0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
25AA128X

25AA128X

  • 厂商:

    MICROCHIP

  • 封装:

  • 描述:

    25AA128X - 128K SPI Bus Serial EEPROM - Microchip Technology

  • 数据手册
  • 价格&库存
25AA128X 数据手册
25AA128/25LC128 128K SPI Bus Serial EEPROM Device Selection Table Part Number 25LC128 25AA128 VCC Range 2.5-5.5V 1.8-5.5V Page Size 64 Byte 64 Byte Temp. Ranges I,E I Packages P, SN, ST, MF P, SN, ST, MF Features • Max. Clock 10 MHz • Low-power CMOS Technology - Max. Write Current: 5 mA at 5.5V, 10 MHz - Read Current: 5 mA at 5.5V, 10 MHz - Standby Current: 5 μA at 5.5V • 16,384 x 8-bit Organization • 64 Byte Page • Self-timed Erase and Write Cycles (5 ms max.) • Block Write Protection - Protect none, 1/4, 1/2 or all of array • Built-in Write Protection - Power-on/off data protection circuitry - Write enable latch - Write-protect pin • Sequential Read • High Reliability - Endurance: 1,000,000 erase/write cycles - Data retention: > 200 years - ESD protection: > 4000V • Temperature Ranges Supported; - Industrial (I): -40°C to +85°C - Automotive (E): -40°C to +125°C • Pb-free and RoHS Compliant Description The Microchip Technology Inc. 25AA128/25LC128 (25XX128*) are 128k-bit Serial Electrically Erasable PROMs. The memory is accessed via a simple Serial Peripheral Interface (SPI) compatible serial bus. The bus signals required are a clock input (SCK) plus separate data in (SI) and data out (SO) lines. Access to the device is controlled through a Chip Select (CS) input. Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will be ignored, with the exception of Chip Select, allowing the host to service higher priority interrupts. The 25XX128 is available in standard packages including 8-lead PDIP and SOIC, and advanced packaging including 8-lead DFN and 8-lead TSSOP. Package Types (not to scale) TSSOP (ST) CS SO WP VSS 1 2 3 4 8 7 6 5 VCC HOLD SCK SI PDIP/SOIC (P, SN) 25LC128 CS SO WP VSS 1 2 3 4 8 7 6 5 VCC HOLD SCK SI Pin Function Table Name CS SO WP VSS SI SCK HOLD VCC Function Chip Select Input Serial Data Output Write-Protect Ground Serial Data Input Serial Clock Input Hold Input Supply Voltage X-Rotated TSSOP (X/ST) HOLD VCC CS SO 1 2 3 4 8 7 6 5 SCK SI VSS WP DFN (MF) CS 1 SO 2 WP 3 VSS 4 25LC128 8 7 6 5 VCC HOLD SCK SI * 25XX128 is used in this document as a generic part number for the 25AA128, 25LC128 devices. © 2009 Microchip Technology Inc. DS21831D-page 1 25AA128/25LC128 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings (†) VCC .............................................................................................................................................................................6.5V All inputs and outputs w.r.t. VSS ......................................................................................................... -0.6V to VCC +1.0V Storage temperature .................................................................................................................................-65°C to 150°C Ambient temperature under bias ...............................................................................................................-40°C to 125°C ESD protection on all pins ..........................................................................................................................................4 kV † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability. TABLE 1-1: DC CHARACTERISTICS Industrial (I): TA = -40°C to +85°C Automotive (E): TA = -40°C to +125°C Min. .7 VCC -0.3 -0.3 — — VCC -0.5 — — — Max. VCC+1 0.3VCC 0.2VCC 0.4 0.2 — ±1 ±1 7 Units V V V V V V μA μA pF VCC ≥ 2.7V VCC < 2.7V IOL = 2.1 mA IOL = 1.0 mA, VCC < 2.5V IOH = -400 μA CS = VCC, VIN = VSS TO VCC CS = VCC, VOUT = VSS TO VCC TA = 25°C, CLK = 1.0 MHz, VCC = 5.0V (Note) VCC = 5.5V; FCLK = 10.0 MHz; SO = Open VCC = 2.5V; FCLK = 5.0 MHz; SO = Open VCC = 5.5V VCC = 2.5V CS = VCC = 5.5V, Inputs tied to VCC or VSS, 125°C CS = VCC = 5.5V, Inputs tied to VCC or VSS, 85°C VCC = 1.8V to 5.5V VCC = 2.5V to 5.5V Test Conditions DC CHARACTERISTICS Param. No. D001 D002 D003 D004 D005 D006 D007 D008 D009 Sym. VIH1 VIL1 VIL2 VOL VOL VOH ILI ILO CINT Characteristic High-level input voltage Low-level input voltage Low-level output voltage High-level output voltage Input leakage current Output leakage current Internal Capacitance (all inputs and outputs) D010 ICC Read Operating Current — — 5 2.5 mA mA mA mA μA μA D011 D012 ICC Write ICCS Standby Current — — — — 5 3 5 1 Note: This parameter is periodically sampled and not 100% tested. DS21831D-page 2 © 2009 Microchip Technology Inc. 25AA128/25LC128 TABLE 1-2: AC CHARACTERISTICS Industrial (I): Automotive (E): Min. — — — 50 100 150 100 200 250 50 10 20 30 20 40 50 — — 50 100 150 50 100 150 50 50 — — — 0 — — — 20 40 80 TA = -40°C to +85°C TA = -40°C to +125°C Units MHz MHz MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns VCC = 1.8V to 5.5V VCC = 2.5V to 5.5V Test Conditions 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V — 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V (Note 1) (Note 1) 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V — — 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V (Note 1) 4.5V ≤ Vcc ≤ 5.5V(Note 1) 2.5V ≤ Vcc ≤ 4.5V(Note 1) 1.8V ≤ Vcc ≤ 2.5V(Note 1) 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V AC CHARACTERISTICS Param. Sym. No. 1 FCLK Characteristic Clock Frequency Max. 10 5 3 — — — — — — — — — — — — — 100 100 — — — — — — — — 50 100 160 — 40 80 160 — — — 2 TCSS CS Setup Time 3 TCSH CS Hold Time 4 5 TCSD Tsu CS Disable Time Data Setup Time 6 THD Data Hold Time 7 8 9 TR TF THI CLK Rise Time CLK Fall Time Clock High Time 10 TLO Clock Low Time 11 12 13 TCLD TCLE TV Clock Delay Time Clock Enable Time Output Valid from Clock Low Output Hold Time Output Disable Time 14 15 THO TDIS 16 THS HOLD Setup Time Note 1: This parameter is periodically sampled and not 100% tested. 2: TWC begins on the rising edge of CS after a valid write sequence and ends when the internal write cycle is complete. 3: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site: www.microchip.com. © 2009 Microchip Technology Inc. DS21831D-page 3 25AA128/25LC128 TABLE 1-2: AC CHARACTERISTICS (CONTINUED) Industrial (I): Automotive (E): Min. 20 40 80 30 60 160 30 60 160 — 1,000,000 TA = -40°C to +85°C TA = -40°C to +125°C Units ns ns ns ns ns ns ns ns ns ms VCC = 1.8V to 5.5V VCC = 2.5V to 5.5V Test Conditions 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V 4.5V ≤ Vcc ≤ 5.5V(Note 1) 2.5V ≤ Vcc < 4.5V(Note 1) 1.8V ≤ Vcc < 2.5V(Note 1) 4.5V ≤ Vcc ≤ 5.5V 2.5V ≤ Vcc < 4.5V 1.8V ≤ Vcc < 2.5V (NOTE 2) AC CHARACTERISTICS Param. Sym. No. 17 THH Characteristic HOLD Hold Time Max. — — — — — — — — — 5 — 18 THZ HOLD Low to Output High-Z HOLD High to Output Valid Internal Write Cycle Time Endurance 19 THV 20 21 TWC — E/W Page Mode, 25°C, VCC = 5.5V (NOTE 3) Cycles Note 1: This parameter is periodically sampled and not 100% tested. 2: TWC begins on the rising edge of CS after a valid write sequence and ends when the internal write cycle is complete. 3: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site: www.microchip.com. TABLE 1-3: AC Waveform: VLO = 0.2V AC TEST CONDITIONS — (Note 1) (Note 2) — 0.5 VCC 0.5 VCC VHI = VCC - 0.2V VHI = 4.0V CL = 50 pF Timing Measurement Reference Level Input Output Note 1: For VCC ≤ 4.0V 2: For VCC > 4.0V DS21831D-page 4 © 2009 Microchip Technology Inc. 25AA128/25LC128 FIGURE 1-1: CS 16 SCK 18 SO n+2 n+1 n High-Impedance 19 n 5 n n-1 n-1 17 16 17 HOLD TIMING Don’t Care SI HOLD n+2 n+1 n FIGURE 1-2: SERIAL INPUT TIMING 4 CS 2 Mode 1,1 SCK Mode 0,0 5 SI 6 LSB in 7 8 3 12 11 MSB in SO High-Impedance FIGURE 1-3: SERIAL OUTPUT TIMING CS 9 SCK 13 14 SO MSB out 15 ISB out 10 3 Mode 1,1 Mode 0,0 SI Don’t Care © 2009 Microchip Technology Inc. DS21831D-page 5 25AA128/25LC128 2.0 2.1 FUNCTIONAL DESCRIPTION Principles of Operation 2.3 Write Sequence The 25XX128 is a 16,384 byte Serial EEPROM designed to interface directly with the Serial Peripheral Interface (SPI) port of many of today’s popular microcontroller families, including Microchip’s PIC® microcontrollers. It may also interface with microcontrollers that do not have a built-in SPI port by using discrete I/O lines programmed properly in firmware to match the SPI protocol. The 25XX128 contains an 8-bit instruction register. The device is accessed via the SI pin, with data being clocked in on the rising edge of SCK. The CS pin must be low and the HOLD pin must be high for the entire operation. Table 2-1 contains a list of the possible instruction bytes and format for device operation. All instructions, addresses and data are transferred MSB first, LSB last. Data (SI) is sampled on the first rising edge of SCK after CS goes low. If the clock line is shared with other peripheral devices on the SPI bus, the user can assert the HOLD input and place the 25XX128 in ‘HOLD’ mode. After releasing the HOLD pin, operation will resume from the point when the HOLD was asserted. Prior to any attempt to write data to the 25XX128, the write enable latch must be set by issuing the WREN instruction (Figure 2-4). This is done by setting CS low and then clocking out the proper instruction into the 25XX128. After all eight bits of the instruction are transmitted, the CS must be brought high to set the write enable latch. If the write operation is initiated immediately after the WREN instruction without CS being brought high, the data will not be written to the array because the write enable latch will not have been properly set. Once the write enable latch is set, the user may proceed by setting the CS low, issuing a WRITE instruction, followed by the 16-bit address, with two MSBs of the address being “don’t care” bits, and then the data to be written. Up to 64 bytes of data can be sent to the device before a write cycle is necessary. The only restriction is that all of the bytes must reside in the same page. Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or ‘page size’) and, end at addresses that are integer multiples of page size – 1. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary. 2.2 Read Sequence The device is selected by pulling CS low. The 8-bit READ instruction is transmitted to the 25XX128 followed by the 16-bit address, with two MSBs of the address being “don’t care” bits. After the correct READ instruction and address are sent, the data stored in the memory at the selected address is shifted out on the SO pin. The data stored in the memory at the next address can be read sequentially by continuing to provide clock pulses. The internal Address Pointer is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached (3FFFh), the address counter rolls over to address 0000h, allowing the read cycle to be continued indefinitely. The read operation is terminated by raising the CS pin (Figure 2-1). For the data to be actually written to the array, the CS must be brought high after the Least Significant bit (D0) of the nth data byte has been clocked in. If CS is brought high at any other time, the write operation will not be completed. Refer to Figure 2-2 and Figure 2-3 for more detailed illustrations on the byte write sequence and the page write sequence respectively. While the write is in progress, the STATUS register may be read to check the status of the WPEN, WIP, WEL, BP1 and BP0 bits (Figure 2-6). A read attempt of a memory array location will not be possible during a write cycle. When the write cycle is completed, the write enable latch is reset. DS21831D-page 6 © 2009 Microchip Technology Inc. 25AA128/25LC128 BLOCK DIAGRAM STATUS Register HV Generator I/O Control Logic Memory Control Logic X Dec EEPROM Array Page Latches SI SO CS SCK HOLD WP VCC VSS Y Decoder Sense Amp. R/W Control TABLE 2-1: INSTRUCTION SET Instruction Format Description Read data from memory array beginning at selected address Write data to memory array beginning at selected address Reset the write enable latch (disable write operations) Set the write enable latch (enable write operations) Read STATUS register Write STATUS register Instruction Name READ WRITE WRDI WREN RDSR WRSR 0000 0011 0000 0010 0000 0100 0000 0110 0000 0101 0000 0001 FIGURE 2-1: CS 0 SCK READ SEQUENCE 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31 Instruction SI 0 0 0 0 0 0 1 16-bit Address 1 15 14 13 12 2 1 0 Data Out 7 6 5 4 3 2 1 0 High-Impedance SO © 2009 Microchip Technology Inc. DS21831D-page 7 25AA128/25LC128 FIGURE 2-2: CS Twc 0 SCK Instruction SI 0 0 0 0 0 0 1 16-bit Address 0 15 14 13 12 2 1 0 7 6 Data Byte 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31 BYTE WRITE SEQUENCE High-Impedance SO FIGURE 2-3: CS 0 SCK 1 PAGE WRITE SEQUENCE 2 3 4 5 6 7 8 9 10 11 16-bit Address 21 22 23 24 25 26 27 28 29 30 31 Data Byte 1 2 1 0 7 6 5 4 3 2 1 0 Instruction SI 0 0 0 0 0 01 0 15 14 13 12 CS 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCK Data Byte 2 SI 7 6 5 4 3 2 1 0 7 6 Data Byte 3 5 4 3 2 1 0 7 Data Byte n (64 max) 6 5 4 3 2 1 0 DS21831D-page 8 © 2009 Microchip Technology Inc. 25AA128/25LC128 2.4 Write Enable (WREN) and Write Disable (WRDI) The following is a list of conditions under which the write enable latch will be reset: • • • • Power-up WRDI instruction successfully executed WRSR instruction successfully executed WRITE instruction successfully executed The 25XX128 contains a write enable latch. See Table 2-4 for the Write-Protect functionality matrix. This latch must be set before any write operation will be completed internally. The WREN instruction will set the latch, and the WRDI will reset the latch. FIGURE 2-4: WRITE ENABLE SEQUENCE (WREN) CS 0 SCK 1 2 3 4 5 6 7 SI 0 0 0 0 0 1 1 0 High-Impedance SO FIGURE 2-5: WRITE DISABLE SEQUENCE (WRDI) CS 0 SCK 1 2 3 4 5 6 7 SI 0 0 0 0 0 1 0 0 High-Impedance SO © 2009 Microchip Technology Inc. DS21831D-page 9 25AA128/25LC128 2.5 Read Status Register Instruction (RDSR) The Write Enable Latch (WEL) bit indicates the status of the write enable latch and is read-only. When set to a ‘1’, the latch allows writes to the array, when set to a ‘0’, the latch prohibits writes to the array. The state of this bit can always be updated via the WREN or WRDI commands regardless of the state of write protection on the STATUS register. These commands are shown in Figure 2-4 and Figure 2-5. The Block Protection (BP0 and BP1) bits indicate which blocks are currently write-protected. These bits are set by the user issuing the WRSR instruction. These bits are nonvolatile, and are shown in Table 2-3. See Figure 2-6 for the RDSR timing sequence. The Read Status Register instruction (RDSR) provides access to the STATUS register. The STATUS register may be read at any time, even during a write cycle. The STATUS register is formatted as follows: TABLE 2-2: STATUS REGISTER 0 R WIP 7 654 3 2 1 W/R – – – W/R W/R R WPEN X X X BP1 BP0 WEL W/R = writable/readable. R = read-only. The Write-In-Process (WIP) bit indicates whether the 25XX128 is busy with a write operation. When set to a ‘1’, a write is in progress, when set to a ‘0’, no write is in progress. This bit is read-only. FIGURE 2-6: CS READ STATUS REGISTER TIMING SEQUENCE (RDSR) 0 SCK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Instruction SI 0 0 0 0 0 1 0 1 High-Impedance SO 7 Data from STATUS Register 6 5 4 3 2 1 0 DS21831D-page 10 © 2009 Microchip Technology Inc. 25AA128/25LC128 2.6 Write Status Register (WRSR) only writes to nonvolatile bits in the STATUS register are disabled. See Table 2-4 for a matrix of functionality on the WPEN bit. See Figure 2-7 for the WRSR timing sequence. The Write Status Register (WRSR) instruction allows the user to write to the nonvolatile bits in the STATUS register as shown in Table 2-2. The user is able to select one of four levels of protection for the array by writing to the appropriate bits in the STATUS register. The array is divided up into four segments. The user has the ability to write-protect none, one, two, or all four of the segments of the array. The partitioning is controlled as shown in Table 2-3. The Write-Protect Enable (WPEN) bit is a nonvolatile bit that is available as an enable bit for the WP pin. The Write-Protect (WP) pin and the Write-Protect Enable (WPEN) bit in the STATUS register control the programmable hardware write-protect feature. Hardware write protection is enabled when WP pin is low and the WPEN bit is high. Hardware write protection is disabled when either the WP pin is high or the WPEN bit is low. When the chip is hardware write-protected, TABLE 2-3: BP1 ARRAY PROTECTION BP0 Array Addresses Write-Protected none upper 1/4 (3000h-3FFFh) upper 1/2 (2000h-3FFFh) all (0000h-3FFFh) 0 0 1 1 0 1 0 1 FIGURE 2-7: CS WRITE STATUS REGISTER TIMING SEQUENCE (WRSR) 0 SCK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Instruction SI 0 0 0 0 0 0 0 1 7 6 Data to STATUS Register 5 4 3 2 1 0 High-Impedance SO Note: An internal write cycle (TWC) is initiated on the rising edge of CS after a valid write STATUS register © 2009 Microchip Technology Inc. DS21831D-page 11 25AA128/25LC128 2.7 Data Protection 2.8 Power-On State The following protection has been implemented to prevent inadvertent writes to the array: • The write enable latch is reset on power-up • A write enable instruction must be issued to set the write enable latch • After a byte write, page write or STATUS register write, the write enable latch is reset • CS must be set high after the proper number of clock cycles to start an internal write cycle • Access to the array during an internal write cycle is ignored and programming is continued The 25XX128 powers on in the following state: • The device is in low-power Standby mode (CS = 1) • The write enable latch is reset • SO is in high-impedance state • A high-to-low-level transition on CS is required to enter active state TABLE 2-4: WEL (SR bit 1) WRITE-PROTECT FUNCTIONALITY MATRIX WPEN (SR bit 7) WP (pin 3) Protected Blocks Protected Protected Protected Protected Unprotected Blocks Protected Writable Writable Writable STATUS Register Protected Writable Protected Writable 0 1 1 1 x = don’t care x 0 1 1 x x 0 (low) 1 (high) DS21831D-page 12 © 2009 Microchip Technology Inc. 25AA128/25LC128 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. The WP pin function is blocked when the WPEN bit in the STATUS register is low. This allows the user to install the 25XX128 in a system with WP pin grounded and still be able to write to the STATUS register. The WP pin functions will be enabled when the WPEN bit is set high. TABLE 3-1: PIN FUNCTION TABLE X-Rotated Pin Number 3 4 5 6 7 8 1 2 Name Pin Number 1 2 3 4 5 6 7 8 Function 3.4 Serial Input (SI) CS SO WP VSS SI SCK HOLD VCC Note: Chip Select Input Serial Data Output Write-Protect Pin Ground Serial Data Input Serial Clock Input Hold Input Supply Voltage The SI pin is used to transfer data into the device. It receives instructions, addresses and data. Data is latched on the rising edge of the serial clock. 3.5 Serial Clock (SCK) The SCK is used to synchronize the communication between a master and the 25XX128. Instructions, addresses or data present on the SI pin are latched on the rising edge of the clock input, while data on the SO pin is updated after the falling edge of the clock input. 3.6 Hold (HOLD) The exposed pad on the DFN package can be connected to VSS or left floating. 3.1 Chip Select (CS) A low level on this pin selects the device. A high level deselects the device and forces it into Standby mode. However, a programming cycle which is already initiated or in progress will be completed, regardless of the CS input signal. If CS is brought high during a program cycle, the device will go into Standby mode as soon as the programming cycle is complete. When the device is deselected, SO goes to the high-impedance state, allowing multiple parts to share the same SPI bus. A low-to-high transition on CS after a valid write sequence initiates an internal write cycle. After powerup, a low level on CS is required prior to any sequence being initiated. The HOLD pin is used to suspend transmission to the 25XX128 while in the middle of a serial sequence without having to retransmit the entire sequence again. It must be held high any time this function is not being used. Once the device is selected and a serial sequence is underway, the HOLD pin may be pulled low to pause further serial communication without resetting the serial sequence. The HOLD pin must be brought low while SCK is low, otherwise the HOLD function will not be invoked until the next SCK high-tolow transition. The 25XX128 must remain selected during this sequence. The SI, SCK and SO pins are in a high-impedance state during the time the device is paused and transitions on these pins will be ignored. To resume serial communication, HOLD must be brought high while the SCK pin is low, otherwise serial communication will not resume. Lowering the HOLD line at any time will tri-state the SO line. 3.2 Serial Output (SO) The SO pin is used to transfer data out of the 25XX128. During a read cycle, data is shifted out on this pin after the falling edge of the serial clock. 3.3 Write-Protect (WP) This pin is used in conjunction with the WPEN bit in the STATUS register to prohibit writes to the nonvolatile bits in the STATUS register. When WP is low and WPEN is high, writing to the nonvolatile bits in the STATUS register is disabled. All other operations function normally. When WP is high, all functions, including writes to the nonvolatile bits in the STATUS register, operate normally. If the WPEN bit is set, WP low during a STATUS register write sequence will disable writing to the STATUS register. If an internal write cycle has already begun, WP going low will have no effect on the write. © 2009 Microchip Technology Inc. DS21831D-page 13 25AA128/25LC128 4.0 4.1 PACKAGING INFORMATION Package Marking Information 8-Lead DFN XXXXXXX T/XXXXX YYWW NNN Example: 25LC128 I/MF 0328 1L7 8-Lead PDIP XXXXXXXX T/XXXNNN YYWW Example: 25AA128 I/P 1L7 0328 8-Lead SOIC Example: XXXXXXXX T/XXYYWW NNN 25LC128 I/SN 0328 1L7 8-Lead TSSOP XXXX TYWW NNN Example: 5LD I328 1L7 TSSOP 1st Line Marking Device 25AA128 25AA128X 25LC128 25LC128X std mark 5AD 5ADX 5LD 5LDX Legend: XX...X Y YY WW NNN e3 * Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. DS21831D-page 14 © 2009 Microchip Technology Inc. 25AA128/25LC128 8-Lead Plastic Dual Flat, No Lead Package (MF) – 6x5 mm Body [DFN-S] PUNCH SINGULATED Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D D1 N b e N K L E E1 EXPOSED PAD NOTE 1 1 2 TOP VIEW φ 2 D2 BOTTOM VIEW 1 E2 NOTE 1 A A1 A2 A3 NOTE 2 Units Dimension Limits Number of Pins Pitch Overall Height Molded Package Thickness Standoff Base Thickness Overall Length Molded Package Length Exposed Pad Length Overall Width Molded Package Width Exposed Pad Width Contact Width Contact Length Contact-to-Exposed Pad Model Draft Angle Top N e A A2 A1 A3 D D1 D2 E E1 E2 b L K φ 2.16 0.35 0.50 0.20 – 3.85 – – 0.00 MIN MILLIMETERS NOM 8 1.27 BSC 0.85 0.65 0.01 0.20 REF 4.92 BSC 4.67 BSC 4.00 5.99 BSC 5.74 BSC 2.31 0.40 0.60 – – 2.46 0.47 0.75 – 12° 4.15 1.00 0.80 0.05 MAX Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Package may have one or more exposed tie bars at ends. 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-113B © 2009 Microchip Technology Inc. DS21831D-page 15 25AA128/25LC128 8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging N NOTE 1 E1 1 2 D 3 E A A2 A1 L c e b1 b Units Dimension Limits Number of Pins Pitch Top to Seating Plane Molded Package Thickness Base to Seating Plane Shoulder to Shoulder Width Molded Package Width Overall Length Tip to Seating Plane Lead Thickness Upper Lead Width Lower Lead Width Overall Row Spacing § N e A A2 A1 E E1 D L c b1 b eB – .115 .015 .290 .240 .348 .115 .008 .040 .014 – MIN eB INCHES NOM 8 .100 BSC – .130 – .310 .250 .365 .130 .010 .060 .018 – .210 .195 – .325 .280 .400 .150 .015 .070 .022 MAX .430 Notes: 1. Pin 1 visual index feature may vary, but must be located with the hatched area. 2. § Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-018B DS21831D-page 16 © 2009 Microchip Technology Inc. 25AA128/25LC128 8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D e N E E1 NOTE 1 1 2 3 b h φ c h α A A2 A1 L L1 β Units Dimension Limits Number of Pins Pitch Overall Height Molded Package Thickness Standoff § Overall Width Molded Package Width Overall Length Chamfer (optional) Foot Length Footprint Foot Angle Lead Thickness Lead Width Mold Draft Angle Top Mold Draft Angle Bottom N e A A2 A1 E E1 D h L L1 φ c b α β 0° 0.17 0.31 5° 5° 0.25 0.40 – 1.25 0.10 MIN MILLIMETERS NOM 8 1.27 BSC – – – 6.00 BSC 3.90 BSC 4.90 BSC – – 1.04 REF – – – – – 8° 0.25 0.51 15° 0.50 1.27 1.75 – 0.25 MAX 15° Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. § Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-057B © 2009 Microchip Technology Inc. DS21831D-page 17 25AA128/25LC128 /HDG 3ODVWLF 6PDOO 2XWOLQH 61 ± 1DUURZ 1RWH PP %RG\ >62,&@ )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ DS21831D-page 18 © 2009 Microchip Technology Inc. 25AA128/25LC128 8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D N E E1 NOTE 1 1 b 2 e c A A2 φ A1 L1 L Units Dimension Limits Number of Pins Pitch Overall Height Molded Package Thickness Standoff Overall Width Molded Package Width Molded Package Length Foot Length Footprint Foot Angle Lead Thickness N e A A2 A1 E E1 D L L1 φ c 0° 0.09 4.30 2.90 0.45 – 0.80 0.05 MIN MILLIMETERS NOM 8 0.65 BSC – 1.00 – 6.40 BSC 4.40 3.00 0.60 1.00 REF – – 8° 0.20 4.50 3.10 0.75 1.20 1.05 0.15 MAX Lead Width b 0.19 – 0.30 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side. 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-086B © 2009 Microchip Technology Inc. DS21831D-page 19 25AA128/25LC128 APPENDIX A: Revision B Corrections to Section 1.0, Electrical Characteristics. REVISION HISTORY Revision C (5/07) Removed Preliminary status; Revised Table 1-2, Para. 7 and 8; Revised Table 1-3, CL; Revised trademarks; Replaced Package drawings (Rev. AP); Replaced OnLine Support; Revised Product ID section. Revision D (06/09) Added X-Rotated TSSOP to package types; Revised Table 1-2, Param. 21; Revised Table 3-1; Revised TSSOP Line Marking table; Added SOIC Land Pattern; Revised Product ID section. DS21831D-page 20 © 2009 Microchip Technology Inc. 25AA128/25LC128 THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: • • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. © 2009 Microchip Technology Inc. DS21831D-page 21 25AA128/25LC128 READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: RE: Technical Publications Manager Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Y N Literature Number: DS21831D FAX: (______) _________ - _________ Device: 25AA128/25LC128 Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS21831D-page 22 © 2009 Microchip Technology Inc. 25AA128/25LC128 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X Tape & Reel – X Temp Range /XX Package Examples: a) 25AA128T-I/SN = 128k-bit, 1.8V Serial EEPROM, Industrial temp., Tape & Reel, SOIC package 25AA128T-I/ST = 128k-bit, 1.8V Serial EEPROM, Industrial temp., Tape & Reel, TSSOP package 25LC128-I/P = 128k-bit, 2.5V Serial EEPROM, Industrial temp., P-DIP package 25LC128T-E/MF = 128k-bit, 2.5V Serial EEPROM, Extended temp., Tape & Reel, DFN package 25LC128XT-I/ST = 128k-bit, 2.5V Serial EEPROM, Industrial temp., Tape & Reel, Rotated pinout, TSSOP package b) Device: 25AA128 = 25LC128 = 25AA128X = 25LC128X = Tape & Reel: Temperature Range: Blank T I E = = = = 128k-bit, 1.8V, 64-Byte Page, SPI Serial EEPROM 128k-bit, 2.5V, 64-Byte Page, SPI Serial EEPROM 128k-bit, 1.8V, 64-Byte Page, SPI Serial EEPROM in alternate pinout (ST only) 128k-bit, 2.5V, 64-Byte Page, SPI Serial EEPROM in alternate pinout (ST only) Standard packaging (tube) Tape & Reel -40°C to+85°C -40°C to+125°C c) d) e) Package: MF P SN ST = = = = Micro Lead Frame (6 x 5 mm body), 8-lead Plastic DIP (300 mil body), 8-lead Plastic SOIC (3.90 mm body), 8-lead TSSOP, 8-lead © 2009 Microchip Technology Inc. DS21831D-page 23 25AA128/25LC128 NOTES: DS21831D-page 24 © 2009 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • • Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” • • • Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, Omniscient Code Generation, PICC, PICC-18, PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2009 Microchip Technology Inc. DS21831D-page 25 WORLDWIDE SALES AND SERVICE AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 03/26/09 DS21831D-page 26 © 2009 Microchip Technology Inc.
25AA128X 价格&库存

很抱歉,暂时无法提供与“25AA128X”相匹配的价格&库存,您可以联系我们找货

免费人工找货