0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
UPC8125GR

UPC8125GR

  • 厂商:

    NEC(日电电子)

  • 封装:

  • 描述:

    UPC8125GR - SILICON MMIC UPCONVERTER WITH AGC IQ MODULATOR - NEC

  • 数据手册
  • 价格&库存
UPC8125GR 数据手册
SILICON MMIC UPCONVERTER UPC8125GR WITH AGC + IQ MODULATOR FEATURES • WIDE SUPPLY VOLTAGE RANGE: 2.7 to 5.5 V Vcc (MOD) INTERNAL BLOCK DIAGRAM 1 2 3 4 5 6 7 8 x2 Lo1 in 9 GND LPF LPF 90 deg. Phase Shifter (÷ 2) Reg. Reg. • OUTPUT FREQUENCY RANGE: 1.8 to 2.0 GHz • INTERNAL LPF TO REJECT LO & SPURIOUS LEAKAGE • PORTS FOR EXTERNAL IF FILTER • AGC FUNCTION: 40 dB RANGE • POWER SAVE FUNCTION • SMALL 20 PIN SSOP PACKAGE • TAPE AND REEL PACKAGING AVAILABLE Filter 1 Filter 2 I – I Q – Q Lo1 in 20 Vcc (Up-con) 19 RFout 18 GND 17 GND 16 Vps 15 VAGC 14 GND 13 Lo2 in 12 Lo2 in 11 GND 10 DESCRIPTION The UPC8125GR is a Silicon MMIC manufactured with the NESATTM III silicon bipolar process. The IC consists of a 1.8 2.0 GHz upconverter with AGC function and a 220 - 270 MHz IQ modulator. The device operates over a wide 2.7 - 5.5 V supply voltage range and features a power save function. The device was specifically designed for digital mobile communication applications such as 1900 MHz PCS and PHS handsets. NEC's stringent quality assurance and test procedures ensure the highest reliability and performance. ELECTRICAL CHARACTERISTICS (TA = 25°C, VCC = VPS = 3.0 V, unless otherwise specified) PART NUMBER PACKAGE OUTLINE SYMBOLS ICC UP CONVERTER + QUADRATURE MODULATOR TOTAL ICC(PS) PRFout 1 PRFout 2 LOL ImR IM3 I/Q GCR TPS(RISE) TPS (FALL) ZI/Q II/Q ZLO1 EVM Padj PARAMETERS AND CONDITIONS Total Circuit Current (no input signal) Total Circuit Current at Sleep Mode Total Output Power 1 Total Output Power 2 Lo Carrier Leak1 Image Rejection (Side Band leak)1 I/Q 3rd Order Intermodulation Distortion1 AGC Amp. Gain control range Power Save Rise Time Power Save Fall Time Input Impedance I and Q Ports I/Q Bias Current Lo1 Input VSWR Error Vector Magnitude Adjacent Channel Power VAGC = 2.5 V to 0 V VPS (OFF) → VPS (ON) VPS (ON) → VPS (OFF) fI/Q = 24 kHZ, I → I, Q → Q I → I, Q → Q fLO1= 220 MHz to 270 MHz MOD Pattern : PN9 ∆f = 600 KHZ MOD Pattern : PN9 %rms dBc VPS ≤ 0.5 V (Low) VAGC = 3.0 V VAGC = 0.5 V fLO1 + fLO2 UNITS mA µA dBm dBm dBc dBc dBc dB µS µS kΩ µA 28 -13 MIN 30 UPC8125GR S20 (SSOP 20) TYP 36 0.3 -9 -50 -37 -35 -50 40 2 5 200 5 1.2:1 2.5 -68 4.5 -60 5 10 -30 -30 -30 MAX 48 10 -5 Notes: 1. VI/Q = 1.5 V (DC) +0.5 Vp-p (AC) California Eastern Laboratories UPC8125GR ABSOLUTE MAXIMUM RATINGS1 (TA = 25°C) SYMBOLS VCC VPS VAGC PD TOP TSTG PARAMETERS Supply Voltage Power Save Control Voltage AGC Control Voltage Power Dissipation2 Operating Temperature Storage Temperature UNITS V V V mW °C °C RATINGS 6.0 6.0 6.0 430 -40 to +85 -55 to +150 RECOMMENDED OPERATING CONDITIONS SYMBOLS VCC TOP fRFout fUPCONin fMODout fLO1in fLO2in fI/Qin PARAMETERS Supply Voltage Operating Temperature UNITS MIN TYP MAX V °C 2.7 -40 1.8 220 3.0 5.5 +25 +85 2.0 270 Up Converter RF Frequency GHz Up Converter Input Freq. Modulator Output Frequency Lo1 Input Frequency, PLO1in = -10 dBm Lo2 Input Frequency, PLO2in = -10 dBm I/Q Input Frequency, VI/Qin = 500 mVp-p MAX (Single ended) Lo1 Input Level Lo2 Input Level I/Q Input Amplitude, Single ended Input Differential Input MHz Notes: 1. Operation in excess of any one of these conditions may result in permanent damage. 2. TA = 85°C Mounted on a 50x50x1.6 mm double copper clad epoxy glass board. MHz 1500 MHz DC 1800 10 PLO1in PLO2in VI/Qin dBm -11.5 -10 dBm mVp-p -15 -10 -5 -5 500 250 TYPICAL PERFORMANCE CURVES (TA = 25°C, VCC = VPS = VAGC = 3.0 V, I/Q DC Offset = I/Q DC Offset = 1.5 V, I/Q Input Signal = 500 mVp-p (Single-ended), LO1 = 250 MHz, PLO1 = -10 dBm, LO2 = 1650 MHz, PLO2 = -10 dBm, RFOUT = 1900 MHz + fI/Q unless otherwise specified) ERROR VECTOR MAGNITUDE, AMPLITUDE ERROR, PHASE ERROR AND I/Q OFFSET vs. I/Q INPUT VOLTAGE 10 -20 MOD Pattern: PN9 OUTPUT POWER, LO LEAKAGE, IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. I/Q INPUT VOLTAGE LO Leakage, LOL (dBc) Image Rejection, ImR (dBc) I/Q 3rd Order Intermod. Distortion, IM3I/Q (dBc) 0 PRFout -10 -10 0 Error Vector Magnitude, EVM (%rms) Amplitude Error, ∆A (%rms) Phase Error, ∆ø (˚rms) 8 -30 6 I/Q offset 4 EVM 2 ∆A ∆φ 0 -60 100 200 500 1000 -50 -40 I/Q Offset, (dB) -20 -20 -30 ImR -40 IM3I/Q -50 LoL -30 -40 -50 -60 -60 100 200 500 1000 I/Q Input Voltage, VI/Qin (mVp-p) I/Q Input Voltage, VI/Qin (mVp-p) RF Output Power, PRFOUT (dBm) UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C) OUTPUT POWER, LO LEAKAGE, IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. LO1 INPUT POWER OUTPUT POWER vs. LO2 INPUT POWER AND VAGC LO Leakage, LOL (dBc) Image Rejection, ImR (dBc) I/Q 3rd Order Intermod. Distortion, IM3I/Q (dBc) RF Output Power, PRFOUT (dBm) 0 PRFout -10 -20 -30 ImR -40 -50 -60 -70 -20 -10 0 IMSI/Q LoL 0 -10 -20 -30 -40 -50 -60 -70 RF Output Power, PRFOUT (dBm) 0 -10 -20 -30 -40 VAGC = 1.2 V -50 -60 -70 -30 -20 -10 0 VAGC = 3.0 V LO1 Input Power, PLO1IN (dBm) LO2 Input Power, PLO2IN (dBm) ERROR VECTOR MAGNITUDE, AMPLITUDE ERROR, PHASE ERROR, AND I/Q OFFSET vs. AGC VOLTAGE 10 ERROR VECTOR MAGNITUDE, AMPLITUDE ERROR, PHASE ERROR, AND I/Q OFFSET vs. LO1 INPUT POWER 10 -20 Error Vector Magnitude, EVM (%rms) Amplitude Error, ∆A (%rms) Phase Error, ∆ø (˚rms) 8 -30 6 EVM -40 Error Vector Magnitude, EVM (%rms) Amplitude Error, ∆A (%rms) Phase Error, ∆ø (˚rms) 8 -30 6 EVM -40 4 I/Q offset ∆A 2 ∆φ -50 4 I/Q offset ∆A 2 -50 ∆φ I/Q offset (dB) 0 0 1 2 3 -60 0 -20 -10 0 -60 AGC Voltage, VAGC (V) LO1 Input Power, PLO1IN (dBm) RF OUTPUT vs. AGC VOLTAGE -10 -15 TYPICAL OUTPUT SPECTRUM 0 -10 Output Power, POUT (dBm) -20 -20 -30 -40 -50 -60 -70 -80 -90 IM3I/Q -48.5 dBc ImR -32.7 dBc LoL -48.3 dBc RF Output, (dBm) -25 -30 -35 -40 -45 -50 -55 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 1897.5 1900 1902.5 AGC Voltage, VAGC (V) Frequency, f (MHz) I/Q offset (dB) UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C) CIRCUIT CURRENT vs. SUPPLY VOLTAGE 50 50 CIRCUIT CURRENT vs. POWER SAVE VOLTAGE Circuit Current, ICC (mA) 30 Circuit Current, ICC (mA) 40 40 30 20 10 : TA = +25 °C : TA = -40 °C : TA = +85 °C 20 10 : TA = +25 °C : TA = -40 °C : TA = +85 °C 0 0 1 2 3 4 5 0 0 1 2 3 Supply Voltage, VCC (V) Power Save Voltage, VPS (V) CIRCUIT CURRENT vs. OPERATING TEMPERATURE Power Save Circuit Current, ICC(PS) (µA) 50 45 50 45 40 35 30 25 20 15 10 5 POWER SAVE CIRCUIT CURRENT vs. OPERATING TEMPERATURE Circuit Current, ICC (mA) 40 35 30 25 20 15 10 5 0 -50 -40 °C +25 °C +85 °C 0 50 100 0 -50 0 50 100 Operating Temperature, TA (°C) Operating Temperature, TA (°C) POWER SAVE CIRCUIT CURRENT vs. SUPPLY VOLTAGE Power Save Circuit Current, ICC(PS) (µA) 1 0.9 50 CIRCUIT CURRENT vs. POWER SAVE VOLTAGE 0.7 0.6 0.5 3.0 V 0.4 0.3 0.2 0.1 0 5.5 V 2.7 V Circuit Current, ICC (mA) 0.8 40 30 20 : VCC = 3.0 V : VCC = 2.7 V : VCC = 5.5 V 10 0 2 3 4 5 6 0 1 2 3 4 5 Supply Voltage, VCC (V) Power Save Voltage, VPS (V) UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C) OUTPUT POWER, LO LEAKAGE, IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. OPERATING TEMPERATURE 0 PRFout 1 0 -10 -20 ImR -30 -40 -50 -60 IM3 (I/Q) -70 -40 0 +40 +80 +120 -70 LO Leakage, LOL (dBc) Image Rejection, ImR (dBc) I/Q 3rd Order Intermod. Distortion, IM3I/Q (dBc) 0 PRFout 1 0 -10 -20 ImR -30 -40 -50 -60 -70 Output Power, PRFOUT (dBm) -10 -20 -30 -40 -50 -60 Output Power, PRFOUT (dBm) -10 -20 -30 -40 -50 -60 -70 LoL LoL IM3 (I/Q) 0 1 2 3 4 5 6 Operating Temperature, TA (°C) Supply Voltage, VCC (V) OUTPUT POWER vs. AGC CONTROL VOLTAGE 0 0 OUTPUT POWER vs. AGC CONTROL VOLTAGE : TA = +25 °C : TA = -40 °C : TA = +85 °C Output Power, PRFOUT (dBm) -20 -30 -40 -50 -60 -70 0 1 2 3 GCR = 42.4 dB (VCC = 5.5 V) GCR = 41.2 dB (VCC = 3.0 V) GCR = 41.0 dB (VCC = 2.7 V) Output Power, PRFOUT (dBm) -10 -10 -20 -30 -40 -50 -60 -70 0 GCR = 43.0 dB (TA = -40 °C) GCR = 41.2 dB (TA = +25 °C) GCR = 37.8 dB (TA = +85 °C) : VCC = 3.0 V : VCC = 2.7 V : VCC = 5.5 V 4 5 1 2 3 AGC Control Voltage, VAGC (V) OUTPUT POWER, LO LEAKAGE, IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. AGC CONTROL VOLTAGE LO Leakage, LOL (dBc) Image Rejection, ImR (dBc) I/Q 3rd Order Intermod. Distortion, IM3I/Q (dBc) +10 AGC Control Voltage, VAGC (V) OUTPUT POWER vs. AGC CONTROL VOLTAGE Output Power, PRFOUT (dBm) PRFout -10 -20 -30 -40 -50 IM3 (I/Q) -60 -70 0 1 2 3 -60 -70 ImR LoL -10 -20 -30 -40 -50 Output Power, PRFOUT (dBm) 0 0 0 Slope: 41 dB/V -10 RAGC = 80 kΩ -20 Slope: 118 dB/V RAGC = 10 kΩ -30 -40 -50 -60 -70 0 1 2 3 AGC Control Voltage, VAGC (V) AGC Control Voltage, VAGC (V) LO Leakage, LOL (dBc) Image Rejection, ImR (dBc) I/Q 3rd Order Intermod. Distortion, IM3I/Q (dBc) OUTPUT POWER, LO LEAKAGE, IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. SUPPLY VOLTAGE UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C) OUTPUT POWER, LO LEAKAGE, IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. LO1 INPUT POWER OUTPUT POWER vs. I/Q INPUT AMPLITUDE LO Leakage, LOL (dBc) Image Rejection, ImR (dBc) I/Q 3rd Order Intermod. Distortion, IM3I/Q (dBc) 0 PRFout1 Output Power, PRFOUT1 (dBm) 0 -10 -20 ImR LOL IM3 (I/Q) -30 -40 -50 -60 -70 -30 -20 -10 0 +10 LO1 Input Power, PLO1IN (dBm) 0 Output Power, PRFOUT (dBm) -10 -20 -30 -40 -50 -60 -70 -10 VAGC = 3 V -20 -30 -40 -50 -60 100 VAGC = 1.3 V 200 500 1000 1200 I/Q Input Amplitude, VI/QIN (mVP-P) LO1 x n SPURIOUS LEVEL, OUTPUT POWER vs. SUPPLY VOLTAGE LO1 x n Spurious Level, PSUP(L01) (dBc) LO1 x n Spurious Level, PSUP(L01) (dBc) LO1 x n SPURIOUS LEVEL, OUTPUT POWER vs. OPERATING TEMPERATURE -40 0 Output Power, PRFOUT (dBm) -40 -50 -10 -50 -10 -60 -70 0 PRFout 7fLO1 7fLO1(Image) 8fLO1 8fLO1(Image) 1 2 3 4 5 6 Supply Voltage, VCC (V) -20 -60 -20 -30 -70 -40 0 +40 +80 +120 Operating Temperature, TA (°C) -30 OUTPUT POWER vs. LO2 INPUT LEVEL ADJACENT CHANNEL POWER vs. AGC CONTROL VOLTAGE Adjacent Channel Power, PADJ (dBc) +10 Output Power, PRFOUT (dBm) 0 -10 -20 -30 -40 -50 -60 -70 -40 -30 -20 MOD pattern: PN9 -40 -50 -60 -70 -80 ∆f = ±900 kHz VAGC = 3V VAGC = 1.3V ∆f = ±600 kHz -10 0 +10 0 1 2 3 LO2 Input Level, PLO2IN (dBm) AGC Control Voltage, VAGC (V) Output Power, PRFOUT (dBm) PRFout 7fLO1 7fLO1(Image) 8fLO1 8fLO1(Image) 0 UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C) ADJACENT CHANNEL POWER vs. I/Q INPUT AMPLITUDE Adjacent Channel Power, PADJ (dBc) Error Vector Magnitude, EVM (%rms) Amplitude Error, ∆A (%rms) Phase Error, ∆ø (Deg.) ERROR VECTOR MAGNITUDE, AMPLITUDE ERROR, PHASE ERROR, AND I/Q OFFSET vs. AGC CONTROL VOLTAGE 10 MOD Pattern: PN9 -50 -60 -70 ∆f = ±900 kHz -80 -20 MOD Pattern: PN9 8 I/Q Offset 6 -30 I/Q offset, (dB) ∆f = ±600 kHz -40 4 EVM 2 0 ∆A ∆φ 0 1 2 3 -50 100 200 500 1000 I/Q Input Amplitude, VI/QIN (mVP-P) AGC Control Voltage, VAGC (V) ERROR VECTOR MAGNITUDE, AMPLITUDE ERROR, PHASE ERROR, AND I/Q OFFSET vs. I/Q INPUT AMPLITUDE POWER SAVE RISE TIME vs. SUPPLY VOLTAGE 10 Error Vector Magnitude, EVM (%rms) Amplitdue Error, ∆A (%rms) Phase Error, ∆ø (Deg.) -20 MOD Pattern: PN9 Power Save Rise Time, TPS(RISE) (µs) 4 VPS (Low)   VPS (High) 3 2.7V 3.0V 1 5.5V 8 6 4 EVM 2 ∆A ∆φ 0 100 200 500 1000 I/Q Input Amplitude, VI/QIN (mVP-P) I/Q Offset -40 I/Q offset, (dB) -30 2 -50 -60 0 2 3 4 5 6 Supply Voltage, VCC (V) POWER SAVE FALL TIME vs. SUPPLY VOLTAGE ERROR VECTOR MAGNITUDE vs. SUPPLY VOLTAGE 8 Power Save Fall Time, TPS(FALL) (µs) Error Vector Magnitude, EVM (%rms) 5 VPS (High)   VPS (Low) 7 6 5 4 3 2 1 0 2 3 4 5 6 Supply Voltage, VCC (V) 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 2 MOD Pattern: PN9 3 4 5 6 Supply Voltage, VCC (V) UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C) ADJACENT CHANNEL POWER vs. SUPPLY VOLTAGE POWER SAVE RISE TIME vs. OPERATING TEMPERATURE -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 2 3 4 5 6 Supply Voltage, VCC (V) Power Save Rise Time, TPS(RISE) (µs) Adjacent Channel Power, PADJ (dBc) MOD Pattern: PN9 ∆f = ±600 kHz 4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -40 °C +85 °C +25 °C VPS (Low)   VPS (High) 0 50 100 Operating Temperature, TA (°C) POWER SAVE FALL TIME vs. OPERATING TEMPERATURE ERROR VECTOR MAGNITUDE vs. OPERATING TEMPERATURE 10 Power Save Fall Time, TPS(FALL) (µs) 5 Error Vector Magnitude, EVM (%rms) 9 8 7 6 5 4 3 2 1 0 VPS (High)   VPS (Low) 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -50 0 MOD Pattern: PN9 -50 0 50 100 50 100 Operating Temperature, TA (°C) Operating Temperature, TA (°C) ADJACENT CHANNEL POWER vs. OPERATING TEMPERATURE 0 Adjacent Channel Power, PADJ (dBc) -10 -20 -30 -40 -50 -60 -70 -50 MOD Pattern: PN9 ∆f = ±600 kHz 0 50 100 Operating Temperature, TA (°C) UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C) TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM REF 0.0 dBm 10dB/DIV MKR 1.900 GHz MARKER 1.900 GHz -8.53 dBm 2fLO1 6fLO1 PRFout fLO2 4fLO1 REF 0.0 dBm 10dB/DIV REF 0.0 GHz ImR LoL IM3(I/Q) TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM PRFout A• 5fLO1 fLO1 RBW 300 kHz VBW 3 MHz SWP 10 s 3fLO1 RBW 3 kHz VBW 10 MHz SWP 2.0 s START 0 GHz STOP 2.500 GHz MARKER 1.9000274 GHz -8.80 dBm CENTER 1.9000000 GHz SPAN 200.0 kHz TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) (1) REF 0.0 dBm 10dB/DIV MKR 1.8986 GHz MARKER 1.8986 GHz -9.38 dBm 8fLO1 (Image) 1.8 GHz -65.0 dBm 7fLO1 1.75 GHz -69.1 dBm PRFout REF 0.0 dBm 10dB/DIV REF 0.0 dBm 7fLO1 (Image) 2.05 GHz 8fLO1 7fLO1 -67.5 dBm 2.0 GHz 1.75GHz -68.0 dBm -69.1 dBm RBW 100 kHz VBW 10 kHz SWP 10 s STOP 2.1500 GHz TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) (2) (fLO1 = 233.15 MHz, fLO2 = 1662 MHz) PRFout RBW 300 kHz VBW 3 MHz SWP 10 s Frequency Band Width for PHS 1895.15 to 1917.95 MHz START 1.6500 GHz CENTER 1.88000 GHz STOP 1.93000 GHz TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM (IN BAND) (3) (fLO1 = 233.15 MHz, fLO2 = 1684.8 MHz) REF 0.0 dBm 10dB/DIV REF 0.0 dBm MARKER 1.91793 GHz -8.02 dBm PRFout REF -10.0 dBm 10dB/DIV ADJ BS 192 kHz Frequency Band Width for PHS 1895.15 to 1917.95 MHz DL -10.0 dBm TYPICAL π/4 DQPSK MODULATION OUTPUT SPECTRUM RBW 100 kHz VBW 10 kHz SWP 10 s RBW 3 kHz VBW 10 kHz SWP 5.0 s 1 2 3 4 CENTER 1.88000 GHz STOP 1.93000 GHz CENTER 1.900000 GHz SPAN 2.000 MHz 1: 1.899100 GHz -71.00 dB 2: 1.899400 GHz -68.00 dB 3: 1.900600 GHz -68.00 dB 4: 1.900900 GHz -71.25 dB UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C) ATTEN 10 dB RL 0 dBm POWER SAVE RESPONSE (1) (VCC = 2.7 V) 10 dB/ ATTEN 10 dB RL 0 dBm POWER SAVE RESPONSE (2) (VCC = 3.0 V) 10 dB/ RBW: 2.0 MHz VBW: 3.0 MHz SWP: 50 µs RBW: 2.0 MHz VBW: 3.0 MHz SWP: 50 µs POWER SAVE RESPONSE (3) (VCC = 5.5 V) ATTEN 10 dB RL 0 dBm 10 dB/ RBW: 2.0 MHz VBW: 3.0 MHz SWP: 50 µs UPC8125GR TYPICAL PERFORMANCE CURVES (TA = 25°C, VCC = VPS = 3.0 V) RF OUTPUT IMPEDANCE (PIN 19) LO1 INPUT IMPEDANCE (PIN 8) Impedance at Marker 3: 9.145-j84.36 Impedance at Marker 1: 50.00+j0.0 1 Marker: 1: 900 MHz 2: 1.5 GHz 3: 1.9 GHz 3 2 Start: 800 MHz Stop: 2000 MHz 1 Marker: 1: 250 MHz Start: 50 MHz Stop: 500 MHz LO2 INPUT IMPEDANCE (PIN 13) Impedance at Marker 2: 10.053-j44.05 Marker: 1: 900 MHz 2: 1.65 GHz 3: 1.9 GHz 2 3 Start: 800 MHz Stop: 2000 MHz 1 UPC8125GR PIN FUNCTIONS Pin No. Symbol Supply Pin Voltage Voltage (V) (V) @ 3 V — Description Equivalent Circuit 1 VCC(MOD.) 2.7 to 5.5 Supply Voltage pin for the modulator. An internal regulator helps keep the device stable against temperature or VCC variation. This pin should be externally equipped with a bypass capacitor to minimize ground impedance. An external BPF installed between these pins can control the LO1 harmonics. 2 3 19 2 Filter 1 – 1.9 3 Filter 2 – 1.9 4 I VCC/2 NOTE – Input for I signal. This input impedance is 200 kΩ. When used as a single-ended input, the maximum amplitude should be 500 mVP-P. When used as a differential input, the maximum amplitude should be 250 mVP-P. 4 2.1 k 2.1 k 2k 5 5 l VCC/2 NOTE – Input for I signal. This input impedance is 200 kΩ. When used as a single-ended input, a VCC/2 biased DC signal should be input. When used as a differential input, the maximum amplitude is 250 mVP-P. 6 Q VCC/2 NOTE – Input for Q signal. This input impedance is 200 kΩ. When used as a single-ended input, the maximum amplitude should be 500 mVP-P. When used as a differential input, the maximum amplitude should be 250 mVP-P. 6 2.1 k 2.1 k 2k 7 7 Q VCC/2 NOTE – Input for Q signal. This input impedance is 200 kΩ. When used as a single-ended input, a VCC/2 biased DC signal should be input. When used as a differential input, the maximum amplitude is 250 mVP-P. 8 8 LO1IN – 0 LO input for the phase shifter. This input impedance is internally matched to 50 Ω. 50 9 LO IN – 2.4 Bypass of the LO1 input. This pin should be externally grounded through a capacitor. 9 10 11 GND (MOD.) – 0 Ground pins for modulator block. These pins should be connected to system ground with minimum inductance. Track length should be kept as short as possible. Note: VCC/2 DC bias must be supplied to I, I, Q, Q. UPC8125GR PIN FUNCTIONS Pin No. Symbol Supply Pin Voltage Voltage (V) (V) @ 3 V – 1.9 Description Equivalent Circuit 12 LO2IN Bypass of the LO2 input. This pin should be externally grounded through a capacitor. LO input for the up-converter. This pin is high impedance input and should be used with an external matching circuit. 13 LO2IN – 1.9 13 12 14 17 18 15 GND (Up-conv.) – 0 Ground pins for the upconverter block. These pins should be connected to sytem ground with minimum inductance. Track length should be kept as short as possible. Gain Control pin. VAGC Up = Gain Up. Adjust value of RAGC to set gain slope. 15 k 1k 15 k 15 9k VAGC 0 to VCC – 1k 16 VPS 0 to VCC – Power save control pin can control the On/ Sleep state with bias as follows: VPS (V) ≥2.0 0 to 0.5 STATE ON SLEEP 16 1.6 k 19 RFOUT VCC – RF output from up-converter. This pin is an open collector and requires an external LC matching circuit. 19 2 3 20 VCC (Up-con.) 2.7 to 5.5 – Supply voltage pin for the up-converter. An internal regulator helps keep the device stable against temperature or VCC variation. This pin should be externally equipped with a bypass capacitor to minimize ground impedance. UPC8125GR APPLICATION CIRCUIT 1000pF 1 Vcc (MOD) Vcc (UP-CON) RFout GND GND Vps VAGC GND Lo2in Lo2in GND 20 1000pF 19 18 17 16 15 1000pF 14 Zo = 50 Ω 13 C2=3pF 100pF 12 100pF 11 Matching circuit at fRFout = 190 MHz 1kΩ Zo = 50 Ω C3 = 3pF L2 = 100nH 100pF 2 Filter1 L1 = 47 nH C1=7pF 3 Filter2 BPF at fMODout = 250 MHz 4 5 100pF 6 7 100pF 8 100pF 9 1000pF 10 GND Lo1in Lo1in Q Q I I RAGC Matching circuit at fLo2in = 1650 MHz APPLICATION CIRCUIT (PHS) RX DEMO I Q ÷N SW PLL PLL UPC8125GR I 0° TX PA 90° Q Filter UPC8125GR PACKAGE DIMENSIONS (Units in mm) PACKAGE OUTLINE SSOP 20 20 11 N 1 7.00 MAX 10 6.4±0.2 4.4±0.1 1.0±0.1 1.5 ±0.1 1.8 MAX 0.1 ±0.1 +0.10 0.22 - 0.05 +0.10 0.15- 0.05 0.5±0.2 0.65 0.575 MAX ORDERING INFORMATION PART NUMBER UPC8125GR-E1 Notes: 1. Embossed tape, 12 mm wide. QUANTITY 2500/Reel EXCLUSIVE NORTH AMERICAN AGENT FOR RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279 24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: http://WWW.CEL.COM PRINTED IN USA ON RECYCLED PAPER -5/99 DATA SUBJECT TO CHANGE WITHOUT NOTICE
UPC8125GR 价格&库存

很抱歉,暂时无法提供与“UPC8125GR”相匹配的价格&库存,您可以联系我们找货

免费人工找货