0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CAV93C76YE-GT3

CAV93C76YE-GT3

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    TSSOP-8

  • 描述:

    存储容量:8Kbit;时钟频率(fc):2MHz;工作电压:2.5V~5.5V;写周期时间(Tw):-;工作温度:-40℃~+125℃;

  • 数据手册
  • 价格&库存
CAV93C76YE-GT3 数据手册
CAV93C76 EEPROM Serial 8-Kb Microwire - Automotive Grade 1 Description The CAV93C76 is an EEPROM Serial 8−Kb Microwire Automotive Grade 1 device, which is configured as either registers of 16 bits (ORG pin at VCC or Not Connected) or 8 bits (ORG pin at GND). Each register can be written (or read) serially by using the DI (or DO) pin. The CAV93C76 is manufactured using ON Semiconductor ’s advanced CMOS EEPROM floating gate technology. The device is designed to endure 1,000,000 program/erase cycles and has a data retention of 100 years. The device is available in 8−pin SOIC and TSSOP packages. www.onsemi.com SOIC−8 V SUFFIX CASE 751BD PIN CONFIGURATION Features • • • • • • • • • • • • • Automotive AEC−Q100 Grade 1 (−40°C to +125°C) Qualified High Speed Operation: 2 MHz 2.5 V to 5.5 V Supply Voltage Range Selectable x8 or x16 Memory Organization Self−timed Write Cycle with Auto−clear Software Write Protection Power−up Inadvertant Write Protection Low Power CMOS Technology 1,000,000 Program/Erase Cycles 100 Year Data Retention Sequential Read 8−pin SOIC and TSSOP Packages This Device is Pb−Free, Halogen Free/BFR Free and RoHS Compliant† VCC CS SK DI DO VCC NC ORG GND PIN FUNCTION Pin Name Function CS Chip Select SK Serial Clock Input DI Serial Data Input DO Serial Data Output VCC Power Supply GND Ground ORG Memory Organization No Connection NOTE: When the ORG pin is connected to VCC, the x16 organization is selected. When it is connected to ground, the x8 organization is selected. If the ORG pin is left unconnected, then an internal pull−up device will select the x16 organization. ORG CAV93C76 1 SOIC (V), TSSOP (Y) (Top View) NC CS TSSOP−8 Y SUFFIX CASE 948AL DI DO SK ORDERING INFORMATION GND See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. Figure 1. Functional Symbol †For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2013 April, 2019 − Rev. 2 1 Publication Order Number: CAV93C76/D CAV93C76 Table 1. ABSOLUTE MAXIMUM RATINGS Parameters Ratings Units Storage Temperature −65 to +150 °C Voltage on any Pin with Respect to Ground (Note 1) −0.5 to +6.5 V Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. The minimum DC input voltage is −0.5 V. During transitions, inputs may undershoot to −2.0 V for periods of less than 20 ns. Maximum DC voltage on output pins is VCC +0.5 V, which may overshoot to VCC +2.0 V for periods of less than 20 ns. Table 2. RELIABILITY CHARACTERISTICS (Note 2) Parameter Symbol NEND (Note 3) TDR Endurance Min Units 1,000,000 Program / Erase Cycles 100 Years Data Retention 2. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC−Q100 and JEDEC test methods. 3. Block Mode, VCC = 5 V, 25°C Table 3. D.C. OPERATING CHARACTERISTICS (VCC = +2.5 V to +5.5 V, TA = −40°C to +125°C, unless otherwise specified.) Symbol Parameter ICC1 Supply Current (Write) Write, VCC = 5.0 V Test Conditions ICC2 Supply Current (Read) Read, DO open, fSK = 2 MHz, VCC = 5.0 V ISB1 Standby Current (x8 Mode) ISB2 Standby Current (x16 Mode) ILI Input Leakage Current ILO Max Units 2 mA 500 mA VIN = GND or VCC CS = GND, ORG = GND 5 mA VIN = GND or VCC CS = GND, ORG = Float or VCC 3 mA VIN = GND to VCC 2 mA Output Leakage Current VOUT = GND to VCC CS = GND 2 mA VIL1 Input Low Voltage 4.5 V ≤ VCC < 5.5 V −0.1 0.8 V VIH1 Input High Voltage 4.5 V ≤ VCC < 5.5 V 2 VCC + 1 V VIL2 Input Low Voltage 2.5 V ≤ VCC < 4.5 V 0 VCC x 0.2 V VIH2 Input High Voltage 2.5 V ≤ VCC < 4.5 V VCC x 0.7 VCC + 1 V 0.4 V VOL1 Output Low Voltage 4.5 V ≤ VCC < 5.5 V, IOL = 3 mA VOH1 Output High Voltage 4.5 V ≤ VCC < 5.5 V, IOH = −400 mA VOL2 Output Low Voltage 2.5 V ≤ VCC < 4.5 V, IOL = 1 mA VOH2 Output High Voltage 2.5 V ≤ VCC < 4.5 V, IOH = −100 mA Min 2.4 V 0.2 VCC − 0.2 V V Table 4. PIN CAPACITANCE (Note 4) Symbol COUT CIN Test Conditions Output Capacitance (DO) Input Capacitance (CS, SK, DI, ORG) Min Max Units VOUT = 0 V 5 pF VIN = 0 V 5 pF 4. These parameters are tested initially and after a design or process change that affects the parameter. www.onsemi.com 2 Typ CAV93C76 Table 5. POWER−UP TIMING (Notes 6, 5) Parameter Symbol Max Units tPUR Power−up to Read Operation 1 ms tPUW Power−up to Write Operation 1 ms 5. tPUR and tPUW are the delays required from the time VCC is stable until the specified operation can be initiated. Table 6. A.C. TEST CONDITIONS Input Rise and Fall Times ≤ 50 ns Input Pulse Voltages 0.4 V to 2.4 V 4.5 V v VCC v 5.5 V Timing Reference Voltages 0.8 V, 2.0 V 4.5 V v VCC v 5.5 V Input Pulse Voltages 0.2 VCC to 0.7 VCC 2.5 V v VCC v 4.5 V Timing Reference Voltages 0.5 VCC 2.5 V v VCC v 4.5 V Output Load Current Source IOLmax/IOHmax; CL = 100 pF Table 7. A.C. CHARACTERISTICS (VCC = +2.5 V to +5.5 V, TA = −40°C to +125°C, unless otherwise specified.) Parameter Symbol Min Max Units tCSS CS Setup Time 50 ns tCSH CS Hold Time 0 ns tDIS DI Setup Time 100 ns tDIH DI Hold Time 100 ns tPD1 Output Delay to 1 0.25 ms tPD0 Output Delay to 0 0.25 ms Output Delay to High−Z 100 ns 5 ms tHZ (Note 6) tEW Program/Erase Pulse Width tCSMIN Minimum CS Low Time 0.25 ms tSKHI Minimum SK High Time 0.25 ms tSKLOW Minimum SK Low Time 0.25 tSV Output Delay to Status Valid SKMAX Maximum Clock Frequency DC ms 0.25 ms 2000 kHz 6. This parameter is tested initially and after a design or process change that affects the parameter. Table 8. INSTRUCTION SET (Note 7) Instruction Start Bit READ Address Data Opcode x8 x16 x8 1 10 A10−A0 A9−A0 Read Address AN– A0 ERASE 1 11 A10−A0 A9−A0 Clear Address AN– A0 WRITE 1 01 A10−A0 A9−A0 EWEN 1 00 11XXXXXXXXX 11XXXXXXXX EWDS 1 00 00XXXXXXXXX 00XXXXXXXX Write Disable ERAL 1 00 10XXXXXXXXX 10XXXXXXXX Clear All Addresses WRAL 1 00 01XXXXXXXXX 01XXXXXXXX D7−D0 x16 D15−D0 Comments Write Address AN– A0 Write Enable D7−D0 D15−D0 Write All Addresses 7. Address bit A10 for the 1,024x8 org. and A9 for the 512x16 org. are “don’t care” bits, but must be kept at either a “1” or “0” for READ, WRITE and ERASE commands. www.onsemi.com 3 CAV93C76 Device Operation The CAV93C76 is a 8192−bit nonvolatile memory intended for use with industry standard microprocessors. The CAV93C76 can be organized as either registers of 16 bits or 8 bits. When organized as X16, seven 13−bit instructions control the read, write and erase operations of the device. When organized as X8, seven 14−bit instructions control the read, write and erase operations of the device. The CAV93C76 operates on a single power supply and will generate on chip, the high voltage required during any write operation. Instructions, addresses, and write data are clocked into the DI pin on the rising edge of the clock (SK). The DO pin is normally in a high impedance state except when reading data from the device, or when checking the ready/busy status after a write operation. The ready/busy status can be determined after the start of a write operation by selecting the device (CS high) and polling the DO pin; DO low indicates that the write operation is not completed, while DO high indicates that the device is ready for the next instruction. If necessary, the DO pin may be placed back into a high impedance state during chip select by shifting a dummy “1” into the DI pin. The DO pin will enter the high impedance state on the falling edge of the clock (SK). Placing the DO pin into the high impedance state is recommended in applications where the DI pin and the DO pin are to be tied together to form a common DI/O pin. The format for all instructions sent to the device is a logical “1” start bit, a 2−bit (or 4−bit) opcode, 10−bit address (an additional bit when organized X8) and for write operations a 16−bit data field (8−bit for X8 organizations). The most significant bit of the address is “don’t care” but it must be present. tSKHI Read Upon receiving a READ command and an address (clocked into the DI pin), the DO pin of the CAV93C76 will come out of the high impedance state and, after sending an initial dummy zero bit, will begin shifting out the data addressed (MSB first). The output data bits will toggle on the rising edge of the SK clock and are stable after the specified time delay (tPD0 or tPD1). For the CAV93C76, after the initial data word has been shifted out and CS remains asserted with the SK clock continuing to toggle, the device will automatically increment to the next address and shift out the next data word in a sequential READ mode. As long as CS is continuously asserted and SK continues to toggle, the device will keep incrementing to the next address automatically until it reaches the end of the address space, then loops back to address 0. In the sequential READ mode, only the initial data word is preceeded by a dummy zero bit. All subsequent data words will follow without a dummy zero bit. Write After receiving a WRITE command, address and the data, the CS (Chip Select) pin must be deselected for a minimum of tCSMIN. The falling edge of CS will start the self clocking clear and data store cycle of the memory location specified in the instruction. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAV93C76 can be determined by selecting the device and polling the DO pin. Since this device features Auto−Clear before write, it is NOT necessary to erase a memory location before it is written into. tSKLOW tCSH SK tDIH tDIS VALID VALID DI tCSS CS tDIS tPD0, tPD1 DO DATA VALID Figure 2. Synchronous Data Timing www.onsemi.com 4 tCSMN CAV93C76 SK CS AN DI 1 1 AN−1 Don’t Care A0 0 HIGH−Z DO Dummy 0 D15 . . . D0 or D7 . . . D0 Address + 1 D15 . . . D0 or D7 . . . D0 Address + 2 D15 . . . D0 or D7 . . . D0 Address + n D15 . . . or D7 . . . Figure 3. READ Instruction Timing SK tCSMIN CS STATUS VERIFY AN DI 1 0 AN−1 A0 DN D0 1 tSV DO STANDBY BUSY HIGH−Z READY tEW Figure 4. WRITE Instruction Timing www.onsemi.com 5 tHZ HIGH−Z CAV93C76 Erase determined by selecting the device and polling the DO pin. Once cleared, the contents of all memory bits return to a logical “1” state. Upon receiving an ERASE command and address, the CS (Chip Select) pin must be deasserted for a minimum of tCSMIN. The falling edge of CS will start the self clocking clear cycle of the selected memory location. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAV93C76 can be determined by selecting the device and polling the DO pin. Once cleared, the content of a cleared location returns to a logical “1” state. Write All Upon receiving a WRAL command and data, the CS (Chip Select) pin must be deselected for a minimum of tCSMIN. The falling edge of CS will start the self clocking data write to all memory locations in the device. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAV93C76 can be determined by selecting the device and polling the DO pin. It is not necessary for all memory locations to be cleared before the WRAL command is executed. Note 1: After the last data bit has been sampled, Chip Select (CS) must be brought Low before the next rising edge of the clock (SK) in order to start the self−timed high voltage cycle. This is important because if CS is brought low before or after this specific frame window, the addressed location will not be programmed or erased. Erase/Write Enable and Disable The CAV93C76 powers up in the write disable state. Any writing after power−up or after an EWDS (write disable) instruction must first be preceded by the EWEN (write enable) instruction. Once the write instruction is enabled, it will remain enabled until power to the device is removed, or the EWDS instruction is sent. The EWDS instruction can be used to disable all CAV93C76 write and clear instructions, and will prevent any accidental writing or clearing of the device. Data can be read normally from the device regardless of the write enable/disable status. Power−On Reset (POR) Erase All The CAV93C76 incorporates Power−On Reset (POR) circuitry which protects the device against malfunctioning while VCC is lower than the recommended operating voltage. The device will power up into a read−only state and will power−down into a reset state when VCC crosses the POR level of ~1.3 V. Upon receiving an ERAL command, the CS (Chip Select) pin must be deselected for a minimum of tCSMIN. The falling edge of CS will start the self clocking clear cycle of all memory locations in the device. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAV93C76 can be SK CS STATUS VERIFY AN DI 1 1 AN−1 tCS A0 1 tSV DO STANDBY HIGH−Z tHZ BUSY tEW Figure 5. ERASE Instruction Timing www.onsemi.com 6 READY HIGH−Z CAV93C76 SK STANDBY CS DI 1 0 0 * * ENABLE = 11 DISABLE = 00 Figure 6. EWEN/EWDS Instruction Timing SK CS STATUS VERIFY STANDBY tCS DI 1 0 1 0 0 tSV tHZ HIGH−Z DO BUSY READY HIGH−Z tEW Figure 7. ERAL Instruction Timing SK CS STATUS VERIFY STANDBY tCSMIN DI 1 0 0 0 1 DN D0 tSV tHZ BUSY DO tEW Figure 8. WRAL Instruction Timing www.onsemi.com 7 READY HIGH−Z CAV93C76 ORDERING INFORMATION Device Order Number Specific Device Marking Package Type Temperature Range Lead Finish CAV93C76VE−GT3 93C76D SOIC−8, JEDEC −40°C to +125°C NiPdAu Tape & Reel, 3,000 Units / Reel CAV93C76YE−GT3 M76D TSSOP−8 −40°C to +125°C NiPdAu Tape & Reel, 3,000 Units / Reel Shipping† †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 8. All packages are RoHS−compliant (Lead−free, Halogen−free). 9. The standard lead finish is NiPdAu. 10. For additional package and temperature options, please contact your nearest ON Semiconductor sales office. 11. For detailed information and a breakdown of device nomenclature and numbering systems, please see the ON Semiconductor Device Nomenclature document, TND310/D, available at www.onsemi.com www.onsemi.com 8 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC 8, 150 mils CASE 751BD−01 ISSUE O E1 DATE 19 DEC 2008 E SYMBOL MIN A 1.35 1.75 A1 0.10 0.25 b 0.33 0.51 c 0.19 0.25 D 4.80 5.00 E 5.80 6.20 E1 3.80 4.00 MAX 1.27 BSC e PIN # 1 IDENTIFICATION NOM h 0.25 0.50 L 0.40 1.27 θ 0º 8º TOP VIEW D h A1 A θ c e b SIDE VIEW L END VIEW Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC MS-012. DOCUMENT NUMBER: DESCRIPTION: 98AON34272E SOIC 8, 150 MILS Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP8, 4.4x3.0, 0.65P CASE 948AL ISSUE A DATE 20 MAY 2022 q q GENERIC MARKING DIAGRAM* XXX YWW AG XXX Y WW A G = Specific Device Code = Year = Work Week = Assembly Location = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. DOCUMENT NUMBER: DESCRIPTION: 98AON34428E TSSOP8, 4.4X3.0, 0.65P Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
CAV93C76YE-GT3 价格&库存

很抱歉,暂时无法提供与“CAV93C76YE-GT3”相匹配的价格&库存,您可以联系我们找货

免费人工找货