 20 Unit Note / Test Condition pF not subject to production test CC 1) Total capacitance at an analog input CAINT − 20 30 pF CC not subject to production test 1) Switched capacitance at the reference input CAREFSW − 15 30 pF CC not subject to production test 1) Total capacitance at the reference input CAREFT − 20 40 pF CC not subject to production test 1) Broken wire detection delay against VAGND2) tBWG CC − − 503) Broken wire detection delay against VAREF2) tBWR CC − − 504) Conversion time for 8-bit result2) tc8 CC tSYS Conversion time for 10-bit tc10 CC result2) Conversion time for 12-bit tc12 CC result2) Analog reference ground Analog input voltage range Analog reference voltage (10 + STC x tADCI + 2 x (12 + STC x tADCI + 2 x tSYS (16 + STC x tADCI + 2 x VAGND tSYS VSS - SR 0.05 − 1.5 V VAIN SR VAGND − VAREF V VAREF VAGND − VDDPB V SR + 1.0 5) + 0.05 1) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. Data Sheet 66 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock tADCI depend on programming. 3) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 µs. Result below 10% (66H) 4) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 µs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332H) 5) VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these cases will be X000H or X3FFH, respectively. Table 21 ADC Parameters for Upper Voltage Range Parameter Symbol Values Input resistance of the selected analog channel RAIN CC − Min. Typ. Max. 0.9 1.5 Unit Note / Test Condition kOh m not subject to production test 1) Input resistance of the reference input RAREF − 0.5 1 CC kOh m not subject to production test 1) Differential Non-Linearity Error2)3)4)5) |EADNL| CC − 2.5 5.0 LSB Gain Error2)3)4)5) |EAGAIN| − CC 2.5 6.0 LSB Integral NonLinearity2)3)4)5) |EAINL| CC − 2.0 4.0 LSB Offset Error2)3)4)5) |EAOFF| CC − 2.0 4.0 LSB Analog clock frequency fADCI SR 2 − 20 MHz Std. reference input (VAREF) 2 − 17.5 MHz Alt. reference input (CH0) − 2.5 5.5 LSB Wakeup time from analog tWAF CC − powerdown, fast mode − 7.0 μs Wakeup time from analog tWAS CC − powerdown, slow mode − 11.5 μs Total Unadjusted Error3)4) Data Sheet |TUE| CC 67 6)7) V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 1) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. 2) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error. 3) If a reduced analog reference voltage between 1V and VDDPB / 2 is used, then there are additional decrease in the ADC speed and accuracy. 4) If the analog reference voltage range is below VDDPB but still in the defined range of VDDPB / 2 and VDDPB is used, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k VDDPB, then the ADC converter errors increase. 6) TUE is based on 12-bit conversion. 7) TUE is tested at VAREF = VDDPB = 5.0 V, VAGND = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the measurement time. Table 22 ADC Parameters for Lower Voltage Range Parameter Symbol Values Min. Input resistance of the selected analog channel RAIN CC − Typ. Max. 1.4 2.5 Unit Note / Test Condition kOh m not subject to production test 1) Input resistance of the reference input RAREF − 1.0 2.0 CC kOh m not subject to production test 1) Differential Non-Linearity Error2)3)4)5) |EADNL| CC − 2.5 5.5 LSB Gain Error2)3)4)5) |EAGAIN| − CC 3.0 8.0 LSB Integral NonLinearity2)3)4)5) |EAINL| CC − 2.5 7.5 LSB Offset Error2)3)4)5) |EAOFF| CC − 2.0 5.5 LSB Analog clock frequency fADCI SR 2 − 16.7 MHz Std. reference input (VAREF) 2 − 12.1 MHz Alt. reference input (CH0) − 2.5 7.5 LSB Total Unadjusted Error3)4) Data Sheet |TUE| CC 68 6)7) V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 22 ADC Parameters for Lower Voltage Range (cont’d) Parameter Symbol Values Min. Unit Typ. Max. Wakeup time from analog tWAF CC − powerdown, fast mode − 8.5 μs Wakeup time from analog tWAS CC − powerdown, slow mode − 15.0 μs Note / Test Condition 1) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. 2) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error. 3) If a reduced analog reference voltage between 1V and VDDPB / 2 is used, then there are additional decrease in the ADC speed and accuracy. 4) If the analog reference voltage range is below VDDPB but still in the defined range of VDDPB / 2 and VDDPB is used, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k VDDPB, then the ADC converter errors increase. 6) TUE is based on 12-bit conversion. 7) TUE is tested at VAREF = VDDPB = 3.3 V, VAGND = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the measurement time. RSource V AIN R AIN, On C AINT - C AINS C Ext A/D Converter CAINS MCS05570 Figure 15 Equivalent Circuitry for Analog Inputs Sample time and conversion time of the XE161xL’s A/D converters are programmable. The timing above can be calculated using Table 23. The limit values for fADCI must not be exceeded when selecting the prescaler value. Data Sheet 69 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 23 A/D Converter Computation Table GLOBCTR.5-0 (DIVA) A/D Converter Analog Clock fADCI INPCRx.7-0 (STC) 000000B fSYS fSYS / 2 fSYS / 3 fSYS / (DIVA+1) fSYS / 63 fSYS / 64 00H 000001B 000010B : 111110B 111111B 01H 02H : FEH FFH Sample Time1) tS tADCI × 2 tADCI × 3 tADCI × 4 tADCI × (STC+2) tADCI × 256 tADCI × 257 1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase). Converter Timing Example A: Assumptions: Analog clock Sample time fSYS fADCI tS = 80 MHz (i.e. tSYS = 12.5 ns), DIVA = 03H, STC = 00H = fSYS / 4 = 20 MHz, i.e. tADCI = 50 ns = tADCI × 2 = 100 ns Conversion 12-bit: tC12 = 16 × tADCI + 2 × tSYS = 16 × 50 ns + 2 × 12.5 ns = 0.825 μs Conversion 10-bit: tC10 = 12 × tADCI + 2 × tSYS = 12 × 50 ns + 2 × 12.5 ns = 0.625 μs Conversion 8-bit: tC8 = 10 × tADCI + 2 × tSYS = 10 × 50 ns + 2 × 12.5 ns = 0.525 μs Converter Timing Example B: Assumptions: Analog clock Sample time fSYS fADCI tS = 66 MHz (i.e. tSYS = 15.2 ns), DIVA = 03H, STC = 00H = fSYS / 4 = 16.5 MHz, i.e. tADCI = 60.6 ns = tADCI × 2 = 121.2 ns Conversion 12-bit: tC12 = 16 × tADCI + 2 × tSYS = 16 × 60.6 ns + 2 × 15.2 ns = 1.0 μs Conversion 10-bit: tC10 Data Sheet = 12 × tADCI + 2 × tSYS = 12 × 60.6 ns + 2 × 15.2 ns = 0.758 μs 70 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Conversion 8-bit: tC8 Data Sheet = 10 × tADCI + 2 × tSYS = 10 × 60.6 ns + 2 × 15.2 ns = 0.636 μs 71 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.5 System Parameters The following parameters specify several aspects which are important when integrating the XE161xL into an application system. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 24 Various System Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition ΔTJ = ≤ 10°C Short-term deviation of internal clock source frequency1) ΔfINT CC -1 − 1 % Internal clock source frequency fINT CC 4.8 5.0 5.2 MHz Wakeup clock source frequency2) fWU CC 400 − 700 kHz FREQSEL= 00 210 − 390 kHz FREQSEL= 01 140 − 260 kHz FREQSEL= 10 110 − 200 kHz FREQSEL= 11 1.9 2.4 ms fWU = 500 kHz − 12 / μs Startup time from poweron with code execution from Flash tSPO CC 1.4 Startup time from stopover tSSO CC 11 / mode with code execution fWU3) from PSRAM Core voltage (PVC) supervision level VPVC CC VLV - Supply watchdog (SWD) supervision level VSWD fWU3) VLV 0.03 CC VLV + 0.07 V 5) 4) VLV - VLV VLV + 0.15 V voltage_range= lower 5) VLV 0.15 VLV VLV + 0.15 V voltage_range= upper 5) 0.106) 1) The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization. 2) This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization. 3) fWU in MHz. Data Sheet 72 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4) This value includes a hysteresis of approximately 50 mV for rising voltage. 5) VLV = selected SWD voltage level 6) The limit VLV - 0.10 V is valid for the OK1 level. The limit for the OK2 level is VLV - 0.15 V. Conditions for tSPO Timing Measurement The time required for the transition from Power-On to Base mode is called tSPO. It is measured under the following conditions: Precondition: The pad supply is valid, i.e. VDDPB is above 3.0 V and remains above 3.0 V even though the XE161xL is starting up. No debugger is attached. Start condition: Power on reset is removed (PORST = 1). End condition: External pin toggle caused by first user instruction executed from Flash after startup. Conditions for tSSO Timing Measurement The time required for the transition from Stopover to Stopover Waked-Up mode is called tSSO. It is measured under the following conditions: Precondition: The Stopover mode has been entered using the procedure defined in the Programmer’s Guide. Start condition: Pin toggle on ESR pin triggering the startup sequence. End condition: External pin toggle caused by first user instruction executed from PSRAM after startup. Data Sheet 73 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Coding of bit fields LEVxV in SWD Configuration Registers After power-on the supply watch dog is preconfigured to operate in the lower voltage range. Table 25 Coding of bit fields LEVxV in Register SWDCON0 Code Default Voltage Level Notes1) 0000B - out of valid operation range 0001B 3.0 V LEV1V: reset request 0010B - 0101B 3.1 V - 3.4 V step width is 0.1 V 0110B 3.6 V 0111B 4.0 V 1000B 4.2 V 1001B 4.5 V LEV2V: no request 1010B - 1110B 4.6 V - 5.0 V step width is 0.1 V 1111B 5.5 V 1) The indicated default levels are selected automatically after a power reset. Coding of bit fields LEVxV in PVC Configuration Registers The core voltages are controlled internally to the nominal value of 1.5 V; a variation of ±10 % is allowed. These operation conditions limit the possible PVC monitoring values to the predefined reset values shown in Table 26. Table 26 Coding of bit fields LEVxV in Registers PVCyCONz Code Default Voltage Level Notes1) 000B - 011B - out of valid operation range 100B 1.35 V LEV1V: reset request 101B 1.45 V LEV2V: interrupt request2) 110B - 111B - out of valid operation range 1) The indicated default levels are selected automatically after a power reset. 2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use this warning level. Data Sheet 74 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.6 Flash Memory Parameters The XE161xL is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XE161xL’s Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 27 Flash Parameters Parameter Symbol Values Unit Min. Typ. Max. − − 21) − − 2) 1 Parallel Flash module program/erase limit depending on Flash read activity NPP SR Flash erase endurance for security pages NSEC SR 10 − − Flash wait states3) NWSFLASH 1 − − SR 2 − − 3 − − 4 − NFL_RD≤ 1 NFL_RD> 1 cycle tRET≥ 20 years s fSYS≤ 8 MHz fSYS≤ 13 MHz fSYS≤ 17 MHz fSYS> 17 MHz − Erase time per sector/page tER CC − 7 8.0 ms Programming time per page tPR CC − 34) 3.5 ms Data retention time tRET CC 20 − − year s Drain disturb limit Data Sheet NDD SR − 32 75 4) − Note / Test Condition NER≤ 1,000 cycl es cycle s V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 27 Flash Parameters (cont’d) Parameter Number of erase cycles Symbol NER SR Values Unit Note / Test Condition Min. Typ. Max. − − 15000 cycle tRET≥ 5 years; s Valid for up to 64 user selected sectors (data storage) − − 1000 cycle tRET≥ 20 years s 1) All Flash module(s) can be erased/programmed while code is executed and/or data is read from only one Flash module or from PSRAM. The Flash module that delivers code/data can, of course, not be erased/programmed. 2) Flash module 1 can be erased/programmed while code is executed and/or data is read from Flash module 0. 3) Value of IMB_IMBCTRL.WSFLASH. 4) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This increases the stated durations noticably only at extremely low system clock frequencies. Access to the XE161xL Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access. Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates. Data Sheet 76 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.7 AC Parameters These parameters describe the dynamic behavior of the XE161xL. 4.7.1 Testing Waveforms These values are used for characterization and production testing (except pin XTAL1). O utput delay O utput delay H old tim e H old tim e 0.8 V DDP 0.7 V DDP Input Signal (driven by tester) 0.3 V DDP 0.2 V DDP O utput S ignal (m easured) O utput tim ings refer to the rising edge of C LKO U T. Input tim ings are calculated from the tim e, w hen the input signal reaches V IH or V IL , respectively. M C D05556C Figure 16 Input Output Waveforms VLoad + 0.1 V V OH - 0.1 V Timing Reference Points V Load - 0.1 V V OL + 0.1 V For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, but begins to float when a 100 mV change from the loaded V OH /V OL level occurs (IOH / IOL = 20 mA). MCA05565 Figure 17 Data Sheet Floating Waveforms 77 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.7.2 Definition of Internal Timing The internal operation of the XE161xL is controlled by the internal system clock fSYS. Because the system clock signal fSYS can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate fSYS. This must be considered when calculating the timing for the XE161xL. Phase Locked Loop Operation (1:N) fI N f SYS TCS Direct Clock Drive (1:1) fI N f SYS TCS Prescaler Operation (N:1) fI N f SYS TCS M C_XC2X_CLOCKGEN Figure 18 Generation Mechanisms for the System Clock Note: The example of PLL operation shown in Figure 18 uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1. The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS). Data Sheet 78 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Direct Drive When direct drive operation is selected (SYSCON0.CLKSEL = 11B), the system clock is derived directly from the input clock signal CLKIN1: fSYS = fIN. The frequency of fSYS is the same as the frequency of fIN. In this case the high and low times of fSYS are determined by the duty cycle of the input clock fIN. Selecting Bypass Operation from the XTAL11) input and using a divider factor of 1 results in a similar configuration. Prescaler Operation When prescaler operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 1B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1): fSYS = fOSC / K1. If a divider factor of 1 is selected, the frequency of fSYS equals the frequency of fOSC. In this case the high and low times of fSYS are determined by the duty cycle of the input clock fOSC (external or internal). The lowest system clock frequency results from selecting the maximum value for the divider factor K1: fSYS = fOSC / 1024. 4.7.2.1 Phase Locked Loop (PLL) When PLL operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 0B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor F (fSYS = fIN × F). F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1): (F = N / (P × K2)). The input clock can be derived either from an external source at XTAL1 or from the onchip clock source. The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly. Adjustment to the input clock continuously changes the frequency of fSYS so that it is locked to fIN. The slight variation causes a jitter of fSYS which in turn affects the duration of individual TCSs. 1) Voltages on XTAL1 must comply to the core supply voltage VDDIM. Data Sheet 79 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances. The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 19). This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal fSYS. The number of VCO cycles is K2 × T, where T is the number of consecutive fSYS cycles (TCS). The maximum accumulated jitter (long-term jitter) DTmax is defined by: DTmax [ns] = ±(220 / (K2 × fSYS) + 4.3) This maximum value is applicable, if either the number of clock cycles T > (fSYS / 1.2) or the prescaler value K2 > 17. In all other cases for a timeframe of T × TCS the accumulated jitter DT is determined by: DT [ns] = DTmax × [(1 - 0.058 × K2) × (T - 1) / (0.83 × fSYS - 1) + 0.058 × K2] fSYS in [MHz] in all formulas. Example, for a period of 3 TCSs @ 33 MHz and K2 = 4: Dmax = ±(220 / (4 × 33) + 4.3) = 5.97 ns (Not applicable directly in this case!) D3 = 5.97 × [(1 - 0.058 × 4) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 4] = 5.97 × [0.768 × 2 / 26.39 + 0.232] = 1.7 ns Example, for a period of 3 TCSs @ 33 MHz and K2 = 2: Dmax = ±(220 / (2 × 33) + 4.3) = 7.63 ns (Not applicable directly in this case!) D3 = 7.63 × [(1 - 0.058 × 2) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 2] = 7.63 × [0.884 × 2 / 26.39 + 0.116] = 1.4 ns Data Sheet 80 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Acc. jitter DT ns ±9 fSYS = 33 MHz fSYS = 66 MHz fVCO = 66 MHz ±8 ±7 f VCO = 132 MHz ±6 ±5 ±4 ±3 ±2 ±1 Cycles T 0 1 20 40 60 80 100 MC_XC2X_JITTER Figure 19 Approximated Accumulated PLL Jitter Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF. The maximum peak-to-peak noise on the pad supply voltage (measured between VDDPB pin and VSS pin) is limited to a peak-to-peak voltage of VPP = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes. PLL frequency band selection Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies: Data Sheet 81 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 28 System PLL Parameters Parameter Symbol Values Min. VCO output frequency 4.7.2.2 Unit Note / Test Condition Typ. Max. fVCO CC 50 − 110 MHz VCOSEL= 00B; VCOmode= controlled 10 − 40 MHz VCOSEL= 00B; VCOmode= free running 100 − 160 MHz VCOSEL= 01B; VCOmode= controlled 20 − 80 MHz VCOSEL= 01B; VCOmode= free running Wakeup Clock When wakeup operation is selected (SYSCON0.CLKSEL = 00B), the system clock is derived from the low-frequency wakeup clock source: fSYS = fWU. In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption. 4.7.2.3 Selecting and Changing the Operating Frequency When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states. Many applications change the frequency of the system clock (fSYS) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply. To ensure proper operation of the on-chip EVRs while they generate the core voltage, the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage. To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer’s Guide. Data Sheet 82 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.7.3 External Clock Input Parameters These parameters specify the external clock generation for the XE161xL. The clock can be generated in two ways: • • By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2. By supplying an external clock signal. This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain). If connected to CLKIN1, the input signal must reach the defined input levels VIL and VIH. If connected to XTAL1, a minimum amplitude VAX1 (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator. Note: The given clock timing parameters (t1 … t4) are only valid for an external clock input signal. Note: Operating Conditions apply. Table 29 External Clock Input Characteristics Parameter Symbol Values Min. Oscillator frequency XTAL1 input current absolute value XTAL11) fOSC SR 4 − 40 MHz Input= Clock Signal 4 − 16 MHz Input= Crystal or Resonator − − 20 μA 6 − − ns 6 − − ns − 8 8 ns − 8 8 ns 0.3 x − − V − − V − − V − 1.7 V |IIL| CC VDDIM 0.4 x VDDIM 0.5 x VDDIM Input voltage range limits for signal on XTAL1 Note / Test Condition Max. t1 SR Input clock low time t2 SR Input clock rise time t3 SR t4 SR Input clock fall time Input voltage amplitude on VAX1 SR Input clock high time Unit Typ. VIX1 SR -1.7 + VDDIM fOSC≥ 4 MHz; fOSC≤ 16 MHz fOSC≥ 16 MHz; fOSC≤ 25 MHz fOSC≥ 25 MHz; fOSC≤ 40 MHz 2) 1) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by VIX1. Data Sheet 83 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 2) Overload conditions must not occur on pin XTAL1. Note: For crystal/resonator operation, it is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation. The manufacturers of crystals and ceramic resonators offer an oscillator evaluation service. This evaluation checks the crystal/resonator specification limits to ensure a reliable oscillatior operation. t1 VOFF t3 0.9 V AX1 0.1 V AX1 VAX1 t2 t4 tOSC = 1/fOSC MC_ EXTCLOCK Figure 20 External Clock Drive XTAL1 Data Sheet 84 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.7.4 Pad Properties The output pad drivers of the XE161xL can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME. The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted. In general, the performance of a pad driver depends on the available supply voltage VDDP. Therefore the following tables list the pad parameters for the upper voltage range and the lower voltage range, respectively. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 30 is valid under the following conditions: VDDP≤ 5.5 V; VDDPtyp. 5 V; VDDP≥ 4.5 V Table 30 Standard Pad Parameters for Upper Voltage Range Parameter Maximum output driver current (absolute value)1) Nominal output driver current (absolute value) Data Sheet Symbol IOmax Values Unit Note / Test Condition 3.0 mA Driver_Strength = Medium − 5.0 mA Driver_Strength = Strong − − 0.5 mA Driver_Strength = Weak − − 1.0 mA Driver_Strength = Medium − − 1.6 mA Driver_Strength = Strong − − 0.25 mA Driver_Strength = Weak Min. Typ. Max. − − − CC IOnom CC 85 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 30 Standard Pad Parameters for Upper Voltage Range (cont’d) Parameter Symbol Rise and Fall times (10% - tRF CC 90%) Values Min. Typ. Max. − − 38 + 0.6 x Unit Note / Test Condition ns CL≥ 20 pF; CL≤ 100 pF; CL − − 1+ 0.45 x Driver_Strength = Medium ns CL − − 16 + 0.45 x Driver_Strength = Strong ; Driver_Edge= Soft ns CL − − 200 + 2.5 x CL≥ 20 pF; CL≤ 100 pF; CL≥ 20 pF; CL≤ 100 pF; Driver_Strength = Strong ; Driver_Edge= Slow ns CL CL≥ 20 pF; CL≤ 100 pF; Driver_Strength = Weak 1) The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and ΣIOH) must remain below 25 mA. Table 31 Standard Pad Parameters for Lower Voltage Range Parameter Symbol Maximum output driver current (absolute value)1) IOmax Data Sheet Values Unit Note / Test Condition Min. Typ. Max. − − 1.8 mA Driver_Strength = Medium − − 3.0 mA Driver_Strength = Strong − − 0.3 mA Driver_Strength = Weak CC 86 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 31 Standard Pad Parameters for Lower Voltage Range (cont’d) Parameter Nominal output driver current (absolute value) Symbol IOnom Values Unit Note / Test Condition 0.8 mA Driver_Strength = Medium − 1.0 mA Driver_Strength = Strong − − 0.15 mA Driver_Strength = Weak − − 73 + 0.85 x ns CL≥ 20 pF; CL≤ 100 pF; Min. Typ. Max. − − − CC Rise and Fall times (10% - tRF CC 90%) − − CL Driver_Strength = Medium 6 + 0.6 ns x CL CL≥ 20 pF; CL≤ 100 pF; Driver_Strength = Strong ; Driver_Edge= Soft − − 33 + 0.6 x ns CL − − 385 + 3.25 x CL CL≥ 20 pF; CL≤ 100 pF; Driver_Strength = Strong ; Driver_Edge= Slow ns CL≥ 20 pF; CL≤ 100 pF; Driver_Strength = Weak 1) The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and ΣIOH) must remain below 25 mA. Data Sheet 87 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.7.5 Synchronous Serial Interface Timing The following parameters are applicable for a USIC channel operated in SSC mode. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 32 is valid under the following conditions: CL= 20 pF; SSC= master ; voltage_range= upper Table 32 USIC SSC Master Mode Timing for Upper Voltage Range Parameter Symbol Values Unit Min. Typ. Max. tSYS - − − ns Slave select output SELO t1 CC active to first SCLKOUT transmit edge 81) Slave select output SELO t2 CC inactive after last SCLKOUT receive edge tSYS - − − ns 61) t3 CC -6 − 9 ns Receive data input setup t4 SR time to SCLKOUT receive edge 31 − − ns t5 SR -4 − − ns Data output DOUT valid time Data input DX0 hold time from SCLKOUT receive edge Note / Test Condition 1) tSYS = 1 / fSYS Data Sheet 88 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 33 is valid under the following conditions: CL= 20 pF; SSC= master ; voltage_range= lower Table 33 USIC SSC Master Mode Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. tSYS - − − ns tSYS - − − ns t3 CC -7 − 11 ns Receive data input setup t4 SR time to SCLKOUT receive edge 40 − − ns t5 SR -5 − − ns Slave select output SELO t1 CC active to first SCLKOUT transmit edge 101) Slave select output SELO t2 CC inactive after last SCLKOUT receive edge 91) Data output DOUT valid time Data input DX0 hold time from SCLKOUT receive edge Note / Test Condition 1) tSYS = 1 / fSYS Table 34 is valid under the following conditions: CL= 20 pF; SSC= slave ; voltage_range= upper Table 34 USIC SSC Slave Mode Timing for Upper Voltage Range Parameter Symbol Select input DX2 setup to first clock input DX1 transmit edge1) t10 SR Values Unit Min. Typ. Max. 10 − − ns Select input DX2 hold after t11 SR last clock input DX1 receive edge1) 7 − − ns t12 SR 7 − − ns Receive data input setup time to shift clock receive edge1) Data Sheet 89 Note / Test Condition V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 34 USIC SSC Slave Mode Timing for Upper Voltage Range (cont’d) Parameter Symbol Values Unit Min. Typ. Max. Data input DX0 hold time from clock input DX1 receive edge1) t13 SR 5 − − ns Data output DOUT valid time t14 CC 7 − 33 ns Note / Test Condition 1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Table 35 is valid under the following conditions: CL= 20 pF; SSC= slave ; voltage_range= lower Table 35 USIC SSC Slave Mode Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. 10 − − ns Select input DX2 hold after t11 SR last clock input DX1 receive edge1) 7 − − ns Receive data input setup time to shift clock receive edge1) t12 SR 7 − − ns Data input DX0 hold time from clock input DX1 receive edge1) t13 SR 5 − − ns Data output DOUT valid time t14 CC 8 − 41 ns Select input DX2 setup to first clock input DX1 transmit edge1) t10 SR Note / Test Condition 1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Data Sheet 90 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Master Mode Timing t1 Select Output SELOx t2 Inactive Inactive Active Clock Output SCLKOUT Receive Edge First Transmit Edge t3 Last Receive Edge Transmit Edge t3 Data Output DOUT t4 Data Input DX0 t4 t5 Data valid t5 Data valid Slave Mode Timing t10 Select Input DX2 Clock Input DX1 t11 Active Inactive Receive Edge First Transmit Edge t12 Data Input DX0 Inactive t12 t13 Data valid t 14 Last Receive Edge Transmit Edge t 13 Data valid t14 Data Output DOUT Transmit Edge: with this clock edge, transmit data is shifted to transmit data output. Receive Edge: with this clock edge, receive data at receive data input is latched . Drawn for BRGH .SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal. USIC_SSC_TMGX.VSD Figure 21 USIC - SSC Master/Slave Mode Timing Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted. Data Sheet 91 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters 4.7.6 Debug Interface Timing The debugger can communicate with the XE161xL via 1-pin SPD interface, via the 2-pin DAP interface or via the standard JTAG interface. Debug via DAP The following parameters are applicable for communication through the DAP debug interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 36 is valid under the following conditions: CL= 20 pF; voltage_range= upper Table 36 DAP Interface Timing for Upper Voltage Range Parameter DAP0 clock period DAP0 high time DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Symbol t11 SR t12 SR t13 SR t14 SR t15 SR t16 SR Values Unit Note / Test Condition Min. Typ. Max. 1001) − − ns 8 − − ns 8 − − ns − − 4 ns − − 4 ns 6 − − ns pad_type= stan dard DAP1 hold after DAP0 rising edge t17 SR 6 − − ns pad_type= stan dard DAP1 valid per DAP0 clock period2) t19 CC 92 95 − ns pad_type= stan dard 1) The debug interface cannot operate faster than the overall system, therefore t11 ≥ tSYS. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. Data Sheet 92 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 37 is valid under the following conditions: CL= 20 pF; voltage_range= lower Table 37 DAP Interface Timing for Lower Voltage Range Parameter Symbol Values Min. t11 SR t12 SR t13 SR t14 SR t15 SR t16 SR DAP0 clock period DAP0 high time DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Unit Typ. Max. 100 − − ns 8 − − ns 1) Note / Test Condition 8 − − ns − − 4 ns − − 4 ns 6 − − ns pad_type= stan dard DAP1 hold after DAP0 rising edge t17 SR 6 − − ns pad_type= stan dard DAP1 valid per DAP0 clock period2) t19 CC 87 92 − ns pad_type= stan dard 1) The debug interface cannot operate faster than the overall system, therefore t11 ≥ tSYS. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. t 11 0.9 VDDP 0.5 VDDP t15 t12 t 14 0.1 VDDP t13 MC_DAP0 Figure 22 Data Sheet Test Clock Timing (DAP0) 93 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters DAP0 t1 6 t1 7 DAP1 MC_ DAP1_RX Figure 23 DAP Timing Host to Device t1 1 DAP1 t1 9 MC_ DAP1_TX Figure 24 DAP Timing Device to Host Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram. Data Sheet 94 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Debug via JTAG The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 38 is valid under the following conditions: CL= 20 pF; voltage_range= upper Table 38 JTAG Interface Timing for Upper Voltage Range Parameter Symbol TCK clock period t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR t7 SR Values Unit Min. Typ. Max. 1001) − − ns 16 − − ns 16 − − ns − − 8 ns − − 8 ns 6 − − ns 6 − − ns TDO valid from TCK falling t8 CC edge (propagation delay)3) − 29 32 ns TDO high impedance to valid output from TCK falling edge4)3) t9 CC − 29 32 ns TDO valid output to high impedance from TCK falling edge3) t10 CC − 29 32 ns TDO hold after TCK falling t18 CC edge3) 5 − − ns TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Note / Test Condition 2) 1) The debug interface cannot operate faster than the overall system, therefore t1 ≥ tSYS. 2) Under typical conditions, the JTAG interface can operate at transfer rates up to 10 MHz. 3) The falling edge on TCK is used to generate the TDO timing. 4) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 95 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Table 39 is valid under the following conditions: CL= 20 pF; voltage_range= lower Table 39 JTAG Interface Timing for Lower Voltage Range Parameter Symbol Values Min. TCK clock period TCK high time t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR Unit Typ. Max. − − ns 16 − − ns 100 1) 16 − − ns − − 8 ns − − 8 ns 6 − − ns t7 SR 6 − − ns TDO valid from TCK falling t8 CC edge (propagation delay)2) − 39 43 ns TDO high impedance to valid output from TCK falling edge3)2) t9 CC − 39 43 ns TDO valid output to high impedance from TCK falling edge2) t10 CC − 39 43 ns TDO hold after TCK falling t18 CC edge2) 5 − − ns TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Note / Test Condition 1) The debug interface cannot operate faster than the overall system, therefore t1 ≥ tSYS. 2) The falling edge on TCK is used to generate the TDO timing. 3) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 96 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters t1 0.9 VD D P 0.5 VDD P t5 t2 0.1 VD D P t4 t3 MC_ JTAG_ TCK Figure 25 Test Clock Timing (TCK) TCK t6 t7 t6 t7 TMS TDI t9 t8 t1 0 TDO t18 MC_JTAG Figure 26 Data Sheet JTAG Timing 97 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Electrical Parameters Debug via SPD The SPD interface will work with standard SPD tools having a sample/output clock frequency deviation of +/- 5% or less. Note: For further details please refer to application note AP24004 in section SPD Timing Requirements. Note: Operating Conditions apply. Data Sheet 98 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Package and Reliability 5 Package and Reliability The XE166 Family devices use the package type: • PG-VQFN (Plastic Green - Very Thin Profile Quad Flat Non-Leaded Package) The following specifications must be regarded to ensure proper integration of the XE161xL in its target environment. 5.1 Packaging These parameters specify the packaging rather than the silicon. Table 40 Package Parameters (PG-VQFN-48-54) Parameter Symbol Limit Values Min. Exposed Pad Dimension Ex × Ey – 5.2 x 5.2 Power Dissipation PDISS RΘJA – – Thermal resistance Junction-Ambient Unit Notes Max. mm – 0.7 W – 73 K/W No thermal via, 2-layer1) 49 K/W No thermal via, 4-layer2) 43 K/W 4-layer, no pad3) 34 K/W 4-layer, pad4) 1) Device mounted on a 2-layer JEDEC board (according to JESD 51-3) without thermal vias; exposed pad not soldered. 2) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) without thermal vias; exposed pad not soldered. 3) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered. 4) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board. Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note. Package Compatibility Considerations The XE161xL is a member of the XE166 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies. Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In Data Sheet 99 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Package and Reliability particular, the size of the Exposed Pad (if present) may vary. If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration. Package Outlines 0.9 MAX. (0.65) 0.5 0.4 x 45˚ Index Marking 24 3 0.0 5± (0.2) 0.05 MAX. (6.2) 48 13 12 0.1 C 37 6 48x 0.08 36 25 (5.2) 0.5 +0.03 0.2 6.8 7 ±0.1 B SEATING PLANE 6.8 11 x 0.5 = 5.5 0.4 ±0.07 A 11 x 0.5 = 5.5 7 ±0.1 1 0.23 ±0.05 (5.2) Index Marking 48x 0.1 M A B C (6.2) PG-VQFN-48-15, -19, -20, -22, -24, -48, -51, -52, -53, -55, -56-PO V12 Figure 27 PG-VQFN-48-54 (Plastic Green Thin Quad Flat Package) All dimensions in mm. You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page “Packages”: http://www.infineon.com/packages Data Sheet 100 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Package and Reliability 5.2 Thermal Considerations When operating the XE161xL in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C. The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDDP × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation: • • • • Reduce VDDP, if possible in the system Reduce the system frequency Reduce the number of output pins Reduce the load on active output drivers Data Sheet 101 V1.2, 2012-07 XE161FL, XE161HL XE166 Family / Econo Line Package and Reliability 5.3 Quality Declarations The operation lifetime of the XE161xL depends on the operating temperature. The lifetime decreases with increasing temperature as shown in Table 42. Table 41 Quality Parameters Parameter Symbol Operation lifetime tOP CC VHBM Table 42 Unit Note / Test Condition Min. Typ. Max. − − 20 a See Table 42 − − 2000 V EIA/JESD22A114-B MSL CC − − 3 − JEDEC J-STD-020C ESD susceptibility according to Human Body SR Model (HBM) Moisture sensitivity level Values Lifetime Dependency on Temperature Operating Time Operating Temperature 20 a 14 500 h TJ ≤ 110°C TJ = 120°C TJ = 125°C TJ = 130°C TJ = 140°C TJ = 150°C Data Sheet 102 95 500 h 68 500 h 49 500 h 26 400 h V1.2, 2012-07 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
XE161FL12F80VAAFXUMA1 价格&库存

很抱歉,暂时无法提供与“XE161FL12F80VAAFXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货