0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCIMX6Y1CVM05AB

MCIMX6Y1CVM05AB

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LFBGA289

  • 描述:

    I.MX6ULL ROM PERF ENHAN

  • 数据手册
  • 价格&库存
MCIMX6Y1CVM05AB 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number: IMX6ULLIEC Rev. 1.2, 11/2017 MCIMX6Y0CVM05AA MCIMX6Y1CVM05AA MCIMX6Y1CVK05AA MCIMX6Y2CVM05AA MCIMX6Y2CVM08AA MCIMX6Y2CVK08AB i.MX 6ULL Applications Processors for Industrial Products MCIMX6Y0CVM05AB MCIMX6Y1CVM05AB MCIMX6Y1CVK05AB MCIMX6Y2CVM05AB MCIMX6Y2CVM08AB Package Information Plastic Package MAPBGA 14 x 14 mm, 0.8 mm pitch MAPBGA 9 x 9 mm, 0.5 mm pitch Ordering Information See Table 1 on page 3 1 i.MX 6ULL Introduction The i.MX 6ULL processors represent NXP’s latest achievement in integrated multimedia-focused products offering high performance processing with a high degree of functional integration, targeted towards the growing market of connected devices. The i.MX 6ULL is a high performance, ultra efficient processor family with featuring NXP’s advanced implementation of the single Arm Cortex®-A7 core, which operates at speeds of up to 792 MHz. i.MX 6ULL includes integrated power management module that reduces the complexity of external power supply and simplifies the power sequencing. Each processor in this family provides various memory interfaces, including LPDDR2, DDR3, DDR3L, Raw and Managed NAND flash, NOR flash, eMMC, Quad SPI, and a wide range of other interfaces for connecting peripherals, such as WLAN, Bluetooth™, GPS, displays, and camera sensors. © 2016-2017 NXP B.V. 1. i.MX 6ULL Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3. Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1. Special Signal Considerations . . . . . . . . . . . . . . . 18 3.2. Recommended Connections for Unused Analog Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1. Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . 21 4.2. Power Supplies Requirements and Restrictions . 31 4.3. Integrated LDO Voltage Regulator Parameters . . 32 4.4. PLL’s Electrical Characteristics . . . . . . . . . . . . . . . 34 4.5. On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . 36 4.6. I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7. I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 40 4.8. Output Buffer Impedance Parameters . . . . . . . . . 43 4.9. System Modules Timing . . . . . . . . . . . . . . . . . . . . 46 4.10. Multi-Mode DDR Controller (MMDC) . . . . . . . . . . 57 4.11. General-Purpose Media Interface (GPMI) Timing 58 4.12. External Peripheral Interface Parameters . . . . . . . 66 4.13. A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5. Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 103 5.1. Boot Mode Configuration Pins . . . . . . . . . . . . . . 103 5.2. Boot Device Interface Allocation . . . . . . . . . . . . . 104 6. Package Information and Contact Assignments . . . . . 111 6.1. 14 x 14 mm Package Information . . . . . . . . . . . . 111 6.2. 9 x 9 mm Package Information . . . . . . . . . . . . . . 124 7. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 i.MX 6ULL Introduction The i.MX 6ULL processors are specifically useful for applications such as: • Telematics • Audio playback • Connected devices • IoT Gateway • Access control panels • Human Machine Interfaces (HMI) • Portable medical and health care • IP phones • Smart appliances • eReaders The features of the i.MX 6ULL processors include: • Single-core Arm Cortex-A7—The single core A7 provides a cost-effective and power-efficient solution. • Multilevel memory system—The multilevel memory system of processor is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processor supports many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR Flash, NAND Flash (MLC and SLC), OneNAND™, Quad SPI, and managed NAND, including eMMC up to rev 4.4/4.41/4.5. • Smart speed technology—Power management implemented throughout the IC that enables multimedia features and peripherals to consume minimum power in both active and various low power modes. • Dynamic voltage and frequency scaling—The power efficiency of devices by scaling the voltage and frequency to optimize performance. • Multimedia powerhouse—The multimedia performance of processor is enhanced by a multilevel cache system, NEON™ MPE (Media Processor Engine) co-processor, a programmable smart DMA (SDMA) controller, an asynchronous audio sample rate converter, an Electrophoretic Display (EPD) controller, and a Pixel processing pipeline (PXP) to support 2D image processing, including color-space conversion, scaling, alpha-blending, and rotation. • 2x Ethernet interfaces—2x 10/100 Mbps Ethernet controllers. • Human-machine interface—Each processor supports one digital parallel display interface. • Interface flexibility—Each processor supports connections to a variety of interfaces: two high-speed USB on-the-go with PHY, multiple expansion card ports (high-speed MMC/SDIO host and other), two 12-bit ADC modules with up to 10 total input channels and two CAN ports. • Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, AES-128 encryption, SHA-1, SHA-256 HW acceleration engine, and secure software downloads. The security features are discussed in the i.MX 6ULL Security Reference Manual (IMX6ULLSRM). i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 2 NXP Semiconductors i.MX 6ULL Introduction • Integrated power management—The processors integrate linear regulators and internally generate voltage levels for different domains. This significantly simplifies system power management structure. For a comprehensive list of the i.MX 6ULL features, see Section 1.2, “Features"”. 1.1 Ordering Information Table 1 provides examples of orderable part numbers covered by this data sheet. Table 1. Ordering Information Part Number Feature Package Junction Temperature Tj (C) MCIMX6Y0CVM05AA MCIMX6Y0CVM05AB Features supports: • 528 MHz, industrial grade for general purpose • No security • No LCD/CSI • No CAN • Ethernet x1 • USB OTG x1 • ADC x1 • UART x4 • SAI x1 • No ESAI • Timer x2 • PWM x4 • I2C x2 • SPI x2 14 x 14 mm, 0.8 pitch MAPBGA -40 to +105 MCIMX6Y1CVM05AA MCIMX6Y1CVM05AB Features supports: • 528 MHz, industrial grade for general purpose • Basic security • No LCD/CSI • CAN x1 • Ethernet x1 • USB OTG x2 • ADC x1 • UART x8 • SAI x3 • ESAI x1 • Timer x4 • PWM x8 • I2C x4 • SPI x4 14 x 14 mm, 0.8 pitch MAPBGA -40 to +105 i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 3 i.MX 6ULL Introduction Table 1. Ordering Information Part Number Feature Package Junction Temperature Tj (C) MCIMX6Y1CVK05AA MCIMX6Y1CVK05AB Features supports: • 528 MHz, industrial grade for general purpose • Basic security • No LCD/CSI • CAN x1 • Ethernet x1 • USB OTG x2 • ADC x1 • UART x8 • SAI x3 • ESAI x1 • Timer x4 • PWM x8 • I2C x4 • SPI x4 9 x 9 mm, 0.5 pitch MAPBGA -40 to +105 MCIMX6Y2CVM05AA MCIMX6Y2CVM05AB Features supports: • 528 MHz, industrial grade for general purpose • Basic security • With LCD/CSI • CAN x2 • Ethernet x2 • USB OTG x2 • ADC x2 • UART x8 • SAI x3 • ESAI x1 • Timer x4 • PWM x8 • I2C x4 • SPI x4 14 x 14mm, 0.8 pitch MAPBGA -40 to +105 i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 4 NXP Semiconductors i.MX 6ULL Introduction Table 1. Ordering Information Part Number Feature Package Junction Temperature Tj (C) MCIMX6Y2CVM08AA MCIMX6Y2CVM08AB Features supports: • 792 MHz, industrial grade for general purpose • Basic security • With LCD/CSI • CAN x2 • Ethernet x2 • USB OTG x2 • ADC x2 • UART x8 • SAI x3 • ESAI x1 • Timer x4 • PWM x8 • I2C x4 • SPI x4 14 x 14 mm, 0.8 pitch MAPBGA -40 to +105 MCIMX6Y2CVK08AB Features supports: • 792 MHz, industrial grade for general purpose • Basic security • With LCD/CSI • CAN x2 • Ethernet x2 • USB OTG x2 • ADC x2 • UART x8 • SAI x3 • ESAI x1 • Timer x4 • PWM x8 • I2C x4 • SPI x4 9 x 9 mm, 0.5 pitch MAPBGA -40 to +105 Figure 1 describes the part number nomenclature so that the users can identify the characteristics of the specific part number they have (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field. • The i.MX 6ULL Applications Processors for Industrial Products Data Sheet (IMX6ULLIEC) covers parts listed with a “C (Industrial temp)” Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there will be any questions, visit the web page NXP.com/imx6series or contact a NXP representative for details. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 5 i.MX 6ULL Introduction MC IMX6 X @ + VV $$ % A MC Silicon Rev A Prototype Samples PC Rev 1.0 (Mask number: 0N70S) A Mass Production MC Rev 1.1 (Mask number: 1N70S) B Special SC Qualification Level i.MX 6 Family i.MX 6ULL X Y Part differentiator @ With EPDC 7 Reserved 6 5 Fuse Option % Reserved A Arm Cortex-A7 Frequency $$ 528 MHz 05 792 MHz 08 900 MHz 09 4 3 Package Type General Purpose 2 (Full Feature) 2 MAPBGA 14 x 14 mm, 0.8 pitch VM General Purpose 1 (Reduced Feature) 1 MAPBGA 9 x 9 mm, 0.5 pitch VK Baseline 0 Junction Temperature (Tj) + Consumer: 0 to + 95 °C D Industrial: -40 to +105 °C C ROHS Figure 1. Part Number Nomenclature—i.MX 6ULL 1.2 Features The i.MX 6ULL processors are based on Arm Cortex-A7 MPCore™ Platform, which has the following features: • Supports single Arm Cortex-A7 MPCore (with TrustZone) with: — 32 KB L1 Instruction Cache — 32 KB L1 Data Cache — Private Timer and Watchdog — Cortex-A7 NEON Media Processing Engine (MPE) Co-processor • General Interrupt Controller (GIC) with 128 interrupts support • Global Timer • Snoop Control Unit (SCU) • 128 KB unified I/D L2 cache • Single Master AXI bus interface output of L2 cache i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 6 NXP Semiconductors i.MX 6ULL Introduction • • Frequency of the core (including Neon and L1 cache), as per Table 10, "Operating Ranges," on page 24. NEON MPE coprocessor — SIMD Media Processing Architecture — NEON register file with 32x64-bit general-purpose registers — NEON Integer execute pipeline (ALU, Shift, MAC) — NEON dual, single-precision floating point execute pipeline (FADD, FMUL) — NEON load/store and permute pipeline — 32 double-precision VFPv3 floating point registers The SoC-level memory system consists of the following additional components: — Boot ROM, including HAB (96 KB) — Internal multimedia/shared, fast access RAM (OCRAM, 128 KB) • External memory interfaces: The i.MX 6ULL processors support latest, high volume, cost effective handheld DRAM, NOR, and NAND Flash memory standards. — 16-bit LP-DDR2-800, 16-bit DDR3-800 and DDR3L-800 — 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bits. — 16/8-bit NOR Flash. All EIMv2 pins are muxed on other interfaces. Each i.MX 6ULL processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): • Displays: — One parallel display port, support max 85 MHz display clock and up to WXGA (1366 x 768) at 60 Hz — Support 24-bit, 18-bit, 16-bit, and 8-bit parallel display — Electrophoretic display controller support direct-driver for E-Ink EPD panel, with up to 2048x1536 resolution at 106 Hz • Camera sensors: — One parallel camera port, up to 24 bit and 133.3 MHz pixel clock — Support 24-bit, 16-bit, 10-bit, and 8-bit input — Support BT.656 interface • Expansion cards: — Two MMC/SD/SDIO card ports all supporting: – 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104 mode (104 MB/s max) – 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) – 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max) i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 7 i.MX 6ULL Introduction • • USB: — Two high speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY Miscellaneous IPs and interfaces: — Three I2S/SAI/AC97, up to 1.4 Mbps each — ESAI — Sony Philips Digital Interface Format (SPDIF), Rx and Tx — Eight UARTs, up to 5.0 Mbps each: – Providing RS232 interface – Supporting 9-bit RS485 multidrop mode – Support RTS/CTS for hardware flow control — Four eCSPI (Enhanced CSPI), up to 52 Mbps each — Four I2C, supports 400 kbps — Two 10/100 Ethernet Controller (IEEE1588 compliant) — Eight Pulse Width Modulators (PWM) — System JTAG Controller (SJC) — GPIO with interrupt capabilities — 8x8 Key Pad Port (KPP) — One Quad SPI to connect to serial NOR flash — Two Flexible Controller Area Network (FlexCAN) — Three Watchdog timers (WDOG) — 8-bit/10-bit/12-bit/16-bit camera interface — Two 12-bit Analog to Digital Converters (ADC) with up to 10 input channels in total The i.MX 6ULL processors integrate advanced power management unit and controllers: • • • • • • • Provide PMU, including LDO supplies, for on-chip resources Use Temperature Sensor for monitoring the die temperature Use Voltage Sensor for monitoring the die voltage Support DVFS techniques for low power modes Use SW State Retention and Power Gating for Arm and NEON Support various levels of system power modes Use flexible clock gating control scheme The i.MX 6ULL processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks. The i.MX 6ULL processors incorporate the following hardware accelerators: • PXP—Pixel Processing Pipeline for image resize, rotation, overlay and CSC. Off loading key pixel processing operations are required to support the LCD display applications. • ASRC—Asynchronous Sample Rate Converter i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 8 NXP Semiconductors i.MX 6ULL Introduction Security functions are enabled and accelerated by the following hardware: • Arm TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.) • SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features. • SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock, both active tamper and passive tamper detection logic has up to 10 tamper inputs. Voltage monitor, temperature monitor, and clock frequency monitor protects the secure key storage. • CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy. • A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: AES-128 encryption, SHA-1, and SHA-256 HW acceleration engine, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization. NOTE The actual feature set depends on the part numbers as described in Table 1. Functions, such as display and camera interfaces, connectivity interfaces. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 9 Architectural Overview 2 Architectural Overview The following subsections provide an architectural overview of the i.MX 6ULL processor system. 2.1 Block Diagram Figure 2 shows the functional modules in the i.MX 6ULL processor system. /3''5 ''5 %DWWHU\&RQWURO 'HYLFH ([WHUQDO0HPRU\ 1$1')/$6+ $50&RUWH[$  03&RUH3ODWIRUP 00'& &RUWH[$&RUH (,0 *30, %&+ 125)/$6+ 3DUDOOHO -7$* ,(((  6HQVRUV 463, &U\VWDODQG &ORFN6RXUFH 'HEXJ &ORFN 5HVHW '$3 3//  73,8 &&0 .% ,FDKFH .% 'FDFKH &7,V *3& 1(21 (70 6-& 65& 00&6' H00&H6' 00&6' 6';& ;7$/26& 6&8 7LPHU 7LPHU&RQWURO /&DFKH.% .26& 6HFXULW\ &68 )XVH%R[ 7DPSHU 'HWHFWLRQ /&'3DQHO +$% 6196 657& 'LVSOD\,QWHUIDFH ,QWHUQDO0HPRU\ *37  2&5$0.% (3,7  520.% 7HPS0RQLWRU 6PDUW'0$ 6'0$ ,PDJH3URFVVLQJ /&',) 3L[HO3URFHVVLQJ3LSHOLQH 3;3 (OHWURSKRUHWLF'LVSOD\ (3' &0266HQVRU &DPHUD,QWHUIDFH $33HULSKHUDOV ,&  6KDUHG3HULSKHUDOV .H\SDG 3:0  $65& 2&273 046 ,208;& H&63,  .33 63',)7[ 5[ *3,2 6$,  (WKHUQHW  8$57  &$1  (6$, 86%27*  0 (WKHUQHW [ &RQWUROOHU$UHD 1HWZRUN 3RZHU0DQDJHPHQW &6, /'2V :/$1 H,1.3DQHO X6'+&  63%$ 125)/$6+ 4XDG63, $;,DQG$+%6ZLWFK)DEULF :'2*  0RGHP,& 'LJLWDO$XGLR &$1[ 86%27* GHYKRVW . Figure 2. i.MX 6ULL System Block Diagram i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 10 NXP Semiconductors Modules List 3 Modules List The i.MX 6ULL processors contain a variety of digital and analog modules. Table 2 describes these modules in alphabetical order. Table 2. i.MX 6ULL Modules List Block Mnemonic Block Name Subsystem ADC1 ADC2 Analog to Digital Converter — The ADC is a 12-bit general purpose analog to digital converter. Arm Arm Platform Arm The Arm Core Platform includes 1x Cortex-A7 core. It also includes associated sub-blocks, such as the Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, watchdog, and CoreSight debug modules. ASRC Asynchronous Sample Rate Converter Multimedia Peripherals The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs. BCH Binary-BCH ECC Processor System Control Peripherals CCM GPC SRC Brief Description The BCH module provides up to 40-bit ECC encryption/decryption for NAND Flash controller (GPMI) Clock Control Module, Clocks, Resets, and These modules are responsible for clock and reset General Power Controller, Power Control distribution in the system, and also for the system power System Reset Controller management. CSI Parallel CSI Multimedia Peripherals CSU Central Security Unit Security DAP Debug Access Port System Control Peripherals The CSI IP provides parallel CSI standard camera interface port. The CSI parallel data ports are up to 24 bits. It is designed to support 24-bit RGB888/YUV444, CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and 8-bit/10-bit/16-bit Bayer data input. The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 6ULL platform. The DAP provides real-time access for the debugger without halting the core to: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-A7 Core Platform. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 11 Modules List Table 2. i.MX 6ULL Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description DCP Data co-processor Security This module provides support for general encryption and hashing functions typically used for security functions. Because its basic job is moving data from memory to memory, it also incorporates a memory-copy (memcopy) function for both debugging and as a more efficient method of copying data between memory blocks than the DMA-based approach. eCSPI1 eCSPI2 eCSPI3 eCSPI4 Configurable SPI Connectivity Peripherals Full-duplex enhanced Synchronous Serial Interface, with data rate up to 52 Mbit/s. It is configurable to support Master/Slave modes, four chip selects to support multiple peripherals. EIM NOR-Flash /PSRAM interface Connectivity Peripherals The EIM NOR-FLASH / PSRAM provides: • Support 16-bit (in muxed IO mode only) PSRAM memories (sync and async operating modes), at slow frequency • Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow frequency • Multiple chip selects ENET1 ENET2 Ethernet Controller Connectivity Peripherals The Ethernet Media Access Controller (MAC) is designed to support 10/100 Mbit/s Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. EPDC Electrophoretic Display Controller Multimedia Peripherals The EPDC is a feature-rich, low power, and high performance direct-drive active matrix EPD controller. It is specially designed to drive E-INKTM EPD panels, supporting a wide variety of TFT backplanes. EPIT1 EPIT2 Enhanced Periodic Interrupt Timer Timer Peripherals Each EPIT is a 32-bit “set and forget” timer that starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. It has a 12-bit prescaler for division of input clock frequency to get the required time setting for the interrupts to occur, and counter value can be programmed on the fly. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 12 NXP Semiconductors Modules List Table 2. i.MX 6ULL Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description ESAI Enhanced Serial Audio Interface Connectivity Peripherals The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available. The ESAI has 12 pins for data and clocking connection to external devices. FLEXCAN1 FLEXCAN2 Flexible Controller Area Network Connectivity Peripherals The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames. GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 General Purpose I/O Modules System Control Peripherals Used for general purpose input/output to external ICs. Each GPIO module supports 32 bits of I/O. GPMI General Purpose Memory Interface Connectivity Peripherals The GPMI module supports up to 8x NAND devices and 40-bit ECC encryption/decryption for NAND Flash Controller (GPMI2). GPMI supports separate DMA channels for each NAND device. GPT1 GPT2 General Purpose Timer Timer peripherals Each GPT is a 32-bit “free-running” or “set and forget” mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set and forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 13 Modules List Table 2. i.MX 6ULL Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description LCDIF LCD interface Connectivity peripherals The LCDIF is a general purpose display controller used to drive a wide range of display devices varying in size and capability. The LCDIF is designed to support dumb (synchronous 24-bit Parallel RGB interface) and smart (asynchronous parallel MPU interface) LCD devices. MQS Medium Quality Sound Multimedia Peripherals MQS is used to generate 2-channel medium quality PWM-like audio via two standard digital GPIO pins. PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 PWM8 Pulse Width Modulation Connectivity peripherals The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. PXP Pixel Processing Pipeline Display peripherals A high-performance pixel processor capable of 1 pixel/clock performance for combined operations, such as color-space conversion, alpha blending, gamma-mapping, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications, allowing it to interface with the integrated EPD. RNGB Random Number Generator Security Random number generating module. QSPI Quad SPI Connectivity peripherals Quad SPI module acts as an interface to external serial flash devices. This module contains the following features: • Flexible sequence engine to support various flash vendor devices • Single pad/Dual pad/Quad pad mode of operation • Single Data Rate/Double Data Rate mode of operation • Parallel Flash mode • DMA support • Memory mapped read access to connected flash devices • Multi-master access with priority and flexible and configurable buffer for each master SAI1 SAI2 SAI3 — — The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 14 NXP Semiconductors Modules List Table 2. i.MX 6ULL Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description SDMA Smart Direct Memory Access System Control Peripherals The SDMA is multi-channel flexible DMA engine. It helps in maximizing system performance by off-loading the various cores in dynamic data routing. It has the following features: • Powered by a 16-bit Instruction-Set micro-RISC engine • Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels • 48 events with total flexibility to trigger any combination of channels • Memory accesses including linear, FIFO, and 2D addressing • Shared peripherals between Arm and SDMA • Very fast Context-Switching with 2-level priority based preemptive multi-tasking • DMA units with auto-flush and prefetch capability • Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) • DMA ports can handle unit-directional and bi-directional flows (copy mode) • Up to 8-word buffer for configurable burst transfers for EMIv2.5 • Support of byte-swapping and CRC calculations • Library of Scripts and API is available SJC System JTAG Controller System Control Peripherals The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX 6ULL processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 6ULL SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SNVS Secure Non-Volatile Storage Security Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting. SPDIF Sony Philips Digital Interconnect Format Multimedia Peripherals A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality. System Counter — — The system counter module is a programmable system counter which provides a shared time base to the Cortex A series cores as part of Arm’s generic timer architecture. It is intended for use in application where the counter is always powered on and supports multiple, unrelated clocks. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 15 Modules List Table 2. i.MX 6ULL Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description TSC Touch Screen Touch Controller TZASC Trust-Zone Address Space Controller Security The TZASC (TZC-380 by Arm) provides security address region control functions required for intended application. It is used on the path to the DRAM controller. UART1 UART2 UART3 UART4 UART5 UART6 UART7 UART8 UART Interface Connectivity Peripherals Each of the UARTv2 module supports the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) • Programmable baud rates up to 5 Mbps. • 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud uSDHC1 uSDHC2 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller Connectivity Peripherals i.MX 6ULL specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: • Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.5/4.2/4.3/4.4/4.41/ including high-capacity (size > 2 GB) cards HC MMC. • Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDXC cards up to 2 TB. • Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 Two ports support: • 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) • 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) • 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max) However, the SoC level integration and I/O muxing logic restrict the functionality to the following: • Instances #1 and #2 are primarily intended to serve as interfaces to on-board peripherals. These ports are equipped with “Card detection” and “Write Protection” pads and do not support hardware reset. • All ports can work with 1.8 V and 3.3 V cards. There are two completely independent I/O power domains for Ports #1 and #2 in four bit configuration (SD interface). With touch controller to support 4-wire and 5-wire resistive touch panel. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 16 NXP Semiconductors Modules List Table 2. i.MX 6ULL Modules List (continued) Block Mnemonic Block Name Subsystem Brief Description USB Universal Serial Bus 2.0 Connectivity Peripherals USBO2 (USB OTG1 and USB OTG2) contains: • Two high-speed OTG 2.0 modules with integrated HS USB PHYs • Support eight Transmit (TX) and eight Receive (Rx) endpoints, including endpoint 0 WDOG1 WDOG3 Watch Dog Timer Peripherals The Watch Dog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line. WDOG2 (TZ) Watch Dog (TrustZone) Timer Peripherals The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system’s security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 17 Modules List 3.1 Special Signal Considerations Table 3 lists special signal considerations for the i.MX 6ULL processors. The signal names are listed in alphabetical order. The package contact assignments can be found in Section 6, “Package Information and Contact Assignments".” Signal descriptions are provided in the i.MX 6ULL Reference Manual (IMX6ULLRM). Table 3. Special Signal Considerations Signal Name Remarks CCM_CLK1_P/ CCM_CLK1_N One general purpose differential high speed clock Input/output is provided. It can be used: • To feed external reference clock to the PLLs and further to the modules inside SoC. • To output internal SoC clock to be used outside the SoC as either reference clock or as a functional clock for peripherals. See the i.MX 6ULL Reference Manual (IMX6ULLRM) for details on the respective clock trees. Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. After initialization, the CLK1 input/output can be disabled (if not used). If unused, either or both of the CLK1_N/P pairs may remain unconnected. RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, (100 k ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO. Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin should be remain unconnected or driven with a complimentary signal. The logic level of this forcing clock should not exceed VDD_SNVS_CAP level and the frequency should be @ /&'Q&RQWURO6LJQDOV / / / / Figure 50. LCD Timing Table 60. LCD Timing Parameters ID Parameter Symbol Min Max Unit tCLK(LCD) — 150 MHz L1 LCD pixel clock frequency L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 — ns L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 — ns L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns 4.12.9.1 LCDIF Signal Mapping Table 61 lists the details about the mapping signals. Table 61. LCD Timing Parameters Pin name 8-bit DOTCLK LCD IF 16-bit DOTCLK LCD IF 18-bit DOTCLK LCD IF 24-bit DOTCLK LCD IF 8-bit DVI LCD IF LCD_RS — — — — CCIR_CLK LCD_VSYNC* (Two options) LCD_VSYNC LCD_VSYNC LCD_VSYNC LCD_VSYNC — LCD_HSYNC LCD_HSYNC LCD_HSYNC LCD_HSYNC LCD_HSYNC — LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK — i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 84 NXP Semiconductors Electrical Characteristics Table 61. LCD Timing Parameters (continued) LCD_ENABLE LCD_ENABLE LCD_ENABLE LCD_ENABLE LCD_ENABLE — LCD_D23 — — — R[7] — LCD_D22 — — — R[6] — LCD_D21 — — — R[5] — LCD_D20 — — — R[4] — LCD_D19 — — — R[3] — LCD_D18 — — — R[2] — LCD_D17 — — R[5] R[1] — LCD_D16 — — R[4] R[0] — LCD_D15 / VSYNC* — R[4] R[3] G[7] — LCD_D14 / HSYNC** — R[3] R[2] G[6] — LCD_D13 / LCD_DOTCLK ** — R21] R[1] G[5] — LCD_D12 / ENABLE** — R[1] R[0] G[4] — LCD_D11 — R[0] G[5] G[3] — LCD_D10 — G[5] G[4] G[2] — LCD_D9 — G[4] G[3] G[1] — LCD_D8 — G[3] G[2] G[0] — LCD_D8 — G[3] G[2] G[0] — LCD_D7 R[2] G[2] G[1] B[7] Y/C[7] LCD_D6 R[1] G[1] G[0] B[6] Y/C[6] LCD_D5 R[0] G[0] B[5] B[5] Y/C[5] LCD_D4 G[2] B[4] B[4] B[4] Y/C[4] LCD_D3 G[1] B[3] B[3] B[3] Y/C[3] LCD_D2 G[0] B[2] B[2] B[2] Y/C[2] LCD_D1 B[1] B[1] B[1] B[1] Y/C[1] LCD_D0 B[0] B[0] B[0] B[0] Y/C[0] LCD_RESET LCD_RESET LCD_RESET LCD_RESET LCD_RESET — LCD_BUSY / LCD_VSYNC LCD_BUSY (or optional LCD_VSYNC) LCD_BUSY (or optional LCD_VSYNC) LCD_BUSY (or optional LCD_VSYNC) LCD_BUSY (or optional LCD_VSYNC) — i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 85 Electrical Characteristics 4.12.10 QUAD SPI (QSPI) Timing Parameters Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns. 4.12.10.1 SDR Mode 463,[B6&/. 7,6 7,+ 7,6 7,+ 463,[B'$7$>@ Figure 51. QuadSPI Input/Read Timing (SDR mode with internal sampling) Table 62. QuadSPI Input Timing (SDR mode with internal sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 8.67 — ns TIH Hold time requirement for incoming data 0 — ns     463,[B6&/. 463,[B'$7$>@ 7,6 7,+ 7,6 7,+ 463,[B'46 Figure 52. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling) Table 63. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 2 — ns TIH Hold time requirement for incoming data 1 — ns • NOTE For internal sampling, the timing values assumes using sample point 0, that is QuadSPIx_SMPR[SDRSMP] = 0. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 86 NXP Semiconductors Electrical Characteristics • For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data. 463,[B6&/. 7&66 7&6+ 7&. 463,[B&6 7'92 7'92 463,[B6,2 7'+2 7'+2 Figure 53. QuadSPI Output/Write Timing (SDR mode) Table 64. QuadSPI Output/Write Timing (SDR mode) Value Symbol Parameter Unit Min Max TDVO Output data valid time — 2 ns TDHO Output data hold time -0.5 — ns TCK SCK clock period 10 — ns TCSS Chip select output setup time 3 — SCK cycle(s) TCSH Chip select output hold time 3 — SCK cycle(s) NOTE Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the default value of 3 are shown on the timing. Please refer to the i.MX 6ULL Reference Manual (IMX6ULLRM) for more details. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 87 Electrical Characteristics 4.12.10.2 DDR Mode 463,[B6&/. 7,6 7,+ 7,6 7,+ 463,[B'$7$>@ Figure 54. QuadSPI Input/Read Timing (DDR mode with internal sampling) Table 65. QuadSPI Input/Read Timing (DDR mode with internal sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 8.67 — ns TIH Hold time requirement for incoming data 0 — ns     463,[B6&/. 463,[B'$7$>@ 7,6 7,+ 7,6 7,+ 463,[B'46 Figure 55. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling) Table 66. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 2 — ns TIH Hold time requirement for incoming data 1 — ns • NOTE For internal sampling, the timing values assumes using sample point 0, that is QuadSPIx_SMPR[SDRSMP] = 0. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 88 NXP Semiconductors Electrical Characteristics • For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data.   463,[B6&/. 7&66 7&. 7&6+ 463,[B&6 7'92 7'92 463,[B6,2 7'+2 7'+2 Figure 56. QuadSPI Output/Write Timing (DDR mode) Table 67. QuadSPI Output/Write Timing (DDR mode) Value Symbol Parameter Unit Min Max TDVO Output data valid time — (0.25 x TSCLK) + 2 ns TDHO Output data hold time (0.25 x TSCLK) - 0.5 — ns TCK SCK clock period 20 — ns TCSS Chip select output setup time 3 — SCK cycle(s) TCSH Chip select output hold time 3 — SCK cycle(s) NOTE Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the default value of 3 are shown on the timing. Please refer to the i.MX 6ULL Reference Manual (IMX6ULLRM) for more details. 4.12.11 SAI/I2S Switching Specifications This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. Table 68. Master Mode SAI Timing Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 2 x tsys — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 4 x tsys — ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 89 Electrical Characteristics Table 68. Master Mode SAI Timing (continued) Num Characteristic Min Max Unit S5 SAI_BCLK to SAI_FS output valid — 15 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 15 ns S8 SAI_BCLK to SAI_TXD invalid 0 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns Figure 57. SAI Timing — Master Modes Table 69. Master Mode SAI Timing Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 4 x tsys — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 10 — ns S14 SAI_FA input hold after SAI_BCLK 2 — ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 20 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 — ns S17 SAI_RXD setup before SAI_BCLK 10 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 90 NXP Semiconductors Electrical Characteristics Figure 58. SAI Timing — Slave Modes 4.12.12 SCAN JTAG Controller (SJC) Timing Parameters Figure 59 depicts the SJC test clock input timing. Figure 60 depicts the SJC boundary scan timing. Figure 61 depicts the SJC test access port. Signal parameters are listed in Table 70. SJ1 SJ2 JTAG_TCK (Input) VM VIH SJ2 VM VIL SJ3 SJ3 Figure 59. Test Clock Input Timing Diagram i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 91 Electrical Characteristics JTAG_TCK (Input) VIH VIL SJ4 Data Inputs SJ5 Input Data Valid SJ6 Data Outputs Output Data Valid SJ7 Data Outputs SJ6 Data Outputs Output Data Valid Figure 60. Boundary Scan (JTAG) Timing Diagram i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 92 NXP Semiconductors Electrical Characteristics JTAG_TCK (Input) VIH VIL SJ8 JTAG_TDI JTAG_TMS (Input) SJ9 Input Data Valid SJ10 JTAG_TDO (Output) Output Data Valid SJ11 JTAG_TDO (Output) SJ10 JTAG_TDO (Output) Output Data Valid Figure 61. Test Access Port Timing Diagram JTAG_TCK (Input) JTAG_TRST_B (Input) SJ13 SJ12 Figure 62. JTAG_TRST_B Timing Diagram Table 70. JTAG Timing All Frequencies Parameter1,2 ID Unit Min Max 0.001 22 MHz 45 — ns 22.5 — ns SJ0 JTAG_TCK frequency of operation 1/(3•TDC)1 SJ1 JTAG_TCK cycle time in crystal mode SJ2 JTAG_TCK clock pulse width measured at VM2 SJ3 JTAG_TCK rise and fall times — 3 ns SJ4 Boundary scan input data set-up time 5 — ns SJ5 Boundary scan input data hold time 24 — ns SJ6 JTAG_TCK low to output data valid — 40 ns SJ7 JTAG_TCK low to output high impedance — 40 ns i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 93 Electrical Characteristics Table 70. JTAG Timing (continued) All Frequencies Parameter1,2 ID 1 2 Unit Min Max SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 — ns SJ9 JTAG_TMS, JTAG_TDI data hold time 25 — ns SJ10 JTAG_TCK low to JTAG_TDO data valid — 44 ns SJ11 JTAG_TCK low to JTAG_TDO high impedance — 44 ns SJ12 JTAG_TRST_B assert time 100 — ns SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 — ns TDC = target frequency of SJC VM = mid-point voltage 4.12.13 SPDIF Timing Parameters The Sony/Philips Digital Interface Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 71, Figure 63, and Figure 64 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode. Table 71. SPDIF Timing Parameters Timing Parameter Range Characteristics Symbol Unit Min Max SPDIF_IN Skew: asynchronous inputs, no specs apply — — 0.7 ns SPDIF_OUT output (Load = 50pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 24.2 31.3 ns SPDIF_OUT1 output (Load = 30pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 13.6 18.0 ns Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 — ns SPDIF_SR_CLK high period srckph 16.0 — ns SPDIF_SR_CLK low period srckpl 16.0 — ns Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 — ns SPDIF_ST_CLK high period stclkph 16.0 — ns SPDIF_ST_CLK low period stclkpl 16.0 — ns i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 94 NXP Semiconductors Electrical Characteristics srckp srckpl srckph SPDIF_SR_CLK VM VM (Output) Figure 63. SPDIF_SR_CLK Timing Diagram stclkp stclkpl SPDIF_ST_CLK stclkph VM VM (Input) Figure 64. SPDIF_ST_CLK Timing Diagram 4.12.14 UART I/O Configuration and Timing Parameters 4.12.14.1 UART RS-232 Serial Mode Timing The following sections describe the electrical information of the UART module in the RS-232 mode. 4.12.14.1.1 UART Transmitter Figure 65 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 72 lists the UART RS-232 serial mode transmits timing characteristics. UA1 UARTx_TX_DATA (output) Possible Parity Bit UA1 Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT Next Start Bit UA1 UA1 Figure 65. UART RS-232 Serial Mode Transmit Timing Diagram Table 72. RS-232 Serial Mode Transmit Timing Parameters ID UA1 1 2 Parameter Transmit Bit Time Symbol Min Max Unit tTbit 1/Fbaud_rate1 - Tref_clk2 1/Fbaud_rate + Tref_clk — Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 95 Electrical Characteristics 4.12.14.1.2 UART Receiver Figure 66 depicts the RS-232 serial mode receives timing with 8 data bit/1 stop bit format. Table 73 lists serial mode receive timing characteristics. UA2 UARTx_RX_DATA (output) Start Bit Possible Parity Bit UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Next Start Bit Par Bit STOP BIT UA2 UA2 Figure 66. UART RS-232 Serial Mode Receive Timing Diagram Table 73. RS-232 Serial Mode Receive Timing Parameters ID Parameter Symbol Min Max Unit UA2 Receive Bit Time1 tRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 4.12.14.1.3 UART IrDA Mode Timing The following subsections give the UART transmit and receive timings in IrDA mode. UART IrDA Mode Transmitter Figure 67 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 74 lists the transmit timing characteristics. UA3 UA4 UA3 UA3 UA3 RGMII_TXD (output) Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Possible Parity Bit Bit 7 STOP BIT Figure 67. UART IrDA Mode Transmit Timing Diagram Table 74. IrDA Mode Transmit Timing Parameters ID Parameter Symbol Min Max Unit UA3 Transmit Bit Time in IrDA mode tTIRbit 1/Fbaud_rate1 Tref_clk2 1/Fbaud_rate + Tref_clk — UA4 Transmit IR Pulse Duration tTIRpulse (3/16) x (1/Fbaud_rate) (3/16) x (1/Fbaud_rate) - Tref_clk + Tref_clk — i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 96 NXP Semiconductors Electrical Characteristics 1 2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). UART IrDA Mode Receiver Figure 68 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 75 lists the receive timing characteristics. UA5 UA6 UA5 UA5 UA5 RGMII_RXD (input) Start Bit Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Possible Parity Bit Bit 7 STOP BIT Figure 68. UART IrDA Mode Receive Timing Diagram Table 75. IrDA Mode Receive Timing Parameters ID Parameter UA5 Receive Bit Time1 in IrDA mode UA6 Receive IR Pulse Duration Symbol Min Max Unit tRIRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) — tRIRpulse 1.41 s (5/16) x (1/Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 4.12.15 USB PHY Parameters This section describes the USB-OTG PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG with the following amendments. • USB ENGINEERING CHANGE NOTICE — Title: 5V Short Circuit Withstand Requirement Change — Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE — Title: Pull-up/Pull-down resistors — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: Suspend Current Limit Changes — Applies to: Universal Serial Bus Specification, Revision 2.0 i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 97 Electrical Characteristics • • • USB ENGINEERING CHANGE NOTICE — Title: USB 2.0 Phase Locked SOFs — Applies to: Universal Serial Bus Specification, Revision 2.0 On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification — Revision 2.0 plus errata and ecn June 4, 2010 Battery Charging Specification (available from USB-IF) — Revision 1.2, December 7, 2010 — Portable device only 4.13 A/D converter The following subsections provide information about A/D converter. 4.13.1 12-bit ADC electrical characteristics 4.13.1.1 12-bit ADC operating conditions Table 76. 12-bit ADC Operating Conditions Characteristic Supply voltage Conditions Symb Typ1 Min Max Unit Comment Absolute VDDAD 3.0 - 3.6 V — Delta to VDD (VDD-VDDAD)2 VDDAD -100 0 100 mV — Ground voltage Delta to VSS (VSS-VSSAD) VSSAD -100 0 100 mV — Ref Voltage High — VREFH 1.13 VDDAD VDDAD V — Ref Voltage Low — VREFL VSSAD VSSAD VSSAD V — Input Voltage — VADIN VREFL — VREFH V — Input Capacitance 8/10/12 bit modes CADIN — 1.5 2 pF — Input Resistance ADLPC=0, ADHSC=1 RADIN — 5 7 kohms — ADLPC=0, ADHSC=0 — 12.5 15 kohms — ADLPC=1, ADHSC=0 — 25 30 kohms — RAS 12 bit mode fADCK = 40MHz ADLSMP=0, ADSTS=10, ADHSC=1 — — 1 kohms Tsamp=150 ns Analog Source Resistance RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum Sample Time vs RAS i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 98 NXP Semiconductors Electrical Characteristics Table 76. 12-bit ADC Operating Conditions (continued) Characteristic Conditions ADC Conversion Clock Frequency ADLPC=0, ADHSC=1 12 bit mode Symb fADCK Typ1 Min Max Unit Comment 4 — 40 MHz — ADLPC=0, ADHSC=0 12 bit mode 4 — 30 MHz — ADLPC=1, ADHSC=0 12 bit mode 4 — 20 MHz — 1 Typical values assume VDDAD = 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 DC potential differences Figure 69. 12-bit ADC Input Impedance Equivalency Diagram i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 99 Electrical Characteristics 4.13.1.1.1 12-bit ADC characteristics Table 77. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) Characteristic [L:] Supply Current Conditions1 ADLPC=1, ADHSC=0 Symb IDDAD Typ2 Min — 250 ADLPC=0, ADHSC=0 350 ADLPC=0, ADHSC=1 400 Max Unit Comment — µA ADLSMP=0 ADSTS=10 ADCO=1 [L:] Supply Current Stop, Reset, Module Off IDDAD — 0.01 0.8 µA — ADC Asynchronous Clock Source ADHSC=0 fADACK — 10 — MHz tADACK = 1/fADACK — 20 — — 2 — cycles — Sample Cycles ADHSC=1 ADLSMP=0, ADSTS=00 Csamp ADLSMP=0, ADSTS=01 4 ADLSMP=0, ADSTS=10 6 ADLSMP=0, ADSTS=11 8 ADLSMP=1, ADSTS=00 12 ADLSMP=1, ADSTS=01 16 ADLSMP=1, ADSTS=10 20 ADLSMP=1, ADSTS=11 24 i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 100 NXP Semiconductors Electrical Characteristics Table 77. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) Characteristic Conversion Cycles Conversion Time [P:][C:] Total Unadjusted Error [P:][C:] Differential Non-Linearity Conditions1 ADLSMP=0 ADSTS=00 Symb Cconv Typ2 Min — 28 ADLSMP=0 ADSTS=01 30 ADLSMP=0 ADSTS=10 32 ADLSMP=0 ADSTS=11 34 ADLSMP=1 ADSTS=00 38 ADLSMP=1 ADSTS=01 42 ADLSMP=1 ADSTS=10 46 ADLSMP=1, ADSTS=11 50 ADLSMP=0 ADSTS=00 Tconv — 0.7 ADLSMP=0 ADSTS=01 0.75 ADLSMP=0 ADSTS=10 0.8 ADLSMP=0 ADSTS=11 0.85 ADLSMP=1 ADSTS=00 0.95 ADLSMP=1 ADSTS=01 1.05 ADLSMP=1 ADSTS=10 1.15 ADLSMP=1, ADSTS=11 1.25 12 bit mode Comment cycles — — µs Fadc=40 MHz LSB 1 LSB = (VREFH VREFL)/2 N — LSB — 4.5 — 10 bit mode — 2 — 8 bit mode — 1.5 — — 1 — 10bit mode — 0.5 — 8 bit mode — 0.2 — DNL Unit — — 12 bit mode TUE Max i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 101 Electrical Characteristics Table 77. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) Characteristic [P:][C:] Integral Non-Linearity Conditions1 12 bit mode Zero-Scale Error Typ2 Max 2.6 — 10bit mode — 0.8 — 8 bit mode — 0.3 — — -0.3 — 10bit mode — -0.15 — 8 bit mode — -0.15 — — -2.5 — 10bit mode — -0.6 — 8 bit mode — -0.3 — 10.7 — 12 bit mode INL Min — 12 bit mode Full-Scale Error Symb EZS EFS [L:] Effective Number 12 bit mode of Bits ENOB 10.1 [L:] Signal to Noise plus Distortion SINAD SINAD = 6.02 x ENOB + 1.76 1 2 See ENOB Unit Comment LSB — LSB — LSB — Bits — dB — All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD Typical values assume VDDAD = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. NOTE The ADC electrical spec would be met with the calibration enabled configuration. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 102 NXP Semiconductors Boot Mode Configuration 5 Boot Mode Configuration This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation. 5.1 Boot Mode Configuration Pins Table 78 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6ULL Fuse Map document and the System Boot chapter in i.MX 6ULL Reference Manual (IMX6ULLRM). Table 78. Fuses and Associated Pins Used for Boot Pin Direction at reset eFuse name Details BOOT_MODE0 Input with 100 K pull-down N/A Boot mode selection BOOT_MODE1 Input with 100 K pull-down N/A Boot mode selection i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 103 Boot Mode Configuration Table 78. Fuses and Associated Pins Used for Boot (continued) Pin 5.2 Direction at reset eFuse name LCD_DATA00 Input with 100 K pull-down BT_CFG1[0] LCD_DATA01 Input with 100 K pull-down BT_CFG1[1] LCD_DATA02 Input with 100 K pull-down BT_CFG1[2] LCD_DATA03 Input with 100 K pull-down BT_CFG1[3] LCD_DATA04 Input with 100 K pull-down BT_CFG1[4] LCD_DATA05 Input with 100 K pull-down BT_CFG1[5] LCD_DATA06 Input with 100 K pull-down BT_CFG1[6] LCD_DATA07 Input with 100 K pull-down BT_CFG1[7] LCD_DATA08 Input with 100 K pull-down BT_CFG2[0] LCD_DATA09 Input with 100 K pull-down BT_CFG2[1] LCD_DATA10 Input with 100 K pull-down BT_CFG2[2] LCD_DATA11 Input with 100 K pull-down BT_CFG2[3] LCD_DATA12 Input with 100 K pull-down BT_CFG2[4] LCD_DATA13 Input with 100 K pull-down BT_CFG2[5] LCD_DATA14 Input with 100 K pull-down BT_CFG2[6] LCD_DATA15 Input with 100 K pull-down BT_CFG2[7] LCD_DATA16 Input with 100 K pull-down BT_CFG4[0] LCD_DATA17 Input with 100 K pull-down BT_CFG4[1] LCD_DATA18 Input with 100 K pull-down BT_CFG4[2] LCD_DATA19 Input with 100 K pull-down BT_CFG4[3] LCD_DATA20 Input with 100 K pull-down BT_CFG4[4] LCD_DATA21 Input with 100 K pull-down BT_CFG4[5] LCD_DATA22 Input with 100 K pull-down BT_CFG4[6] LCD_DATA23 Input with 100 K pull-down BT_CFG4[7] Details Boot Options, Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses. Boot Device Interface Allocation The following tables list the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 79. QSPI Boot trough QSPI Ball Name Signal Name Mux Mode Common Quad Mode NAND_WP_B qspi.A_SCLK Alt2 Yes Yes NAND_DQS qspi.A_SS0_B Alt2 Yes Yes + Port A DQS + Port A CS1 + Port B + Port B DQS + Port B CS1 i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 104 NXP Semiconductors Boot Mode Configuration Table 79. QSPI Boot trough QSPI (continued) NAND_READY_B qspi.A_DATA[0] Alt2 Yes Yes NAND_CE0_B qspi.A_DATA[1] Alt2 Yes Yes NAND_CE1_B qspi.A_DATA[2] Alt2 Yes Yes NAND_CLE qspi.A_DATA[3] Alt2 Yes Yes NAND_DATA05 qspi.B_DATA[3] Alt2 Yes NAND_DATA04 qspi.B_DATA[2] Alt2 Yes NAND_DATA03 qspi.B_DATA[1] Alt2 Yes NAND_DATA02 qspi.B_DATA[0] Alt2 Yes NAND_WE_B qspi.B_SS0_B Alt2 Yes NAND_RE_B qspi.B_SCLK Alt2 Yes NAND_DATA07 qspi.A_SS1_B Alt2 NAND_ALE qspi.A_DQS Alt2 NAND_DATA00 qspi.B_SS1_B Alt2 NAND_DATA01 qspi.B_DQS Alt2 Yes Yes Yes Yes Table 80. SPI Boot through ECSPI1 Ball Name Signal Name Mux Mode Common CSI_DATA07 ecspi1.MISO Alt 3 Yes CSI_DATA06 ecspi1.MOSI Alt 3 Yes CSI_DATA04 ecspi1.SCLK Alt 3 Yes CSI_DATA05 ecspi1.SS0 Alt 3 LCD_DATA05 ecspi1.SS1 Alt 8 LCD_DATA06 ecspi1.SS2 Alt 8 LCD_DATA07 ecspi1.SS3 Alt 8 BOOT_CFG4 BOOT_CFG4 BOOT_CFG4 BOOT_CFG4 [5:4]=00b [5:4]=01b [5:4]=10b [5:4]=11b Yes Yes Yes Yes Table 81. SPI Boot through ECSPI2 Ball Name Signal Name Mux Mode Common CSI_DATA03 ecspi2.MISO Alt 3 Yes CSI_DATA02 ecspi2.MOSI Alt 3 Yes CSI_DATA00 ecspi2.SCLK Alt 3 Yes CSI_DATA01 ecspi2.SS0 Alt 3 LCD_HSYNC ecspi2.SS1 Alt 8 BOOT_CFG 4[5:4]=00b BOOT_CFG4 BOOT_CFG4 BOOT_CFG4 [5:4]=01b [5:4]=10b [5:4]=11b Yes Yes i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 105 Boot Mode Configuration Table 81. SPI Boot through ECSPI2 (continued) LCD_VSYNC ecspi2.SS2 Alt 8 LCD_RESET ecspi2.SS3 Alt 8 Yes Yes Table 82. SPI Boot through ECSPI3 Ball Name Signal Name Mux Mode Common UART2_RTS_B ecspi3.MISO Alt 8 Yes UART2_CTS_B ecspi3.MOSI Alt 8 Yes UART2_RX_DATA ecspi3.SCLK Alt 8 Yes UART2_TX_DATA ecspi3.SS0 Alt 8 NAND_ALE ecspi3.SS1 Alt 8 NAND_RE_B ecspi3.SS2 Alt 8 NAND_WE_B ecspi3.SS3 Alt 8 BOOT_CFG4 BOOT_CFG4[ BOOT_CFG4[ BOOT_CFG4 [5:4]=00b 5:4]=01b 5:4]=10b [5:4]=11b Yes Yes Yes Yes Table 83. SPI Boot through ECSPI4 Ball Name Signal Name Mux Mode Common ENET2_TX_CLK ecspi4.MISO Alt 3 Yes ENET2_TX_EN ecspi4.MOSI Alt 3 Yes ENET2_TX_DATA1 ecspi4.SCLK Alt 3 Yes ENET2_RX_ER ecspi4.SS0 Alt 3 NAND_DATA01 ecspi4.SS1 Alt 8 NAND_DATA02 ecspi4.SS2 Alt 8 NAND_DATA03 ecspi4.SS3 Alt 8 BOOT_CFG4 BOOT_CFG4[ BOOT_CFG4[ [5:4]=00b 5:4]=01b 5:4]=10b BOOT_CFG 4[5:4]=11b Yes Yes Yes Yes Table 84. NAND Boot through GPMI Ball Name Signal Name Mux Mode Common NAND_CLE rawnand.CLE Alt 0 Yes NAND_ALE rawnand.ALE Alt 0 Yes NAND_WP_B rawnand.WP_B Alt 0 Yes NAND_READY_B rawnand.READY_B Alt 0 Yes NAND_CE0_B rawnand.CE0_B Alt 0 Yes NAND_CE1_B rawnand.CE1_B Alt 0 NAND_RE_B rawnand.RE_B Alt 0 BOOT_CFG1[3:2]= 01b BOOT_CFG1[3:2]= 10b Yes Yes Yes i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 106 NXP Semiconductors Boot Mode Configuration Table 84. NAND Boot through GPMI (continued) BOOT_CFG1[3:2]= 01b BOOT_CFG1[3:2]= 10b Ball Name Signal Name Mux Mode Common NAND_WE_B rawnand.WE_B Alt 0 Yes NAND_DATA00 rawnand.DATA00 Alt 0 Yes NAND_DATA01 rawnand.DATA01 Alt 0 Yes NAND_DATA02 rawnand.DATA02 Alt 0 Yes NAND_DATA03 rawnand.DATA03 Alt 0 Yes NAND_DATA04 rawnand.DATA04 Alt 0 Yes NAND_DATA05 rawnand.DATA05 Alt 0 Yes NAND_DATA06 rawnand.DATA06 Alt 0 Yes NAND_DATA07 rawnand.DATA07 Alt 0 Yes NAND_DQS rawnand.DQS Alt 0 Yes CSI_MCLK rawnand.CE2_B Alt 2 Yes CSI_PIXCLK rawnand.CE3_B Alt 2 Yes Table 85. SD/MMC Boot through USDHC1 1 Ball Name Signal Name Mux Mode UART1_RTS_B usdhc1.CD_B Alt 2 SD1_CLK usdhc1.CLK Alt 0 Yes SD1_CMD usdhc1.CMD Alt 0 Yes SD1_DATA0 usdhc1.DATA0 Alt 0 Yes SD1_DATA1 usdhc1.DATA1 Alt 0 Yes Yes SD1_DATA2 usdhc1.DATA2 Alt 0 Yes Yes SD1_DATA3 usdhc1.DATA3 Alt 0 NAND_READY_B usdhc1.DATA4 Alt 1 Yes NAND_CE0_B usdhc1.DATA5 Alt 1 Yes NAND_CE1_B usdhc1.DATA6 Alt 1 Yes NAND_CLE usdhc1.DATA7 Alt 1 Yes GPIO1_IO09 GPIO1_IO091 Alt 5 Yes GPIO1_IO05 usdhc1.VSELECT Alt 4 Yes Common 4-bit 8-bit BOOT_CFG1[1]=1 (SD Power Cycle) SDMMC MFG mode Yes Yes The Boot ROM uses GPIO1_IO09 to implement SD1_RESET_B. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 107 Boot Mode Configuration Table 86. SD/MMC Boot through USDHC2 1 Ball Name Signal Name Mux Mode Commo n NAND_RE_B usdhc2.CLK Alt 1 Yes NAND_WE_B usdhc2.CMD Alt 1 Yes NAND_DATA00 usdhc2.DATA0 Alt 1 Yes NAND_DATA01 usdhc2.DATA1 NAND_DATA02 BOOT_CFG1[1]=1 (SD Power Cycle) 4-bit 8-bit Alt 1 Yes Yes usdhc2.DATA2 Alt 1 Yes Yes NAND_DATA03 usdhc2.DATA3 Alt 1 NAND_DATA04 usdhc2.DATA4 Alt 1 Yes NAND_DATA05 usdhc2.DATA5 Alt 1 Yes NAND_DATA06 usdhc2.DATA6 Alt 1 Yes NAND_DATA07 usdhc2.DATA7 Alt 1 Yes NAND_ALE NAND_ALE1 Alt 5 Yes GPIO1_IO08 usdhc2.VSELECT Alt 4 Yes Yes The Boot ROM uses NAND_ALE to implement SD2_RESET_B. Table 87. NOR/OneNAND Boot through EIM Ball Name Signal Name Mux Mode Common CSI_DATA00 weim.AD[0] Alt 4 Yes CSI_DATA01 weim.AD[1] Alt 4 Yes CSI_DATA02 weim.AD[2] Alt 4 Yes CSI_DATA03 weim.AD[3] Alt 4 Yes CSI_DATA04 weim.AD[4] Alt 4 Yes CSI_DATA05 weim.AD[5] Alt 4 Yes CSI_DATA06 weim.AD[6] Alt 4 Yes CSI_DATA07 weim.AD[7] Alt 4 Yes NAND_DATA00 weim.AD[8] Alt 4 Yes NAND_DATA01 weim.AD[9] Alt 4 Yes NAND_DATA02 weim.AD[10] Alt 4 Yes NAND_DATA03 weim.AD[11] Alt 4 Yes NAND_DATA04 weim.AD[12] Alt 4 Yes NAND_DATA05 weim.AD[13] Alt 4 Yes NAND_DATA06 weim.AD[14] Alt 4 Yes ADL16 Non-Mux AD16 Mux i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 108 NXP Semiconductors Boot Mode Configuration Table 87. NOR/OneNAND Boot through EIM (continued) ADL16 Non-Mux AD16 Mux Alt 4 Yes Yes weim.ADDR[17] Alt 4 Yes Yes NAND_CE1_B weim.ADDR[18] Alt 4 Yes Yes SD1_CMD weim.ADDR[19] Alt 4 Yes Yes SD1_CLK weim.ADDR[20] Alt 4 Yes Yes SD1_DATA0 weim.ADDR[21] Alt 4 Yes Yes SD1_DATA1 weim.ADDR[22] Alt 4 Yes Yes SD1_DATA2 weim.ADDR[23] Alt 4 Yes Yes SD1_DATA3 weim.ADDR[24] Alt 4 Yes Yes ENET2_RXER weim.ADDR[25] Alt 4 Yes Yes ENET2_CRS_DV weim.ADDR[26] Alt 4 Yes Yes CSI_MCLK weim.CS0_B Alt 4 LCD_DATA08 weim.DATA[0] Alt 4 Yes LCD_DATA09 weim.DATA[1] Alt 4 Yes LCD_DATA10 weim.DATA[2] Alt 4 Yes LCD_DATA11 weim.DATA[3] Alt 4 Yes LCD_DATA12 weim.DATA[4] Alt 4 Yes LCD_DATA13 weim.DATA[5] Alt 4 Yes LCD_DATA14 weim.DATA[6] Alt 4 Yes LCD_DATA15 weim.DATA[7] Alt 4 Yes LCD_DATA16 weim.DATA[8] Alt 4 Yes LCD_DATA17 weim.DATA[9] Alt 4 Yes LCD_DATA18 weim.DATA[10] Alt 4 Yes LCD_DATA19 weim.DATA[11] Alt 4 Yes LCD_DATA20 weim.DATA[12] Alt 4 Yes LCD_DATA21 weim.DATA[13] Alt 4 Yes LCD_DATA22 weim.DATA[14] Alt 4 Yes LCD_DATA23 weim.DATA[15] Alt 4 Yes NAND_RE_B weim.EB_B[0] Alt 4 Yes Yes NAND_WE_B weim.EB_B[1] Alt 4 Yes Yes CSI_HSYNC weim.LBA_B Alt 4 Ball Name Signal Name Mux Mode Common NAND_DATA07 weim.AD[15] Alt 4 Yes NAND_CLE weim.ADDR[16] NAND_ALE Yes Yes i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 109 Boot Mode Configuration Table 87. NOR/OneNAND Boot through EIM (continued) Ball Name Signal Name Mux Mode Common CSI_PIXCLK weim.OE Alt 4 Yes CSI_VSYNC weim.RW Alt 4 Yes ADL16 Non-Mux AD16 Mux Table 88. Serial Download through UART1 Ball Name Signal Name Mux Mode Common UART1_TX_DATA uart1.TX_DATA Alt 0 Yes UART1_RX_DATA uart1.RX_DATA Alt 0 Yes Table 89. Serial Download through UART2 Ball Name Signal Name Mux Mode Common UART2_TX_DATA uart2.TX_DATA Alt 0 Yes UART2_RX_DATA uart2.RX_DATA Alt 0 Yes i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 110 NXP Semiconductors Package Information and Contact Assignments 6 Package Information and Contact Assignments This section includes the contact assignment information and mechanical package drawing. 6.1 6.1.1 14 x 14 mm Package Information 14 x 14 mm, 0.8 mm Pitch, Ball Matrix Figure 70 shows the top, bottom, and side views of the 14 x 14 mm BGA package. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 111 Package Information and Contact Assignments Figure 70. 14 x 14 mm BGA, Case x Package Top, Bottom, and Side Views i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 112 NXP Semiconductors Package Information and Contact Assignments 6.1.2 14 x 14 mm Supplies Contact Assignments and Functional Contact Assignments Table 90 shows the device connection list for ground, sense, and reference contact signals. Table 90. 14x14 mm Supplies Contact Assignment Supply Rail Name Ball(s) Position(s) Remark ADC_VREFH M13 — DRAM_VREF P4 — GPANIO R13 — NGND_KEL0 M12 — NVCC_CSI F4 — NVCC_DRAM G6, H6, J6, K6, L6, M6 — NVCC_DRAM_2P5 N6 — NVCC_ENET F13 — NVCC_GPIO J13 — NVCC_LCD E13 — NVCC_NAND E7 — NVCC_PLL P13 — NVCC_SD1 C4 — NVCC_UART H13 — VDD_ARM_CAP G9, G10, G11, H11 — VDD_HIGH_CAP R14, R15 — VDD_HIGH_IN N13 — VDD_SNVS_CAP N12 — VDD_SNVS_IN P12 — VDD_SOC_CAP G8, H8, J8, J11, K8, K11, L8, L9, L10, L11 — VDD_SOC_IN H9, H10, J9, J10, K9, 10 — VDD_USB_CAP R12 — VDDA_ADC_3P3 L13 — VSS A1, A17, C3, C7, C11, C15, E8, E11, F6, F7, F8, F9, F10,F11, F12, G3, G5, G7, G12, G15, H7, H12, J5, J7, J12, K7, K12, L3, L7, L12, M7, M8, M9, M10, M11, N3, N5, R3, R5, R7, R11, R16, R17, T14, U1, U14, U17 — i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 113 Package Information and Contact Assignments Table 91 shows an alpha-sorted list of functional contact assignments for the 14 x 14 mm package. Table 91. 14 x 14 mm Functional Contact Assignments Out of Reset Condition 14x14 Ball Power Group Ball Type BOOT_MODE0 T10 VDD_SNVS_IN BOOT_MODE1 U10 CCM_CLK1_N Ball Name Default Mode Default Function Input/ Output GPIO ALT5 GPIO5_IO10 Input 100 k pull-down VDD_SNVS_IN GPIO ALT5 GPIO5_IO11 Input 100 k pull-down P16 VDD_HIGH_CAP CCM — CCM_CLK1_N — — CCM_CLK1_P P17 VDD_HIGH_CAP CCM — CCM_CLK1_P — — CCM_PMIC_STBY_REQ U9 VDD_SNVS_IN CCM ALT0 CCM_PMIC_VSTBY_REQ Output — CSI_DATA00 E4 NVCC_CSI GPIO ALT5 GPIO4_IO21 Input Keeper CSI_DATA01 E3 NVCC_CSI GPIO ALT5 GPIO4_IO22 Input Keeper CSI_DATA02 E2 NVCC_CSI GPIO ALT5 GPIO4_IO23 Input Keeper CSI_DATA03 E1 NVCC_CSI GPIO ALT5 GPIO4_IO24 Input Keeper CSI_DATA04 D4 NVCC_CSI GPIO ALT5 GPIO4_IO25 Input Keeper CSI_DATA05 D3 NVCC_CSI GPIO ALT5 GPIO4_IO26 Input Keeper CSI_DATA06 D2 NVCC_CSI GPIO ALT5 GPIO4_IO27 Input Keeper CSI_DATA07 D1 NVCC_CSI GPIO ALT5 GPIO4_IO28 Input Keeper CSI_HSYNC F3 NVCC_CSI GPIO ALT5 GPIO4_IO20 Input Keeper CSI_MCLK F5 NVCC_CSI GPIO ALT5 GPIO4_IO17 Input Keeper CSI_PIXCLK E5 NVCC_CSI GPIO ALT5 GPIO4_IO18 Input Keeper CSI_VSYNC F2 NVCC_CSI GPIO ALT5 GPIO4_IO19 Input Keeper DRAM_ADDR00 L5 NVCC_DRAM MMDC ALT0 DRAM_ADDR00 Output 100 k pull-up DRAM_ADDR01 H2 NVCC_DRAM DDR ALT0 DRAM_ADDR01 Output 100 k pull-up DRAM_ADDR02 K1 NVCC_DRAM DDR ALT0 DRAM_ADDR02 Output 100 k pull-up DRAM_ADDR03 M2 NVCC_DRAM DDR ALT0 DRAM_ADDR03 Output 100 k pull-up DRAM_ADDR04 K4 NVCC_DRAM DDR ALT0 DRAM_ADDR04 Output 100 k pull-up DRAM_ADDR05 L1 NVCC_DRAM DDR ALT0 DRAM_ADDR05 Output 100 k pull-up DRAM_ADDR06 G2 NVCC_DRAM DDR ALT0 DRAM_ADDR06 Output 100 k pull-up Value i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 114 NXP Semiconductors Package Information and Contact Assignments Table 91. 14 x 14 mm Functional Contact Assignments (continued) DRAM_ADDR07 H4 NVCC_DRAM DDR ALT0 DRAM_ADDR07 Output 100 k pull-up DRAM_ADDR08 J4 NVCC_DRAM DDR ALT0 DRAM_ADDR08 Output 100 k pull-up DRAM_ADDR09 L2 NVCC_DRAM DDR ALT0 DRAM_ADDR09 Output 100 k pull-up DRAM_ADDR10 M4 NVCC_DRAM DDR ALT0 DRAM_ADDR10 Output 100 k pull-up DRAM_ADDR11 K3 NVCC_DRAM DDR ALT0 DRAM_ADDR11 Output 100 k pull-up DRAM_ADDR12 L4 NVCC_DRAM DDR ALT0 DRAM_ADDR12 Output 100 k pull-up DRAM_ADDR13 H3 NVCC_DRAM DDR ALT0 DRAM_ADDR13 Output 100 k pull-up DRAM_ADDR14 G1 NVCC_DRAM DDR ALT0 DRAM_ADDR14 Output 100 k pull-up DRAM_ADDR15 K5 NVCC_DRAM DDR ALT0 DRAM_ADDR15 Output 100 k pull-up DRAM_CAS_B J2 NVCC_DRAM DDR ALT0 DRAM_CAS_B Output 100 k pull-up DRAM_CS0_B N2 NVCC_DRAM DDR ALT0 DRAM_CS0_B Output 100 k pull-up DRAM_CS1_B H5 NVCC_DRAM DDR ALT0 DRAM_CS1_B Output 100 k pull-up DRAM_DATA00 T4 NVCC_DRAM DDR ALT0 DRAM_DATA00 Input 100 k pull-up DRAM_DATA01 U6 NVCC_DRAM DDR ALT0 DRAM_DATA01 Input 100 k pull-up DRAM_DATA02 T6 NVCC_DRAM DDR ALT0 DRAM_DATA02 Input 100 k pull-up DRAM_DATA03 U7 NVCC_DRAM DDR ALT0 DRAM_DATA03 Input 100 k pull-up DRAM_DATA04 U8 NVCC_DRAM DDR ALT0 DRAM_DATA04 Input 100 k pull-up DRAM_DATA05 T8 NVCC_DRAM DDR ALT0 DRAM_DATA05 Input 100 k pull-up DRAM_DATA06 T5 NVCC_DRAM DDR ALT0 DRAM_DATA06 Input 100 k pull-up DRAM_DATA07 U4 NVCC_DRAM DDR ALT0 DRAM_DATA07 Input 100 k pull-up DRAM_DATA08 U2 NVCC_DRAM DDR ALT0 DRAM_DATA08 Input 100 k pull-up i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 115 Package Information and Contact Assignments Table 91. 14 x 14 mm Functional Contact Assignments (continued) DRAM_DATA09 U3 NVCC_DRAM DDR ALT0 DRAM_DATA09 Input 100 k pull-up DRAM_DATA10 U5 NVCC_DRAM DDR ALT0 DRAM_DATA10 Input 100 k pull-up DRAM_DATA11 R4 NVCC_DRAM DDR ALT0 DRAM_DATA11 Input 100 k pull-up DRAM_DATA12 P5 NVCC_DRAM DDR ALT0 DRAM_DATA12 Input 100 k pull-up DRAM_DATA13 P3 NVCC_DRAM DDR ALT0 DRAM_DATA13 Input 100 k pull-up DRAM_DATA14 R2 NVCC_DRAM DDR ALT0 DRAM_DATA14 Input 100 k pull-up DRAM_DATA15 R1 NVCC_DRAM DDR ALT0 DRAM_DATA15 Input 100 k pull-up DRAM_DQM0 T7 NVCC_DRAM DDR ALT0 DRAM_DQM0 Output 100 k pull-up DRAM_DQM1 T3 NVCC_DRAM DDR ALT0 DRAM_DQM1 Output 100 k pull-up DRAM_ODT0 N1 NVCC_DRAM DDR ALT0 DRAM_ODT0 Output 100 k pull-down DRAM_ODT1 F1 NVCC_DRAM DDR ALT0 DRAM_ODT1 Output 100 k pull-down DRAM_RAS_B M5 NVCC_DRAM DDR ALT0 DRAM_RAS_B Output 100 k pull-up DRAM_RESET G4 NVCC_DRAM DDR ALT0 DRAM_RESET Output 100 k pull-down DRAM_SDBA0 M1 NVCC_DRAM DDR ALT0 DRAM_SDBA0 Output 100 k pull-up DRAM_SDBA1 H1 NVCC_DRAM DDR ALT0 DRAM_SDBA1 Output 100 k pull-up DRAM_SDBA2 K2 NVCC_DRAM DDR ALT0 DRAM_SDBA2 Output 100 k pull-up DRAM_SDCKE0 M3 NVCC_DRAM DDR ALT0 DRAM_SDCKE0 Output 100 k pull-down DRAM_SDCKE1 J3 NVCC_DRAM DDR ALT0 DRAM_SDCKE1 Output 100 k pull-down DRAM_SDCLK0_N P2 NVCC_DRAM DDRCL K ALT0 DRAM_SDCLK0_N Input 100 k pull-up DRAM_SDCLK0_P P1 NVCC_DRAM DDRCL K ALT0 DRAM_SDCLK0_P Input 100 k pull-up DRAM_SDQS0_N P7 NVCC_DRAM DDRCL K ALT0 DRAM_SDQS0_N Input 100 k pull-down i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 116 NXP Semiconductors Package Information and Contact Assignments Table 91. 14 x 14 mm Functional Contact Assignments (continued) DRAM_SDQS0_P P6 NVCC_DRAM DDRCL K ALT0 DRAM_SDQS0_P Input 100 k pull-down DRAM_SDQS1_N T2 NVCC_DRAM DDRCL K ALT0 DRAM_SDQS1_N Input 100 k pull-down DRAM_SDQS1_P T1 NVCC_DRAM DDRCL K ALT0 DRAM_SDQS1_P Input 100 k pull-down DRAM_SDWE_B J1 NVCC_DRAM DDR ALT0 DRAM_SDWE_B Output 100 k pull-up DRAM_ZQPAD N4 NVCC_DRAM GPIO — DRAM_ZQPAD Input Keeper ENET1_RX_DATA0 F16 NVCC_ENET GPIO ALT5 GPIO2_IO0 Input Keeper ENET1_RX_DATA1 E17 NVCC_ENET GPIO ALT5 GPIO2_IO1 Input Keeper ENET1_RX_EN E16 NVCC_ENET GPIO ALT5 GPIO2_IO2 Input Keeper ENET1_RX_ER D15 NVCC_ENET GPIO ALT5 GPIO2_IO7 Input Keeper ENET1_TX_CLK F14 NVCC_ENET GPIO ALT5 GPIO2_IO6 Input Keeper ENET1_TX_DATA0 E15 NVCC_ENET GPIO ALT5 GPIO2_IO3 Input Keeper ENET1_TX_DATA1 E14 NVCC_ENET GPIO ALT5 GPIO2_IO4 Input Keeper ENET1_TX_EN F15 NVCC_ENET GPIO ALT5 GPIO2_IO5 Input Keeper ENET2_RX_DATA0 C17 NVCC_ENET GPIO ALT5 GPIO2_IO8 Input Keeper ENET2_RX_DATA1 C16 NVCC_ENET GPIO ALT5 GPIO2_IO9 Input Keeper ENET2_RX_EN B17 NVCC_ENET GPIO ALT5 GPIO2_IO10 Input Keeper ENET2_RX_ER D16 NVCC_ENET GPIO ALT5 GPIO2_IO15 Input Keeper ENET2_TX_CLK D17 NVCC_ENET GPIO ALT5 GPIO2_IO14 Input Keeper ENET2_TX_DATA0 A15 NVCC_ENET GPIO ALT5 GPIO2_IO11 Input Keeper ENET2_TX_DATA1 A16 NVCC_ENET GPIO ALT5 GPIO2_IO12 Input Keeper ENET2_TX_EN B15 NVCC_ENET GPIO ALT5 GPIO2_IO13 Input Keeper GPIO1_IO00 K13 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper GPIO1_IO01 L15 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper GPIO1_IO02 L14 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper GPIO1_IO03 L17 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper GPIO1_IO04 M16 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper GPIO1_IO05 M17 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper GPIO1_IO06 K17 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper GPIO1_IO07 L16 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper GPIO1_IO08 N17 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper GPIO1_IO09 M15 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 117 Package Information and Contact Assignments Table 91. 14 x 14 mm Functional Contact Assignments (continued) JTAG_MOD P15 NVCC_GPIO SJC ALT0 SJC_MOD Input 100 k pull-up JTAG_TCK M14 NVCC_GPIO SJC ALT0 SJC_TCK Input 47 k pull-up JTAG_TDI N16 NVCC_GPIO SJC ALT0 SJC_TDI Input 47 k pull-up JTAG_TDO N15 NVCC_GPIO SJC ALT0 SJC_TDO Output Keeper JTAG_TMS P14 NVCC_GPIO SJC ALT0 SJC_TMS Input 47 k pull-up JTAG_TRST_B N14 NVCC_GPIO SJC ALT0 SJC_TRSTB Input 47 k pull-up LCD_CLK A8 NVCC_LCD GPIO ALT5 GPIO3_IO0 Input Keeper LCD_DATA00 B9 NVCC_LCD GPIO ALT5 GPIO3_IO5 Input Keeper LCD_DATA01 A9 NVCC_LCD GPIO ALT5 GPIO3_IO6 Input Keeper LCD_DATA02 E10 NVCC_LCD GPIO ALT5 GPIO3_IO7 Input Keeper LCD_DATA03 D10 NVCC_LCD GPIO ALT5 GPIO3_IO8 Input Keeper LCD_DATA04 C10 NVCC_LCD GPIO ALT5 GPIO3_IO9 Input Keeper LCD_DATA05 B10 NVCC_LCD GPIO ALT5 GPIO3_IO10 Input Keeper LCD_DATA06 A10 NVCC_LCD GPIO ALT5 GPIO3_IO11 Input Keeper LCD_DATA07 D11 NVCC_LCD GPIO ALT5 GPIO3_IO12 Input Keeper LCD_DATA08 B11 NVCC_LCD GPIO ALT5 GPIO3_IO13 Input Keeper LCD_DATA09 A11 NVCC_LCD GPIO ALT5 GPIO3_IO14 Input Keeper LCD_DATA10 E12 NVCC_LCD GPIO ALT5 GPIO3_IO15 Input Keeper LCD_DATA11 D12 NVCC_LCD GPIO ALT5 GPIO3_IO16 Input Keeper LCD_DATA12 C12 NVCC_LCD GPIO ALT5 GPIO3_IO17 Input Keeper LCD_DATA13 B12 NVCC_LCD GPIO ALT5 GPIO3_IO18 Input Keeper LCD_DATA14 A12 NVCC_LCD GPIO ALT5 GPIO3_IO19 Input Keeper LCD_DATA15 D13 NVCC_LCD GPIO ALT5 GPIO3_IO20 Input Keeper LCD_DATA16 C13 NVCC_LCD GPIO ALT5 GPIO3_IO21 Input Keeper LCD_DATA17 B13 NVCC_LCD GPIO ALT5 GPIO3_IO22 Input Keeper LCD_DATA18 A13 NVCC_LCD GPIO ALT5 GPIO3_IO23 Input Keeper LCD_DATA19 D14 NVCC_LCD GPIO ALT5 GPIO3_IO24 Input Keeper LCD_DATA20 C14 NVCC_LCD GPIO ALT5 GPIO3_IO25 Input Keeper LCD_DATA21 B14 NVCC_LCD GPIO ALT5 GPIO3_IO26 Input Keeper LCD_DATA22 A14 NVCC_LCD GPIO ALT5 GPIO3_IO27 Input Keeper LCD_DATA23 B16 NVCC_LCD GPIO ALT5 GPIO3_IO28 Input Keeper i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 118 NXP Semiconductors Package Information and Contact Assignments Table 91. 14 x 14 mm Functional Contact Assignments (continued) LCD_ENABLE B8 NVCC_LCD GPIO ALT5 GPIO3_IO1 Input Keeper LCD_HSYNC D9 NVCC_LCD GPIO ALT5 GPIO3_IO2 Input Keeper LCD_RESET E9 NVCC_LCD GPIO ALT5 GPIO3_IO4 Input Keeper LCD_VSYNC C9 NVCC_LCD GPIO ALT5 GPIO3_IO3 Input Keeper NAND_ALE B4 NVCC_NAND GPIO ALT5 GPIO4_IO10 Input Keeper NAND_CE0_B C5 NVCC_NAND GPIO ALT5 GPIO4_IO13 Input Keeper NAND_CE1_B B5 NVCC_NAND GPIO ALT5 GPIO4_IO14 Input Keeper NAND_CLE A4 NVCC_NAND GPIO ALT5 GPIO4_IO15 Input Keeper NAND_DATA00 D7 NVCC_NAND GPIO ALT5 GPIO4_IO2 Input Keeper NAND_DATA01 B7 NVCC_NAND GPIO ALT5 GPIO4_IO3 Input Keeper NAND_DATA02 A7 NVCC_NAND GPIO ALT5 GPIO4_IO4 Input Keeper NAND_DATA03 D6 NVCC_NAND GPIO ALT5 GPIO4_IO5 Input Keeper NAND_DATA04 C6 NVCC_NAND GPIO ALT5 GPIO4_IO6 Input Keeper NAND_DATA05 B6 NVCC_NAND GPIO ALT5 GPIO4_IO7 Input Keeper NAND_DATA06 A6 NVCC_NAND GPIO ALT5 GPIO4_IO8 Input Keeper NAND_DATA07 A5 NVCC_NAND GPIO ALT5 GPIO4_IO9 Input Keeper NAND_DQS E6 NVCC_NAND GPIO ALT5 GPIO4_IO16 Input Keeper NAND_RE_B D8 NVCC_NAND GPIO ALT5 GPIO4_IO0 Input Keeper NAND_READY_B A3 NVCC_NAND GPIO ALT5 GPIO4_IO12 Input Keeper NAND_WE_B C8 NVCC_NAND GPIO ALT5 GPIO4_IO1 Input Keeper NAND_WP_B D5 NVCC_NAND GPIO ALT5 GPIO4_IO11 Input Keeper ONOFF R8 VDD_SNVS_IN SRC ALT0 SRC_RESET_B Input 100 k pull-up POR_B P8 VDD_SNVS_IN SRC ALT0 SRC_POR_B Input 100 k pull-up RTC_XTALI T11 VDD_SNVS_CAP ANALO G — RTC_XTALI — — RTC_XTALO U11 VDD_SNVS_CAP ANALO G — RTC_XTALO — — SD1_CLK C1 NVCC_SD GPIO ALT5 GPIO2_IO17 Input Keeper SD1_CMD C2 NVCC_SD GPIO ALT5 GPIO2_IO16 Input Keeper SD1_DATA0 B3 NVCC_SD GPIO ALT5 GPIO2_IO18 Input Keeper SD1_DATA1 B2 NVCC_SD GPIO ALT5 GPIO2_IO19 Input Keeper SD1_DATA2 B1 NVCC_SD GPIO ALT5 GPIO2_IO20 Input Keeper SD1_DATA3 A2 NVCC_SD GPIO ALT5 GPIO2_IO21 Input Keeper i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 119 Package Information and Contact Assignments Table 91. 14 x 14 mm Functional Contact Assignments (continued) SNVS_PMIC_ON_REQ T9 VDD_SNVS_IN GPIO ALT0 SNVS_PMIC_ON_REQ Output 100 k pull-up SNVS_TAMPER0 R10 VDD_SNVS_IN GPIO ALT5 GPIO5_IO00/SNVS_TAMPE R01 Input Keeper/N ot connecte d1,2 SNVS_TAMPER1 R9 VDD_SNVS_IN GPIO ALT5 GPIO5_IO01/SNVS_TAMPE R11 Input Keeper/N ot connecte d1,2 SNVS_TAMPER2 P11 VDD_SNVS_IN GPIO ALT5 GPIO5_IO02/SNVS_TAMPE R21 Input Keeper/N ot connecte d1,2 SNVS_TAMPER3 P10 VDD_SNVS_IN GPIO ALT5 GPIO5_IO03/SNVS_TAMPE R31 Input Keeper/N ot connecte d1,2 SNVS_TAMPER4 P9 VDD_SNVS_IN GPIO ALT5 GPIO5_IO04/SNVS_TAMPE R41 Input Keeper/N ot connecte d1,2 SNVS_TAMPER5 N8 VDD_SNVS_IN GPIO ALT5 GPIO5_IO05/SNVS_TAMPE R51 Input Keeper/N ot connecte d1,2 SNVS_TAMPER6 N11 VDD_SNVS_IN GPIO ALT5 GPIO5_IO06/SNVS_TAMPE R61 Input Keeper/N ot connecte d1,2 SNVS_TAMPER7 N10 VDD_SNVS_IN GPIO ALT5 GPIO5_IO07/SNVS_TAMPE R71 Input Keeper/N ot connecte d1,2 SNVS_TAMPER8 N9 VDD_SNVS_IN GPIO ALT5 GPIO5_IO08/SNVS_TAMPE R81 Input Keeper/N ot connecte d1,2 SNVS_TAMPER9 R6 VDD_SNVS_IN GPIO ALT5 GPIO5_IO09/SNVS_TAMPE R91 Input Keeper/N ot connecte d1,2 TEST_MODE N7 VDD_SNVS_IN TCU ALT0 TCU_TEST_MODE Input Keeper UART1_CTS_B K15 NVCC_UART GPIO ALT5 GPIO1_IO18 Input Keeper UART1_RTS_B J14 NVCC_UART GPIO ALT5 GPIO1_IO19 Input Keeper UART1_RX_DATA K16 NVCC_UART GPIO ALT5 GPIO1_IO17 Input Keeper i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 120 NXP Semiconductors Package Information and Contact Assignments Table 91. 14 x 14 mm Functional Contact Assignments (continued) UART1_TX_DATA K14 NVCC_UART GPIO ALT5 GPIO1_IO16 Input Keeper UART2_CTS_B J15 NVCC_UART GPIO ALT5 GPIO1_IO22 Input Keeper UART2_RTS_B H14 NVCC_UART GPIO ALT5 GPIO1_IO23 Input Keeper UART2_RX_DATA J16 NVCC_UART GPIO ALT5 GPIO1_IO21 Input Keeper UART2_TX_DATA J17 NVCC_UART GPIO ALT5 GPIO1_IO20 Input Keeper UART3_CTS_B H15 NVCC_UART GPIO ALT5 GPIO1_IO26 Input Keeper UART3_RTS_B G14 NVCC_UART GPIO ALT5 GPIO1_IO27 Input Keeper UART3_RX_DATA H16 NVCC_UART GPIO ALT5 GPIO1_IO25 Input Keeper UART3_TX_DATA H17 NVCC_UART GPIO ALT5 GPIO1_IO24 Input Keeper UART4_RX_DATA G16 NVCC_UART GPIO ALT5 GPIO1_IO29 Input Keeper UART4_TX_DATA G17 NVCC_UART GPIO ALT5 GPIO1_IO28 Input Keeper UART5_RX_DATA G13 NVCC_UART GPIO ALT5 GPIO1_IO31 Input Keeper UART5_TX_DATA F17 NVCC_UART GPIO ALT5 GPIO1_IO30 Input Keeper USB_OTG1_CHD_B U16 OPEN DRAIN GPIO — USB_OTG1_CHD_B — — USB_OTG1_DN T15 VDD_USB_CAP ANALO G — USB_OTG1_DN — — USB_OTG1_DP U15 VDD_USB_CAP ANALO G — USB_OTG1_DP — — USB_OTG1_VBUS T12 USB_VBUS VBUS POWE R — USB_OTG1_VBUS — — USB_OTG2_DN T13 VDD_USB_CAP ANALO G — USB_OTG2_DN — — USB_OTG2_DP U13 VDD_USB_CAP ANALO G — USB_OTG2_DP — — USB_OTG2_VBUS U12 USB_VBUS VBUS POWE R — USB_OTG2_VBUS — — XTALI T16 NVCC_PLL ANALO G — XTALI — — XTALO T17 NVCC_PLL ANALO G — XTALO — — 1 SNVS_TAMPER0 to SNVS_TAMPER9 can be configured as GPIO or tamper detection pin, it is depending on the fuse setting TAMPER_PIN_DISABLE[1:0]. When the pad is configured as GPIO, the value is keeper out of reset. 2 SNVS_TAMPER0 to SNVS_TAMPER9 is input unconnected in the following conditions. —SNVS low power mode when configured as GPIO —Tamper functions are not used when configured as TAMPER detection pins It is required to connect external 1M Ohm pull-up or pull-down resistors to the pad to avoid the undesired leakage under two conditions above. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 121 122 5 6 7 8 9 10 11 12 13 14 NAND_CLE NAND_DATA07 NAND_DATA06 NAND_DATA02 LCD_CLK LCD_DATA01 LCD_DATA06 LCD_DATA09 LCD_DATA14 LCD_DATA18 LCD_DATA22 NAND_ALE NAND_CE1_B NAND_DATA05 NAND_DATA01 LCD_ENABLE LCD_DATA00 LCD_DATA05 LCD_DATA08 LCD_DATA13 LCD_DATA17 LCD_DATA21 NVCC_SD1 NAND_CE0_B NAND_DATA04 VSS NAND_WE_B LCD_VSYNC LCD_DATA04 VSS LCD_DATA12 LCD_DATA16 LCD_DATA20 CSI_DATA04 NAND_WP_B NAND_DATA03 NAND_DATA00 NAND_RE_B LCD_HSYNC LCD_DATA03 LCD_DATA07 LCD_DATA11 LCD_DATA15 LCD_DATA19 CSI_DATA00 CSI_PIXCLK NAND_DQS NVCC_NAND VSS LCD_RESET LCD_DATA02 VSS LCD_DATA10 NVCC_LCD ENET1_TX_DATA1 ENET1_TX_DATA0 ENET1_RX_ER NVCC_CSI CSI_MCLK VSS VSS VSS VSS VSS VSS VSS NVCC_ENET ENET1_TX_CLK ENET1_TX_EN DRAM_RESET VSS NVCC_DRAM VSS VDD_SOC_CAP VDD_ARM_CAP VDD_ARM_CAP VDD_ARM_CAP VSS UART5_RX_DATA UART3_RTS_B VSS G UART4_TX_DATA F UART5_TX_DATA ENET2_RX_ER ENET2_RX_DATA1 LCD_DATA23 E D C B ENET1_RX_DATA1 ENET2_TX_CLK ENET2_RX_DATA0 ENET2_RX_EN ENET1_RX_EN 4 NAND_READY_B SD1_DATA0 VSS CSI_DATA05 CSI_DATA01 CSI_HSYNC VSS UART4_RX_DATA ENET1_RX_DATA0 3 SD1_DATA3 SD1_DATA1 SD1_CMD CSI_DATA06 CSI_DATA02 CSI_VSYNC DRAM_ADDR06 A VSS 17 ENET2_TX_DATA1 16 ENET2_TX_EN ENET2_TX_DATA0 15 2 VSS SD1_DATA2 SD1_CLK CSI_DATA07 CSI_DATA03 DRAM_ODT1 DRAM_ADDR14 VSS 1 A B C D E F 6.1.3 G Package Information and Contact Assignments 14 x 14 mm, 0.8 mm Pitch, Ball Map Table 92 shows the 14 x 14 mm, 0.8 mm pitch ball map for the i.MX 6ULL. Table 92. 14 x 14 mm, 0.8 mm Pitch, Ball Map i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors NXP Semiconductors DRAM_ADDR13 DRAM_ADDR07 DRAM_CS1_B NVCC_DRAM DRAM_SDCKE1 DRAM_ADDR08 VSS NVCC_DRAM DRAM_ADDR11 DRAM_ADDR04 DRAM_ADDR15 NVCC_DRAM DRAM_ADDR10 DRAM_ADDR12 DRAM_ADDR00 NVCC_DRAM DRAM_RAS_B NVCC_DRAM VSS DRAM_ZQPAD VSS DRAM_DATA13 DRAM_VREF DRAM_DATA12 VDD_SOC_IN VDD_SOC_IN VDD_ARM_CAP VSS NVCC_UART UART2_RTS_B UART3_CTS_B VDD_SOC_IN VDD_SOC_IN VDD_SOC_CAP VSS NVCC_GPIO UART1_RTS_B UART2_CTS_B VDD_SOC_IN VDD_SOC_CAP VSS GPIO1_IO00 UART1_TX_DATA UART1_CTS_B UART1_RX_DATA UART2_RX_DATA UART3_RX_DATA UART2_TX_DATA UART3_TX_DATA VDD_SOC_IN GPIO1_IO06 K VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VSS VDDA_ADC_3P3 GPIO1_IO02 GPIO1_IO01 GPIO1_IO07 GPIO1_IO03 L VSS VSS VSS NGND_KEL0 ADC_VREFH JTAG_TCK GPIO1_IO09 GPIO1_IO04 GPIO1_IO05 M SNVS_TAMPER8 SNVS_TAMPER7 SNVS_TAMPER6 VDD_SNVS_CAP VDD_HIGH_IN JTAG_TRST_B JTAG_TDO JTAG_TDI GPIO1_IO08 N SNVS_TAMPER4 SNVS_TAMPER3 SNVS_TAMPER2 VDD_SNVS_IN NVCC_PLL JTAG_TMS JTAG_MOD CCM_CLK1_N CCM_CLK1_P P H VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VSS SNVS_TAMPER5 POR_B J VSS VSS VSS VSS VSS TEST_MODE DRAM_SDQS0_N DRAM_SDQS0_P NVCC_DRAM_2P5 DRAM_ADDR01 DRAM_CAS_B DRAM_SDBA2 DRAM_ADDR03 DRAM_ADDR09 DRAM_CS0_B DRAM_SDCLK0_N VSS DRAM_SDBA1 DRAM_SDWE_B DRAM_ADDR02 DRAM_ADDR05 DRAM_SDBA0 DRAM_ODT0 DRAM_SDCLK0_P DRAM_SDCKE0 H J K L M N P Package Information and Contact Assignments Table 92. 14 x 14 mm, 0.8 mm Pitch, Ball Map (continued) i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 123 6.2 6.2.1 124 DRAM_DATA15 DRAM_DATA14 VSS DRAM_DATA11 VSS SNVS_TAMPER9 VSS ONOFF DRAM_SDQS1_P DRAM_SDQS1_N DRAM_DQM1 DRAM_DATA00 DRAM_DATA06 DRAM_DATA02 DRAM_DQM0 DRAM_DATA05 VSS DRAM_DATA08 DRAM_DATA09 DRAM_DATA07 DRAM_DATA10 DRAM_DATA01 DRAM_DATA03 DRAM_DATA04 1 2 3 4 5 6 7 8 GPANAIO VDD_HIGH_CAP VDD_HIGH_CAP VSS VSS USB_OTG2_DN VSS USB_OTG1_DN XTALI XTALO USB_OTG2_DP VSS USB_OTG1_DP USB_OTG1_CHD_B VSS 13 14 15 16 17 R VDD_USB_CAP USB_OTG1_VBUS USB_OTG2_VBUS 12 T VSS RTC_XTALI RTC_XTALO 11 U SNVS_TAMPER0 BOOT_MODE0 BOOT_MODE1 10 9 CCM_PMIC_STBY_REQ SNVS_PMIC_ON_REQ SNVS_TAMPER1 R T U Package Information and Contact Assignments Table 92. 14 x 14 mm, 0.8 mm Pitch, Ball Map (continued) 9 x 9 mm Package Information 9 x 9 mm, 0.5 mm Pitch, Ball Matrix Figure 71 shows the top, bottom, and side views of the 9 x 9 mm BGA package. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors Package Information and Contact Assignments Figure 71. 9 x 9 mm BGA, Case x Package Top, Bottom, and Side Views i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 125 Package Information and Contact Assignments 6.2.2 9 x 9 mm Supplies Contact Assignments and Functional Contact Assignments Table 93 shows the device connection list for ground, sense, and reference contact signals. Table 93. 9 x 9 mm Supplies Contact Assignment Supply Rail Name Ball(s) Position(s) Remark ADC_VREFH N13 — DRAM_VREF T1 — GPANAIO T11 — NGND_KEL0 M10 — NVCC_CSI E5 — NVCC_DRAM G5, L5, M5, N6 — NVCC_DRAM_2P5 K6 — NVCC_ENET G13 — NVCC_GPIO M13 — NVCC_LCD E13 — NVCC_NAND E11 — NVCC_PLL T13 — NVCC_SD1 E7 — NVCC_UART L13 — VDD_ARM_CAP G9, G10, G11, H9, H10, H11 — VDD_HIGH_CAP U11 — VDD_HIGH_IN U15 — VDD_SNVS_CAP N12 — VDD_SNVS_IN P12 — VDD_SOC_CAP G7, G8, H7, H8, J7, J8, K7, K8, L7, L8 — VDD_SOC_IN J9, J10, J11, K9, K10, K11, L9, L10, L11 — VDD_USB_CAP N11 — VDDA_ADC_3P3 T17 — VSS A2, A7, A12, A17, B1, C15, F1, F3, F8, F10, F17, H6, H12, J3, J15, K12, M1, M3, M8, M17, R3, R9, R12, R15, U1, U6, U13, U17 — i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 126 NXP Semiconductors Package Information and Contact Assignments Table 94 shows an alpha-sorted list of functional contact assignments for the 9 x 9 mm package. Table 94. 9 x 9 mm Functional Contact Assignments Out of Reset Condition 9x9 Ball Power Group Ball Type BOOT_MODE0 T8 VDD_SNVS_IN BOOT_MODE1 U8 CCM_CLK1_N Ball Name Default Mode Default Function Input/ Output GPIO ALT5 GPIO5_IO10 Input 100 k pull-down VDD_SNVS_IN GPIO ALT5 GPIO5_IO11 Input 100 k pull-down U16 VDD_HIGH_CAP LVDS — CCM_CLK1_N — — CCM_CLK1_P T16 VDD_HIGH_CAP LVDS — CCM_CLK1_P — — CCM_PMIC_STBY_REQ U7 VDD_SNVS_IN GPIO ALT0 CCM_PMIC_VSTBY_REQ Output — CSI_DATA00 C3 NVCC_CSI GPIO ALT5 GPIO4_IO21 Input Keeper CSI_DATA01 D4 NVCC_CSI GPIO ALT5 GPIO4_IO22 Input Keeper CSI_DATA02 B2 NVCC_CSI GPIO ALT5 GPIO4_IO23 Input Keeper CSI_DATA03 D1 NVCC_CSI GPIO ALT5 GPIO4_IO24 Input Keeper CSI_DATA04 C4 NVCC_CSI GPIO ALT5 GPIO4_IO25 Input Keeper CSI_DATA05 B3 NVCC_CSI GPIO ALT5 GPIO4_IO26 Input Keeper CSI_DATA06 A3 NVCC_CSI GPIO ALT5 GPIO4_IO27 Input Keeper CSI_DATA07 C2 NVCC_CSI GPIO ALT5 GPIO4_IO28 Input Keeper CSI_HSYNC D2 NVCC_CSI GPIO ALT5 GPIO4_IO20 Input Keeper CSI_MCLK C1 NVCC_CSI GPIO ALT5 GPIO4_IO17 Input Keeper CSI_PIXCLK D5 NVCC_CSI GPIO ALT5 GPIO4_IO18 Input Keeper CSI_VSYNC D3 NVCC_CSI GPIO ALT5 GPIO4_IO19 Input Keeper DRAM_ADDR00 G1 NVCC_DRAM DDR ALT0 DRAM_ADDR00 Output 100 k pull-up DRAM_ADDR01 G2 NVCC_DRAM DDR ALT0 DRAM_ADDR01 Output 100 k pull-up DRAM_ADDR02 H1 NVCC_DRAM DDR ALT0 DRAM_ADDR02 Output 100 k pull-up DRAM_ADDR03 J2 NVCC_DRAM DDR ALT0 DRAM_ADDR03 Output 100 k pull-up DRAM_ADDR04 M4 NVCC_DRAM DDR ALT0 DRAM_ADDR04 Output 100 k pull-up DRAM_ADDR05 H2 NVCC_DRAM DDR ALT0 DRAM_ADDR05 Output 100 k pull-up DRAM_ADDR06 E4 NVCC_DRAM DDR ALT0 DRAM_ADDR06 Output 100 k pull-up Value i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 127 Package Information and Contact Assignments Table 94. 9 x 9 mm Functional Contact Assignments (continued) DRAM_ADDR07 J4 NVCC_DRAM DDR ALT0 DRAM_ADDR07 Output 100 k pull-up DRAM_ADDR08 J5 NVCC_DRAM DDR ALT0 DRAM_ADDR08 Output 100 k pull-up DRAM_ADDR09 J1 NVCC_DRAM DDR ALT0 DRAM_ADDR09 Output 100 k pull-up DRAM_ADDR10 M2 NVCC_DRAM DDR ALT0 DRAM_ADDR10 Output 100 k pull-up DRAM_ADDR11 K5 NVCC_DRAM DDR ALT0 DRAM_ADDR11 Output 100 k pull-up DRAM_ADDR12 L3 NVCC_DRAM DDR ALT0 DRAM_ADDR12 Output 100 k pull-up DRAM_ADDR13 H4 NVCC_DRAM DDR ALT0 DRAM_ADDR13 Output 100 k pull-up DRAM_ADDR14 E3 NVCC_DRAM DDR ALT0 DRAM_ADDR14 Output 100 k pull-up DRAM_ADDR15 E2 NVCC_DRAM DDR ALT0 DRAM_ADDR15 Output 100 k pull-up DRAM_CAS_B G4 NVCC_DRAM DDR ALT0 DRAM_CAS_B Output 100 k pull-up DRAM_CS0_B L1 NVCC_DRAM DDR ALT0 DRAM_CS0_B Output 100 k pull-up DRAM_CS1_B H5 NVCC_DRAM DDR ALT0 DRAM_CS1_B Output 100 k pull-up DRAM_DATA00 T3 NVCC_DRAM DDR ALT0 DRAM_DATA00 Input 100 k pull-up DRAM_DATA01 N5 NVCC_DRAM DDR ALT0 DRAM_DATA01 Input 100 k pull-up DRAM_DATA02 T4 NVCC_DRAM DDR ALT0 DRAM_DATA02 Input 100 k pull-up DRAM_DATA03 T5 NVCC_DRAM DDR ALT0 DRAM_DATA03 Input 100 k pull-up DRAM_DATA04 U5 NVCC_DRAM DDR ALT0 DRAM_DATA04 Input 100 k pull-up DRAM_DATA05 T6 NVCC_DRAM DDR ALT0 DRAM_DATA05 Input 100 k pull-up DRAM_DATA06 R4 NVCC_DRAM DDR ALT0 DRAM_DATA06 Input 100 k pull-up DRAM_DATA07 U3 NVCC_DRAM DDR ALT0 DRAM_DATA07 Input 100 k pull-up DRAM_DATA08 P1 NVCC_DRAM DDR ALT0 DRAM_DATA08 Input 100 k pull-up i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 128 NXP Semiconductors Package Information and Contact Assignments Table 94. 9 x 9 mm Functional Contact Assignments (continued) DRAM_DATA09 U2 NVCC_DRAM DDR ALT0 DRAM_DATA09 Input 100 k pull-up DRAM_DATA10 P3 NVCC_DRAM DDR ALT0 DRAM_DATA10 Input 100 k pull-up DRAM_DATA11 R2 NVCC_DRAM DDR ALT0 DRAM_DATA11 Input 100 k pull-up DRAM_DATA12 P4 NVCC_DRAM DDR ALT0 DRAM_DATA12 Input 100 k pull-up DRAM_DATA13 N2 NVCC_DRAM DDR ALT0 DRAM_DATA13 Input 100 k pull-up DRAM_DATA14 N1 NVCC_DRAM DDR ALT0 DRAM_DATA14 Input 100 k pull-up DRAM_DATA15 P2 NVCC_DRAM DDR ALT0 DRAM_DATA15 Input 100 k pull-up DRAM_DQM0 U4 NVCC_DRAM DDR ALT0 DRAM_DQM0 Output 100 k pull-up DRAM_DQM1 R1 NVCC_DRAM DDR ALT0 DRAM_DQM1 Output 100 k pull-up DRAM_ODT0 K2 NVCC_DRAM DDR ALT0 DRAM_ODT0 Output 100 k pull-down DRAM_ODT1 E1 NVCC_DRAM DDR ALT0 DRAM_ODT1 Output 100 k pull-down DRAM_RAS_B L4 NVCC_DRAM DDR ALT0 DRAM_RAS_B Output 100 k pull-up DRAM_RESET F2 NVCC_DRAM DDR ALT0 DRAM_RESET Output 100 k pull-down DRAM_SDBA0 H3 NVCC_DRAM DDR ALT0 DRAM_SDBA0 Output 100 k pull-up DRAM_SDBA1 F5 NVCC_DRAM DDR ALT0 DRAM_SDBA1 Output 100 k pull-up DRAM_SDBA2 G3 NVCC_DRAM DDR ALT0 DRAM_SDBA2 Output 100 k pull-up DRAM_SDCKE0 L2 NVCC_DRAM DDR ALT0 DRAM_SDCKE0 Output 100 k pull-down DRAM_SDCKE1 K1 NVCC_DRAM DDR ALT0 DRAM_SDCKE1 Output 100 k pull-down DRAM_SDCLK0_N K4 NVCC_DRAM DDRC LK ALT0 DRAM_SDCLK0_N Input 100 k pull-up DRAM_SDCLK0_P K3 NVCC_DRAM DDRC LK ALT0 DRAM_SDCLK0_P Input 100 k pull-up DRAM_SDQS0_N R5 NVCC_DRAM DDRC LK ALT0 DRAM_SDQS0_N Input 100 k pull-down i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 129 Package Information and Contact Assignments Table 94. 9 x 9 mm Functional Contact Assignments (continued) DRAM_SDQS0_P P5 NVCC_DRAM DDRC LK ALT0 DRAM_SDQS0_P Input 100 k pull-down DRAM_SDQS1_N N4 NVCC_DRAM DDRC LK ALT0 DRAM_SDQS1_P Input 100 k pull-down DRAM_SDQS1_P N3 NVCC_DRAM DDRC LK ALT0 DRAM_SDQS1_N Input 100 k pull-down DRAM_SDWE_B F4 NVCC_DRAM DDR ALT0 DRAM_SDWE_B Output 100 k pull-up DRAM_ZQPAD T2 NVCC_DRAM GPIO — DRAM_ZQPAD Input Keeper ENET1_RX_DATA0 G17 NVCC_ENET GPIO ALT5 GPIO2_IO0 Input Keeper ENET1_RX_DATA1 F16 NVCC_ENET GPIO ALT5 GPIO2_IO1 Input Keeper ENET1_RX_EN G16 NVCC_ENET GPIO ALT5 GPIO2_IO2 Input Keeper ENET1_RX_ER G14 NVCC_ENET GPIO ALT5 GPIO2_IO7 Input Keeper ENET1_TX_CLK G15 NVCC_ENET GPIO ALT5 GPIO2_IO6 Input Keeper ENET1_TX_DATA0 E16 NVCC_ENET GPIO ALT5 GPIO2_IO3 Input Keeper ENET1_TX_DATA1 F13 NVCC_ENET GPIO ALT5 GPIO2_IO4 Input Keeper ENET1_TX_EN F15 NVCC_ENET GPIO ALT5 GPIO2_IO5 Input Keeper ENET2_RX_DATA0 E17 NVCC_ENET GPIO ALT5 GPIO2_IO8 Input Keeper ENET2_RX_DATA1 D17 NVCC_ENET GPIO ALT5 GPIO2_IO9 Input Keeper ENET2_RX_EN D16 NVCC_ENET GPIO ALT5 GPIO2_IO10 Input Keeper ENET2_RX_ER H13 NVCC_ENET GPIO ALT5 GPIO2_IO15 Input Keeper ENET2_TX_CLK H14 NVCC_ENET GPIO ALT5 GPIO2_IO14 Input Keeper ENET2_TX_DATA0 E14 NVCC_ENET GPIO ALT5 GPIO2_IO11 Input Keeper ENET2_TX_DATA1 F14 NVCC_ENET GPIO ALT5 GPIO2_IO12 Input Keeper ENET2_TX_EN E15 NVCC_ENET GPIO ALT5 GPIO2_IO13 Input Keeper GPIO1_IO00 M14 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper GPIO1_IO01 M15 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper GPIO1_IO02 M16 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper GPIO1_IO03 N16 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper GPIO1_IO04 N17 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper GPIO1_IO05 P15 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper GPIO1_IO06 N15 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper GPIO1_IO07 N14 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper GPIO1_IO08 P14 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper GPIO1_IO09 P16 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 130 NXP Semiconductors Package Information and Contact Assignments Table 94. 9 x 9 mm Functional Contact Assignments (continued) JTAG_MOD R13 NVCC_GPIO SJC ALT0 SJC_MOD Input 100 k pull-up JTAG_TCK R17 NVCC_GPIO SJC ALT0 SJC_TCK Input 47 k pull-up JTAG_TDI P17 NVCC_GPIO SJC ALT0 SJC_TDI Input 47 k pull-up JTAG_TDO R16 NVCC_GPIO SJC ALT0 SJC_TDO Output Keeper JTAG_TMS R14 NVCC_GPIO SJC ALT0 SJC_TMS Input 47 k pull-up JTAG_TRST_B P13 NVCC_GPIO SJC ALT0 SJC_TRSTB Input 47 k pull-up LCD_CLK C11 NVCC_LCD GPIO ALT5 GPIO3_IO0 Input Keeper LCD_DATA00 D11 NVCC_LCD GPIO ALT5 GPIO3_IO5 Input Keeper LCD_DATA01 B12 NVCC_LCD GPIO ALT5 GPIO3_IO6 Input Keeper LCD_DATA02 D10 NVCC_LCD GPIO ALT5 GPIO3_IO7 Input Keeper LCD_DATA03 B11 NVCC_LCD GPIO ALT5 GPIO3_IO8 Input Keeper LCD_DATA04 A11 NVCC_LCD GPIO ALT5 GPIO3_IO9 Input Keeper LCD_DATA05 D12 NVCC_LCD GPIO ALT5 GPIO3_IO10 Input Keeper LCD_DATA06 D13 NVCC_LCD GPIO ALT5 GPIO3_IO11 Input Keeper LCD_DATA07 C12 NVCC_LCD GPIO ALT5 GPIO3_IO12 Input Keeper LCD_DATA08 B13 NVCC_LCD GPIO ALT5 GPIO3_IO13 Input Keeper LCD_DATA09 A13 NVCC_LCD GPIO ALT5 GPIO3_IO14 Input Keeper LCD_DATA10 D14 NVCC_LCD GPIO ALT5 GPIO3_IO15 Input Keeper LCD_DATA11 C13 NVCC_LCD GPIO ALT5 GPIO3_IO16 Input Keeper LCD_DATA12 C14 NVCC_LCD GPIO ALT5 GPIO3_IO17 Input Keeper LCD_DATA13 A14 NVCC_LCD GPIO ALT5 GPIO3_IO18 Input Keeper LCD_DATA14 B14 NVCC_LCD GPIO ALT5 GPIO3_IO19 Input Keeper LCD_DATA15 A16 NVCC_LCD GPIO ALT5 GPIO3_IO20 Input Keeper LCD_DATA16 A15 NVCC_LCD GPIO ALT5 GPIO3_IO21 Input Keeper LCD_DATA17 D15 NVCC_LCD GPIO ALT5 GPIO3_IO22 Input Keeper LCD_DATA18 B15 NVCC_LCD GPIO ALT5 GPIO3_IO23 Input Keeper LCD_DATA19 E12 NVCC_LCD GPIO ALT5 GPIO3_IO24 Input Keeper LCD_DATA20 B17 NVCC_LCD GPIO ALT5 GPIO3_IO25 Input Keeper LCD_DATA21 C16 NVCC_LCD GPIO ALT5 GPIO3_IO26 Input Keeper LCD_DATA22 B16 NVCC_LCD GPIO ALT5 GPIO3_IO27 Input Keeper LCD_DATA23 C17 NVCC_LCD GPIO ALT5 GPIO3_IO28 Input Keeper i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 131 Package Information and Contact Assignments Table 94. 9 x 9 mm Functional Contact Assignments (continued) LCD_ENABLE A10 NVCC_LCD GPIO ALT5 GPIO3_IO1 Input Keeper LCD_HSYNC B10 NVCC_LCD GPIO ALT5 GPIO3_IO2 Input Keeper LCD_RESET E10 NVCC_LCD GPIO ALT5 GPIO3_IO4 Input Keeper LCD_VSYNC C10 NVCC_LCD GPIO ALT5 GPIO3_IO3 Input Keeper NAND_ALE D8 NVCC_NAND GPIO ALT5 GPIO4_IO10 Input Keeper NAND_CE0_B E8 NVCC_NAND GPIO ALT5 GPIO4_IO13 Input Keeper NAND_CE1_B B6 NVCC_NAND GPIO ALT5 GPIO4_IO14 Input Keeper NAND_CLE B7 NVCC_NAND GPIO ALT5 GPIO4_IO15 Input Keeper NAND_DATA00 D7 NVCC_NAND GPIO ALT5 GPIO4_IO2 Input Keeper NAND_DATA01 A9 NVCC_NAND GPIO ALT5 GPIO4_IO3 Input Keeper NAND_DATA02 C9 NVCC_NAND GPIO ALT5 GPIO4_IO4 Input Keeper NAND_DATA03 C7 NVCC_NAND GPIO ALT5 GPIO4_IO5 Input Keeper NAND_DATA04 C8 NVCC_NAND GPIO ALT5 GPIO4_IO6 Input Keeper NAND_DATA05 A6 NVCC_NAND GPIO ALT5 GPIO4_IO7 Input Keeper NAND_DATA06 B9 NVCC_NAND GPIO ALT5 GPIO4_IO8 Input Keeper NAND_DATA07 B8 NVCC_NAND GPIO ALT5 GPIO4_IO9 Input Keeper NAND_DQS E6 NVCC_NAND GPIO ALT5 GPIO4_IO16 Input Keeper NAND_RE_B D9 NVCC_NAND GPIO ALT5 GPIO4_IO0 Input Keeper NAND_READY_B E9 NVCC_NAND GPIO ALT5 GPIO4_IO12 Input Keeper NAND_WE_B A8 NVCC_NAND GPIO ALT5 GPIO4_IO1 Input Keeper NAND_WP_B D6 NVCC_NAND GPIO ALT5 GPIO4_IO11 Input Keeper ONOFF R6 VDD_SNVS_IN SRC ALT0 SRC_RESET_B Input 100 k pull-up POR_B R10 VDD_SNVS_IN SRC ALT0 SRC_POR_B Input 100 k pull-up RTC_XTALI T12 VDD_SNVS_CA P ANAL OG — RTC_XTALI — — RTC_XTALO U12 VDD_SNVS_CA P ANAL OG — RTC_XTALO — — SD1_CLK C5 NVCC_SD GPIO ALT5 GPIO2_IO17 Input Keeper SD1_CMD C6 NVCC_SD GPIO ALT5 GPIO2_IO16 Input Keeper SD1_DATA0 A5 NVCC_SD GPIO ALT5 GPIO2_IO18 Input Keeper SD1_DATA1 A4 NVCC_SD GPIO ALT5 GPIO2_IO19 Input Keeper SD1_DATA2 B5 NVCC_SD GPIO ALT5 GPIO2_IO20 Input Keeper SD1_DATA3 B4 NVCC_SD GPIO ALT5 GPIO2_IO21 Input Keeper i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 132 NXP Semiconductors Package Information and Contact Assignments Table 94. 9 x 9 mm Functional Contact Assignments (continued) SNVS_PMIC_ON_REQ T7 VDD_SNVS_IN GPIO ALT0 SNVS_PMIC_ON_REQ Output 100 k pull-up SNVS_TAMPER0 R8 VDD_SNVS_IN GPIO ALT5 GPIO5_IO00/SNVS_TAMPE R01 Input Keeper1, SNVS_TAMPER1 P6 VDD_SNVS_IN GPIO ALT5 GPIO5_IO01/SNVS_TAMPE R11 Input Keeper/N ot connecte d1,2 SNVS_TAMPER2 N10 VDD_SNVS_IN GPIO ALT5 GPIO5_IO02/SNVS_TAMPE R21 Input Keeper/N ot connecte d1,2 SNVS_TAMPER3 P10 VDD_SNVS_IN GPIO ALT5 GPIO5_IO03/SNVS_TAMPE R31 Input Keeper/N ot connecte d1,2 SNVS_TAMPER4 P7 VDD_SNVS_IN GPIO ALT5 GPIO5_IO04/SNVS_TAMPE R41 Input Keeper/N ot connecte d1,2 SNVS_TAMPER5 P8 VDD_SNVS_IN GPIO ALT5 GPIO5_IO05/SNVS_TAMPE R51 Input Keeper/N ot connecte d1,2 SNVS_TAMPER6 R7 VDD_SNVS_IN GPIO ALT5 GPIO5_IO06/SNVS_TAMPE R61 Input Keeper/N ot connecte d1,2 SNVS_TAMPER7 N9 VDD_SNVS_IN GPIO ALT5 GPIO5_IO07/SNVS_TAMPE R71 Input Keeper/N ot connecte d1,2 SNVS_TAMPER8 N8 VDD_SNVS_IN GPIO ALT5 GPIO5_IO08/SNVS_TAMPE R81 Input Keeper/N ot connecte d1,2 SNVS_TAMPER9 P9 VDD_SNVS_IN GPIO ALT5 GPIO5_IO09/SNVS_TAMPE R91 Input Keeper/N ot connecte d1,2 TEST_MODE N7 VDD_SNVS_IN TCU ALT0 TCU_TEST_MODE Input Keeper UART1_CTS_B L14 NVCC_UART GPIO ALT5 GPIO1_IO18 Input Keeper UART1_RTS_B K14 NVCC_UART GPIO ALT5 GPIO1_IO19 Input Keeper UART1_RX_DATA L17 NVCC_UART GPIO ALT5 GPIO1_IO17 Input Keeper UART1_TX_DATA L15 NVCC_UART GPIO ALT5 GPIO1_IO16 Input Keeper 2 i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors 133 Package Information and Contact Assignments Table 94. 9 x 9 mm Functional Contact Assignments (continued) UART2_CTS_B J17 NVCC_UART GPIO ALT5 GPIO1_IO22 Input Keeper UART2_RTS_B J14 NVCC_UART GPIO ALT5 GPIO1_IO23 Input Keeper UART2_RX_DATA K16 NVCC_UART GPIO ALT5 GPIO1_IO21 Input Keeper UART2_TX_DATA L16 NVCC_UART GPIO ALT5 GPIO1_IO20 Input Keeper UART3_CTS_B H16 NVCC_UART GPIO ALT5 GPIO1_IO26 Input Keeper UART3_RTS_B H15 NVCC_UART GPIO ALT5 GPIO1_IO27 Input Keeper UART3_RX_DATA K15 NVCC_UART GPIO ALT5 GPIO1_IO25 Input Keeper UART3_TX_DATA K17 NVCC_UART GPIO ALT5 GPIO1_IO24 Input Keeper UART4_RX_DATA H17 NVCC_UART GPIO ALT5 GPIO1_IO29 Input Keeper UART4_TX_DATA J16 NVCC_UART GPIO ALT5 GPIO1_IO28 Input Keeper UART5_RX_DATA J13 NVCC_UART GPIO ALT5 GPIO1_IO31 Input Keeper UART5_TX_DATA K13 NVCC_UART GPIO ALT5 GPIO1_IO30 Input Keeper USB_OTG1_CHD_B T15 OPEN DRAIN GPIO — USB_OTG1_CHD_B — — USB_OTG1_DN R11 VDD_USB_CAP ANAL OG — USB_OTG1_DN — — USB_OTG1_DP P11 VDD_USB_CAP ANAL OG — USB_OTG1_DP — — USB_OTG1_VBUS T9 USB_VBUS VBUS POWE R — USB_OTG1_VBUS — — USB_OTG2_DN T10 VDD_USB_CAP ANAL OG — USB_OTG2_DN — — USB_OTG2_DP U10 VDD_USB_CAP ANAL OG — USB_OTG2_DP — — USB_OTG2_VBUS U9 USB_VBUS VBUS POWE R — USB_OTG2_VBUS — — XTALI T14 NVCC_PLL ANAL OG — XTALI — — XTALO U14 NVCC_PLL ANAL OG — XTALO — — 1 SNVS_TAMPER0 to SNVS_TAMPER9 can be configured as GPIO or tamper detection pin, it is depending on the fuse setting TAMPER_PIN_DISABLE[1:0]. When the pad is configured as GPIO, the value is keeper out of reset. 2 SNVS_TAMPER0 to SNVS_TAMPER9 is input unconnected in the following conditions. —SNVS low power mode when configured as GPIO —Tamper functions are not used when configured as TAMPER detection pins It is required to connect external 1M Ohm pull-up or pull-down resistors to the pad to avoid the undesired leakage under two conditions above. i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 134 NXP Semiconductors NXP Semiconductors LCD_ENABLE 10 11 12 13 14 15 16 17 LCD_DATA04 VSS LCD_DATA09 LCD_DATA13 LCD_DATA16 LCD_DATA15 VSS LCD_HSYNC LCD_DATA03 LCD_DATA01 LCD_DATA08 LCD_DATA14 LCD_DATA18 LCD_DATA22 LCD_DATA20 LCD_VSYNC LCD_CLK LCD_DATA07 LCD_DATA11 LCD_DATA12 VSS LCD_DATA21 LCD_DATA23 LCD_DATA02 LCD_DATA00 LCD_DATA05 LCD_DATA06 LCD_DATA10 LCD_DATA17 ENET2_RX_EN LCD_RESET NVCC_NAND LCD_DATA19 NVCC_LCD ENET2_TX_EN VSS F G E D ENET2_RX_DATA0 ENET2_RX_DATA1 ENET1_RX_DATA1 ENET1_TX_DATA0 ENET1_TX_EN ENET2_TX_DATA1 ENET2_TX_DATA0 ENET1_TX_DATA1 VSS ENET1_RX_DATA0 ENET1_RX_EN ENET1_TX_CLK ENET1_RX_ER NVCC_ENET VDD_ARM_CAP VDD_ARM_CAP C NAND_DATA02 NAND_DATA06 NAND_DATA01 9 NAND_RE_B NAND_READY_B VDD_ARM_CAP B A 8 NAND_DATA04 NAND_DATA07 NAND_ALE NAND_CE0_B VDD_SOC_CAP NAND_WEB NAND_DATA03 NAND_DATA00 NVCC_SD1 VSS NAND_CE1_B NAND_DATA05 6 SD1_CMD NAND_WP_B NAND_DQS 7 5 SD1_DATA0 SD1_DATA2 SD1_CLK CSI_PIXCLK NVCC_CSI DRAM_SDBA1 NVCC_DRAM VSS 4 SD1_DATA1 SD1_DATA3 CSI_DATA04 CSI_DATA01 DRAM_ADDR06 DRAM_SDWE_B DRAM_CAS_B NAND_CLE 3 CSI_DATA06 CSI_DATA05 CSI_DATA00 CSI_VSYNC DRAM_ADDR14 VSS DRAM_SDBA2 VDD_SOC_CAP 2 VSS CSI_DATA02 CSI_DATA07 CSI_HSYNC DRAM_ADDR15 DRAM_RESET DRAM_ADDR01 1 VSS CSI_MCLK CSI_DATA03 DRAM_ODT1 VSS DRAM_ADDR00 A B C D E F 6.2.3 G Package Information and Contact Assignments 9 x 9 mm, 0.5 mm Pitch, Ball Map Table 95 shows the 9 x 9 mm, 0.5 mm pitch ball map for the i.MX 6ULL. Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 135 136 VSS GPIO1_IO04 JTAG_TDI M GPIO1_IO02 GPIO1_IO03 GPIO1_IO09 N GPIO_IO01 GPIO1_IO06 GPIO1_IO05 P UART1_CTS_B GPIO1_IO00 GPIO1_IO07 GPIO1_IO08 UART1_RTS_B L K J UART2_CTS_B H UART4_RX_DATA UART3_CTS_B UART3_RTS_B VSS UART2_RX_DATA UART4_TX_DATA UART1_RX_DATA UART3_TX_DATA UART2_TX-DATA ENET2_TX_CLK ENET2_RX_ER UART2_RTS_B UART5_TX_DATA UART5_RX_DATA UART1_TX_DATA UART3_RX_DATA NVCC_UART NVCC_GPIO ADC_VREFH JTAG_TRST_B VSS VDD_ARM_CAP VDD_SOC_IN VDD_SOC_IN VDD_SOC_IN VSS VDD_ARM_CAP VDD_SOC_IN VDD_SOC_IN VDD_SOC_IN VDD_SNVS_CAP VDD_ARM_CAP VDD_SOC_IN VDD_SOC_IN VDD_SOC_IN VDD_SNVS_IN VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VDD_USB_CAP NGND_KEL0 VSS VDD_SOC_CAP VDD_SOC_CAP VDD_SOC_CAP VSS VDD_SOC_CAP USB_OTG1_DP SNVS_TAMPER3 SNVS_DAMPER2 SNVS_TAMPER9 SNVS_TAMPER7 SNVS_TAMPER5 SNVS_TAMPER8 TEST_MODE SNVS_TAMPER4 NVCC_DRAM_2P5 DRAM_CSI_B DRAM_ADDR08 DRAM_ADDR11 NVCC_DRAM NVCC_DRAM DRAM_ADDR13 DRAM_ADDR07 DRAM_SDCLK0_N DRAM_RAS_B DRAM_SDQS1_N DRAM_ADDR04 DRAM_DATA12 SNVS_TAMPER1 DRAM_SDBA0 VSS DRAM_SDCLK0_P DRAM_ADDR12 VSS DRAM_SDQS1_P DRAM_DATA10 NVCC_DRAM DRAM_ADDR05 DRAM_ADDR03 DRAM_ODT0 DRAM_SDCKE0 DRAM_ADDR10 DRAM_DATA13 DRAM_DATA15 DRAM_DATA01 DRAM_ADDR02 DRAM_ADDR09 DRAM_SDCKE1 DRAM_CS0_B VSS DRAM_DATA14 DRAM_DATA08 DRAM_SDQS0_P H J K L M N P Package Information and Contact Assignments Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map (continued) i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 NXP Semiconductors NXP Semiconductors DRAM_DM1 DRAM_DATA11 VSS DRAM_DATA06 DRAM_SDQS0_N ONOFF DRAM_VREF DRAM_ZQPAD DRAM_DATA00 DRAM_DATA02 DRAM_DATA03 DRAM_DATA05 VSS DRAM_DATA09 DRAM_DATA07 DRAM_DQM0 DRAM_DATA04 VSS 1 2 3 4 5 6 SNVS_TAMPER0 VSS POR_B USB_OTG1_DN VSS JTAG_MOD JTAG_TMS VSS JTAG_TDO JTAG_TCK R BOOT_MODE0 USB_OTG1_VBUS USB_OTG2_DN GPANAIO RTC_XTALI NVCC_PLL XTALI USB_OTG1_CHD_B CCM_CLK1_P VDDA_ADC_3P3 T BOOT_MODE1 USB_OTG2_VBUS USB_OTG2_DP VDD_HIGH_CAP RTC_XTALO VSS XTALO VDD_HIGH_IN CCM_CLK1_N VSS U 8 9 10 11 12 13 14 15 16 17 7 CCM_PMIC_STBY_REQ SNVS_PMIC_ON_REQ SNVS_TAMPER6 R T U Package Information and Contact Assignments Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map (continued) i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 137 Revision History 7 Revision History Table 96 provides a revision history for this data sheet. Table 96. i.MX 6ULL Data Sheet Document Revision History Rev. Number Date Substantive Change(s) 1.2 11/2017 • Updated the part numbers and added a new part number (MCIMX6Y2CVK08AB) in the Table 1, "Ordering Information" • Updated the silicon revision number in the Figure 1, "Part Number Nomenclature—i.MX 6ULL" • Updated the GPIO1_IO09 signal name in the Table 85, "SD/MMC Boot through USDHC1" and added a footnote • Updated the NAND_ALE signal name in the Table 86, "SD/MMC Boot through USDHC2" and added a footnote 1.1 05/2017 • • • • • • • • • • Changed terminology from “floating” to “not connected” Changed the LV-DDR3 to DDR3L in the Section 1.2, “Features" Added a footnote regarding maximum voltage allowance in the Table 7, "Absolute Maximum Ratings" Updated the minimum value of VDD_SOC_CAP in the Low Power Run Mode: LDO Enabled from the Table 10, "Operating Ranges" Removed the LPSR mode in the Section 4.1.6, “Power Modes" Removed a note in the Section 4.2.1, “Power-Up Sequence" Replaced the MMDC compatible information with a cross reference in the Section 4.6.3, “DDR I/O DC Parameters" and Section 4.7.2, “DDR I/O AC Parameters" Removed the Section 4.9.4, “DDR SDRAM Specific Parameters (DDR3 and LPDDR2)” Added a new Section 4.10, “Multi-Mode DDR Controller (MMDC)" Changed SD3 min to 1.7 ns in the Table 51, "eMMC4.4/4.41 Interface Timing Specification" 1 02/2017 • Added a new part number in the Table 1, "Ordering Information" • Updated the Part differentiator number 3 to Reserved, removed 300 MHz from frequency, and added 792 MHz in the Figure 1, "Part Number Nomenclature—i.MX 6ULL" • Updated the DDR I/O supply voltage and added a table not in the Table 7, "Absolute Maximum Ratings" • Updated Table 10, "Operating Ranges" • Added Max. current for VDD_SOC_IN at 792 MHz in the Table 13, "Maximum Supply Currents" • Updated the LDO_2P5 of the LOW POWER IDLE: LDO Bypassed row in the Table 15, "Low Power Mode Current and Power Consumption" and the VDD_SOC_IN supply voltage for LDO enable mode • Updated the Figure 18, "Asynchronous A/D Muxed Write Access" • Added a new Section 4.12.9.1, “LCDIF Signal Mapping" • Added a note in the Section 4.2.1, “Power-Up Sequence" • Updated VDD_HIGH_CAP pin assignment in the Table 90, "14x14 mm Supplies Contact Assignment" • Updated VDD_HIGH_CAP pin in the Table 92, "14 x 14 mm, 0.8 mm Pitch, Ball Map" 0 09/2016 • Initial public release i.MX 6ULL Applications Processors for Industrial Products, Rev. 1.2, 11/2017 138 NXP Semiconductors How to Reach Us: Information in this document is provided solely to enable system and software Home Page: nxp.com implementers to use NXP products. There are no express or implied copyright licenses Web Support: nxp.com/support information in this document. NXP reserves the right to make changes without further granted hereunder to design or fabricate any integrated circuits based on the notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals” must be validated for each customer application by customer‚ customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm and Cortex are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2016-2017 NXP B.V. Document Number: IMX6ULLIEC Rev. 1.2 11/2017
MCIMX6Y1CVM05AB 价格&库存

很抱歉,暂时无法提供与“MCIMX6Y1CVM05AB”相匹配的价格&库存,您可以联系我们找货

免费人工找货