0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DSPB56725CAF

DSPB56725CAF

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP80

  • 描述:

    IC DSP 24BIT 80LQFP

  • 数据手册
  • 价格&库存
DSPB56725CAF 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: DSP56724EC Rev. 2, 3/2009 DSP56724/DSP56725 Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors DSP56724 144-Pin LQFP 20 mm × 20 mm 0.5 mm pitch DSP56725 80-Pin LQFP 14 mm × 14 mm 0.65 mm pitch See Table 19. The Symphony DSP56724/DSP56725 Multi-Core Audio Processors are part of the DSP5672x family of programmable CMOS DSPs, designed using dual DSP56300 24-bit cores. The DSP56724 is intended for consumer and professional audio applications that require high performance for audio processing. In addition, the DSP56724 is ideally suited for applications that need the capability to expand memory off-chip or to interface to external parallel peripherals. Potential applications include A/V receivers, DVD Receivers, Home Theater in a Box (HTIB), and professional audio equipment including portable recording equipment, musical instruments, guitar amplifiers and pedals. The DSP56724 offers customers flexibility in their designs by providing a more cost-effective alternative to the DSP56720 while maintaining pin compatibility. The DSP56725 is intended for automotive and audio applications that require high performance for audio processing. Potential applications include A/V receivers, DVD Receivers, Home Theater in a Box (HTIB), and automotive amplifiers and entertainment systems. The DSP56725 offers customers flexibility in their designs by providing a more cost-effective alternative to the DSP56721 while maintaining pin compatibility. meeting high MIPs requirements. Legacy peripherals from the previous DSP5636x/37x families are included, as are a variety of new modules available in the DSP5672x family. Modules from the DSP56720 are included, such as an Asynchronous Sample Rate Converter (ASRC), an Inter-Core Communication (ICC) module, an External Memory Controller (EMC) to support SDRAM (DSP56724 only), and a Sony/Philips Digital Interface (S/PDIF) transceiver. The DSP56724/DSP56725 devices offer up to 250 million instructions per second (MIPs) per core using an internal 250 MHz clock. The DSP56724/ DSP56725 products are high density CMOS devices with 3.3 V inputs and outputs. The DSP56724 block diagram is shown in Figure 1; the DSP56725 block diagram is shown in Figure 2. NOTE This document contains information on a new product. Specifications and information herein are subject to change without notice. Finalized specifications may be published after further characterization and device qualifications are completed. The DSP56724/DSP56725 devices provide a wealth of on-chip audio processing functions, via a plug and play software architecture system that supports audio decoding algorithms, various equalization algorithms, compression, signal generator, tone control, fade/balance, level meter/spectrum analyzer, among others. The DSP56724/DSP56725 devices also support various matrix decoders and sound field processing algorithms. With two DSP56300 cores, a single DSP56724/ DSP56725 device can replace dual-DSP designs, saving costs while This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2009. All rights reserved. Table of Contents 1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.1.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .4 1.1.2 Thermal Characteristics. . . . . . . . . . . . . . . . . . . .6 1.1.3 Power Requirements . . . . . . . . . . . . . . . . . . . . . .6 1.1.4 Power Consumption Considerations . . . . . . . . . .7 1.1.5 DC Electrical Characteristics . . . . . . . . . . . . . . . .8 1.1.6 AC Electrical Characteristics . . . . . . . . . . . . . . . .9 1.1.7 Internal Clocks . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.1.8 External Clock Operation. . . . . . . . . . . . . . . . . .10 1.1.9 Reset, Stop, Mode Select, and Interrupt Timing 11 1.2 Module-Level Specifications . . . . . . . . . . . . . . . . . . . . .14 1.2.1 Serial Host Interface SPI Protocol Timing . . . . .15 1.2.2 Serial Host Interface (SHI) I2C Protocol Timing.21 1.2.3 Programming the SHI I2C Serial Clock . . . . . . .23 1.2.4 Enhanced Serial Audio Interface Timing . . . . . .24 1.2.5 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .29 2 3 4 5 6 1.2.6 JTAG Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.2.7 Watchdog Timer Timing . . . . . . . . . . . . . . . . . . 32 1.2.8 S/PDIF Timing . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.2.9 EMC Timing Specifications—DSP56724 . . . . . 34 Functional Description and Application Information . . . . . . . 39 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1 Pinout and Package Information . . . . . . . . . . . . . . . . . 40 4.1.1 Pinout for DSP56724 144-Pin Plastic LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.2 Pinout for DSP56725 80-Pin Plastic LQFP Package 41 4.1.3 Pin Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 144-Pin Package Outline Drawing. . . . . . . . . . . . . . . . 42 4.3 80-Pin Package Outline Drawing . . . . . . . . . . . . . . . . . 44 Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 2 Freescale Semiconductor DSP Core-0 On-Chip Memory P GPIO WDT_1 ESAI_3 DSP Core-1 ASRC On-Chip Memory Arbiter 8 Shared Bus 0 Y ESAI_2 TEC_1 SHI_1 Chip Config GPIO CGM Arbiter 9 X S/PDIF EMC GPIO WDT ESAI_1 ESAI TEC SHI EXTAL/XTAL P X Y Shared Bus 1 Arbiters 0–7 PCU / AGU / ALU DMA OnCE PCU / AGU / ALU OnCE Shared Memory 4 Kbytes Blocks 0–7 (32 Kbytes total) MODA0, MODB0, MODC0, MODD0 DMA MODA1, MODB1, MODC1, MODD1 2 JTAGs JTAG Figure 1. DSP56724 Block Diagram DSP Core-0 CGM On-Chip Memory ASRC X GPIO WDT_1 ESAI_3 ESAI_2 TEC_1 DSP Core-1 On-Chip Memory Arbiter 8 Shared Bus 0 P SHI_1 Chip Config GPIO S/PDIF GPIO WDT ESAI_1 ESAI TEC SHI EXTAL/XTAL Shared Bus 1 Y P X Y Arbiters 0–7 PCU / AGU / ALU DMA OnCE OnCE Shared Memory 4 Kbytes Blocks 0–7 (32 Kbytes total) MODA0, MODB0, MODC0, MODD0 2 JTAGs JTAG PCU / AGU / ALU DMA MODA1, MODB1, MODC1, MODD1 Figure 2. DSP56725 Block Diagram Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 3 1 Electrical Characteristics 1.1 Chip-Level Conditions Table 1 provides a quick reference to the subsections in this section. Table 1. Chip-Level Conditions For 1.1.1 See Section 1.1.1, “Maximum Ratings” on page 4 Section 1.1.2, “Thermal Characteristics” on page 6 Section 1.1.3, “Power Requirements” on page 6 Section 1.1.5, “DC Electrical Characteristics” on page 8 Section 1.1.6, “AC Electrical Characteristics” on page 9 Section 1.1.7, “Internal Clocks” on page 9 Section 1.1.8, “External Clock Operation” on page 10 Section 1.1.9, “Reset, Stop, Mode Select, and Interrupt Timing” on page 11 Maximum Ratings CAUTION This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability of operation is enhanced if unused inputs are pulled to an appropriate logic voltage level (for example, either GND or VDD). The suggested value for a pull-up or pull-down resistor is 4.7 kΩ. NOTE In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a “maximum” value for a specification will never occur in the same device that has a “minimum” value for another specification; adding a maximum to a minimum represents a condition that can never exist. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 4 Freescale Semiconductor Table 2 lists the maximum ratings. Table 2. Maximum Ratings Rating1 Symbol Value1, 2 Unit VCORE_VDD, VPLLD_VDD –0.3 to + 1.26 V VPLLP_VDD, VIO_VDD, VIO_VDD_25, VPLLA_VDD –0.3 to + 4.0 V Maximum CORE_VDD power supply ramp time Tr 10 ms Input Voltage per pin excluding VDD and GND VIN GND – 0.3 to 5.5 V V I 12 mA Ilsync_out 5 mA LCLK Ilclk 5 mA LALE Iale 5 mA TDO IJTAG 12 mA Supply Voltage Current drain per pin excluding VDD and GND (Except for pads listed below) LSYNC_OUT Operating temperature range • Fsys < 200 MHz • Fsys < 250 MHz °C TJ –40 to +100 0 to 90 TSTG –65 to +150 °C ESD protected voltage (Human Body Model) — 2000 V ESD protected voltage (Charged Device Model) • All pins • Corner pins — Storage temperature V 500 750 Note: 1. GND = 0 V, TJ = –40° C to 100° C, CL = 50 pF 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 5 1.1.2 Thermal Characteristics Table 3 lists the thermal characteristics. Table 3. Thermal Characteristics Characteristic Symbol Natural Convection, Junction-to-ambient thermal Single layer board resistance1,2 (1s) RθJA or θJA Four layer board (2s2p) Junction-to-case thermal resistance3 — RθJC or θJC LQFP Values Unit 57 for 80 QFP 49 for 144 QFP °C/W 44 for 80 QFP 40 for 144 QFP °C/W 10 for 80 QFP 9 for 144 QFP °C/W Note: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. 3. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 1.1.3 Power Requirements To prevent high current conditions due to possible improper sequencing of the power supplies, use an external Schottky diode as shown in Figure 3, connected between the DSP56724/DSP56725 IO_VDD and Core_VDD power pins. IO_VDD External Schottky Diode Core_VDD Figure 3. Prevent High Current Conditions by Using External Schottky Diode If an external Schottky diode is not used (to prevent a high current condition at power-up), then IO_VDD must be applied ahead of Core_VDD, as shown in Figure 4. Core_VDD IO_VDD Figure 4. Prevent High Current Conditions by Applying IO_VDD Before Core_VDD Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 6 Freescale Semiconductor For correct operation of the internal power-on reset logic, the Core_VDD ramp rate (Tr) to full supply must be less than 10 ms, as shown in Figure 4. Tr 1.0 V Core_VDD 0V Tr must be < 10 ms Figure 5. Ensure Correct Operation of Power-On Reset with Fast Ramp of Core_VDD 1.1.4 Power Consumption Considerations Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes. Current consumption is described by the following formula: I = C×V×f where Eqn. 1 C=node/pin capacitance V=voltage swing f=frequency of node/pin toggle Example 1. Power Consumption Example For a GPIO address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 150 MHz clock, toggling at its maximum possible rate (75 MHz), the current consumption is I = 50 x 10– 12 x 3.3 x 75 x 10 6 = 12.375mA Eqn. 2 The maximum internal current (ICCImax) value reflects the typical possible switching of the internal buses on best-case operation conditions, which is not necessarily a real application case. The typical internal current (ICCItyp) value reflects the average switching of the internal buses on typical operating conditions. For applications that require very low current consumption, do the following: • • Minimize the number of pins that are switching. Minimize the capacitive load on the pins. One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (for example, to compensate for measured board current not caused by the DSP). Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value. I/MIPS = I/MHz = (ItypF2 - ItypF1)/(F2 - F1) where : Eqn. 3 ItypF2=current at F2 ItypF1=current at F1 F2=high frequency (any specified operating frequency) F1=low frequency (any specified operating frequency lower than F2) Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 7 NOTE F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application. 1.1.5 DC Electrical Characteristics Table 4. DC Electrical Characteristics Characteristics Symbol Min Typ Max VCORE_VDD, VPLLD_VDD 0.95 1.14 1.0 1.2 1.05 1.26 IO Supply voltages VIO_VDD, VPLLP_VDD, VPLLA_VDD 3.14 3.3 3.45 V Input high voltage VIH 2.0 — VIO_VDD + 2V V Core Supply voltages • Fsys < 200 MHz • Fsys < 250 MHz Unit V Note: To avoid a high current condition and possible system damage, all 3.3-V and 2.5-V supplies must rise before the 1.0-V supplies rise. Input low voltage VIL –0.3 — 0.8 V Input leakage current IIN — — ± 80 μA Clock pin Input Capacitance (EXTAL) CIN — 2.057 — pF High impedance (off-state) input current (@ 3.3 V or 0 V) ITSI –10 — 10 μA Output high voltage VOH 2.4 — — V Output low voltage IOL = 12 mA LSYNC_OUT, LALE, LCLK Pins IOL = 16 mA, TDO Pins IOL = 24 mA VOL — — 0.4 V Internal pull-up resistor RPU 63 92 142 kΩ Internal pull-down resistor RPD 57 91 159 kΩ ICCI — 90 280 ICCW — 60 250 mA ICCS — 30 220 mA IOH = –12 mA LSYNC_OUT, LALE, LCLK Pins IOH = –16 mA, TDO Pin IOH = –24 mA current1 Internal supply Fsys < 200 MHz • In Normal mode • In Wait mode 2 • In Stop mode (core only) operating at mA Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 8 Freescale Semiconductor Table 4. DC Electrical Characteristics (Continued) Characteristics Symbol Min Typ Max Unit Internal supply current1 (core only) operating at Fsys < 250 MHz • In Normal mode ICCI — 140 340 mA • In Wait mode ICCW — 90 290 mA mode2 ICCS — 40 240 mA Input capacitance CIN — — 10 pF • In Stop Note: 1. The Current Consumption section provides a formula to compute the estimated current requirements in Normal mode. In order to obtain these results, all inputs must be terminated (for example, not allowed to float). Measurements are based on synthetic intensive DSP benchmarks. The power consumption numbers in this specification are 90% of the measured results of this benchmark. This reflects typical DSP applications. Typical internal supply current with Fsys < 200 MHz is measured with VCORE_VDD = 1.0 V, VDD_IO = 3.3 V at TJ = 25° C. Maximum internal supply current is measured with VCORE_VDD = 1.05 V, VIO_VDD) = 3.6 V at TJ = 100° C. Typical internal supply current with Fsys < 250 MHz is measured with VCORE_VDD = 1.2 V, VDD_IO = 3.3 V at TJ = 25° C. Maximum internal supply current is measured with VCORE_VDD = 1.26 V, VIO_VDD) = 3.6 V at TJ = 90° C. 2. In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (that is, not allowed to float). 1.1.6 AC Electrical Characteristics The timing waveforms shown in the AC electrical characteristics section are tested with a V IL maximum of 0.8 V and a VIH minimum of 2.0 V for all pins. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50% point of the respective input signal’s transition. For all pins, output levels are measured with the production test machine VOL and VOH reference levels set at 0.4 V and 2.4 V, respectively. 1.1.7 Internal Clocks Table 5 lists the internal clocks. Table 5. Internal Clocks No. Characteristics Symbol Min Typ Max Unit 2 — 8 MHz 248 200 MHz 1 Comparison Frequency Fref 2 Input Clock Frequency • with PLL enabled • with PLL disabled Fin Condition Fref = Fin/NR — 2 — — Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 9 Table 5. Internal Clocks (Continued) No. 3 4 5 Characteristics PLL VCO Frequency Output Clock Frequency • with PLL enabled • with PLL disabled [1] [2] Symbol Min Typ Max Unit Fvco 200 — 500 MHz Fvco = (Fin * NF)/NR 200 or 250 200 or 250 MHz Fout = Fvco/NO Fout = Fin 200 or 250 200 MHz Fsys = Fout/2DF Fsys = Fout — Fout 25 — System Clock Frequency • with PLL enabled[2] • with PLL disabled Condition — Fsys 0.195 0 Note: 1. Fin = External frequency NF = Multiplication Factor NR = Predivision Factor NO = Output Divider DF = Division Factor 2. Maximum frequency of 200 MHz supported at 0.95 V < VVDD_CORE < 1.05 V and –40 < Tj < 100° C Maximum frequency of 250 MHz supported at 1.14 V < VVDD_CORE < 1.26 V and 0 < Tj < 90° C 1.1.8 External Clock Operation The DSP56724/DSP56725 system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; see Figure 6. EXTAL XTAL Suggested component values: fosc = 24.576 MHz R = 1 M ±10% C (EXTAL)= 18 pF C (XTAL) = 18 pF R XTAL1 C Calculations are for a 5–30 MHz crystal with the following parameters: • shunt capacitance (C0) of 10 pq–F12 pF • series resistance 40 Ohm • drive level of 10 μW C Figure 6. Using the On-Chip Oscillator If the DSP56724/DSP56725 system clock is an externally supplied square wave voltage source, it is connected to EXTAL (Figure 7). When the external square wave source is connected to EXTAL, the XTAL pin is not used. VIH Midpoint EXTAL VIL Eth Etl 6 7 8 Note: Etc The midpoint is 0.5 (VIH + VIL). Figure 7. External Clock Timing Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 10 Freescale Semiconductor Table 6 lists the clock operation. Table 6. Clock Operation No. 6 7 8 9 Characteristics Symbol Min Max Units Eth 16.67 2.5 100 inf ns Etl 16.67 2.5 100 inf ns EXTAL cycle time • With PLL disabled • With PLL enabled Etc 5 33.3 inf 500 ns Instruction cycle time • With PLL disabled • With PLL enabled Tc 5 44 inf 5120 ns EXTAL input high 1 (40% to 60% duty cycle) • Crystal oscillator • Square wave input EXTAL input low 1 (40% to 60% duty cycle) • Crystal oscillator • Square wave input Note: 1. Measured at 50% of the input transition. 2. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correct operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met. 3. Maximum frequency of 200 MHz supported at 0.95 V < VVDD_CORE < 1.05 V and –40 < Tj < 100° C Maximum frequency of 250 MHz supported at 1.14 V < VVDD_CORE < 1.26 V and 0 < Tj < 90° C 4. PLLLOCK = 200 μs. 1.1.9 Reset, Stop, Mode Select, and Interrupt Timing Table 7 lists the reset, stop, mode select, and interrupt timing. Table 7. Reset, Stop, Mode Select, and Interrupt Timing No. Characteristics 10 Delay from RESET assertion to all pins at reset value3 11 Required RESET duration4 • Power on, external clock generator, PLL disabled • Power on, external clock generator, PLL enabled 13 Syn reset deassert delay time • Minimum • Maximum (PLL enabled) Expression Min Max Unit — — 11 ns 2 × TC 10 — ns 2 × TC 10 — ns 2 × TC 10 — ns (2xTC)+PLLLOCK 200 — us 14 Mode select setup time — 10 — ns 15 Mode select hold time — 12 — ns 16 Minimum edge-triggered interrupt request assertion width — 7 — ns 17 Minimum edge-triggered interrupt request deassertion width — 4 — ns 18 Delay from interrupt trigger to interrupt code execution 10 × TC + 4 54 — ns Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 11 Table 7. Reset, Stop, Mode Select, and Interrupt Timing (Continued) No. Characteristics Expression Min Max Unit 19 Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)1, 2, 3 • PLL is active during Stop and Stop delay is enabled (OMR Bit 6 = 0) (128 Kbytes × TC) 655 — μs • PLL is active during Stop and Stop delay is not enabled (OMR Bit 6 = 1) 25 × TC 125 — ns • PLL is not active during Stop and Stop delay is enabled (OMR Bit 6 = 0) (128KxTC) + PLLLOCK 855 — μs • PLL is not active during Stop and Stop delay is not enabled (OMR Bit 6 = 1) (25 × TC) + PLLLOCK 200 — μs 20 • Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution 1 10 × TC + 3.8 — 53.8 ns 21 Interrupt Requests Rate1 • ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1, Timer, Timer_1 12 × TC — 60.0 ns • DMA 8 × TC — 40.0 ns • IRQ, NMI (edge trigger) 8 × TC — 40.0 ns • IRQ (level trigger) 12 × TC — 60.0 ns DMA Requests Rate • Data read from ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1 6 × TC — 30.0 ns • Data write to ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1 7 × TC — 35.0 ns • Timer, Timer_1 2 × TC — 10.0 ns • IRQ, NMI (edge trigger) 3 × TC — 15.0 ns 22 Note: 1. When using fast interrupts and when IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is recommended when using fast interrupts. Long interrupts are recommended when using Level-sensitive mode. 2. For PLL disable, if using an external clock (PCTL Bit 13 = 1), no stabilization delay is required and recovery time will be defined by the OMR Bit 6 settings. For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shut down during Stop. Recovering from Stop requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 200 us. 3. Periodically sampled and not 100% tested. 4. RESET duration is measured during the time in which RESET is asserted, VDD is valid, and the EXTAL input is active and valid. When VDD is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the shortest possible duration. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 12 Freescale Semiconductor Figure 8 shows the reset timing diagram. VIH RESET 11 13 10 All Pins Reset Value Figure 8. Reset Timing Figure 9 shows external fast interrupt timing diagram. a) First Interrupt Instruction Execution IRQA, IRQB, IRQC, IRQD, NMI, NMI_1 19 18 b) General Purpose I/O General Purpose I/O 20 IRQA, IRQB, IRQC, IRQD, NMI, NMI_1 Figure 9. External Fast Interrupt Timing Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 13 Figure 10 shows external interrupt timing (negative edge-triggered). IRQA, IRQB, IRQC, IRQD, NMI, NMI_1 16 IRQA, IRQB, IRQC, IRQD, NMI, NMI_1 17 Figure 10. External Interrupt Timing (Negative Edge-Triggered) Figure 11 shows MODE select set-up and hold time diagram. VIH RESET 14 15 MODA, MODB, MODC, MODD, PINIT VIH VIH VIL VIL IRQA, IRQB, IRQC,IRQD, NMI Figure 11. MODE Select Set-Up and Hold Time 1.2 Module-Level Specifications Table 8 provides a quick reference to the subsections of this section. Table 8. Module-Level Specifications For See Section 1.2.1, “Serial Host Interface SPI Protocol Timing” on page 4 Section 1.2.2, “Serial Host Interface (SHI) I2C Protocol Timing” on page 6 Section 1.2.3, “Programming the SHI I2C Serial Clock” on page 6 Section 1.2.4, “Enhanced Serial Audio Interface Timing” on page 8 Section 1.2.5, “GPIO Timing” on page 29 Section 1.2.6, “JTAG Timing” on page 30 Section 1.2.7, “Watchdog Timer Timing” on page 32 Section 1.2.8, “S/PDIF Timing” on page 33 Section 1.2.9, “EMC Timing Specifications—DSP56724” on page 34 Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 14 Freescale Semiconductor 1.2.1 Serial Host Interface SPI Protocol Timing Table 9 lists the serial host interface SPI protocol timing. Table 9. Serial Host Interface SPI Protocol Timing No. 23 Characteristics1,3,4 Minimum serial clock cycle = tSPICC(min) XX Tolerable Spike width on data or clock in. 24 Serial clock high period Mode Filter Mode Expression Min Max Unit Master/Slave Bypassed 10 × TC + 9 59.0 — ns Very Narrow 10 × TC + 9 59.0 — ns Narrow 10 × TC + 133 183.0 — ns Wide 10 × TC + 333 383.0 — ns Bypassed — — 0 ns Very Narrow — — 10 ns Narrow — — 50 ns Wide — — 100 ns Bypassed 0.5 × (tSPICC) 29.5 — ns Very Narrow 0.5 × (tSPICC) 29.5 — ns Narrow 0.5 × (tSPICC) 91.5 — ns Wide 0.5 × (tSPICC) 191.5 — ns Bypassed 2.0 × TC + 19.6 29.6 — ns Very Narrow 2.0 × TC + 19.6 29.6 — ns Narrow 2.0 × TC + 86.6 96.6 — ns Wide 2.0 × TC + 186.6 196.6 — ns Bypassed 0.5 × (tSPICC) 29.5 — ns Very Narrow 0.5 × (tSPICC) 29.5 — ns Narrow 0.5 × (tSPICC) 91.5 — ns Wide 0.5 × tSPICC) 191.5 — ns Bypassed 2.0 × TC + 19.6 29.6 — ns Very Narrow 2.0 × TC + 19.6 29.6 — ns Narrow 2.0 × TC + 86.6 96.6 — ns Wide 2.0 × TC + 186.6 196.6 — ns — — — — — — — 5 ns ns — Master Slave 25 Serial clock low period Master Slave 26 Serial clock rise/fall time Master Slave Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 15 Table 9. Serial Host Interface SPI Protocol Timing (Continued) Characteristics1,3,4 No. 27 SS assertion to first SCK edge Mode Filter Mode Expression Min Max Unit Slave Bypassed 2.0 × TC + 2 35 — ns Very Narrow 2.0 × TC + 1 25 — ns Narrow — 0 — ns Wide — 0 — ns Bypassed — 10 — ns Very Narrow — 0 — ns Narrow — 0 — ns Wide — 0 — ns Bypassed — 12 — ns Very Narrow — 22 — ns Narrow — 100 — ns Wide — 200 — ns Bypassed — 0 — ns Very Narrow — 0 — ns Narrow — 0 — ns Wide — 0 — ns Bypassed 2 × TC + 10 20 — ns Very Narrow 2 × TC + 30 40 — ns Narrow 2 × TC + 60 70 — ns Wide — 100.0 — ns Slave — — 5 — ns Slave — — — 9 ns Master /Slave Bypassed — — 45 ns Very Narrow — — 110 ns Narrow — — 135 ns Wide — — 225 ns Bypassed — 10 — ns Very Narrow — 15 — ns Narrow — 55 — ns Wide — 105 — ns — — — 14.0 ns CPHA = 0 CPHA = 1 28 29 30 31 Slave Last SCK edge to SS not asserted Data input valid to SCK edge (data input set-up time) SCK last sampling edge to data input not valid SS assertion to data out active 32 SS deassertion to data high 33 SCK edge to data out valid (data out delay time) 34 35 impedance2 SCK edge to data out not valid (data out hold time) SS assertion to data out valid (CPHA = 0) Slave Master /Slave Master /Slave Master /Slave Slave Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 16 Freescale Semiconductor Table 9. Serial Host Interface SPI Protocol Timing (Continued) No. Characteristics1,3,4 Mode Filter Mode Expression Min Max Unit 36 First SCK sampling edge to HREQ output deassertion Slave Bypassed — 45 — ns Very Narrow — 55 — ns Narrow — 95 — ns Wide — 145 — ns Bypassed — 50.0 — ns Very Narrow — 60.0 — ns Narrow — 100.0 — ns Wide — 150.0 — ns 37 Last SCK sampling edge to HREQ output not deasserted (CPHA = 1) Slave 38 SS deassertion to HREQ output not deasserted (CPHA = 0) Slave — — 45.0 — ns 39 SS deassertion pulse width (CPHA = 0) Slave — 2 × TC 0 — ns 40 HREQ in deassertion to last SCK sampling edge (HREQ in set-up time) (CPHA = 1) Master — — 0 — ns 41 First SCK edge to HREQ in not asserted (HREQ in hold time) Master — — 0 — ns 42 HREQ assertion width Master — 3.0 × TC 15 — ns Note: 1. 0.95 V < VVDD_CORE < 1.05 V and TJ < 100° C, CL = 50 pF 2. Periodically sampled, not 100% tested 3. All times assume noise free inputs. 4. All times assume internal clock frequency of 200 MHz. 5. SHI_1 specs match those of SHI 6. Slave timings should equal the serial clock high period + the serial clock low period. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 17 Figure 12 shows the SPI master timing (CPHA = 0). SS (Input) 25 23 24 26 26 SCK (CPOL = 0) (Output) 23 24 26 25 26 SCK (CPOL = 1) (Output) 29 30 MISO (Input) MSB Valid LSB Valid 34 33 MOSI (Output) 30 m29 MSB LSB 40 41 HREQ (Input) 42 Figure 12. SPI Master Timing (CPHA = 0) Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 18 Freescale Semiconductor Figure 13 shows the SPI master timing (CPHA = 1). SS (Input) 25 23 24 26 26 SCK (CPOL = 0) (Output) 24 23 26 25 26 SCK (CPOL = 1) (Output) 29 29 30 MISO (Input) 30 MSB Valid 33 MOSI (Output) LSB Valid 34 MSB LSB 40 41 HREQ (Input) 42 Figure 13. SPI Master Timing (CPHA = 1) Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 19 Figure 14 shows the SPI slave timing (CPHA = 0). SS (Input) 25 23 24 26 28 26 39 SCK (CPOL = 0) (Input) 27 23 24 26 25 26 SCK (CPOL = 1) (Input) 35 33 34 31 MISO (Output) 34 32 MSB LSB 29 29 30 MOSI (Input) MSB Valid 30 LSB Valid 36 38 HREQ (Output) Figure 14. SPI Slave Timing (CPHA = 0) Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 20 Freescale Semiconductor Figure 15 shows the SPI slave timing (CPHA = 1). SS (Input) 25 23 24 26 28 26 SCK (CPOL = 0) (Input) 27 24 26 25 26 SCK (CPOL = 1) (Input) 33 33 34 32 31 MISO (Output) MSB LSB 29 29 30 30 MSB Valid MOSI (Input) LSB Valid 37 36 HREQ (Output) Figure 15. SPI Slave Timing (CPHA = 1) 1.2.2 Serial Host Interface (SHI) I2C Protocol Timing Table 10 lists the SHI I 2C protocol timing diagram. Table 10. SHI I2C Protocol Timing Standard I2C Characteristics1,2,3,4,5 No. XX Tolerable Spike Width on SCL or SDA Filters Bypassed Very Narrow Filters enabled Narrow Filters enabled Wide Filters enabled. Symbol/ Expression Standard Fast-Mode Unit Min Max Min Max — — — — 0 10 50 100 — — — — 0 10 50 100 ns ns ns ns — 44 SCL clock frequency FSCL — 100 — 400 kHz 44 SCL clock cycle TSCL 10 — 2.5 — μs 45 Bus free time TBUF 4.7 — 1.3 — μs 46 Start condition set-up time TSUSTA 4.7 — 0.6 — μs Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 21 Table 10. SHI I2C Protocol Timing (Continued) Standard I2C No. Characteristics1,2,3,4,5 47 Start condition hold time 48 SCL low period 49 SCL high period time 7 Symbol/ Expression Standard Fast-Mode Unit Min Max Min Max THD;STA 4.0 — 0.6 — μs TLOW 4.7 — 1.3 — μs THIGH 4.0 — 1.3 — μs TR — 1000 — 300 ns TF — 5.0 — 5.0 ns 50 SCL and SDA rise 51 SCL and SDA fall time7 52 Data set-up time TSU;DAT 250 — 100 — ns 53 Data hold time THD;DAT 0.0 — 0.0 0.9 μs 54 DSP clock frequency • Filters bypassed • Very Narrow filters enabled • Narrow filters enabled • Wide filters enabled 10.6 10.6 11.8 13.1 — — — — 28.5 28.5 39.7 61.0 — — — — MHz MHz MHz MHz FOSC 55 SCL low to data out valid TVD;DAT — 3.4 — 0.9 μs 56 Stop condition setup time TSU;STO 4.0 — 0.6 — μs 57 HREQ in deassertion to last SCL edge (HREQ in set-up time) tSU;RQI 0.0 — 0.0 — ns 58 First SCL sampling edge to HREQ output deassertion2 • Filters bypassed • Very Narrow filters enabled • Narrow filters enabled • Wide filters enabled — — — — 50.0 70.0 250.0 150.0 — — — — 50.0 70.0 150.0 250.0 ns ns ns ns 40 50 90 140 — — — — 40 50 90 140 — — — — ns ns ns ns 59 Last SCL edge to HREQ output not deasserted2 • Filters bypassed • Very Narrow filters enabled • Narrow filters enabled • Wide filters enabled TNG;RQO 4 × TC + 30 4 × TC + 50 4 × TC + 130 4 × TC + 230 TAS;RQO 2 × TC + 30 2 × TC + 40 2 × TC + 80 2 × TC + 130 Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 22 Freescale Semiconductor Table 10. SHI I2C Protocol Timing (Continued) Standard I2C 60 61 Symbol/ Expression Characteristics1,2,3,4,5 No. HREQ in assertion to first SCL edge • Filters bypassed • Very Narrow filters enabled • Narrow filters enabled • Wide filters enabled TAS;RQI First SCL edge to HREQ is not asserted (HREQ in hold time.) tHO;RQI Standard Fast-Mode Unit Min Max Min Max 4327 4317 4282 4227 — — — — 927 917 877 827 — — — — ns ns ns ns 0.0 — 0.0 — ns Note: 1. VCORE_VDD = 1.00± 0.05 V; TJ = –40° C to 100° C, C L = 50 pF 2. Pull-up resistor: R P (min) = 1.5 kΩ 3. Capacitive load: C b (max) = 50 pF 5. All times assume noise free inputs 5. All times assume internal clock frequency of 200 MHz 6. SHI_1 specs match those of SHI 7. The numbers listed are based on the module/pad design and its characteristics during output. The module is compliant with I2C standard, so the module should receive I2C bus compliant signal without any issue. 1.2.3 Programming the SHI I2C Serial Clock The programmed serial clock cycle, T I2CCP, is specified by the value of the HDM[7:0] and HRS bits of the HCKR (SHI clock control register). The expression for T I2CCP is T I2CCP = [TC × 2 × (HDM[7:0] + 1) × (7 × (1 – HRS) + 1)] Eqn. 4 where — HRS is the prescaler rate select bit. When HRS is cleared, the fixed divide-by-eight prescaler is operational. When HRS is set, the prescaler is bypassed. — HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256 (HDM[7:0] = $00 to $FF) may be selected. In I2C mode, the user may select a value for the programmed serial clock cycle from 6 × TC (if HDM[7:0] = $02 and HRS = 1) Eqn. 5 4096 × TC (if HDM[7:0] = $FF and HRS = 0) Eqn. 6 to The programmed serial clock cycle (TI2CCP ) should be chosen in order to achieve the desired SCL serial clock cycle (TSCL), as shown in next. TI2CCP + 3 × TC + 45ns + TR (Nominal, SCL Serial Clock Cycle (TSCL) generated as master) Eqn. 7 Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 23 Figure 16 shows the I2C timing diagram. 44 46 49 48 SCL 50 53 51 45 52 SDA Stop Start MSB 47 LSB 58 61 ACK Stop 55 56 57 60 59 HREQ Figure 16. I2C Timing 1.2.4 Enhanced Serial Audio Interface Timing Table 11 lists the enhanced serial audio interface timing. Table 11. Enhanced Serial Audio Interface Timing Characteristics1, 2, 3 No. 62 Clock cycle5 63 Symbol Expression3 Min Max Condition4 Unit tSSICC 4 × Tc 4 × Tc 20.0 20.0 — — i ck i ck Clock high period • For internal clock — 2 × Tc 10 — — • For external clock — 2 × Tc 10 — — Clock low period • For internal clock — 2 × Tc 10 — — • For external clock — 2 × Tc 10 — — 65 SCKR rising edge to FSR out (bl) high — — — — 17.0 7.0 x ck i ck a ns 66 SCKR rising edge to FSR out (bl) low — — — — 17.0 7.0 x ck i ck a ns 67 SCKR rising edge to FSR out (wr) high6 — — — — 19.0 9.0 x ck i ck a ns 68 SCKR rising edge to FSR out (wr) low6 — — — — 19.0 9.0 x ck i ck a ns 69 SCKR rising edge to FSR out (wl) high — — — — 16.0 6.0 x ck i ck a ns 70 SCKR rising edge to FSR out (wl) low — — — — 17.0 7.0 x ck i ck a ns 64 ns ns ns Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 24 Freescale Semiconductor Table 11. Enhanced Serial Audio Interface Timing (Continued) Characteristics1, 2, 3 No. Symbol Expression3 Min Max Condition4 Unit 71 Data in setup time before SCKR (SCK in synchronous mode) falling edge — — 0.0 19.0 — — x ck i ck ns 72 Data in hold time after SCKR falling edge — — 3.5 9.0 — — x ck i ck ns 73 FSR input (bl, wr) high before SCKR falling edge 6 — — 2.0 12.0 — — x ck i ck a ns 74 FSR input (wl) high before SCKR falling edge — — 2.0 12.0 — — x ck i ck a ns 75 FSR input hold time after SCKR falling edge — — 2.5 8.5 — — x ck i ck a ns 76 Flags input setup before SCKR falling edge — — 0.0 19.0 — — x ck i ck s ns 77 Flags input hold time after SCKR falling edge — — 6.0 0.0 — — x ck i ck s ns 78 SCKT rising edge to FST out (bl) high — — — — 18.0 8.0 x ck i ck ns 79 SCKT rising edge to FST out (bl) low — — — — 20.0 10.0 x ck i ck ns 80 SCKT rising edge to FST out (wr) high6 — — — — 20.0 10.0 x ck i ck ns 81 SCKT rising edge to FST out (wr) low6 — — — — 22.0 12.0 x ck i ck ns 82 SCKT rising edge to FST out (wl) high — — — — 15.0 9.0 x ck i ck ns 83 SCKT rising edge to FST out (wl) low — — — — 15.0 10.0 x ck i ck ns 84 SCKT rising edge to data out enable from high impedance — — — — 22.0 17.0 x ck i ck ns 85 SCKT rising edge to transmitter #0 drive enable assertion — — — — 17.0 11.0 x ck i ck ns 86 SCKT rising edge to data out valid — — — — 25.0 13.0 x ck i ck ns 87 SCKT rising edge to data out high impedance7 — — — — 25.0 16.0 x ck i ck ns 88 SCKT rising edge to transmitter #0 drive enable deassertion7 — — — — 14.0 9.0 x ck i ck ns 89 FST input (bl, wr) setup time before SCKT falling edge6 — — 2.0 18.0 — — x ck i ck ns 90 FST input (wl) setup time before SCKT falling edge — — 2.0 18.0 — — x ck i ck ns 91 FST input hold time after SCKT falling edge — — 4.0 5.0 — — x ck i ck ns Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 25 Table 11. Enhanced Serial Audio Interface Timing (Continued) No. Characteristics1, 2, 3 Symbol Expression3 Min Max Condition4 Unit 92 FST input (wl) to data out enable from high impedance — — — 21.0 — ns 93 FST input (wl) to transmitter #0 drive enable assertion — — — 14.0 — ns 94 Flag output valid after SCKT rising edge — — — — 14.0 9.0 x ck i ck ns 95 HCKR/HCKT clock cycle — 2 × TC 10 — — ns 96 HCKT input rising edge to SCKT output — — — 18.0 — ns 97 HCKR input rising edge to SCKR output — — — 18.0 — ns Note: 1. 0.95 V < VVDD_CORE < 1.05 V and Tj < 100° C, CL = 50 pF 2. i ck = internal clock x ck = external clock i ck a = internal clock, asynchronous mode (asynchronous implies that SCKT and SCKR are two different clocks) i ck s = internal clock, synchronous mode (synchronous implies that SCKT and SCKR are the same clock) 3. bl = bit length wl = word length wr = word length relative 4. SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock 5. For the internal clock, the external clock cycle is defined by Tc and the ESAI control register. 6. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one before last bit clock of the first word in frame. 7. Periodically sampled and not 100% tested. 8. ESAI_1, ESAI_2, ESAI_3 specs match those of ESAI. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 26 Freescale Semiconductor Figure 17 shows the ESAI transmitter timing diagram. 62 63 64 SCKT (Input/Output) 78 79 FST (Bit) Out 82 FST (Word) Out 83 86 86 84 87 First Bit Data Out Last Bit 93 Transmitter #0 Drive Enable (Internal Signal) 89 85 88 91 FST (Bit) In 92 91 90 FST (Word) In 94 See Note Flags Out Note: In network mode, output flag transitions can occur at the start of each time slot within the frame. In normal mode, the output flag state is asserted for the entire frame period. Figure 17. ESAI Transmitter Timing Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 27 Figure 18 shows the ESAI receiver timing diagram. 62 63 SCKR (Input/Output) 64 65 66 FSR (Bit) Out 69 70 FSR (Word) Out 72 71 Data In First Bit Last Bit 75 73 FSR (Bit) In 74 75 FSR (Word) In 76 77 Flags In Figure 18. ESAI Receiver Timing Figure 19 shows the ESAI HCKT timing diagram. HCKT SCKT(output) 95 96 Figure 19. ESAI HCKT Timing Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 28 Freescale Semiconductor Figure 20 shows the ESAI HCKR timing diagram. HCKR SCKR (output) 95 97 Figure 20. ESAI HCKR Timing 1.2.5 GPIO Timing Table 12 lists the GPIO timing. Table 12. GPIO Timing Characteristics1 No. 100 Fsys edge to GPIO out valid (GPIO out delay time)2 2 Expression Min Max Unit — — 7 ns — — 7 ns Fsys In valid to EXTAL edge (GPIO in set-up time)2 — 2 — ns 103 Fsys edge to GPIO in not valid (GPIO in hold time)2 — 0 — ns 104 Minimum GPIO pulse high width 2 × TC 10 — ns 105 Minimum GPIO pulse low width 2 × TC 10 — ns 106 GPIO out rise time — — 13.0 ns 107 GPIO out fall time — — 13.0 ns 101 102 Fsys edge to GPIO out not valid (GPIO out hold time) Note: 1. 0.95 V < VVDD_CORE < 1.05 V and Tj < 100° C, CL = 50 pF 2. Simulation numbers-subject to change. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 29 Figure 21 shows the GPIO timing diagram. Fsys 100 101 GPIO (Output) 102 103 GPIO (Input) Valid GPIO (Output) 104 106 105 107 Figure 21. GPIO Timing 1.2.6 JTAG Timing Table 13 lists the JTAG timing. Table 13. JTAG Timing All Frequencies No. Characteristics Unit Min Max — 10.0 MHz 108 TCK frequency of operation (1/(TC × 3); maximum 10 MHz) 109 TCK cycle time in Crystal mode 100.0 — ns 110 TCK clock pulse width measured at 1.65 V 50.0 — ns 111 TCK rise and fall times — 3.0 ns 112 Boundary scan input data setup time 15.0 — ns 113 Boundary scan input data hold time 24.0 — ns 114 TCK low to output data valid — 40.0 ns 115 TCK low to output high impedance — 40.0 ns 116 TMS, TDI data setup time 5.0 — ns 117 TMS, TDI data hold time 25.0 — ns 118 TCK low to TDO data valid — 44.0 ns 119 TCK low to TDO high impedance — 44.0 ns Note: 1. 0.95 V < VVDD_CORE < 1.05 V and Tj < 100° C, CL = 50 pF 2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 30 Freescale Semiconductor Figure 22 shows the text clock input timing diagram. 109 VIH TCK (Input) 110 110 VM VM VIL 111 111 Figure 22. Test Clock Input Timing Diagram Figure 23 shows the debugger port timing diagram. VIH TCK (Input) VIL 112 Data Inputs 113 Input Data Valid 114 Data Outputs Output Data Valid 115 Data Outputs 114 Data Outputs Output Data Valid Figure 23. Debugger Port Timing Diagram Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 31 Figure 24 shows the test access port timing diagram. TCK (Input) VIH VIL 117 116 TDI TMS (Input) Input Data Valid 118 TDO (Output) Output Data Valid 119 TDO (Output) 118 TDO (Output) Output Data Valid Figure 24. Test Access Port Timing Diagram 1.2.7 Watchdog Timer Timing Table 14 lists the watchdog timer timings. Table 14. Watchdog Timer Timing No. Characteristics Expression Min Max Unit 120 Delay from time-out to fall of WDT, WDT_1 2 × Tc 10.0 — ns 121 Delay from timer clear to rise of WDT, WDT_1 2 × Tc 10.0 — ns Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 32 Freescale Semiconductor 1.2.8 S/PDIF Timing Table 15 lists the S/PDIF timing. Table 15. S/PDIF Timing All Frequency Characteristics Symbol Unit Min Max — — 0.7 ns SPDIFOUT1,SPDIFOUT2 output (Load = 50pf) • Skew • Transition Rising • Transition Falling — — — — — — 1.5 24.2 31.3 ns SPDIFOUT1, SPDIFOUT2 output (Load = 30pf) • Skew • Transition Rising • Transition Falling — — — — — — 1.5 13.6 18.0 ns SRCK period srckp 40.0 — ns SRCK high period srckph 16.0 — ns SRCK low period srckpl 16.0 — ns STCLK period stclkp 40.0 — ns STCLK high period stclkph 16.0 — ns STCLK low period stclkpl 16.0 — ns SPDIFIN1, SPDIFIN2, SPDIFIN3, SPDIFIN4 Skew: asynchronous inputs, no specs apply Figure 25 shows the SRCK timing diagram. srckp srckpl srckph VM SRCK (Output) VM Figure 25. SRCK Timing Figure 26 shows the STCLK timing diagram. stclkp stclkpl VM STCLK (Input) stclkph VM Figure 26. STCLK Timing Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 33 1.2.9 EMC Timing Specifications—DSP56724 Table 16 lists the EMC timing parameters with EMC PLL enabled. NOTE The DSP56725 device does not have an EMC module. Table 16. EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2) Parameter Symbol Min Max Unit Tclk 2 × Tc — ns Tclk_skew — 160 ps Input setup to LSYNC_IN (except LGTA/LUPWAIT) Tin_s 3 — ns Input hold from LSYNC_IN (except LGTA/LUPWAIT) Tin_h 2 — ns LGTA valid time Tgta 12 — ns LUPWAIT valid time Tupwait 12 — ns LALE negedge to LAD (address phase) invalid (address latch hold time) Tale_h 3 — ns Tale 3.8 — ns Output setup from LSYNC_IN (except LAD[23:0] and LALE) Tout_s 4 — ns Output hold from LSYNC_IN (except LAD[23:0] and LALE) Tout_h 2 — ns LAD[23:0] output setup from LSYNC_IN Tad_s 3.5 — ns LAD[23:0] output hold from LSYNC_IN Tad_h 1.5 — ns LSYNC_IN to output high impedance for LAD[23:0] Tad_z — 4.3 ns LCLK cycle time LCLK skew to LSYNC_OUT LALE valid time Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 34 Freescale Semiconductor Figure 27 shows the EMC signals diagram, with EMC PLL enabled. Tclk LCLK Tclk_skew LSYNC_OUT Tsync_in_skew LSYNC_IN Tin_s Tin_h LAD[23:0] (data) asynchronous input Tgta LGTA Tupwait asynchronous input LUPWAIT Tout_s Output Signals Tout_h LA[2:0]/LBCTL/LCS[7:0] LOE/LWE LCKE/LSDA10/LSDDQM LSDWE/LSDRAS/LSDCAS LGPL[5:0] Tad_z Tad_s Tad_h LAD[23:0] Tale Tale_h LALE Figure 27. EMC Signals (EMC PLL Enabled; LCRR[CLKDIV] = 2) Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 35 Table 17 lists the EMC timing parameters with EMC PLL bypassed. Table 17. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4) Parameter Symbol Min Max Unit LCLK cycle time Tclk 4 × Tc — ns Input setup to LCLK (except LGTA/LUPWAIT) Tin_s 8 — ns Input hold from LCLK (except LGTA/LUPWAIT)1 Tin_h –1 — ns LGTA valid time Tgta 22 — ns LUPWAIT valid time Tupwait 22 — ns LALE negedge to LAD (address phase) invalid (address latch hold time) Tale_h 4 — ns Tale 14 — ns Output setup from LCLK (except LAD[23:0] and LALE) Tout_s 9 — ns Output hold from LCLK (except LAD[23:0] and LALE) Tout_h 8 — ns LAD[23:0] output setup from LCLK Tad_s 8 — ns LAD[23:0] output hold from LCLK Tad_h 7 — ns LCLK to output high impedance for LAD[23:0] Tad_z — 8.1 ns LALE valid time Note: Negative hold time means the signal could be invalid before LCLK rising edge. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 36 Freescale Semiconductor Figure 28 shows the EMC signals diagram, with EMC PLL bypassed. Tclk LCLK Tin_s Tin_h LAD[23:0] (data) asynchronous input Tgta LGTA Tupwait asynchronous input LUPWAIT Tout_s Output Signals Tout_h LA[2:0]/LBCTL/LCS[7:0] LOE/LWE LCKE/LSDA10/LSDDQM LSDWE/LSDRAS/LSDCAS LGPL[5:0] Tad_z Tad_s Tad_h LAD[23:0] Tale Tale_h LALE Figure 28. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 4 Table 18 lists the EMC timing parameters with EMC PLL bypassed. Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8) Parameter Symbol Min Max Unit Tclk 8 × Tc — ns Tin_s 8 — ns Tin_h –1 — ns Tgta 42 — ns LUPWAIT valid time Tupwait 42 — ns LALE negedge to LAD (address phase) invalid (address latch hold time) Tale_h 5 — ns Tale 34 — ns LCLK cycle time Input setup to LCLK (except LGTA/LUPWAIT) Input hold from LCLK (except LGTA/LUPWAIT)1 LGTA valid time LALE valid time Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 37 Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8) Parameter Symbol Min Max Unit Output setup from LCLK (except LAD[23:0] and LALE) Tout_s 19 — ns Output hold from LCLK (except LAD[23:0] and LALE) Tout_h 18 — ns LAD[23:0] output setup from LCLK Tad_s 18 — ns LAD[23:0] output hold from LCLK Tad_h 17 — ns LCLK to output high impedance for LAD[23:0] Tad_z — 17.1 ns Note: 1. Negative hold time means the signal could be invalid before LCLK raising edge. Figure 29 shows the EMC signals diagram, with EMC PLL bypassed. Tclk LCLK Tin_s Tin_h LAD[23:0] (data) asynchronous input Tgta LGTA Tupwait asynchronous input LUPWAIT Tout_s Output Signals Tout_h LA[2:0]/LBCTL/LCS[7:0] LOE/LWE LCKE/LSDA10/LSDDQM LSDWE/LSDRAS/LSDCAS LGPL[5:0] Tad_z Tad_s Tad_h LAD[23:0] Tale Tale_h LALE Figure 29. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 8) Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 38 Freescale Semiconductor 2 Functional Description and Application Information Refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual (DSP56724RM) for detailed functional and applications information. 3 Ordering Information Table 19 shows the ordering information for the DSP56724/DSP56725 devices. Table 19. Ordering Information Device Device Marking Ambient Temp. Speed Voltage LQFP Package DSP56724 DSPB56724AG 0° C–70° C 250 MHz 1.14–1.26 V 20 mm × 20 mm DSP56724 DSPB56724CAG –40° C–85° C 200 MHz 0.95–1.05 V 20 mm × 20 mm DSP56725 DSPB56725AF 0° C–70° C 250 MHz 1.14–1.26 V 14 mm × 14 mm DSP56725 DSPB56725CAF –40° C–85° C 200 MHz 0.95–1.05 V 14 mm × 14 mm Contact your local Freescale sales representative for ordering information. 4 Package Information This section provides package and pinout information. Table 20 is a quick reference to the package outline drawings. Table 20. Package Outline Drawings Device Package See DSP56724 144-pin plastic LQFP See Section 4.2, “144-Pin Package Outline Drawing,” on page 42. DSP56725 80-pin plastic LQFP See Section 4.3, “80-Pin Package Outline Drawing,” on page 44. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 39 4.1 Pinout and Package Information This section provides information about the available package for DSP56724 and DSP56725 devices, including diagrams of the package pinouts. See Figure 30 for the DSP56724 pin assignments and Figure 31 for the DSP56725 pin assignments. For more detailed information about signals, refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual (DSP56724RM). Pinout for DSP56724 144-Pin Plastic LQFP Package 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 SCAN MODA0/IRQA MODB0/IRQB MODC0/PLOCK MODD0/PG1 FSR_3 SCKR_3 HCKR_3 SCKT_3 FST_3 HCKT_3 IO_GND IO_VDD CORE_GND CORE_VDD MODA1/IRQC MODB1/IRQD MODC1/NMI_1 MODD1/PG2 SDO2_2/SDI3_2 SDO3_2/SDI2_2 SDO4_2/SDI1_2 SDO5_2/SDI0_2 SDO2_3/SDI3_3 SDO3_3/SDI2_3 SDO4_3/SDI1_3 SDO5_3/SDI0_3 SS/HA2 HREQ/PH4 SCK/SCL MOSI/HA0 MISO/SDA SS_1/HA2_1 RESET CORE_GND CORE_VDD 4.1.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 DSP56724 144-Pin 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 IO_GND IO_VDD WDT PINIT/NMI TDO TDI TCK TMS SDO2_1/SDI3_1 SDO3_1/SDI2_1 SDO4_1/SDI1_1 SDO5_1/SDI0_1 CORE_GND CORE_VDD FSR SCKR HCKR SCKT FST HCKT SDO2/SDI3 SDO3/SDI2 SDO4/SDI1 SDO5/SDI0 SPDIFOUT1 SPDIFIN1 IO_GND IO_VDD EXTAL XTAL PLLP_GND PLLD_GND PLLD_VDD PLLA_GND PLLA_VDD PLLP_VDD LSYNC_IN LSYNC_OUT LAD23 LAD22 LAD21 LAD20 LAD19 LAD18 LAD17 CORE_VDD CORE_GND IO_VDD IO_GND LAD16 LAD15 LAD14 LAD13 LAD12 LAD11 LAD10 LAD9 IO_VDD IO_GND CORE_VDD CORE_GND LAD8 LAD7 LAD6 LAD5 LAD4 LAD3 LAD2 LAD1 LAD0 IO_GND IO_VDD 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 CORE_VDD CORE_GND LALE LCS0 LCS1 LCS2 LCS3 LCS4 LCS5 LCS6 LCS7 IO_VDD IO_GND CORE_VDD CORE_GND LWE LOE LGPL5 LSDA10 LCKE LCLK LBCTL LSDWE LSDCAS LGTA LA0 LA1 LA2 IO_VDD IO_GND PLLP1_GND PLLP1_VDD PLLD1_GND PLLD1_VDD PLLA1_GND PLLA1_VDD Figure 30. DSP56724 144-Pin Package Pinout Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 40 Freescale Semiconductor SCAN MODA0/IRQA MODB0/IRQB MODC0/PLOCK IO_GND IO_VDD CORE_GND CORE_VDD MODA1/IRQC MODB1/IRQD MODC1/NMI_1 SS/HA2 HREQ/PH4 SCK/SCL MOSI/HA0 MISO/SDA SS_1/HA2_1 RESET CORE_GND CORE_VDD 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 Pinout for DSP56725 80-Pin Plastic LQFP Package SDO2_3/SDI3_3 1 60 WDT SDO3_3/SDI2_3 2 59 PINIT/NMI SDO4_3/SDI1_3 3 58 TDO SDO5_3/SDI0_3 4 57 TDI IO_VDD 5 56 TCK IO_GND 6 55 TMS CORE_VDD 7 54 CORE_GND CORE_GND 8 53 CORE_VDD 52 SDO4/SDI1 SPDIFIN1/SDO2_2/SDI3_2 SPDIFOUT1/SDO3_2/SDI2_2 DSP56725 9 10 80-Pin 37 38 39 40 HCKT SDO2/SDI3 SDO3/SDI2 36 CORE_GND FST 35 PLLP_VDD CORE_VDD 41 34 20 IO_GND PLLA_VDD GND 33 42 IO_VDD 19 32 PLLA_GND GND SCKT 43 31 PLLD_VDD 18 HCKR 44 GND 30 17 SCKR PLLD_GND GND 29 45 FSR 16 28 PLLP_GND GND SDO5_1/SDI0_1 46 27 15 SDO4_1/SDI1_1 XTAL SCKT_3 26 47 CORE_GND EXTAL 14 25 48 SCKR_3 CORE_VDD 13 24 IO_VDD FSR_3 SDO3_1/SDI2_1 49 23 12 SDO2_1/SDI3_1 IO_GND SDO5_2/SDI0_2 22 50 21 SDO5/SDI0 11 FST_3 51 SDO4_2/SDI1_2 HCKT_3 4.1.2 Figure 31. DSP56725 80-Pin Package 4.1.3 Pin Multiplexing Many pins are multiplexed, and depending on the selected configuration, can be one of three possible signals. For more about pin multiplexing, refer to the Symphony™ DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual (DSP56724RM). Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 41 4.2 144-Pin Package Outline Drawing The 144-pin package outline drawing is shown in Figure 32 and Figure 33. Figure 32. 144-Pin Package Outline Drawing Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 42 Freescale Semiconductor Figure 33. 144-Pin Package Outline Drawing (continued) FIGURE NOTES: 1 All dimensions are in millimeters. 2 Interpret dimensions and tolerances per ASME Y.14.5M–1994 3 Datums B, C and D to be determined at datum plane H. 4 The top package body size may be smaller than the bottom package size by a maximum of 0.1 mm. 5 These dimensions do not include mold protrusions. The maximum allowable protrusion is 0.25 mm per side. These dimensions are maximum body size dimensions including mold mismatch. 6 This dimension does not include dam bar protrusion. Protrusions shall not cause the lead width to exceed 0.35 mm. Minimum space between protrusion and an adjacent lead shall be 0.07 mm. 7 These dimensions are determined at the seating plane, datum A. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 43 4.3 80-Pin Package Outline Drawing The 80-pin package outline drawing is shown in Figure 34 and Figure 35. Figure 34. 80-Pin Package Outline Drawing Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 44 Freescale Semiconductor Figure 35. 80-Pin Package Outline Drawing (continued) FIGURE NOTES: 1 Dimensioning and tolerancing per ASME Y.14.5M–1994. 2 Controlling dimension: millimeter. 3 Data plane H is located at the bottom of lead and is coincident with the lead where the lead exits the plastic body at the bottom of the parting line. 4 Datum E, F and to be determined at datum plane H. 5 Dimensions to be determined at seating plane C. 6 Dimensions do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions include mold mismatch and are determined at datum plane H. 7 Dimension does not include dambar protrusion Dambar protrusion shall not cause the lead width to exceed 0.46 mm. Minimum space between protrusion and adjacent lead or protrusion is 0.07mm. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 45 5 Product Documentation Table 21 lists the documents that provide a complete description of the DSP56724/DSP56725 devices and are required to design properly with the part. Documentation is available from a local Freescale Semiconductor, Inc. (formerly Motorola) distributor, semiconductor sales office, Literature Distribution Center, or through the Freescale DSP home page on the Internet (the source for the latest information). Table 21. DSP56724 / DSP56725 Documentation Document Name DSP56300 Family Manual Description Order Number Detailed description of the 56300-family architecture and the 24-bit DSP56300FM core processor and instruction set DSP56724/DSP56725 Reference Manual Detailed description of memory, peripherals, and interfaces DSP56724RM DSP56724 Product Brief Brief description of the DSP56724 device DSP56724PB DSP56725 Product Brief Brief description of the DSP56725 device DSP56725PB DSP56724/DSP56725 Data Sheet Electrical and timing specifications; pin and package descriptions (this document) DSP56724 6 Revision History Table 22 summarizes revisions to this document. Table 22. Revision History Revision Date Description 2 3/2009 • Added Section 1.1.4, “Power Consumption Considerations.” • In Table 9, “Serial Host Interface SPI Protocol Timing,” updated values for Nos. 24, 25, 27, 33, 34, and 39. Removed 40 and renumbered subsequent items accordingly. Updated Figure 12 and Figure 13 to reflect renumbering. • In Table 11, “Enhanced Serial Audio Interface Timing,” for No. 71 changed 12.0 to 0. 1 12/2008 • Modified values and removed rows in Table 4, “DC Electrical Characteristics.” • Removed “IO_VDD_25” from Figure 4, “Prevent High Current Conditions by Applying IO_VDD Before Core_VDD.” • In Table 7, “Reset, Stop, Mode Select, and Interrupt Timing,” for No. 15, changed 10 to 12, and for No. 16, changed 4 to 7. • In Table 9, “Serial Host Interface SPI Protocol Timing,” updated values. • In Table 10, “SHI I2C Protocol Timing,” added note 7 and changed Max values for No. 50 to 1000 and 300; in addition, updated the values for note 1. • In Table 11, “Enhanced Serial Audio Interface Timing,” for No. 82, changed 19 to 15; for No. 83, changed 20 to 15; for No. 86, changed 18 to 25; for No. 87, changed 21 to 25. • Removed Section 1.2.5, “Timer Timing.” • In Table 16, “EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2),” for “LSYNC_IN (except LGTA/LUPWAIT),” changed 2 to 3. • In Table 17, “EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4),” for “LCLK to output high impedance for LAD [23:0],” changed 9 to 8.1. • In Table 18, “EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8),” for LCLK to output high impedance for LAD [23:0],” changed 19 to 17.1 • In Table 19, “Ordering Information,” added rows for DSPB56724CAG and DSPB56725CAF, and changed “DSPA56724AG” to “DSPB56724AG.” 0 6/2008 • Initial public release. Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 46 Freescale Semiconductor THIS PAGE INTENTIONALLY BLANK Symphony™ DSP56724/ DSP56725 Multi-Core Audio Processors, Rev. 2 Freescale Semiconductor 47 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Document Number: DSP56724EC Rev. 2 3/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM7TDMI-S is the trademark of ARM Limited. © Freescale Semiconductor, Inc. 2009. All rights reserved.
DSPB56725CAF 价格&库存

很抱歉,暂时无法提供与“DSPB56725CAF”相匹配的价格&库存,您可以联系我们找货

免费人工找货
DSPB56725CAF
    •  国内价格
    • 1+192.46788
    • 10+142.60121
    • 25+135.60237
    • 50+128.60354

    库存:0