0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MFRC63102HN,151

MFRC63102HN,151

  • 厂商:

    NXP(恩智浦)

  • 封装:

    VFQFN32_EP

  • 描述:

    IC CONTACTLESS READER 32HVQFN

  • 数据手册
  • 价格&库存
MFRC63102HN,151 数据手册
MFRC631 High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Rev. 4.5 — 12 September 2018 227445 1 Product data sheet COMPANY PUBLIC General description MFRC631, the cost efficient NFC frontend for payment. The MFRC631 multi-protocol NFC frontend IC supports the following operating modes: • Read/write mode supporting ISO/IEC 14443 type A and MIFARE Classic communication mode • Read/write mode supporting ISO/IEC 14443B The MFRC631’s internal transmitter is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443A and MIFARE Classic IC-based cards and transponders without additional active circuitry. The digital module manages the complete ISO/IEC 14443A framing and error detection functionality (parity and CRC). The MFRC631 supports MIFARE Classic with 1 kB memory, MIFARE Classic with 4 kB memory, MIFARE Ultralight, MIFARE Ultralight C, MIFARE Plus and MIFARE DESFire products. The MFRC631 supports higher transfer speeds of the MIFARE product family up to 848 kbit/s in both directions. The MFRC631 supports layer 2 and 3 of the ISO/IEC 14443B reader/writer communication scheme except anticollision. The anticollision needs to be implemented in the firmware of the host controller as well as in the upper layers. The following host interfaces are supported: • Serial Peripheral Interface (SPI) • Serial UART (similar to RS232 with voltage levels dependent on pin voltage supply) 2 • I C-bus interface (two versions are implemented: I2C and I2CL) The MFRC631 supports the connection of a secure access module (SAM). A dedicated 2 separate I C interface is implemented for a connection of the SAM. The SAM can be used for high secure key storage and acts as a very performant crypto coprocessor. A dedicated SAM is available for connection to the MFRC631. In this document the term „MIFARE Classic card“ refers to a MIFARE Classic IC-based contactless card. MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 2 Features and benefits • Includes NXP ISO/IEC14443-A and Innovatron ISO/IEC14443-B intellectual property licensing rights • High-performance multi-protocol NFC frontend for transfer speed up to 848 kbit/s • Supports ISO/IEC 14443 type A, MIFARE Classic and ISO/IEC 14443 B modes • Supports MIFARE Classic product encryption by hardware in read/write mode Allows reading cards based on MIFARE Ultralight, MIFARE Classic with 1 kB memory, MIFARE Classic with 4 kB memory, MIFARE DESFire EV1, MIFARE DESFire EV2 and MIFARE Plus ICs. • Low-power card detection • Compliance to "EMV contactless protocol specification V2.3.1" on RF level can be achieved • Antenna connection with minimum number of external components • Supported host interfaces: – SPI up to 10 Mbit/s 2 – I C-bus interfaces up to 400 kBd in Fast mode, up to 1000 kBd in Fast mode plus – RS232 Serial UART up to 1228.8 kBd, with voltage levels dependent on pin voltage supply 2 • Separate I C-bus interface for connection of a secure access module (SAM) • FIFO buffer with size of 512 byte for highest transaction performance • Flexible and efficient power saving modes including hard power down, standby and low-power card detection • Cost saving by integrated PLL to derive system clock from 27.12 MHz RF quartz crystal • 3 V to 5.5 V power supply (MFRC63102) 2.5 V to 5.5 V power supply (MFRC63103) • Up to 8 free programmable input/output pins • Typical operating distance in read/write mode for communication to a ISO/IEC 14443 type A and MIFARE Classic card up to 12 cm, depending on the antenna size and tuning The version CLRC63103 offers a more flexible configuration for Low-Power Card detection compared to the CLRC63102 with the new register LPCD_OPTIONS. In addition, the CLRC63103 offers new additional settings for the Load Protocol which fit very well to smaller antennas. The CLRC63103 is therefore the recommended version for new designs. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 2 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 3 Quick reference data Table 1. Quick reference data MFRC63102HN Symbol Parameter VDD supply voltage VDD(PVDD) PVDD supply voltage VDD(TVDD) TVDD supply voltage Conditions [1] Typ Max Unit 3.0 5.0 5.5 V 3.0 5.0 VDD V 3.0 5.0 5.5 V - 8 40 nA Ipd power-down current IDD supply current - 17 20 mA IDD(TVDD) TVDD supply current - 100 250 mA Tamb operating ambient temperature -25 +25 +85 °C Tstg storage temperature -55 +25 +125 °C Min Typ Max Unit 2.5 5.0 5.5 V 2.5 5.0 VDD V 2.5 5.0 5.5 V - 8 40 nA [1] [2] PDOWN pin pulled HIGH [2] Min no supply voltage applied VDD(PVDD) must always be the same or lower voltage than VDD. Ipd is the sum of all supply currents Table 2. Quick reference data MFRC63103HN Symbol Parameter VDD supply voltage VDD(PVDD) PVDD supply voltage VDD(TVDD) TVDD supply voltage Conditions [1] PDOWN pin pulled HIGH [2] Ipd power-down current IDD supply current - 17 20 mA IDD(TVDD) TVDD supply current - 180 350 mA - - 500 mA absolute limiting value Tamb operating ambient temperature device mounted on PCB which allows sufficient heat dissipation -40 +25 +105 °C Tstg storage temperature -55 +25 +125 °C [1] [2] no supply voltage applied VDD(PVDD) must always be the same or lower voltage than VDD. Ipd is the sum of all supply currents MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 3 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 4 Ordering information Table 3. Ordering information Type number Package [1] MFRC63102HN/TRAYBM [2] MFRC63102HN/T/R [3] MFRC63103HN/TRAYB [2] MFRC63103HN/T/R [1] [2] [3] Name Description Version HVQFN32 plastic thermal enhanced very thin quad flat package; no leads; MSL1, 32 terminals + 1 central ground; body 5 × 5 × 0.85 mm SOT617-1 plastic thermal enhanced very thin quad flat package; no leads; MSL2, 32 terminals + 1 central ground; body 5 x 5 x 0.85 mm, wettable flanks SOT617-1 Delivered in five trays; MOQ: 5x 490 pcs Delivered on reel with 6000 pieces; MOQ: 6000 pcs Delivered in one tray, MOQ (Minimum order quantity) : 490 pcs MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 4 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 5 Block diagram The analog interface handles the modulation and demodulation of the antenna signals for the contactless interface. The contactless UART manages the protocol dependency of the contactless interface settings managed by the host. The FIFO buffer ensures fast and convenient data transfer between host and the contactless UART. The register bank contains the settings for the analog and digital functionality. REGISTER BANK ANTENNA ANALOG INTERFACE CONTACTLESS UART FIFO BUFFER SERIAL UART SPI I2C-BUS HOST 001aaj627 Figure 1. Simplified block diagram of the MFRC631 MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 5 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 25 PVDD 26 IFSEL0/OUT4 27 IFSEL1/OUT5 28 IF0 29 IF1 30 IF2 terminal 1 index area 31 IF3 32 IRQ Pinning information TDO/OUT0 1 TDI/OUT1 2 24 SDA TMS/OUT2 3 TCK/OUT3 4 SIGIN/OUT7 5 SIGOUT 6 19 XTAL1 DVDD 7 18 TVDD VDD 8 17 TX1 (1) 23 SCL 22 CLKOUT/OUT6 21 PDOWN TVSS 16 20 XTAL2 TX2 15 VMID 14 RXN 13 RXP 12 AUX2 11 AVDD 9 heatsink AUX1 10 6 001aam004 Transparent top view 1. Pin 33 VSS - heatsink connection Figure 2. Pinning configuration HVQFN32 (SOT617-1) 6.1 Pin description Table 4. Pin description Pin Symbol Type Description 1 TDO / OUT0 O test data output for boundary scan interface / general purpose output 0 2 TDI / OUT1 I test data input boundary scan interface / general purpose output 1 3 TMS / OUT2 I test mode select boundary scan interface / general purpose output 2 4 TCK / OUT3 I test clock boundary scan interface / general purpose output 3 5 SIGIN /OUT7 I/O Contactless communication interface output. / general purpose output 7 6 SIGOUT O Contactless communication interface input. 7 DVDD PWR digital power supply buffer 8 VDD PWR power supply 9 AVDD PWR analog power supply buffer 10 AUX1 O auxiliary outputs: Pin is used for analog test signal 11 AUX2 O auxiliary outputs: Pin is used for analog test signal 12 RXP I receiver input pin for the received RF signal. 13 RXN I receiver input pin for the received RF signal. 14 VMID PWR internal receiver reference voltage 15 TX2 O transmitter 2: delivers the modulated 13.56 MHz carrier 16 TVSS PWR transmitter ground, supplies the output stage of TX1, TX2 17 TX1 O transmitter 1: delivers the modulated 13.56 MHz carrier MFRC631 Product data sheet COMPANY PUBLIC [1] [1] [1] All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 6 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Pin Symbol Type Description 18 TVDD PWR transmitter voltage supply 19 XTAL1 I crystal oscillator input: Input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock (fosc = 27.12 MHz) 20 XTAL2 O crystal oscillator output: output of the inverting amplifier of the oscillator 21 PDOWN I Power Down (RESET) 22 CLKOUT / OUT6 O clock output / general purpose output 6 23 SCL O Serial Clock line 24 SDA I/O Serial Data Line 25 PVDD PWR pad power supply 26 IFSEL0 / OUT4 I host interface selection 0 / general purpose output 4 27 IFSEL1 / OUT5 I host interface selection 1 / general purpose output 5 28 IF0 I/O interface pin, multifunction pin: Can be assigned to host interface RS232, SPI, 2 2 I C, I C-L 29 IF1 I/O interface pin, multifunction pin: Can be assigned to host interface SPI, I C, I C-L 30 IF2 I/O interface pin, multifunction pin: Can be assigned to host interface RS232, SPI, 2 2 I C, I C-L 31 IF3 I/O interface pin, multifunction pin: Can be assigned to host interface RS232, SPI, 2 2 I C, I C-L 32 IRQ O interrupt request: output to signal an interrupt event 33 VSS PWR ground and heat sink connection [1] 2 2 This pin is used for connection of a buffer capacitor. Connection of a supply voltage might damage the device. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 7 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 7 Functional description SAM interface I2C, LOGICAL SDA SCL FIFO 512 Bytes EEPROM 8 kByte SPI host interfaces RESET LOGIC IFSEL1 IFSEL0 PDOWN I2 C IF0 REGISTERS IF1 UART IF2 STATEMACHINES IF3 SPI TCK TDI TMS TDO ANALOGUE FRONT-END BOUNDARY SCAN VOLTAGE REGULATOR 3/5 V => 1.8 V DVDD VOLTAGE REGULATOR 3/5 V => 1.8 V AVDD POR RNG VDD VSS PVDD TVDD TVSS AVDD DVDD TIMER0..3 INTERRUPT CONTROLLER IRQ TIMER4 (WAKE-UP TIMER) TX CODEC CRC SIGIN/ SIGOUT CONTROL SIGIN RX DECOD CLCOPRO SIGPRO SIGOUT ADC LFO PLL RX TX OSC RXP VMID RXN TX2 TX1 CLKOUT AUX1 XTAL2 XTAL1 AUX2 001aam005 Figure 3. Detailed block diagram of the MFRC631 7.1 Interrupt controller The interrupt controller handles the enabling/disabling of interrupt requests. All of the interrupts can be configured by firmware. Additionally, the firmware has possibilities to trigger interrupts or clear pending interrupt requests. Two 8-bit interrupt registers IRQ0 and IRQ1 are implemented, accompanied by two 8-bit interrupt enable registers IRQ0En and IRQ1En. A dedicated functionality of bit 7 to set and clear bits 0 to 6 in this interrupt controller registers is implemented. The MFRC631 indicates certain events by setting bit IRQ in the register Status1Reg and additionally, if activated, by pin IRQ. The signal on pin IRQ may be used to interrupt the host using its interrupt handling capabilities. This allows the implementation of efficient host software. Table 4. shows the available interrupt bits, the corresponding source and the condition for its activation. The interrupt bits Timer0IRQ, Timer1IRQ, Timer2IRQ, Timer3OIRQ, in register IRQ1 indicate an interrupt set by the timer unit. The setting is done if the timer underflows. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 8 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus The TxIRQ bit in register IRQ0 indicates that the transmission is finished. If the state changes from sending data to transmitting the end of the frame pattern, the transmitter unit sets the interrupt bit automatically. The bit RxIRQ in register IRQ0 indicates an interrupt when the end of the received data is detected. The bit IdleIRQ in register IRQ0 is set if a command finishes and the content of the command register changes to idle. The register WaterLevel defines both - minimum and maximum warning levels - counting from top and from bottom of the FIFO by a single value. The bit HiAlertIRQ in register IRQ0 is set to logic 1 if the HiAlert bit is set to logic 1, that means the FIFO data number has reached the top level as configured by the register WaterLevel and bit WaterLevelExtBit. The bit LoAlertIRQ in register IRQ0 is set to logic 1 if the LoAlert bit is set to logic 1, that means the FIFO data number has reached the bottom level as configured by the register WaterLevel. The bit ErrIRQ in register IRQ0 indicates an error detected by the contactless UART during receive. This is indicated by any bit set to logic 1 in register Error. The bit LPCDIRQ in register IRQ0 indicates a card detected. The bit RxSOFIRQ in register IRQ0 indicates a detection of a SOF or a subcarrier by the contactless UART during receiving. The bit GlobalIRQ in register IRQ1 indicates an interrupt occurring at any other interrupt source when enabled. Table 5. Interrupt sources MFRC631 Product data sheet COMPANY PUBLIC Interrupt bit Interrupt source Is set automatically, when Timer0IRQ Timer Unit the timer register T0 CounterVal underflows Timer1IRQ Timer Unit the timer register T1 CounterVal underflows Timer2IRQ Timer Unit the timer register T2 CounterVal underflows Timer3IRQ Timer Unit the timer register T3 CounterVal underflows TxIRQ Transmitter a transmitted data stream ends RxIRQ Receiver a received data stream ends IdleIRQ Command Register a command execution finishes HiAlertIRQ FIFO-buffer pointer the FIFO data number has reached the top level as configured by the register WaterLevel LoAlertIRQ FIFO-buffer pointer the FIFO data number has reached the bottom level as configured by the register WaterLevel ErrIRQ contactless UART a communication error had been detected LPCDIRQ LPCD a card was detected when in low-power card detection mode RxSOFIRQ Receiver detection of a SOF or a subcarrier GlobalIRQ all interrupt sources will be set if another interrupt request source is set All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 9 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 7.2 Timer module Timer module overview The MFRC631 implements five timers. Four timers -Timer0 to Timer3 - have an input clock that can be configured by register T(x)Control to be 13.56 MHz, 212 kHz, (derived from the 27.12 MHz quartz) or to be the underflow event of the fifth Timer (Timer4). Each timer implements a counter register which is 16 bit wide. A reload value for the counter is defined in a range of 0000h to FFFFh in the registers TxReloadHi and TxReloadLo. The fifth timer Timer4 is intended to be used as a wakeup timer and is connected to the internal LFO (Low Frequency Oscillator) as input clock source. The TControl register allows the global start and stop of each of the four timers Timer0 to Timer3. Additionally, this register indicates if one of the timers is running or stopped. Each of the five timers implements an individual configuration register set defining timer reload value (e.g. T0ReloadHi,T0ReloadLo), the timer value (e.g. T0CounterValHi, T0CounterValLo) and the conditions which define start, stop and clockfrequency (e.g. T0Control). The external host may use these timers to manage timing relevant tasks. The timer unit may be used in one of the following configurations: • • • • • Time-out counter Watch-dog counter Stop watch Programmable one-shot timer Periodical trigger The timer unit can be used to measure the time interval between two events or to indicate that a specific event has occurred after an elapsed time. The timer register content is modified by the timer unit, which can be used to generate an interrupt to allow an host to react on this event. The counter value of the timer is available in the registers T(x)CounterValHi, T(x)CounterValLo. The content of these registers is decremented at each timer clock. If the counter value has reached a value of 0000h and the interrupts are enabled for this specific timer, an interrupt will be generated as soon as the next clock is received. If enabled, the timer event can be indicated on the pin IRQ (interrupt request). The bit Timer(x)IRQ can be set and reset by the host controller. Depending on the configuration, the timer will stop counting at 0000h or restart with the value loaded from registers T(x)ReloadHi, T(x)ReloadLo. The counting of the timer is indicated by bit TControl.T(x)Running. The timer can be started by setting bits TControl.T(x)Running and TControl.T(x)StartStopNow or stopped by setting the bits TControl.T(x)StartStopNow and clearing TControl.T(x)Running. Another possibility to start the timer is to set the bit T(x)Mode.T(x)Start, this can be useful if dedicated protocol requirements need to be fulfilled. 7.2.1 Timer modes MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 10 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 7.2.1.1 Time-Out- and Watch-Dog-Counter Having configured the timer by setting register T(x)ReloadValue and starting the counting of Timer(x) by setting bit TControl.T(x)StartStop and TControl.T(x)Running, the timer unit decrements the T(x)CounterValue Register beginning with the configured start event. If the configured stop event occurs before the Timer(x) underflows (e.g. a bit is received from the card), the timer unit stops (no interrupt is generated). If no stop event occurs, the timer unit continues to decrement the counter registers until the content is zero and generates a timer interrupt request at the next clock cycle. This allows to indicate to a host that the event did not occur during the configured time interval. 7.2.1.2 Wake-up timer The wake-up Timer4 allows to wakeup the system from standby after a predefined time. The system can be configured in such a way that it is entering the standby mode again in case no card had been detected. This functionality can be used to implement a low-power card detection (LPCD). For the low-power card detection it is recommended to set T4Control.T4AutoWakeUp and T4Control.T4AutoRestart, to activate the Timer4 and automatically set the system in standby. The internal low frequency oscillator (LFO) is then used as input clock for this Timer4. If a card is detected the host-communication can be started. If bit T4Control.T4AutoWakeUp is not set, the MFRC631 will not enter the standby mode again in case no card is detected but stays fully powered. 7.2.1.3 Stop watch The elapsed time between a configured start- and stop event may be measured by the MFRC631 timer unit. By setting the registers T(x)ReloadValueHi, T(x)reloadValueLo the timer starts to decrement as soon as activated. If the configured stop event occurs, the timers stops decrementing. The elapsed time between start and stop event can then be calculated by the host dependent on the timer interval TTimer: (1) If an underflow occurred which can be identified by evaluating the corresponding IRQ bit, the performed time measurement according to the formula above is not correct. 7.2.1.4 Programmable one-shot timer The host configures the interrupt and the timer, starts the timer and waits for the interrupt event on pin IRQ. After the configured time the interrupt request will be raised. 7.2.1.5 Periodical trigger If the bit T(x)Control.T(x)AutoRestart is set and the interrupt is activated, an interrupt request will be indicated periodically after every elapsed timer period. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 11 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 7.3 Contactless interface unit The contactless interface unit of the MFRC631 supports the following read/write operating modes: • ISO/IEC14443 type A and MIFARE Classic • ISO/IEC14443B BATTERY/POWER SUPPLY READER IC ISO/IEC 14443 A CARD MICROCONTROLLER reader/writer 001aal996 Figure 4. Read/write mode A typical system using the MFRC631 is using a microcontroller to implement the higher levels of the contactless communication protocol and a power supply (battery or external supply). 7.3.1 Communication mode for ISO/IEC14443 type A and for MIFARE Classic The physical level of the communication is shown in Figure 5. (1) ISO/IEC 14443 A READER (2) ISO/IEC 14443 A CARD 001aam268 1. Reader to Card 100 % ASK, Miller Coded, Transfer speed 106 kbit/s to 848 kbit/s 2. Card to Reader, Subcarrier Load Modulation Manchester Coded or BPSK, transfer speed 106 kbit/s to 848 kbit/s Figure 5. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic The physical parameters are described in Table 5. Table 6. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic Communication direction Signal type Reader to card (send data from the MFRC631 to a card) fc = 13.56 MHz Card to reader (MFRC631 receives data from a card) MFRC631 Product data sheet COMPANY PUBLIC Transfer speed 106 kbit/s 212 kbit/s 424 kbit/s 848 kbit/s reader side modulation 100 % ASK 100% ASK 100% ASK 100% ASK bit encoding modified Miller encoding modified Miller encoding modified Miller encoding modified Miller encoding bit rate [kbit/s] fc / 128 fc / 64 fc / 32 fc / 16 card side modulation subcarrier load modulation subcarrier load modulation subcarrier load modulation subcarrier load modulation subcarrier frequency fc / 16 fc / 16 fc / 16 fc / 16 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 12 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Communication direction Signal type Transfer speed bit encoding 106 kbit/s 212 kbit/s 424 kbit/s 848 kbit/s Manchester encoding BPSK BPSK BPSK The MFRC631 connection to a host is required to manage the complete ISO/IEC 14443 type A and MIFARE Classic communication protocol. Figure 6 shows the data coding and framing according to ISO/IEC 14443 type A and MIFARE Classic. ISO/IEC 14443 A framing at 106 kBd start 8-bit data 8-bit data odd parity start bit is 1 8-bit data odd parity odd parity ISO/IEC 14443 A framing at 212 kBd, 424 kBd and 848 kBd start 8-bit data start bit is 0 even parity 8-bit data odd parity 8-bit data odd parity burst of 32 subcarrier clocks even parity at the end of the frame 001aak585 Figure 6. Data coding and framing according to ISO/IEC 14443 A The internal CRC coprocessor calculates the CRC value based on ISO/IEC 14443 A part 3 and handles parity generation internally according to the transfer speed. 7.3.2 ISO/IEC14443B functionality The physical level of the communication is shown in Figure 7. (1) ISO/IEC 14443 B READER (2) ISO/IEC 14443 B CARD 001aal997 1. Reader to Card NRZ, Miller coded, transfer speed 106 kbit/s to 848 kbit/s 2. Card to reader, Subcarrier Load Modulation Manchester Coded or BPSK, transfer speed 106 kbit/s to 848 kbit/s Figure 7. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic The physical parameters are described in Table 6. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 13 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 7. Communication overview for ISO/IEC 14443 B reader/writer Communication direction Signal type Reader to card (send data from the MFRC631 to a card) fc = 13.56 MHz Card to reader (MFRC631 receives data from a card) Transfer speed 106 kbit/s 212 kbit/s 424 kbit/s 848 kbit/s reader side modulation 10 % ASK 10 % ASK 10 % ASK 10 % ASK bit encoding NRZ NRZ NRZ NRZ bit rate [kbit/s] 128 / fc 64 / fc 32 / fc 16 / fc card side modulation subcarrier load modulation subcarrier load modulation subcarrier load modulation subcarrier load modulation subcarrier frequency fc / 16 fc / 16 fc / 16 fc / 16 bit encoding BPSK BPSK BPSK BPSK The MFRC631 connected to a host is required to manage the complete ISO/IEC 14443 B protocol. The following Figure 8 "SOF and EOF according to ISO/IEC 14443 B" shows the ISO/IEC 14443B SOF and EOF. Start of Frame (SOF) sequence 9.44 µs UNMODULATED (SUB) CARRIER ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''1'' ''1'' DATA End of Frame (EOF) sequence 9.44 µs LAST CHARACTER ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' ''0'' UNMODULATED (SUB) CARRIER 001aam270 Figure 8.  SOF and EOF according to ISO/IEC 14443 B 7.4 Host interfaces 7.4.1 Host interface configuration 2 2 The MFRC631 supports direct interfacing of various hosts as the SPI, I C, I CL and serial UART interface type. The MFRC631 resets its interface and checks the current host interface type automatically having performed a power-up or resuming from power down. The MFRC631 identifies the host interface by the means of the logic levels on the control pins after the Cold Reset Phase. This is done by a combination of fixed pin connections.The following table shows the possible configurations defined by IFSEL1,IFSEL0: MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 14 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 8. Connection scheme for detecting the different interface types 2 2 Pin Pin Symbol UART SPI I C I C-L 28 IF0 RX MOSI ADR1 ADR1 29 IF1 n.c. SCK SCL SCL 30 IF2 TX MISO ADR2 SDA 31 IF3 PAD_VDD NSS SDA ADR2 26 IFSEL0 VSS VSS PAD_VDD PAD_VDD 27 IFSEL1 VSS PAD_VDD VSS PAD_VDD 7.4.2 SPI interface 7.4.2.1 General READER IC SCK MOSI MISO NSS IF1 IF0 IF2 IF3 001aal998 Figure 9. Connection to host with SPI The MFRC631 acts as a slave during the SPI communication. The SPI clock SCK has to be generated by the master. Data communication from the master to the slave uses the Line MOSI. Line MISO is used to send data back from the MFRC631 to the master. A serial peripheral interface (SPI compatible) is supported to enable high speed communication to a host. The implemented SPI compatible interface is according to a standard SPI interface. The SPI compatible interface can handle data speed of up to 10 Mbit/s. In the communication with a host MFRC631 acts as a slave receiving data from the external host for register settings and to send and receive data relevant for the communication on the RF interface. NSS (Not Slave Select) enables or disables the SPI interface. When NSS is logical high, the interface is disabled and reset. Between every SPI command the NSS must go to logical high to be able to start the next command read or write. On both data lines (MOSI, MISO) each data byte is sent by MSB first. Data on MOSI line shall be stable on rising edge of the clock line (SCK) and is allowed to change on falling edge. The same is valid for the MISO line. Data is provided by the MFRC631 on the falling edge and is stable on the rising edge.The polarity of the clock is low at SPI idle. 7.4.2.2 Read data To read out data from the MFRC631 by using the SPI compatible interface the following byte order has to be used. The first byte that is sent defines the mode (LSB bit) and the address. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 15 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 9. Byte Order for MOSI and MISO byte 0 byte 1 byte 2 byte 3 to n-1 byte n byte n+1 MOSI address 0 address 1 address 2 …….. address n 00h MISO X data 0 data 1 …….. data n - 1 data n Remark: The Most Significant Bit (MSB) has to be sent first. 7.4.2.3 Write data To write data to the MFRC631 using the SPI interface the following byte order has to be used. It is possible to write more than one byte by sending a single address byte (see.8.5.2.4). The first send byte defines both, the mode itself and the address byte. Table 10. Byte Order for MOSI and MISO byte 0 byte 1 byte 2 3 to n-1 byte n byte n + 1 MOSI address 0 data 0 data 1 …….. data n - 1 data n MISO X X X …….. X X Remark: The Most Significant Bit (MSB) has to be sent first. 7.4.2.4 Address byte The address byte has to fulfil the following format: The LSB bit of the first byte defines the used mode. To read data from the MFRC631 the LSB bit is set to logic 1. To write data to the MFRC631 the LSB bit has to be cleared. The bits 6 to 0 define the address byte. NOTE: When writing the sequence [address byte][data0][data1][data2]..., [data0] is written to address [address byte], [data1] is written to address [address byte + 1] and [data2] is written to [address byte + 2]. Exception: This auto increment of the address byte is not performed if data is written to the FIFO address Table 11. Address byte 0 register; address MOSI 7 6 5 4 3 2 1 0 address 6 address 5 address 4 address 3 address 2 address 1 address 0 1 (read) 0 (write) MSB LSB 7.4.2.5 Timing Specification SPI The timing condition for SPI interface is as follows: Table 12. Timing conditions SPI MFRC631 Product data sheet COMPANY PUBLIC Symbol Parameter Min Typ Max Unit tSCKL SCK LOW time 50 - - ns tSCKH SCK HIGH time 50 - - ns All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 16 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Symbol Parameter Min Typ Max Unit th(SCKH-D) SCK HIGH to data input hold time 25 - - ns tsu(D-SCKH) data input to SCK HIGH set-up time 25 - - ns th(SCKL-Q) SCK LOW to data output hold time - - 25 ns t(SCKL-NSSH) SCK LOW to NSS HIGH time 0 - - ns tNSSH NSS HIGH time 50 - - ns tNSSH tSCKL tSCKH tSCKL SCK tsu(D-SCKH) th(SCKL-Q) th(SCKH-D) MOSI MSB LSB MISO MSB LSB t(SCKL-NSSH) NSS aaa-016093 Figure 10. Connection to host with SPI Remark: To send more bytes in one data stream the NSS signal must be LOW during the send process. To send more than one data stream the NSS signal must be HIGH between each data stream. 7.4.3 RS232 interface 7.4.3.1 Selection of the transfer speeds The internal UART interface is compatible to a RS232 serial interface. The levels supplied to the pins are between VSS and PVDD. To achieve full compatibility of the voltage levels to the RS232 specification, a RS232 level shifter is required. Table 13 "Selectable transfer speeds" describes examples for different transfer speeds and relevant register settings. The resulting transfer speed error is less than 1.5 % for all described transfer speeds. The default transfer speed is 115.2 kbit/s. To change the transfer speed, the host controller has to write a value for the new transfer speed to the register SerialSpeedReg. The bits BR_T0 and BR_T1 define factors to set the transfer speed in the SerialSpeedReg. Table 12 "Settings of BR_T0 and BR_T1" describes the settings of BR_T0 and BR_T1. Table 13. Settings of BR_T0 and BR_T1 BR_T0 MFRC631 Product data sheet COMPANY PUBLIC 0 1 2 3 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 4 5 6 7 © NXP B.V. 2018. All rights reserved. 17 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus factor BR_T0 1 1 2 4 8 16 32 64 range BR_T1 1 to 32 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 Table 14. Selectable transfer speeds Transfer speed (kbit/s) Serial SpeedReg Transfer speed accuracy (%) (Hex.) 7.2 FA -0.25 9.6 EB 0.32 14.4 DA -0.25 19.2 CB 0.32 38.4 AB 0.32 57.6 9A -0.25 115.2 7A -0.25 128 74 -0.06 230.4 5A -0.25 460.8 3A -0.25 921.6 1C 1.45 1228.8 15 0.32 The selectable transfer speeds as shown are calculated according to the following formulas: if BR_T0 = 0: transfer speed = 27.12 MHz / (BR_T1 + 1) (BR_T0 - 1) if BR_T0 > 0: transfer speed = 27.12 MHz / (BR_T1 + 33)/2 Remark: Transfer speeds above 1228.8 kBits/s are not supported. 7.4.3.2 Framing Table 15. UART framing Bit Length Value Start bit (Sa) 1 bit 0 Data bits 8 bit Data Stop bit (So) 1 bit 1 Remark: For data and address bytes the LSB bit has to be sent first. No parity bit is used during transmission. Read data: To read out data using the UART interface the flow described below has to be used. The first send byte defines both the mode itself and the address.The Trigger on pin IF3 has to be set, otherwise no read of data is possible. Table 16. Byte Order to Read Data MFRC631 Product data sheet COMPANY PUBLIC Mode byte 0 byte 1 RX address - All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 18 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Mode byte 0 byte 1 TX - data 0 ADDRESS RX Sa A0 A1 A2 A3 A4 A5 A6 RD/ NWR So DATA TX Sa D0 D1 D2 D3 D4 D5 D6 D7 So 001aam298 Figure 11. Example for UART Read Write data: To write data to the MFRC631 using the UART interface the following sequence has to be used. The first send byte defines both, the mode itself and the address. Table 17. Byte Order to Write Data Mode byte 0 byte 1 RX address 0 data 0 TX address 0 ADDRESS RX Sa A0 A1 A2 A3 A4 DATA A5 A6 RD/ NWR So Sa D0 RD/ NWR So D1 D2 D3 D4 D5 D6 D7 So ADDRESS TX Sa A0 A1 A2 A3 A4 A5 A6 001aam299 Figure 12. Example diagram for a UART write Remark: Data can be sent before address is received. 2 7.4.4 I C-bus interface MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 19 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 7.4.4.1 General 2 An Inter IC (I C) bus interface is supported to enable a low cost, low pin count serial bus 2 interface to the host. The implemented I C interface is mainly implemented according the 2 NXP Semiconductors I C interface specification, rev. 3.0, June 2007. The MFRC631 can act as a slave receiver or slave transmitter in standard mode, fast mode and fast mode plus. 2 The following features defined by the NXP Semiconductors I C interface specification, rev. 3.0, June 2007 are not supported: • The MFRC631 I2C interface does not stretch the clock • The MFRC631 I2C interface does not support the general call. This means that the MFRC631 does not support a software reset • The MFRC631 does not support the I2C device ID • The implemented interface can only act in slave mode. Therefore no clock generation and access arbitration is implemented in the MFRC631. • High speed mode is not supported by the MFRC631 PULL-UP NETWORK PULL-UP NETWORK MICROCONTROLLER READER IC SDA SCL 001aam000 2 Figure 13. I C-bus interface The voltage level on the I2C pins is not allowed to be higher than PVDD. SDA is a bidirectional line, connected to a positive supply voltage via a pull-up resistor. 2 Both lines SDA and SCL are set to HIGH level if no data is transmitted. Data on the I Cbus can be transferred at data rates of up to 400 kbit/s in fast mode, up to 1 Mbit/s in the fast mode+. 2 2 If the I C interface is selected, a spike suppression according to the I C interface specification on SCL and SDA is automatically activated. For timing requirements refer to Table 197 "I2C-bus timing in fast mode and fast mode plus" 2 7.4.4.2 I C Data validity Data on the SDA line shall be stable during the HIGH period of the clock. The HIGH state or LOW state of the data line shall only change when the clock signal on SCL is LOW. SDA SCL data line stable; data valid change of data allowed 001aam300 2 Figure 14. Bit transfer on the I C-bus. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 20 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 2 7.4.4.3 I C START and STOP conditions 2 To handle the data transfer on the I C-bus, unique START (S) and STOP (P) conditions are defined. A START condition is defined with a HIGH-to-LOW transition on the SDA line while SCL is HIGH. A STOP condition is defined with a LOW-to-HIGH transition on the SDA line while SCL is HIGH. The master always generates the START and STOP conditions. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition. The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. In this respect, the START (S) and repeated START (Sr) conditions are functionally identical. Therefore, the S symbol will be used as a generic term to represent both the START and repeated START (Sr) conditions. SDA SDA SCL SCL S P START condition STOP condition 001aam301 Figure 15. START and STOP conditions 2 7.4.4.4 I C byte format Each byte has to be followed by an acknowledge bit. Data is transferred with the MSB first, see Figure 15 "START and STOP conditions". The number of transmitted bytes during one data transfer is unrestricted but shall fulfil the read/write cycle format. 2 7.4.4.5 I C Acknowledge An acknowledge at the end of one data byte is mandatory. The acknowledge-related clock pulse is generated by the master. The transmitter of data, either master or slave, releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver shall pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. The master can then generate either a STOP (P) condition to stop the transfer, or a repeated START (Sr) condition to start a new transfer. A master-receiver shall indicate the end of data to the slave- transmitter by not generating an acknowledge on the last byte that was clocked out by the slave. The slavetransmitter shall release the data line to allow the master to generate a STOP (P) or repeated START (Sr) condition. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 21 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVERER acknowledge SCL FROM MASTER 1 2 8 9 S clock pulse for acknowledgement START condition 001aam302 2 Figure 16. Acknowledge on the I C- bus P MSB acknowledgement signal from slave acknowledgement signal from receiver Sr byte complete, interrupt within slave clock line held low while interrupts are serviced S or Sr 1 2 7 8 9 1 2 3-8 ACK 9 ACK Sr or P 001aam303 2 Figure 17. Data transfer on the I C- bus 2 7.4.4.6 I C 7-bit addressing 2 During the I C-bus addressing procedure, the first byte after the START condition is used to determine which slave will be selected by the master. 2 Alternatively the I C address can be configured in the EEPROM. Several address numbers are reserved for this purpose. During device configuration, the designer has to ensure, that no collision with these reserved addresses in the system is possible. Check 2 the corresponding I C specification for a complete list of reserved addresses. For all MFRC631 devices the upper 5 bits of the device bus address are reserved by NXP and set to 01010(bin). The remaining 2 bits (ADR_2, ADR_1) of the slave address 2 can be freely configured by the customer in order to prevent collisions with other I C 2 devices by using the interface pins (refer to Table 7) or the value of the I C address EEPROM register (refer to Table 29). MSB Bit 6 LSB Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 slave address Bit 0 R/W 001aam304 Figure 18. First byte following the START procedure MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 22 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 2 7.4.4.7 I C-register write access 2 To write data from the host controller via I C to a specific register of the MFRC631 the following frame format shall be used. The read/write bit shall be set to logic 0. 2 The first byte of a frame indicates the device address according to the I C rules. The second byte indicates the register address followed by up to n-data bytes. In case the address indicates the FIFO, in one frame all n-data bytes are written to the FIFO register address. This enables for example a fast FIFO access. 2 7.4.4.8 I C-register read access To read out data from a specific register address of the MFRC631 the host controller shall use the procedure: First a write access to the specific register address has to be performed as indicated in the following frame: 2 The first byte of a frame indicates the device address according to the I C rules. The second byte indicates the register address. No data bytes are added. The read/write bit shall be logic 0. Having performed this write access, the read access starts. The host sends the device address of the MFRC631. As an answer to this device address the MFRC631 responds with the content of the addressed register. In one frame n-data bytes could be read using the same register address. The address pointing to the register is incremented automatically (exception: FIFO register address is not incremented automatically). This enables a fast transfer of register content. The address pointer is incremented automatically and data is read from the locations [address], [address+1], [address+2]... [address+(n-1)] In order to support a fast FIFO data transfer, the address pointer is not incremented automatically in case the address is pointing to the FIFO. The read/write bit shall be set to logic 1. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 23 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Write Cycle I2C slave address A7-A0 SA 0 (W) Ack Frontend IC register address A6-A0 0 Ack DATA [7..0] [0..n] Ack SO Read Cycle 0 (W) I2C slave address A7-A0 SA Ack 0 Frontend IC register address A6-A0 Ack SO Optional, if the previous access was on the same register address 0..n 1 (R) I2C slave address A7-A0 SA Ack [0..n] sent by master DATA [7..0] Ack DATA [7..0] Nack SO sent by slave 001aam305 Figure 19. Register read and write access 2 7.4.4.9 I CL-bus interface The MFRC631 provides an additional interface option for connection of a SAM. This 2 logical interface fulfills the I C specification, but the rise/fall timings will not be compliant 2 2 to the I C standard. The I CL interface uses standard I/O pads, and the communication speed is limited to 5 MBaud. The protocol itself is equivalent to the fast mode protocol of 2 I C. The SCL levels are generated by the host in push/pull mode. The RC631 does not stretch the clock. During the high period of SCL the status of the line is maintained by a bus keeper. The address is 01010xxb, where the last two bits of the address can be defined by the application. The definition of this bits can be done by two options. With a pin, where the higher bit is fixed to 0 or the configuration can be defined via EEPROM. Refer to the EEPROM configuration in Section 7.7. 2 Table 18. Timing parameter I CL MFRC631 Product data sheet COMPANY PUBLIC Parameter Min Max Unit fSCL 0 5 MHz tHD;STA 80 - ns tLOW 100 - ns tHIGH 100 - ns tSU;SDA 80 - ns tHD;DAT 0 50 ns tSU;DAT 0 20 ns tSU;STO 80 - ns tBUF 200 - ns All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 24 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 2 The pull-up resistor is not required for the I CL interface. Instead, a on chip buskeeper 2 is implemented in the MFRC631 for SDA of the I CL interface. This protocol is intended to be used for a point to point connection of devices over a short distance and does not support a bus capability.The driver of the pin must force the line to the desired logic voltage. To avoid that two drivers are pushing the line at the same time following regulations must be fulfilled: SCL: As there is no clock stretching, the SCL is always under control of the Master. SDA: The SDA line is shared between master and slave. Therefore the master and the slave must have the control over the own driver enable line of the SDA pin. The following rules must be followed: • In the idle phase the SDA line is driven high by the master • In the time between start and stop condition the SDA line is driven by master or slave when SCL is low. If SCL is high the SDA line is not driven by any device • To keep the value on the SDA line a on chip buskeeper structure is implemented for the line 7.4.5 SAM interface 7.4.5.1 SAM functionality The MFRC631 implements a dedicated I2C or SPI interface to integrate a MIFARE SAM (Secure Access Module) in a very convenient way into applications (e.g. a proximity reader). The SAM can be connected to the microcontroller to operate like a cryptographic coprocessor. For any cryptographic task, the microcontroller requests a operation from the SAM, receives the answer and sends it over a host interface (e.g. I2C, SPI) interface to the connected reader IC. The MIFARE SAM supports a optimized method to integrate the SAM in a very efficient way to reduce the protocol overhead. In this system configuration, the SAM is integrated between the microprocessor and the reader IC, connected by one interface to the reader IC and by another interface to the microcontroller. In this application the microcontroller accesses the SAM using the T=1 protocol and the SAM accesses the reader IC using an I2C interface. The I2C SAM address is always defined by EEPROM register. Default value is 0101100. As the SAM is directly communicating with reader IC, the communication overhead is reduced. In this configuration, a performance boost of up to 40% can be achieved for a transaction time. The MIFARE SAM supports applications using MIFARE product-based cards. For multi application purposes an architecture connecting the microcontroller additionally directly to the reader IC is recommended. This is possible by connecting the MFRC631 on one interface (SAM Interface SDA, SCL) with the MIFARE SAM AV2.6 (P5DF081XX/ T1AR1070) and by connecting the microcontroller to the S2C or SPI interface. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 25 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus T=1 µC SAM AV2.6 I2C READER IC I2C Reader aaa-002963 Figure 20. I2C interface enables convenient MIFARE SAM integration 7.4.5.2 SAM connection The MFRC631 provides an interface to connect a SAM dedicated to the MFRC631. Both 2 2 interface options of the MFRC631, I C, I CL or SPI can be used for this purpose. The interface option of the SAM itself is configured by a host command sent from the host to the SAM. 2 The I CL interface is intended to be used as connection between two IC’s over a short 2 distance. The protocol fulfills the I C specification, but does support a single device connected to the bus only. The SPI block for SAM connection is identical with the SPI host interface block. The pins used for the SAM SPI are described in Table 18. Table 19. SPI SAM connection SPI functionality PIN MISO SDA2 SCL SCL2 MOSI IFSEL1 NSS IFSEL0 7.4.6 Boundary scan interface The MFRC631 provides a boundary scan interface according to the IEEE 1149.1. This interface allows to test interconnections without using physical test probes. This is done by test cells, assigned to each pin, which override the functionality of this pin. To be able to program the test cells, the following commands are supported: Table 20. Boundary scan command MFRC631 Product data sheet COMPANY PUBLIC Value (decimal) Command Parameter in Parameter out 0 bypass - - 1 preload data (24) - 1 sample - data (24) 2 ID code (default) - data (32) 3 USER code - data (32) 4 Clamp - - All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 26 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value (decimal) Command Parameter in Parameter out 5 HIGH Z - - 7 extest data (24) data (24) 8 interface on/off interface (1) - 9 register access read address (7) data (8) 10 register access write address (7) - data (8) - The Standard IEEE 1149.1 describes the four basic blocks necessary to use this interface: Test Access Port (TAP), TAP controller, TAP instruction register, TAP data register; 7.4.6.1 Interface signals The boundary scan interface implements a four line interface between the chip and the environment. There are three Inputs: Test Clock (TCK); Test Mode Select (TMS); Test Data Input (TDI) and one output Test Data Output (TDO). TCK and TMS are broadcast signals, TDI to TDO generate a serial line called Scan path. Advantage of this technique is that independent of the numbers of boundary scan devices the complete path can be handled with four signal lines. The signals TCK, TMS are directly connected with the boundary scan controller. Because these signals are responsible for the mode of the chip, all boundary scan devices in one scan path will be in the same boundary scan mode. 7.4.6.2 Test Clock (TCK) The TCK pin is the input clock for the module. If this clock is provided, the test logic is able to operate independent of any other system clocks. In addition, it ensures that multiple boundary scan controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the boundary scan controller does not change and data in the Instruction and Data Registers is not lost. The internal pull-up resistor on the TCK pin is enabled. This assures that no clocking occurs if the pin is not driven from an external source. 7.4.6.3 Test Mode Select (TMS) The TMS pin selects the next state of the boundary scan controller. TMS is sampled on the rising edge of TCK. Depending on the current boundary scan state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TMS to change on the falling edge of TCK. Holding TMS high for five consecutive TCK cycles drives the boundary scan controller state machine to the Test-Logic-Reset state. When the boundary scan controller enters the Test-Logic-Reset state, the Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism. The internal pull-up resistor on the TMS pin is enabled. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 27 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 7.4.6.4 Test Data Input (TDI) The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TDI to change on the falling edge of TCK. The internal pull-up resistor on the TDI pin is enabled. 7.4.6.5 Test Data Output (TDO) The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the IEEE Standard 1149.1 expects the value on TDO to change on the falling edge of TCK. 7.4.6.6 Data register According to the IEEE1149.1 standard there are two types of data register defined: bypass and boundary scan The bypass register enable the possibility to bypass a device when part of the scan path.Serial data is allowed to be transferred through a device from the TDI pin to the TDO pin without affecting the operation of the device. The boundary scan register is the scan-chain of the boundary cells. The size of this register is dependent on the command. 7.4.6.7 Boundary scan cell The boundary scan cell opens the possibility to control a hardware pin independent of its normal use case. Basically the cell can only do one of the following: control, output and input. TDI TAP TCK IC2 LOGIC Boundary scan cell LOGIC IC1 TDO TDI TMS TDO TAP TCK TMS 001aam306 Figure 21. Boundary scan cell path structure 7.4.6.8 Boundary scan path This chapter shows the boundary scan path of the MFRC631. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 28 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 21. Boundary scan path of the MFRC631 Number (decimal) Cell Port Function 23 BC_1 - Control 22 BC_8 CLKOUT Bidir 21 BC_1 - Control 20 BC_8 SCL2 Bidir 19 BC_1 - Control 18 BC_8 SDA2 Bidir 17 BC_1 - Control 16 BC_8 IFSEL0 Bidir 15 BC_1 - Control 14 BC_8 IFSEL1 Bidir 13 BC_1 - Control 12 BC_8 IF0 Bidir 11 BC_1 - Control 10 BC_8 IF1 Bidir 9 BC_1 - Control 8 BC_8 IF2 Bidir 7 BC_1 IF2 Output2 6 BC_4 IF3 Bidir 5 BC_1 - Control 4 BC_8 IRQ Bidir 3 BC_1 - Control 2 BC_8 SIGIN Bidir 1 BC_1 - Control 0 BC_8 SIGOUT Bidir Refer to the MFRC631 BSDL file. 7.4.6.9 Boundary Scan Description Language (BSDL) All of the boundary scan devices have a unique boundary structure which is necessary to know for operating the device. Important components of this language are: • • • • • available test bus signal compliance pins command register data register boundary scan structure (number and types of the cells, their function and the connection to the pins.) 2 The MFRC631 is using the cell BC_8 for the IO-Lines. The I C Pin is using a BC_4 cell. For all pad enable lines the cell BC1 is used. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 29 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus The manufacturer's identification is 02Bh. • • • • attribute IDCODEISTER of MFRC631: entity is "0001" and -- version "0011110010000010b" and -- part number (3C82h) "00000010101b" and -- manufacturer (02Bh) "1b"; -- mandatory The user code data is coded as followed: • product ID (3 bytes) • version These four bytes are stored as the first four bytes in the EEPROM. 7.4.6.10 Non-IEEE1149.1 commands Interface on/off With this command the host/SAM interface can be deactivated and the Read and Write command of the boundary scan interface is activated. (Data = 1). With Update-DR the value is taken over. Register Access Read At Capture-DR the actual address is read and stored in the DR. Shifting the DR is shifting in a new address. With Update-DR this address is taken over into the actual address. Register Access Write At the Capture-DR the address and the data is taken over from the DR. The data is copied into the internal register at the given address. 7.5 Buffer 7.5.1 Overview An 512 × 8-bit FIFO buffer is implemented in the MFRC631. It buffers the input and output data stream between the host and the internal state machine of the MFRC631. Thus, it is possible to handle data streams with lengths of up to 512 bytes without taking timing constraints into account. The FIFO can also be limited to a size of 255 byte. In this case all the parameters (FIFO length, Watermark...) require a single byte only for definition. In case of a 512 byte FIFO length the definition of this values requires 2 bytes. 7.5.2 Accessing the FIFO buffer When the μ-Controller starts a command, the MFRC631 may, while the command is in progress, access the FIFO-buffer according to that command. Physically only one FIFObuffer is implemented, which can be used in input and output direction. Therefore the μController has to take care, not to access the FIFO buffer in a way that corrupts the FIFO data. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 30 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 7.5.3 Controlling the FIFO buffer Besides writing to and reading from the FIFO buffer, the FIFO-buffer pointers might be reset by setting the bit FIFOFlush in FIFOControl to 1. Consequently, the FIFOLevel bits are set to logic 0, the actually stored bytes are not accessible any more and the FIFO buffer can be filled with another 512 bytes (or 255 bytes if the bit FIFOSize is set to 1) again. 7.5.4 Status Information about the FIFO buffer The host may obtain the following data about the FIFO-buffers status: • Number of bytes already stored in the FIFO-buffer. Writing increments, reading decrements the FIFO level: FIFOLength in register FIFOLength (and FIFOControl Register in 512 byte mode) • Warning, that the FIFO-buffer is almost full: HiAlert in register FIFOControl according to the value of the water level in register WaterLevel (Register 02h bit [2], Register 03h bit[7:0]) • Warning, that the FIFO-buffer is almost empty: LoAlert in register FIFOControl according to the value of the water level in register WaterLevel (Register 02h bit [2], Register 03h bit[7:0]) • FIFOOvl bit indicates, that bytes were written to the FIFO buffer although it was already full: ErrIRQ in register IRQ0. WaterLevel is one single value defining both HiAlert (counting from the FIFO top) and LoAlert (counting from the FIFO bottom). The MFRC631 can generate an interrupt signal if: • LoAlertIRQEn in register IRQ0En is set to logic 1 it will activate pin IRQ when LoAlert in the register FIFOControl changes to 1. • HiAlertIRQEN in register IRQ0En is set to logic 1 it will activate pin IRQ when HiAlert in the register FIFOControl changes to 1. The bit HiAlert is set to logic 1 if maximum water level bytes (as set in register WaterLevel) or less can be stored in the FIFO-buffer. It is generated according to the following equation: (2) The bit LoAlert is set to logic 1 if water level bytes (as set in register WaterLevel) or less are actually stored in the FIFO-buffer. It is generated according to the following equation: (3) 7.6 Analog interface and contactless UART MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 31 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 7.6.1 General The integrated contactless UART supports the external host online with framing and error checking of the protocol requirements up to 848 kbit/s. An external circuit can be connected to the communication interface pins SIGIN and SIGOUT to modulate and demodulate the data. The contactless UART handles the protocol requirements for the communication schemes in co-operation with the host. The protocol handling itself generates bit- and byte-oriented framing and handles error detection like Parity and CRC according to the different contactless communication schemes. The size, the tuning of the antenna, and the supply voltage of the output drivers have an impact on the achievable field strength. The operating distance between reader and card depends additionally on the type of card used. 7.6.2 TX transmitter The signal delivered on pin TX1 and pin TX2 is the 13.56 MHz carrier modulated by an envelope signal for energy and data transmission. It can be used to drive an antenna directly, using a few passive components for matching and filtering, see Section 13 "Application information". The signal on TX1 and TX2 can be configured by the register DrvMode, see Section 8.8.1 "TxMode". The modulation index can be set by the TxAmp. Following figure shows the general relations during modulation influenced by set_clk_mode envelope TX ASK100 TX ASK10 (1) (2) 1: Defined by set_cw_amplitude. 2: Defined by set_residual_carrier. time 001aan355 Figure 22. General dependences of modulation Note: When changing the continuous carrier amplitude, the residual carrier amplitude also changes, while the modulation index remains the same. The registers Section 8.8 and Section 8.10 control the data rate, the framing during transmission and the setting of the antenna driver to support the requirements at the different specified modes and transfer speeds. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 32 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 22. Settings for TX1 and TX2 TxClkMode (binary) Tx1 and TX2 output Remarks 000 High impedance - 001 0 output pulled to 0 in any case 010 1 output pulled to 1 in any case 110 RF high side push open drain, only high side (push) MOS supplied with clock, clock parity defined by invtx; low side MOS is off 101 RF low side pull open drain, only low side (pull) MOS supplied with clock, clock parity defined by invtx; high side MOS is off 111 13.56 MHz clock derived from 27.12 MHz quartz divided by 2 push/pull Operation, clock polarity defined by invtx; setting for 10% modulation Register TXamp and the bits for set_residual_carrier define the modulation index: Table 23. Setting residual carrier and modulation index by TXamp.set_residual_carrier MFRC631 Product data sheet COMPANY PUBLIC set_residual_carrier (decimal) residual carrier [%] modulation index [%] 0 99 0.5 1 98 1.0 2 96 2.0 3 94 3.1 4 91 4.7 5 89 5.8 6 87 7.0 7 86 7.5 8 85 8.1 9 84 8.7 10 83 9.3 11 82 9.9 12 81 10.5 13 80 11.1 14 79 11.7 15 78 12.4 16 77 13.0 17 76 13.6 18 75 14.3 19 74 14.9 20 72 16.3 21 70 17.6 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 33 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus set_residual_carrier (decimal) residual carrier [%] modulation index [%] 22 68 19.0 23 65 21.2 24 60 25.0 25 55 29.0 26 50 33.3 27 45 37.9 28 40 42.9 29 35 48.1 30 30 53.8 31 25 60.0 Note: At VDD(TVDD) 0: transfer speed = 27.12 MHz / (BR_T1 + 33) / 2^(BR_T0 - 1) The framing is implemented with 1 startbit, 8 databits and 1 stop bit. A parity bit is not used. Transfer speeds above 1228,8 kbit/s are not supported. Table 162. SerialSpeed register (address3Bh); reset value: 7Ah Bit 7 6 5 4 3 2 Symbol BR_T0 BR_T1 Access rights r/w r/w MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 1 0 © NXP B.V. 2018. All rights reserved. 90 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 163. SerialSpeed bits Bit Symbol Description 7 to 5 BR_T0 BR_T0 = 0: transfer speed = 27.12 MHz / (BR_T1 + 1) BR_T0 > 0: transfer speed = 27.12 MHz / (BR_T1 + 33) / 2^(BR_T0 - 1) 4 to 0 BR_T1 BR_T0 = 0: transfer speed = 27.12 MHz / (BR_T1 + 1) BR_T0 > 0: transfer speed = 27.12 MHz / (BR_T1 + 33) / 2^(BR_T0 - 1) Table 164. RS232 speed settings Transfer speed (kbit/s) SerialSpeed register content (Hex.) 7,2 FA 9,6 EB 14,4 DA 19,2 CB 38,4 AB 57,6 9A 115,2 7A 128,0 74 230,4 5A 460,8 3A 921,6 1C 1228,8 15 8.14.2 LFO_Trimm Table 165. LFO_Trim register (address 3Ch) Bit 7 6 5 4 3 Symbol LFO_trimm Access rights r/w 2 1 0 Table 166. LFO_Trim bits Bit Symbol Description 7 to 0 LFO_trimm Trimm value. Refer to Section 7.8.3 Note: If the trimm value is increased, the frequency of the oscillator decreases. 8.14.3 PLL_Ctrl Register The PLL_Ctrl register implements the control register for the IntegerN PLL. Two stages exist to create the ClkOut signal from the 27,12MHz input. In the first stage the 27,12Mhz MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 91 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus input signal is multiplied by the value defined in PLLDiv_FB and divided by two, and the second stage divides this frequency by the value defined by PLLDIV_Out. Table 167. PLL_Ctrl register (address3Dh) Bit 7 6 5 4 3 2 1 0 Symbol ClkOutSel ClkOut_En PLL_PD PLLDiv_FB Access rights r/w r/w r/w r/w Table 168. PLL_Ctrl register bits Bit Symbol Description 7 to 4 CLkOutSel • • • • • • • • • • • • • 3 ClkOut_En Enables the clock at Pin CLKOUT 2 PLL_PD PLL power down 1-0 PLLDiv_FB PLL feedback divider (see table 174) 0h - pin CLKOUT is used as I/O 1h - pin CLKOUT shows the output of the analog PLL 2h - pin CLKOUT is hold on 0 3h - pin CLKOUT is hold on 1 4h - pin CLKOUT shows 27.12 MHz from the crystal 5h - pin CLKOUT shows 13.56 MHz derived from the crystal 6h - pin CLKOUT shows 6.78 MHz derived from the crystal 7h - pin CLKOUT shows 3.39 MHz derived from the crystal 8h - pin CLKOUT is toggled by the Timer0 overflow 9h - pin CLKOUT is toggled by the Timer1 overflow Ah - pin CLKOUT is toggled by the Timer2 overflow Bh - pin CLKOUT is toggled by the Timer3 overflow Ch...Fh - RFU Table 169. Setting of feedback divider PLLDiv_FB [1:0] Bit 1 Bit 0 Division 0 0 23 (VCO frequency 312Mhz) 0 1 27 (VCO frequency 366MHz) 1 0 28 (VCO frequency 380Mhz) 1 1 23 (VCO frequency 312Mhz) 8.14.4 PLLDiv_Out Table 170. PLLDiv_Out register (address 3Eh) Bit 7 6 5 4 3 Symbol PLLDiv_Out Access rights r/w MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 2 1 0 © NXP B.V. 2018. All rights reserved. 92 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 171. PLLDiv_Out bits Bit Symbol Description 7 to 0 PLLDiv_Out PLL output divider factor; Refer to Section 7.8.2 Table 172. Setting for the output divider ratio PLLDiv_Out [7:0] Value Division 0 RFU 1 RFU 2 RFU 3 RFU 4 RFU 5 RFU 6 RFU 7 RFU 8 8 9 9 10 10 ... ... 253 253 254 254 8.15 Low-power card detection configuration registers The LPCD registers contain the settings for the low-power card detection. The setting for LPCD_IMax (6 bits) is done by the two highest bits (bit 7, bit 6) of the registers LPCD_QMin, LPCD_QMax and LPCD_IMin each. 8.15.1 LPCD_QMin Table 173. LPCD_QMin register (address 3Fh) Bit 7 6 5 4 3 2 Symbol LPCD_IMax.5 LPCD_IMax.4 LPCD_QMin Access rights r/w r/w r/w 1 0 Table 174. LPCD_QMin bits MFRC631 Product data sheet COMPANY PUBLIC Bit Symbol Description 7, 6 LPCD_IMax Defines the highest two bits of the higher border for the LPCD. If the measurement value of the I channel is higher than LPCD_IMax, a LPCD interrupt request is indicated by bit IRQ0.LPCDIRQ. All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 93 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Bit Symbol Description 5 to 0 LPCD_QMin Defines the lower border for the LPCD. If the measurement value of the Q channel is higher than LPCD_QMin, a LPCDinterrupt request is indicated by bit IRQ0.LPCDIRQ. 8.15.2 LPCD_QMax Table 175. LPCD_QMax register (address 40h) Bit 7 6 5 4 3 2 Symbol LPCD_IMax.3 LPCD_IMax.2 LPCD_QMax Access rights r/w r/w r/w 1 0 Table 176. LPCD_QMax bits Bit Symbol Description 7 LPCD_IMax.3 Defines the bit 3 of the high border for the LPCD. If the measurement value of the I channel is higher than LPCD IMax, a LPCD IRQ is raised. 6 LPCD_IMax.2 Defines the bit 2 of the high border for the LPCD. If the measurement value of the I channel is higher than LPCD IMax, a LPCD IRQ is raised. 5 to 0 LPCD_QMax Defines the high border for the LPCD. If the measurement value of the Q channel is higher than LPCD QMax, a LPCD IRQ is raised. 8.15.3 LPCD_IMin Table 177. LPCD_IMin register (address 41h) Bit 7 6 5 Symbol LPCD_IMax.1 LPCD_IMax.0 Access rights r/w r/w 4 3 2 1 0 LPCD_IMin r/w Table 178. LPCD_IMin bits MFRC631 Product data sheet COMPANY PUBLIC Bit Symbol Description 7 to 6 LPCD_IMax Defines lowest two bits of the higher border for the low-power card detection (LPCD). If the measurement value of the I channel is higher than LPCD IMax, a LPCD IRQ is raised. 5 to 0 LPCD_IMin Defines the lower border for the ow power card detection. If the measurement value of the I channel is lower than LPCD IMin, a LPCD IRQ is raised. All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 94 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 8.15.4 LPCD_Result_I Table 179. LPCD_Result_I register (address 42h) Bit 7 6 5 4 3 2 Symbol RFU- RFU- LPCD_Result_I Access rights - - r 1 0 Table 180. LPCD_I_Result bits Bit Symbol Description 7 to 6 RFU - 5 to 0 LPCD_Result_I Shows the result of the last low-power card detection (I-Channel). 8.15.5 LPCD_Result_Q Table 181. LPCD_Result_Q register (address 43h) Bit Symbol 7 6 RFU LPCD_I RQ_Clr LPCD_Reslult_Q r/w r Access rights 5 4 3 2 1 0 Table 182. LPCD_Q_Result bits Bit Symbol Description 7 RFU - 6 LPCD_IRQ_Clr If set no LPCD IRQ is raised any more until the next low-power card detection procedure. Can be used by software to clear the interrupt source. 5 to 0 LPCD_Result_Q Shows the result of the last ow power card detection (Q-Channel). 8.15.6 LPCD_Options This register is available on the CLRC63103 only. For silicon version CLRC63102 this register on address 3AH is RFU. Table 183. LPCD_Options register (address 3Ah) Bit 7 Symbol Access rights MFRC631 Product data sheet COMPANY PUBLIC 6 5 RFU - 4 3 2 1 0 LPCD_TX_HIGH LPCD_FILTER LPCD_Q_ UNSTABLE LPCD_I_UNSTABLE r/w r/w r r All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 95 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 184. LPCD_Options Bit Symbol Description 7 to 4 RFU - 3 LPCD_TX_HIGH If set, the TX-driver will be the same as VTVDD during LPCD. This will allow for a better LPCD detection range (higher transmitter output voltage) at the cost of a higher current consumption. If this bit is cleared, the output voltage at the TX drivers will be = TVDD- 0.4V. If this bit is set, the output voltage at the TX drivers will be = VTVDD. 2 LPCD_FILTER If set, The LPCD decision is based on the result of a filter which allows to remove noise from the evaluated signal in I and Q channel. Enabling LPCD_FILTER allows compensating for noisy conditions at the cost of a longer RF-ON time required for sampling. The total maximum LPCD sampling time is 4.72us. 1 LPCD_Q_UNSTABLE If bit 2 of this register is set, bit 1 indicates that the Q-channel ADC value was changing during the LPCD measuring time. Note: Only valid if LPCD_FILTER (bit 2) = 1. This information can be used by the host application for configuration of e.g. the threshold LPCD_QMax or inverting the TX drivers. 0 LPCD_I_UNSTABLE If bit 2 of this register is set, bit 0 Indicates that the I-channel ADC value was changing during the LPCD measuring time. Note: Only valid if LPCD_FILTER (bit2) = 1. This information can be used by the host application for configuration of e.g. the threshold LPCD_IMax or inverting the TX drivers. 8.16 Pin configuration 8.16.1 PinEn Table 185. PinEn register (address 44h) Bit 7 6 5 4 3 2 1 0 Symbol SIGIN_EN CLKOUT_EN IFSEL1_EN IFSEL0_EN TCK_EN TMS_EN TDI_EN TMDO_EN Access rights r/w r/w r/w r/w r/w r/w r/w r/w Table 186. PinEn bits MFRC631 Product data sheet COMPANY PUBLIC Bit Symbol Description 7 SIGIN_EN Enables the output functionality on SIGIN (pin 5). The pin is then used as I/O. 6 CLKOUT_EN Enables the output functionality of the CLKOUT (pin 22). The pin is then used as I/O. The CLKOUT function is switched off. 5 IFSEL1_EN Enables the output functionality of the IFSEL1 (pin 27). The pin is then used as I/O. 4 IFSEL0_EN Enables the output functionality of the IFSEL0 (pin 26). The pin is then used as I/O. 3 TCK_EN Enables the output functionality of the TCK (pin 4) of the boundary scan interface. The pin is then used as I/O. If the boundary scan is activated in EEPROM, this bit has no function. All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 96 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Bit Symbol Description 2 TMS_EN Enables the output functionality of the TMS (pin 2) of the boundary scan interface. The pin is then used as I/O. If the boundary scan is activated in EEPROM, this bit has no function. 1 TDI_EN Enables the output functionality of the TDI (pin 1) of the boundary scan interface. The pin is then used as I/O. If the boundary scan is activated in EEPROM, this bit has no function. 0 TDO_EN Enables the output functionality of the TDO(pin 3) of the boundary scan interface. The pin is then used as I/O. If the boundary scan is activated in EEPROM, this bit has no function. 8.16.2 PinOut Table 187. PinOut register (address 45h) Bit 7 6 5 Symbol SIGIN_OUT CLKOUT_OUT Access rights r/w r/w 4 3 2 1 0 TDI_OUT TDO_OUT r/w r/w r/w IFSEL1_OUT IFSEL0_OUT TCK_OUT TMS_OUT r/w r/w r/w Table 188. PinOut bits Bit Symbol Description 7 SIGIN_OUT Output buffer of the SIGIN pin 6 CLKOUT_OUT Output buffer of the CLKOUT pin 5 IFSEL1_OUT Output buffer of the IFSEL1 pin 4 IFSEL0_OUT Output buffer of the IFSEL0 pin 3 TCK_OUT Output buffer of the TCK pin 2 TMS_OUT Output buffer of the TMS pin 1 TDI_OUT Output buffer of the TDI pin 0 TDO_OUT Output buffer of the TDO pin 8.16.3 PinIn Table 189. PinIn register (address 46h) Bit 7 6 5 4 3 2 1 0 Symbol SIGIN_IN CLKOUT_IN IFSEL1_IN IFSEL0_IN TCK_IN TMS_IN TDI_IN TDO_IN Access rights r r r r r r r r Table 190. PinIn bits MFRC631 Product data sheet COMPANY PUBLIC Bit Symbol Description 7 SIGIN_IN Input buffer of the SIGIN pin All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 97 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Bit Symbol Description 6 CLKOUT_IN Input buffer of the CLKOUT pin 5 IFSEL1_IN Input buffer of the IFSEL1 pin 4 IFSEL0_IN Input buffer of the IFSEL0 pin 3 TCK_IN Input buffer of the TCK pin 2 TMS_IN Input buffer of the TMS pin 1 TDI_IN Input buffer of the TDI pin 0 TDO_IN Input buffer of the TDO pin 8.16.4 SigOut Table 191. SigOut register (address 47h) Bit 7 6 5 4 3 2 1 Symbol Pad Speed RFU SigOutSel Access rights r/w - r/w 0 Table 192. SigOut bits Bit Symbol Description 7 PadSpeed If set, the I/O pins are supporting a fast switching mode.The fast mode for the I/O’s will increase the peak current consumption of the device, especially if multiple I/Os are switching at the same time. The power supply needs to be designed to deliver this peak currents. 6 to 4 RFU - 3 to 0 SIGOutSel 0h, 1h - The pin SIGOUT is 3-state 2h - The pin SIGOUT is 0 3h - The pin SIGOUT is 1 4h - The pin SIGOUT shows the TX-envelope 5h - The pin SIGOUT shows the TX-active signal 6h - The pin SIGOUT shows the S3C (generic) signal 7h - The pin SIGOUT shows the RX-envelope (only valid for ISO/IEC 14443A, 106 kBd) 8h - The pin SIGOUT shows the RX-active signal 9h - The pin SIGOUT shows the RX-bit signal 8.17 Version register 8.17.1 Version Table 193. Version register (address 7Fh) Bit Symbol MFRC631 Product data sheet COMPANY PUBLIC 7 6 5 4 3 Version 2 1 0 SubVersion All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 98 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Bit 7 6 Access rights 5 4 3 r 2 1 0 r Table 194. Version bits MFRC631 Product data sheet COMPANY PUBLIC Bit Symbol Description 7 to 4 Version Includes the version of the MFRC631 silicon. MFRC63102: 0x1 MFRC63103: 0x1 3 to 0 SubVersion Includes the subversion of the MFRC631 silicon. MFRC63102: 0x8 MFRC63103: 0xA All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 99 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 9 Limiting values Table 195. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter VDD Conditions Min Max Unit supply voltage -0.5 + 6.0 V VDD(PVDD) PVDD supply voltage -0.5 + 6.0 V VDD(TVDD) TVDD supply voltage -0.5 + 6.0 V IDD(TVDD) TVDD supply current MFRC63102 - 250 mA MFRC63103 - 500 Vi(RXP) input voltage on pin RXP -0.5 + 2.0 V Vi(RXN) input voltage on pin RXN -0.5 + 2.0 V Ptot total power dissipation - 1125 mW VESD(HBM) electrostatic discharge voltage Human Body Model (HBM); 1500 Ω, 100 pF; JESD22-A114B -2000 2000 V VESD(CDM) electrostatic discharge voltage Charge Device Model (CDM); -500 500 V Tj(max) maximum junction temperature - 125 °C Tstg storage temperature -55 +150 °C MFRC631 Product data sheet COMPANY PUBLIC per package no supply voltage applied All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 100 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 10 Recommended operating conditions Exposure of the device to other conditions than specified in the Recommended Operating Conditions section for extended periods may affect device reliability. Electrical parameters (minimum, typical and maximum) of the device are guaranteed only when it is used within the recommended operating conditions. Table 196. Operating conditions MFRC63102HN Symbol Parameter VDD supply voltage Conditions [1] Min Typ Max Unit 3.0 5.0 5.5 V 3.0 5.0 5.5 V 3.0 5.0 5.5 V VDD(TVDD) TVDD supply voltage VDD(PVDD) PVDD supply voltage Tamb operating ambient temperature in still air with exposed pin soldered on a 4 layer JEDEC PCB -25 +25 +85 °C Tstg storage temperature no supply voltage applied, relative humidity 45...75% -40 +25 +125 °C Min Typ Max Unit 2.5 5.0 5.5 V 2.5 5.0 5.5 V all host interfaces except I2C interface 2.5 5.0 5.5 V all host interfaces incl. I2C interface 3.0 5.0 5.5 V [1] VDD(PVDD) must always be the same or lower than VDD. Table 197. Operating conditions MFRC63103HN Symbol Parameter VDD supply voltage VDD(TVDD) TVDD supply voltage VDD(PVDD) PVDD supply voltage Conditions [1] Tamb operating ambient temperature in still air with exposed pin soldered on a 4 layer JEDEC PCB -40 +25 +105 °C Tstg storage temperature no supply voltage applied, relative humidity 45...75% -45 +25 +125 °C [1] VDD(PVDD) must always be the same or lower than VDD. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 101 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 11 Thermal characteristics Table 198. Thermal characteristics Symbol Parameter Conditions Package Rth(j-a) thermal resistance from junction to ambient in still air with exposed pin soldered on a 4 layer JEDEC PCB HVQFN32 40 MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 Typ Unit K/W © NXP B.V. 2018. All rights reserved. 102 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 12 Characteristics Table 199. Characteristics Symbol Parameter Conditions Min Typ Max Unit IDD = AVDD+DVDD; modem on (transmitter and receiver are switched on) - 17 20 mA IDD = AVDD+DVDD; modem off (transmitter and receiver are switched off) - 0.45 0.5 mA Current consumption IDD supply current IDD(PVDD) PVDD supply current no load on digital pins, leakage current only - 0.5 5 μA IDD(TVDD) TVDD supply current MFRC63102HN - 100 250 mA MFRC63103HN - 250 350 mA ambient temp = +25 °C - 40 400 nA ambient temp = -40°C... +85°C - 1.5 2.1 μA MFRC63103: ambient temp = +105 °C - 3.5 5.2 μA ambient temp = 25 °C, IVDD+ITVDD+ IPVDD - 3 6 μA ambient temp = -40°C... +105°C, Istby = IVDD+ITVDD+ IPVDD - 5.25 26 - 3.3 6.3 μA LPCD_TX_HIGH = 0, - 12 - μA LPCD_TX_HIGH = 1 - 23 - LPCD_TX_HIGH = 0; TVDD=5.0 V T=25C; - 10 - μs LPCD_TX_HIGH = 1; TVDD=5.0 V; T=25C - 50 - μs AVDD 220 470 - nF Ipd Istby power-down current standby current ILPCD(sleep) LPCD sleep current All OUTx pins floating All OUTx pins floating All OUTx pins floating LFO active, no RF field on, ambient temp = 25 °C ILPCD(average)LPCD average current tRFON RF-on time during LPCD [1] All OUTx pins floating, TxLoad = 50 ohms. LPCD_FILTER = 0; Rfon duration = 10 us, RF-off duration 300ms; VTVDD = 3.0V; Tamb = 25°C; ILPCD = IVDD+ITVDD+ IPVDD Buffer capacitors on AVDD,DVDD CL external buffer capacitor MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 103 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Symbol Parameter Conditions Min Typ Max Unit CL external buffer capacitor DVDD 220 470 - nF 0.0 50 500 nA 0.3 x VDD(PVDD) V I/O pin characteristics SIGIN/OUT7, SIGOUT, CLKOUT/OUT6, IFSEL0/OUT4, IFSEL1/OUT5, TCK/OUT3, TMS/OUT2, TDI/ OUT1, TDO/OUT0, IRQ, IF0, IF1, IF2, SCL2, SDA2 ILI input leakage current output disabled VIL low-level input voltage -0.5 - VIH high-level input voltage 0.7 x VDD(PVDD) VDD(PVDD)VDD(PVDD) + 0.5 V VOL low-level output voltage 0.0 0.0 VOH high-level output voltage Ci input capacitance If pins are used as output OUTx, IOH = 4 mA driving current for each pin 0.4 V VDD(PVDD)-0.4 VDD(PVDD)VDD(PVDD) V 0.0 2.5 4.5 pF 0.4 V Pin characteristics PDOWN VIL low-level input voltage 0.0 0.0 VIH high-level input voltage 0.6 x VPVDD VDD(PVDD)VDD(PVDD) V 50 72 120 KΩ Pull-up resistance for TCK, TMS, TDI, IF2 Rpu pull-up resistance Pin characteristics AUX 1, AUX 2 Vo output voltage 0.0 - 1.8 V CL load capacitance 0.0 - 400 pF Pin characteristics RXP, RXN Vpp input voltage 0 1.65 1.8 V Ci input capacitance 2 3.5 5 pF Vmod(pp) modulation voltage - 2.5 - mV Vss(TVSS) - VDD(TVDD) V MFRC63102: T=25°C, VDD(TVDD) = 5.0V - 1.5 - Ω MFRC63103: T=25°C, VDD(TVDD) = 5.0V - 1.2 - Ω configured to 27.12 MHz - 27.12 - MHz - 50 - % Vmod(pp) = Vi(pp)(max) - Vi(pp) (min) Pins TX1 and TX2 Vo output voltage Ro output resistance Clock frequency Pin CLKOUT fclk clock frequency δclk clock duty cycle Crystal connection XTAL1, XTAL2 Vo(p-p) peak-to-peak output voltage pin XTAL1 - 1.0 - V Vi input voltage pin XTAL1 0.0 - 1.8 V Ci input capacitance pin XTAL1 - 3 - pF MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 104 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Symbol Parameter Conditions Min Typ Max Unit ISO/IEC14443 compliancy 27.12-14kHz 27.12 27.12+14kHz MHz Crystal requirements fxtal crystal frequency ESR equivalent series resistance - 50 100 Ω CL load capacitance - 10 - pF Pxtal crystal power dissipation - 50 100 μW - 2 100 nA - +0.3 VDD(PVDD) V 2 Input characteristics I/O Pin Characteristics IF3-SDA in I C configuration ILI input leakage current VIL LOW-level input voltage -0.5 VIH HIGH-level input voltage 0.7 VDD(PVDD) - VDD(PVDD) + 0.5 V VOL LOW-level output voltage IOL = 3 mA - - 0.3 V IOL LOW-level output current VOL = 0.4 V; Standard mode, Fast mode 4 - - mA VOL = 0.6 V; Standard mode, Fast mode 6 - - mA Standard mode, Fast mode, CL < 400 pF - - 250 ns Fast mode +; CL < 550 pF - - 120 ns tf(o) output fall time output disabled tSP pulse width of spikes that must be suppressed by the input filter 0 - 50 ns Ci input capacitance - 3.5 5 pF CL load capacitance Standard mode - - 400 pF Fast mode - - 550 pF - - year - - cycle tEER EEPROM data retention time Tamb = +55 °C 10 NEEC EEPROM endurance (number of programming cycles) under all operating conditions 5 x 10 [1] 5 Ipd is the total current for all supplies. Vmod Vi(p-p)(max) VMID Vi(p-p)(min) 13.56 MHz carrier 0V 001aak012 Figure 31. Pin RX input voltage MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 105 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 12.1 Timing characteristics Table 200. SPI timing characteristics Symbol Parameter tSCKL Conditions Min Typ Max Unit SCK LOW time 50 - - ns tSCKH SCK HIGH time 50 - - ns th(SCKH-D) SCK HIGH to data input hold time SCK to changing MOSI 25 - - ns tsu(D-SCKH) data input to SCK HIGH set- changing MOSI to SCK up time 25 - - ns th(SCKL-Q) SCK LOW to data output hold time - - 25 ns t(SCKL-NSSH) SCK LOW to NSS HIGH time 0 - - ns tNSSH NSS HIGH time 50 - - ns SCK to changing MISO before communication Remark: To send more bytes in one data stream the NSS signal must be LOW during the send process. To send more than one data stream the NSS signal must be HIGH between each data stream. 2 Table 201. I C-bus timing in fast mode and fast mode plus Symbol MFRC631 Product data sheet COMPANY PUBLIC Parameter Conditions Fast mode Fast mode Unit Plus Min Max Min Max 0 400 0 1000 kHz after this period, 600 the first clock pulse is generated - 260 - ns fSCL SCL clock frequency tHD;STA hold time (repeated) START condition tSU;STA set-up time for a repeated START condition 600 - 260 - ns tSU;STO set-up time for STOP condition 600 - 260 - ns tLOW LOW period of the SCL clock 1300 - 500 - ns tHIGH HIGH period of the SCL clock 600 - 260 - ns tHD;DAT data hold time 0 900 - 450 ns tSU;DAT data set-up time 100 - - - ns tr rise time SCL signal 20 300 - 120 ns tf fall time SCL signal 20 300 - 120 ns tr rise time SDA and SCL signals 20 300 - 120 ns tf fall time SDA and SCL signals 20 300 - 120 ns tBUF bus free time between a STOP and START condition 1.3 - 0.5 - μs All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 106 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus SDA tf tSU;DAT tLOW tSP tf tr tHD;STA tBUF SCL tr tHD;STA S tHIGH tHD;DAT tSU;STO tSU;STA Sr P S 001aaj635 2 Figure 32. Timing for fast and standard mode devices on the I C-bus MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 107 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 13 Application information A typical application diagram using a complementary antenna connection to the MFRC631 is shown in Figure 33. The antenna tuning and RF part matching is described in the application note [1] and [2]. VDD PVDD TVDD 25 18 8 AVDD 9 13 14 PDOWN MICROPROCESSOR host interface IRQ DVDD 21 28-31 17 READER IC 16 32 15 CRXN RXN VMID R1 C vmid TX1 R2 C1 L0 TVSS TX2 Ra C0 C2 C0 C2 Ra antenna Lant L0 C1 14 7 12 33 VSS 19 RXP 20 XTAL1 XTAL2 R3 R4 CRXP 27.12 MHz 001aam269 Figure 33. Typical application antenna circuit diagram 13.1 Antenna design description The matching circuit for the antenna consists of an EMC low pass filter (L0 and C0), a matching circuitry (C1 and C2), and a receiving circuits (R1 = R3, R2 = R4, C3 = C5 and C4 = C6;), and the antenna itself. The receiving circuit component values needs to be designed for operation with the MFRC631. A reuse of dedicated antenna designs done for other products without adaptation of component values will result in degraded performance. 13.1.1 EMC low pass filter The MIFARE product-based system operates at a frequency of 13.56 MHz. This frequency is derived from a quartz oscillator to clock the MFRC631 and is also the basis for driving the antenna with the 13.56 MHz energy carrier. This will not only cause emitted power at 13.56 MHz but will also emit power at higher harmonics. The international EMC regulations define the amplitude of the emitted power in a broad frequency range. Thus, an appropriate filtering of the output signal is necessary to fulfil these regulations. Remark: The PCB layout has a major influence on the overall performance of the filter. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 108 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 13.1.2 Antenna matching Due to the impedance transformation of the given low pass filter, the antenna coil has to be matched to a certain impedance. The matching elements C1 and C2 can be estimated and have to be fine tuned depending on the design of the antenna coil. The correct impedance matching is important to provide the optimum performance. The overall quality factor has to be considered to guarantee a proper ISO/IEC 14443 communication scheme. Environmental influences have to be considered as well as common EMC design rules. For details refer to the NXP application notes. 13.1.3 Receiving circuit The internal receiving concept of the MFRC631 makes use both side-bands of the subcarrier load modulation of the card response via a differential receiving concept (RXP, RXN). No external filtering is required. It is recommended to use the internally generated VMID potential as the input potential of pin RX. This DC voltage level of VMID has to be coupled to the Rx-pins via R2 and R4. To provide a stable DC reference voltage capacitances C4, C6 has to be connected between VMID and ground. Refer to Figure 33 Considering the (AC) voltage limits at the Rx-pins the AC voltage divider of R1 + C3 and R2 as well as R3 + C5 and R4 has to be designed. Depending on the antenna coil design and the impedance matching the voltage at the antenna coil varies from antenna design to antenna design. Therefore the recommended way to design the receiving circuit is to use the given values for R1(= R3), R2 (= R4), and C3 (= C5) from the above mentioned application note, and adjust the voltage at the RX-pins by varying R1(= R3) within the given limits. Remark: R2 and R4 are AC-wise connected to ground (via C4 and C6). 13.1.4 Antenna coil The precise calculation of the antenna coils’ inductance is not practicable but the inductance can be estimated using the following formula. We recommend designing an antenna either with a circular or rectangular shape. (4) • I1 - Length in cm of one turn of the conductor loop • D1 - Diameter of the wire or width of the PCB conductor respectively • K - Antenna shape factor (K = 1,07 for circular antennas and K = 1,47 for square antennas) • L1 - Inductance in nH • N1 - Number of turns • Ln: Natural logarithm function The actual values of the antenna inductance, resistance, and capacitance at 13.56 MHz depend on various parameters such as: MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 109 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus • • • • • antenna construction (Type of PCB) thickness of conductor distance between the windings shielding layer metal or ferrite in the near environment Therefore a measurement of those parameters under real life conditions, or at least a rough measurement and a tuning procedure is highly recommended to guarantee a reasonable performance. For details refer to the above mentioned application notes. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 110 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 14 Package outline HVQFN32: plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body 5 x 5 x 0.85 mm B D SOT617-1 A terminal 1 index area A E A1 c detail X C e1 e 1/2 e b 9 L y y1 C v M C A B w M C 16 17 8 e e2 Eh 1/2 1 terminal 1 index area e 24 32 25 X Dh 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A(1) max. A1 b c D (1) Dh E (1) Eh e e1 e2 L v w y y1 mm 1 0.05 0.00 0.30 0.18 0.2 5.1 4.9 3.25 2.95 5.1 4.9 3.25 2.95 0.5 3.5 3.5 0.5 0.3 0.1 0.05 0.05 0.1 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT617-1 --- MO-220 --- EUROPEAN PROJECTION ISSUE DATE 01-08-08 02-10-18 Figure 34. Package outline SOT617-1 (HVQFN32) MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 111 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Detailed package information can be found at http://www.nxp.com/package/ SOT617-1.html. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 112 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 15 Handling information Moisture Sensitivity Level (MSL) evaluation has been performed according to SNWFQ-225B rev.04/07/07 (JEDEC J-STD-020C). MSL for this package is level 2 which means 260 °C convection reflow temperature. For MSL2: • Dry pack is required. • 1 year out-of-pack floor life at maximum ambient temperature 30 °C/ 85 % RH. For MSL1: • No dry pack is required. • No out-of-pack floor live spec. required. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 113 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 16 Packing information The straps around the package of stacked trays inside the plano-box have sufficient pre-tension to avoid loosening of the trays. strap 46 mm from corner tray ESD warning preprinted chamfer barcode label (permanent) PIN 1 barcode label (peel-off) chamfer QA seal PIN 1 Hyatt patent preprinted In the traystack (2 trays) only ONE tray type* allowed *one supplier and one revision number. printed plano box 001aaj740 Figure 35. Packing information 1 tray MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 114 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus strap 46 mm from the corner PQ-label (permanent) bag dry-agent relative humidity indicator preprinted: recycling symbol moisture caution label ESD warning tray manufacturer bag info chamfer ESD warning preprinted PQ-label (permanent) PIN 1 PLCC52 dry-pack ID preprinted chamfer strap PIN 1 QA seal chamfer printed plano box PIN 1 aaa-004952 Figure 36. Packing information 5 tray MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 115 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus BC BB BA BA BD BD BC 0.50 section BC-BC scale 4:1 BB A B C 0.50 section BA-BA scale 4:1 3.00 1.55 2.50 end lock AJ AJ AR AR side lock AN AK AL AL AK detail AC scale 20:1 section BD-BD scale 4:1 3.32 1.10 (0.30) A B C vacuum cell AM AM 0.35 14.20±0.08+10°/S SQ. 1.20 12.80-5°/S SQ. 0.56 (0.64) (14.40+5°/S SQ.) (1.45) 16.60±0.08+7°/S SQ. 13.85±0.08+12°/S SQ. section AJ-AJ scale 2:1 section AL-AL scale 5:1 section AK-AK scale 5:1 AN section AN-AN scale 4:1 section AM-AM scale 4:1 section AR-AR scale 2:1 aaa-004949 Figure 37. Tray details MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 116 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus ASSY REEL + LABELS tape (see: HOW TO SECURE) see: ASSY REEL + LABELS guard band Ø 330x12/16/24/32 (hub 7'') label side embossed ESD logo tape (see: HOW TO SECURE) circular sprocket holes opposite the label side of reel printed plano-box cover tape embossed ESD logo carrier tape Ø 330x16/24/32/44 (hub 4'') Ø 330x44 (hub 6'') Ø 180x12/16/24 enlongated PIN1 has to be in quadrant 1 circular PIN1 PIN1 SO PLCC enlongated PIN1 1 PIN1 2 3 4 BGA bare die QFP product orientation in carrier tape unreeling direction (HV)QFN (HV)SON (H)BCC product orientation ONLY for turned products with 12nc ending 128 PIN1 SO PIN1 QFP HOW TO SECURE LEADER END TO THE GUARD BAND, HOW TO SECURE GUARD BAND PIN1 1 2 PIN1 3 4 PIN1 for SOT765 BGA for SOT505-2 ending 125 bare die ending 125 (HV)QFN (HV)SON (H)BCC tapeslot label side trailer trailer : lenght of trailer shall be 160 mm min. and covered with cover tape leader : lenght of trailer shall be 400 mm min. and covered with cover tape circular sprocket hole side guard band leader QA seal preprinted ESD warning PQ-label (permanent) dry-pack ID preprinted tape (with pull tabs on both ends) lape double-backed onto itself on both ends guard band aaa-004950 Figure 38. Packing information Reel MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 117 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 118 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 17 Appendix 17.1 LoadProtocol command register initialization The RF configuration is loaded with the command Load Protocol. The tables below show the register configuration as performed by this command for each of the protocols. Antenna specific configurations are not covered by this register settings. The MFRC63102 is not initialized for any antenna configuration. For this products the antenna configuration needs to be done by firmware. The MFRC63103 antenna configuration in the user EEPROM is described in the Section 17.2. Table 202. Protocol Number 00: ISO/IEC14443-A 106 / MIFARE Classic MFRC631 Product data sheet COMPANY PUBLIC Value for register Value (hex) TxBitMod 20 RFU 00 TxDataCon 04 TxDataMod 50 TxSymFreq 40 TxSym0H 00 TxSym0L 00 TxSym1H 00 TxSym1L 00 TxSym2 00 TxSym3 00 TxSym10Len 00 TxSym32Len 00 TxSym10BurstCtrl 00 TxSym10Mod 00 TxSym32Mod 50 RxBitMod 02 RxEofSym 00 RxSyncValH 00 RxSyncValL 01 RxSyncMod 00 RxMod 08 RxCorr 80 FabCal B2 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 119 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 203. Protocol Number 01: ISO/IEC14443-A 212/ MIFARE Classic Value for register Value (hex) TxBitMod 20 RFU 00 TxDataCon 05 TxDataMod 50 TxSymFreq 50 TxSym0H 00 TxSym0L 00 TxSym1H 00 TxSym1L 00 TxSym2 00 TxSym3 00 TxSym10Len 00 TxSym32Len 00 TxSym10BurstCtrl 00 TxSym10Mod 00 TxSym32Mod 50 RxBitMod 22 RxEofSym 00 RxSyncValH 00 RxSyncValL 00 RxSyncMod 00 RxMod 0D RxCorr 80 FabCal B2 Table 204. Protocol Number 02: ISO/IEC14443-A 424/ MIFARE Classic MFRC631 Product data sheet COMPANY PUBLIC Value for register Value (hex) TxBitMod 20 RFU 00 TxDataCon 06 TxDataMod 50 TxSymFreq 60 TxSym0H 00 TxSym0L 00 TxSym1H 00 TxSym1L 00 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 120 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register Value (hex) TxSym2 00 TxSym3 00 TxSym10Len 00 TxSym32Len 00 TxSym10BurstCtrl 00 TxSym10Mod 00 TxSym32Mod 50 RxBitMod 22 RxEofSym 00 RxSyncValH 00 RxSyncValL 00 RxSyncMod 00 RxMod 0D RxCorr 80 FabCal B2 Table 205. Protocol Number 03: ISO/IEC14443-A 848/ MIFARE Classic MFRC631 Product data sheet COMPANY PUBLIC Value for register Value (hex) TxBitMod 20 RFU 00 TxDataCon 07 TxDataMod 50 TxSymFreq 70 TxSym0H 00 TxSym0L 00 TxSym1H 00 TxSym1L 00 TxSym2 00 TxSym3 00 TxSym10Len 00 TxSym32Len 00 TxSym10BurstCtrl 00 TxSym10Mod 00 TxSym32Mod 50 RxBitMod 22 RxEofSym 00 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 121 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register Value (hex) RxSyncValH 00 RxSyncValL 00 RxSyncMod 00 RxMod 0D RxCorr 80 FabCal B2 Table 206. Protocol Number 04: ISO/IEC14443-B 106 Value for register Value (hex) TxBitMod 09 RFU 00 TxDataCon 04 TxDataMod 08 TxSymFreq 04 TxSym0H 00 TxSym0L 03 TxSym1H 00 TxSym1L 01 TxSym2 00 TxSym3 00 TxSym10Len AB TxSym32Len 00 TxSym10BurstCtrl 00 TxSym10Mod 08 TxSym32Mod 00 RxBitMod 04 RxEofSym 00 RxSyncValH 00 RxSyncValL 00 RxSyncMod 02 RxMod MFRC63102: 1D MFRC63103: 0D MFRC631 Product data sheet COMPANY PUBLIC RxCorr 80 FabCal B2 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 122 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 207. Protocol Number 05: ISO/IEC14443-B 212 Value for register Value (hex) TxBitMod 09 RFU 00 TxDataCon 05 TxDataMod 08 TxSymFreq 05 TxSym0H 00 TxSym0L 03 TxSym1H 00 TxSym1L 01 TxSym2 00 TxSym3 00 TxSym10Len AB TxSym32Len 00 TxSym10BurstCtrl 00 TxSym10Mod 08 TxSym32Mod 00 RxBitMod 04 RxEofSym 00 RxSyncValH 00 RxSyncValL 00 RxSyncMod 02 RxMod MFRC63102: 1D MFRC63103: 0D RxCorr 80 FabCal B2 Table 208. Protocol Number 06: ISO/IEC14443-B 424 MFRC631 Product data sheet COMPANY PUBLIC Value for register Value (hex) TxBitMod 09 RFU 00 TxDataCon 06 TxDataMod 08 TxSymFreq 06 TxSym0H 00 TxSym0L 03 TxSym1H 00 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 123 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register Value (hex) TxSym1L 01 TxSym2 00 TxSym3 00 TxSym10Len AB TxSym32Len 00 TxSym10BurstCtrl 00 TxSym10Mod 08 TxSym32Mod 00 RxBitMod 04 RxEofSym 00 RxSyncValH 00 RxSyncValL 00 RxSyncMod 02 RxMod MFRC63102: 1D MFRC63103: 0D RxCorr 80 FabCal B2 Table 209. Protocol Number 07: ISO/IEC14443-B 848 MFRC631 Product data sheet COMPANY PUBLIC Value for register Value (hex) TxBitMod 09 RFU 00 TxDataCon 07 TxDataMod 08 TxSymFreq 07 TxSym0H 00 TxSym0L 03 TxSym1H 00 TxSym1L 01 TxSym2 00 TxSym3 00 TxSym10Len AB TxSym32Len 00 TxSym10BurstCtrl 00 TxSym10Mod 08 TxSym32Mod 00 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 124 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register Value (hex) RxBitMod 04 RxEofSym 00 RxSyncValH 00 RxSyncValL 00 RxSyncMod 02 RxMod MFRC63102: 1D MFRC63103: 0D RxCorr 80 FabCal B2 17.2 MFRC63103 EEPROM configuration The MFRC63103 user EEPROM had been initalized with useful values for configuration of the chip using a typical 65x65mm antenna. This values stored in EEPROM can be used to configure the MFRC63103 with the command LoadReg.Typically, some of this entries will be required to be modified compared to the preset values to achieve the best RF performance for a specific antenna. The registers 0x28...0x39 are relevant for configuration of the Antenna. For each supported protocol, a dedicated preset configuration is available. To ensure compatibility between products of the CLRC63103 family, all products use the same default settings which are initialized in EEPROM, even if some of this protocols are not supported by the MFRC63103 product (e.g.ISO/IEC14443-B) and cannot be used. Alternatively, the registers can be initialized by individual register write commands. Table 210. ISO/IEC14443-A 106 / MIFARE Classic MFRC631 Product data sheet COMPANY PUBLIC Value for register EEPROM address (hex) Value (hex) DrvMode C0 8E TxAmp C1 12 DrvCon C2 39 TxI C3 0A TXCrcPreset C4 18 RXCrcPreset C5 18 TxDataNum C6 0F TxModWidth C7 21 TxSym10BurstLen C8 00 TxWaitCtrl C9 C0 TxWaitLo CA 12 TxFrameCon CB CF RxSofD CC 00 RxCtrl CD 04 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 125 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) RxWait CE 90 RxTreshold CF 5C Rcv D0 12 RxAna D1 0A Table 211. ISO/IEC14443-A 212/ MIFARE Classic Value for register EEPROM address (hex) Value (hex) DrvMode D4 8E TxAmp D5 D2 DrvCon D6 11 TxI D7 0A TXCrcPreset D8 18 RXCrcPreset D9 18 TxDataNum DA 0F TxModWidth DB 10 TxSym10BurstLen DC 00 TxWaitCtrl DD C0 TxWaitLo DE 12 TxFrameCon DF CF RxSofD E0 00 RxCtrl E1 05 RxWait E2 90 RxTreshold E3 3C Rcv E4 12 RxAna E5 0B Table 212. ISO/IEC14443-A 424/ MIFARE Classic MFRC631 Product data sheet COMPANY PUBLIC Value for register EEPROM address (hex) Value (hex) DrvMode E8 8F TxAmp E9 DE DrvCon EA 11 TxI EB 0F TXCrcPreset EC 18 RXCrcPreset ED 18 TxDataNum EE 0F TxModWidth EF 07 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 126 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) TxSym10BurstLen F0 00 TxWaitCtrl F1 C0 TxWaitLo F2 12 TxFrameCon F3 CF RxSofD F4 00 RxCtrl F5 06 RxWait F6 90 RxTreshold F7 2B Rcv F8 12 RxAna F9 0B Table 213. ISO/IEC14443-A 848/ MIFARE Classic Value for register EEPROM address (hex) Value (hex) DrvMode 0100 8F TxAmp 0101 DB DrvCon 0102 21 TxI 0103 0F TXCrcPreset 0104 18 RXCrcPreset 0105 18 TxDataNum 0106 0F TxModWidth 0107 02 TxSym10BurstLen 0108 00 TxWaitCtrl 0109 C0 TxWaitLo 010A 12 TxFrameCon 010B CF RxSofD 010C 00 RxCtrl 010D 07 RxWait 010E 90 RxTreshold 010F 3A Rcv 0110 12 RxAna 0111 0B Value for register EEPROM address (hex) Value (hex) DrvMode 0114 8F TxAmp 0115 0E Table 214. ISO/IEC14443-B 106 MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 127 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) DrvCon 0116 09 TxI 0117 0A TXCrcPreset 0118 7B RXCrcPreset 0119 7B TxDataNum 011A 08 TxModWidth 011B 00 TxSym10BurstLen 011C 00 TxWaitCtrl 011D 01 TxWaitLo 011E 00 TxFrameCon 011F 05 RxSofD 0120 00 RxCtrl 0121 34 RxWait 0112 90 RxTreshold 0113 6F Rcv 0114 12 RxAna 0115 03 Value for register EEPROM address (hex) Value (hex) DrvMode 0128 8F TxAmp 0129 0E DrvCon 012A 09 TxI 012B 0A TXCrcPreset 012C 7B RXCrcPreset 012D 7B TxDataNum 012E 08 TxModWidth 012F 00 TxSym10BurstLen 0130 00 TxWaitCtrl 0131 01 TxWaitLo 0132 00 TxFrameCon 0133 05 RxSofD 0134 00 RxCtrl 0135 35 RxWait 0136 90 RxTreshold 0137 3F Rcv 0138 12 Table 215. ISO/IEC14443-B 212 MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 128 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) RxAna 0139 03 Value for register EEPROM address (hex) Value (hex) DrvMode 0140 8F TxAmp 0141 0F DrvCon 0142 09 TxI 0143 0A TXCrcPreset 0144 7B RXCrcPreset 0145 7B TxDataNum 0146 08 TxModWidth 0147 00 TxSym10BurstLen 0148 00 TxWaitCtrl 0149 01 TxWaitLo 014A 00 TxFrameCon 014B 05 RxSofD 014C 00 RxCtrl 014D 36 RxWait 014E 90 RxTreshold 014F 3F Rcv 0150 12 RxAna 0151 03 Value for register EEPROM address (hex) Value (hex) DrvMode 0154 8F TxAmp 0155 10 DrvCon 0156 09 TxI 0157 0A TXCrcPreset 0158 7B RXCrcPreset 0159 7B TxDataNum 015A 08 TxModWidth 015B 00 TxSym10BurstLen 015C 00 TxWaitCtrl 015D 01 TxWaitLo 015E 00 Table 216. ISO/IEC14443-B 424 Table 217. ISO/IEC14443-B 848 MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 129 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) TxFrameCon 015F 05 RxSofD 0160 00 RxCtrl 0161 37 RxWait 0162 90 RxTreshold 0163 3F Rcv 0164 12 RxAna 0165 03 The following EEprom values for initializing the Receiver cannot be used on the MFRC63103. They are provided for compatibility reasons between the products of the CLRC66303 product family Table 218. JIS X 6319-4 (FeliCa) 212 Value for register EEPROM address (hex) Value (hex) DrvMode 0168 8F TxAmp 0169 17 DrvCon 016A 01 TxI 016B 06 TXCrcPreset 016C 09 RXCrcPreset 016D 09 TxDataNum 016E 08 TxModWidth 016F 00 TxSym10BurstLen 0170 03 TxWaitCtrl 0171 80 TxWaitLo 0172 12 TxFrameCon 0173 01 RxSofD 0174 00 RxCtrl 0175 05 RxWait 0176 86 RxTreshold 0177 3F Rcv 0178 12 RxAna 0179 02 Table 219. JIS X 6319-4 (FeliCa) 424 MFRC631 Product data sheet COMPANY PUBLIC Value for register EEPROM address (hex) Value (hex) DrvMode 0180 8F TxAmp 0181 17 DrvCon 0182 01 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 130 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) TxI 0183 06 TXCrcPreset 0184 09 RXCrcPreset 0185 09 TxDataNum 0186 08 TxModWidth 0187 00 TxSym10BurstLen 0188 03 TxWaitCtrl 0189 80 TxWaitLo 018A 12 TxFrameCon 018B 01 RxSofD 018C 00 RxCtrl 018D 06 RxWait 018E 86 RxTreshold 018F 3F Rcv 0190 12 RxAna 0191 02 Table 220. ISO/IEC15693 SLI 1/4 - SSC- 26 MFRC631 Product data sheet COMPANY PUBLIC Value for register EEPROM address (hex) Value (hex) DrvMode 0194 89 TxAmp 0195 10 DrvCon 0196 09 TxI 0197 0A TXCrcPreset 0198 7B RXCrcPreset 0199 7B TxDataNum 019A 08 TxModWidth 019B 00 TxSym10BurstLen 019C 00 TxWaitCtrl 019D 88 TxWaitLo 019E A9 TxFrameCon 019F 0F RxSofD 01A0 00 RxCtrl 01A1 02 RxWait 01A2 9C RxTreshold 01A3 74 Rcv 01A4 12 RxAna 01A5 07 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 131 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 221. ISO/IEC15693 SLI 1/4 - SSC-53 Value for register EEPROM address (hex) Value (hex) DrvMode 01A8 89 TxAmp 01A9 10 DrvCon 01AA 09 TxI 01AB 0A TXCrcPreset 01AC 7B RXCrcPreset 01AD 7B TxDataNum 01AE 08 TxModWidth 016F 00 TxSym10BurstLen 01B0 00 TxWaitCtrl 01B1 88 TxWaitLo 01B2 A9 TxFrameCon 01B3 0F RxSofD 01B4 00 RxCtrl 01B5 03 RxWait 01B6 9C RxTreshold 01B7 74 Rcv 01B8 12 RxAna 01B9 03 Table 222. ISO/IEC15693 SLI 1/256 - DSC MFRC631 Product data sheet COMPANY PUBLIC Value for register EEPROM address (hex) Value (hex) DrvMode 01C0 8E TxAmp 01C1 10 DrvCon 01C2 01 TxI 01C3 06 TXCrcPreset 01C4 7B RXCrcPreset 01C5 7B TxDataNum 01C6 08 TxModWidth 01C7 00 TxSym10BurstLen 01C8 00 TxWaitCtrl 01C9 88 TxWaitLo 01CA A9 TxFrameCon 01CB 0F RxSofD 01CC 00 RxCtrl 01CD 02 RxWait 01CE 10 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 132 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) RxTreshold 01CF 44 Rcv 01D0 12 RxAna 01D1 06 Value for register EEPROM address (hex) Value (hex) DrvMode 01D4 8F TxAmp 01D5 10 DrvCon 01D6 01 TxI 01D7 06 TXCrcPreset 01D8 74 RXCrcPreset 01D9 7B TxDataNum 01DA 18 TxModWidth 01DB 00 TxSym10BurstLen 01DC 00 TxWaitCtrl 01DD 50 TxWaitLo 01DE 5C TxFrameCon 01DF 0F RxSofD 01E0 00 RxCtrl 01E1 03 RxWait 01E2 10 RxTreshold 01E3 4E Rcv 01E4 12 RxAna 01E5 06 Value for register EEPROM address (hex) Value (hex) DrvMode 01E8 8F TxAmp 01E9 10 DrvCon 01EA 09 TxI 01EB 0A TXCrcPreset 01EC 11 RXCrcPreset 01ED 91 TxDataNum 01EE 09 TxModWidth 01EF 00 TxSym10BurstLen 01F0 00 Table 223. EPC/UID - SSC -26 Table 224. EPC-V2 - 2/424 MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 133 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) TxWaitCtrl 01F1 80 TxWaitLo 01F2 12 TxFrameCon 01F3 01 RxSofD 01F4 00 RxCtrl 01F5 03 RxWait 01F6 A0 RxTreshold 01F7 56 Rcv 01F8 12 RxAna 01F9 0F Value for register EEPROM address (hex) Value (hex) DrvMode 0200 8F TxAmp 0201 10 DrvCon 0202 09 TxI 0203 0A TXCrcPreset 0204 11 RXCrcPreset 0205 91 TxDataNum 0206 09 TxModWidth 0207 00 TxSym10BurstLen 0208 00 TxWaitCtrl 0209 80 TxWaitLo 020A 12 TxFrameCon 020B 01 RxSofD 020C 00 RxCtrl 020D 03 RxWait 020E A0 RxTreshold 020F 56 Rcv 0210 12 RxAna 0211 0F Value for register EEPROM address (hex) Value (hex) DrvMode 0214 8F TxAmp 0215 D0 DrvCon 0216 01 Table 225. EPC-V2 - 4/424 Table 226. EPC-V2 - 2/848 MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 134 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Value for register EEPROM address (hex) Value (hex) TxI 0217 0A TXCrcPreset 0218 11 RXCrcPreset 0219 91 TxDataNum 021A 09 TxModWidth 021B 00 TxSym10BurstLen 021C 00 TxWaitCtrl 021D 80 TxWaitLo 021E 12 TxFrameCon 021F 01 RxSofD 0220 00 RxCtrl 0221 05 RxWait 0222 A0 RxTreshold 0223 26 Rcv 0224 12 RxAna 0225 0E Value for register EEPROM address (hex) Value (hex) DrvMode 0228 8F TxAmp 0229 D0 DrvCon 022A 01 TxI 022B 0A TXCrcPreset 022C 11 RXCrcPreset 022D 91 TxDataNum 022E 09 TxModWidth 022F 00 TxSym10BurstLen 0230 00 TxWaitCtrl 0231 80 TxWaitLo 0232 12 TxFrameCon 0233 01 RxSofD 0234 00 RxCtrl 0235 05 RxWait 0236 A0 RxTreshold 0237 26 Rcv 0238 12 RxAna 0239 0E Table 227. EPC-V2 - 4/848 MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 135 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Table 228. Jewel Value for register EEPROM address (hex) Value (hex) DrvMode 0240 8E TxAmp 0241 15 DrvCon 0242 11 TxI 0243 06 TXCrcPreset 0244 18 RXCrcPreset 0245 18 TxDataNum 0246 0F TxModWidth 0247 20 TxSym10BurstLen 0248 00 TxWaitCtrl 0249 40 TxWaitLo 024A 09 TxFrameCon 024B 4F RxSofD 024C 00 RxCtrl 024D 04 RxWait 024E 8F RxTreshold 024F 32 Rcv 0250 12 RxAna 0251 0A Table 229. ISO/IEC14443 - B 106 EMVCo Optimized MFRC631 Product data sheet COMPANY PUBLIC Value for register EEPROM address (hex) Value (hex) DrvMode 0254 8F TxAmp 0255 0E DrvCon 0256 09 TxI 0257 0A TXCrcPreset 0258 7B RXCrcPreset 0259 7B TxDataNum 025A 08 TxModWidth 025B 00 TxSym10BurstLen 025C 00 TxWaitCtrl 025D 01 TxWaitLo 025E 00 TxFrameCon 025F 05 RxSofD 0260 00 RxCtrl 0261 34 RxWait 0262 90 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 136 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus MFRC631 Product data sheet COMPANY PUBLIC Value for register EEPROM address (hex) Value (hex) RxTreshold 0263 9F Rcv 0264 12 RxAna 0265 03 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 137 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 18 Abbreviations Table 230. Abbreviations Acronym Description ADC Analog-to-Digital Converter BPSK Binary Phase Shift Keying CRC Cyclic Redundancy Check CW Continuous Wave EGT Extra Guard Time EMC Electro Magnetic Compatibility EMD Electro Magnetic Disturbance EOF End Of Frame EPC Electronic Product Code ETU Elementary Time Unit GPIO General Purpose Input/Output HBM Human Body Model 2 MFRC631 Product data sheet COMPANY PUBLIC I C Inter-Integrated Circuit IRQ Interrupt Request LFO Low Frequency Oscillator LPCD Low-Power Card Detection LSB Least Significant Bit MISO Master In Slave Out MOSI Master Out Slave In MSB Most Significant Bit NRZ Not Return to Zero NSS Not Slave Select PCD Proximity Coupling Device PLL Phase-Locked Loop RZ Return To Zero RX Receiver SAM Secure Access Module SOF Start Of Frame SPI Serial Peripheral Interface SW Software TTimer Timing of the clk period TX Transmitter UART Universal Asynchronous Receiver Transmitter UID Unique IDentification All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 138 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus MFRC631 Product data sheet COMPANY PUBLIC Acronym Description VCO Voltage Controlled Oscillator All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 139 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 19 References [1] Application note AN11019 CLRC663, MFRC630, MFRC631, SLRC610 Antenna Design Guide [2] Application note AN11783 CLRC663 plus Low Power Card Detection MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 140 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 20 Revision history Table 231. Revision history Document ID Release date Data sheet status Change notice Supersedes MFRC631 v.4.5 20180912 Product data sheet - MFRC631 v.4.4 Modifications: • Description of Low frequency timer in Section 7.8.3 more detailed now MFRC631 v.4.4 20180627 Modifications: • Editorial updates MFRC631 v.4.3 20171219 Modifications: • Deleted references to MICORE Application notes • Description for new product type MFRC63103 added • Section 19 updated MFRC631 v.4.2 20160427 Modifications: • Descriptive title updated MFRC631 v.4.1 20160211 Modifications: • Table: Quick reference data: Table notes [3] and [4] removed • Table: Characteristics: TVDD supply current value updated MFRC631 v.4.0 20151029 Modifications: • Table: Characteristics: – AVDD and DVDD min and max values added – IDD(TVDD) max value updated to 250 mA • Figure 10 "Connection to host with SPI": updated • Figure 19 "Register read and write access": updated MFRC631 v.3.3 20140204 Modifications: • • • • • • • • MFRC631 v.3.2 20130312 Modifications: • Update of EEPROM content • Descriptive title changed • Table 184 "PinOut register (address 45h)": corrected MFRC631 v.3.1 MFRC631 Product data sheet COMPANY PUBLIC Product data sheet Product data sheet Product data sheet Product data sheet Product data sheet Product data sheet - MFRC631 v.4.3 - MFRC631 v.4.2 - MFRC631 v.4.1 - MFRC631 v.4.0 - - MFRC631 v.3.3 MFRC631 v.3.2 PVDD, TVDD data updated Information on FIFO size corrected Typing error corrected in description for LPCD WaterLevel and FIFOLength updated in register overview description WaterLevel and FIFOLength updated in register FIFOControl Waterlevel Register updated FIFOLength Register updated Section 8.15.2 "PinOut": Pin Out register description corrected Product data sheet Product data sheet - - All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 MFRC631 v.3.1 - © NXP B.V. 2018. All rights reserved. 141 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 21 Legal information 21.1 Data sheet status Document status [1][2] Product status [3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] [2] [3] Please consult the most recently issued document before initiating or completing a design. The term 'short data sheet' is explained in section "Definitions". The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 21.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 21.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. MFRC631 Product data sheet COMPANY PUBLIC Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 142 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of nonautomotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. 21.4 Licenses Purchase of NXP ICs with ISO/IEC 14443 type B functionality This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is licensed under Innovatron’s Contactless Card patents license for ISO/IEC 14443 B. RATP/Innovatron Technology The license includes the right to use the IC in systems and/or end-user equipment. Purchase of NXP ICs with NFC technology Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/ IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software. 21.5 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 2 I C-bus — logo is a trademark of NXP B.V. MIFARE — is a trademark of NXP B.V. DESFire — is a trademark of NXP B.V. ICODE and I-CODE — are trademarks of NXP B.V. MIFARE Plus — is a trademark of NXP B.V. MIFARE Ultralight — is a trademark of NXP B.V. MIFARE Classic — is a trademark of NXP B.V. MFRC631 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 143 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Tables Tab. 1. Tab. 2. Tab. 3. Tab. 4. Tab. 5. Tab. 6. Tab. 7. Tab. 8. Tab. 9. Tab. 10. Tab. 11. Tab. 12. Tab. 13. Tab. 14. Tab. 15. Tab. 16. Tab. 17. Tab. 18. Tab. 19. Tab. 20. Tab. 21. Tab. 22. Tab. 23. Tab. 24. Tab. 25. Tab. 26. Tab. 27. Tab. 28. Tab. 29. Tab. 30. Tab. 31. Tab. 32. Tab. 33. Tab. 34. Tab. 35. Tab. 36. Tab. 37. Tab. 38. Tab. 39. Tab. 40. Tab. 41. Quick reference data MFRC63102HN ...............3 Quick reference data MFRC63103HN ...............3 Ordering information ..........................................4 Pin description ...................................................6 Interrupt sources ............................................... 9 Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic ....... 12 Communication overview for ISO/IEC 14443 B reader/writer .................................................14 Connection scheme for detecting the different interface types ...................................15 Byte Order for MOSI and MISO ...................... 16 Byte Order for MOSI and MISO ...................... 16 Address byte 0 register; address MOSI ...........16 Timing conditions SPI ..................................... 16 Settings of BR_T0 and BR_T1 ........................17 Selectable transfer speeds ..............................18 UART framing ................................................. 18 Byte Order to Read Data ................................ 18 Byte Order to Write Data ................................ 19 Timing parameter I2CL ................................... 24 SPI SAM connection ....................................... 26 Boundary scan command ............................... 26 Boundary scan path of the MFRC631 ............. 29 Settings for TX1 and TX2 ............................... 33 Setting residual carrier and modulation index by TXamp.set_residual_carrier .............. 33 Configuration for single or differential receiver ............................................................36 Register configuration of MFRC631 active antenna concept (DIGITAL) ............................ 37 Register configuration of MFRC631 active antenna concept (Antenna) ............................. 37 EEPROM memory organization ...................... 41 Production area (Page 0) ................................41 Product ID overview of CLRC663 family ......... 42 Configuration area (Page 0) ............................42 Interface byte .................................................. 42 Interface bits ....................................................43 Tx and Rx arrangements in the register set protocol area ................................................... 43 Register reset values (Hex.) (Page0) .............. 43 Register reset values (Hex.)(Page1 and page 2) ............................................................ 44 Crystal requirements recommendations .......... 45 Divider values for selected frequencies using the integerN PLL ................................... 46 Command set ..................................................49 Predefined protocol overview RXFor more protocol details please refer to Section 7 "Functional description". .................................. 52 Predefined protocol overview TXFor more protocol details please refer to Section 7 "Functional description". .................................. 53 Behavior of register bits and their designation ...................................................... 55 MFRC631 Product data sheet COMPANY PUBLIC Tab. 42. Tab. 43. Tab. 44. Tab. 45. Tab. 46. Tab. 47. Tab. 48. Tab. 49. Tab. 50. Tab. 51. Tab. 52. Tab. 53. Tab. 54. Tab. 55. Tab. 56. Tab. 57. Tab. 58. Tab. 59. Tab. 60. Tab. 61. Tab. 62. Tab. 63. Tab. 64. Tab. 65. Tab. 66. Tab. 67. Tab. 68. Tab. 69. Tab. 70. Tab. 71. Tab. 72. Tab. 73. Tab. 74. Tab. 75. Tab. 76. Tab. 77. Tab. 78. Tab. 79. Tab. 80. Tab. 81. Tab. 82. Tab. 83. Tab. 84. Tab. 85. Tab. 86. Tab. 87. Tab. 88. Tab. 89. Tab. 90. Tab. 91. Tab. 92. Tab. 93. Tab. 94. Tab. 95. MFRC631 registers overview .......................... 55 Command register (address 00h) ....................57 Command bits ................................................. 58 HostCtrl register (address 01h); ...................... 58 HostCtrl bits .....................................................58 FIFOControl register (address 02h); ............... 59 FIFOControl bits .............................................. 59 WaterLevel register (address 03h); ................. 59 WaterLevel bits ............................................... 60 FIFOLength register (address 04h); reset value: 00h ........................................................60 FIFOLength bits .............................................. 60 FIFOData register (address 05h); ................... 60 FIFOData bits ..................................................61 IRQ0 register (address 06h); reset value: 00h .................................................................. 61 IRQ0 bits ......................................................... 61 IRQ1 register (address 07h) ............................62 IRQ1 bits ......................................................... 62 IRQ0En register (address 08h) ....................... 62 IRQ0En bits .....................................................63 IRQ1EN register (address 09h); ......................63 IRQ1EN bits .................................................... 63 Error register (address 0Ah) ............................64 Error bits ..........................................................64 Status register (address 0Bh) ......................... 65 Status bits ....................................................... 65 RxBitCtrl register (address 0Ch); .................... 66 RxBitCtrl bits ................................................... 66 RxColl register (address 0Dh); ........................66 RxColl bits ....................................................... 67 TControl register (address 0Eh) ...................... 67 TControl bits ....................................................67 T0Control register (address 0Fh); ................... 68 T0Control bits ..................................................68 T0ReloadHi register (address 10h); ................ 69 T0ReloadHi bits ...............................................69 T0ReloadLo register (address 11h); ................69 T0ReloadLo bits .............................................. 69 T0CounterValHi register (address 12h) ...........69 T0CounterValHi bits ........................................ 70 T0CounterValLo register (address 13h) .......... 70 T0CounterValLo bits ........................................70 T1Control register (address 14h); ................... 70 T1Control bits ..................................................70 T0ReloadHi register (address 15h) ................. 71 T1ReloadHi bits ...............................................71 T1ReloadLo register (address 16h) .................71 T1ReloadValLo bits ......................................... 71 T1CounterValHi register (address 17h) ...........72 T1CounterValHi bits ........................................ 72 T1CounterValLo register (address 18h) .......... 72 T1CounterValLo bits ........................................72 T2Control register (address 19h) .................... 72 T2Control bits ..................................................72 T2ReloadHi register (address 1Ah) .................73 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 144 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Tab. 96. Tab. 97. Tab. 98. Tab. 99. Tab. 100. Tab. 101. Tab. 102. Tab. 103. Tab. 104. Tab. 105. Tab. 106. Tab. 107. Tab. 108. Tab. 109. Tab. 110. Tab. 111. Tab. 112. Tab. 113. Tab. 114. Tab. 115. Tab. 116. Tab. 117. Tab. 118. Tab. 119. Tab. 120. Tab. 121. Tab. 122. Tab. 123. Tab. 124. Tab. 125. Tab. 126. Tab. 127. Tab. 128. Tab. 129. Tab. 130. Tab. 131. Tab. 132. Tab. 133. Tab. 134. Tab. 135. Tab. 136. Tab. 137. Tab. 138. Tab. 139. Tab. 140. Tab. 141. Tab. 142. Tab. 143. Tab. 144. Tab. 145. Tab. 146. Tab. 147. Tab. 148. Tab. 149. Tab. 150. Tab. 151. Tab. 152. Tab. 153. T2Reload bits .................................................. 73 T2ReloadLo register (address 1Bh) ................ 73 T2ReloadLo bits .............................................. 74 T2CounterValHi register (address 1Ch) .......... 74 T2CounterValHi bits ........................................ 74 T2CounterValLo register (address 1Dh) ..........74 T2CounterValLo bits ........................................74 T3Control register (address 1Eh) .................... 74 T3Control bits ..................................................75 T3ReloadHi register (address 1Fh); ................ 75 T3ReloadHi bits ...............................................75 T3ReloadLo register (address 20h) .................75 T3ReloadLo bits .............................................. 76 T3CounterValHi register (address 21h) ...........76 T3CounterValHi bits ........................................ 76 T3CounterValLo register (address 22h) .......... 76 T3CounterValLo bits ........................................76 T4Control register (address 23h) .................... 77 T4Control bits ..................................................77 T4ReloadHi register (address 24h) ................. 78 T4ReloadHi bits ...............................................78 T4ReloadLo register (address 25h) .................78 T4ReloadLo bits .............................................. 78 T4CounterValHi register (address 26h) ...........78 T4CounterValHi bits ........................................ 78 T4CounterValLo register (address 27h) .......... 79 T4CounterValLo bits ........................................79 DrvMode register (address 28h) ......................79 DrvMode bits ................................................... 79 TxAmp register (address 29h) .........................80 TxAmp bits ...................................................... 80 TxCon register (address 2Ah) ......................... 80 TxCon bits ....................................................... 80 Txl register (address 2Bh) ...............................81 Txl bits .............................................................81 TXCrcPreset register (address 2Ch) ............... 81 TxCrcPreset bits ..............................................81 Transmitter CRC preset value configuration ....82 RxCrcCon register (address 2Dh) ................... 82 RxCrcCon bits ................................................. 82 Receiver CRC preset value configuration ....... 82 TxDataNum register (address 2Eh) .................83 TxDataNum bits .............................................. 83 TxDataModWidth register (address 2Fh) ........ 83 TxDataModWidth bits ...................................... 84 TxSym10BurstLen register (address 30h) ....... 84 TxSym10BurstLen bits .................................... 84 TxWaitCtrl register (address 31h); reset value: C0h ....................................................... 85 TXWaitCtrl bits ................................................ 85 TxWaitLo register (address 32h) ..................... 85 TxWaitLo bits .................................................. 86 FrameCon register (address 33h) ................... 86 FrameCon bits .................................................86 RxSofD register (address 34h) ........................86 RxSofD bits ..................................................... 87 RxCtrl register (address 35h) .......................... 87 RxCtrl bits ........................................................87 RxWait register (address 36h) ........................ 88 MFRC631 Product data sheet COMPANY PUBLIC Tab. 154. Tab. 155. Tab. 156. Tab. 157. Tab. 158. Tab. 159. Tab. 160. Tab. 161. Tab. 162. Tab. 163. Tab. 164. Tab. 165. Tab. 166. Tab. 167. Tab. 168. Tab. 169. Tab. 170. Tab. 171. Tab. 172. Tab. 173. Tab. 174. Tab. 175. Tab. 176. Tab. 177. Tab. 178. Tab. 179. Tab. 180. Tab. 181. Tab. 182. Tab. 183. Tab. 184. Tab. 185. Tab. 186. Tab. 187. Tab. 188. Tab. 189. Tab. 190. Tab. 191. Tab. 192. Tab. 193. Tab. 194. Tab. 195. Tab. 196. Tab. 197. Tab. 198. Tab. 199. Tab. 200. Tab. 201. Tab. 202. Tab. 203. Tab. 204. RxWait bits ...................................................... 88 RxThreshold register (address 37h) ................ 88 RxThreshold bits ............................................. 88 Rcv register (address 38h) ..............................88 Rcv bits ........................................................... 89 RxAna register (address 39h) ......................... 89 RxAna bits .......................................................89 Effect of gain and highpass corner register settings ............................................................ 90 SerialSpeed register (address3Bh); reset value: 7Ah ....................................................... 90 SerialSpeed bits .............................................. 91 RS232 speed settings ..................................... 91 LFO_Trim register (address 3Ch) ................... 91 LFO_Trim bits ................................................. 91 PLL_Ctrl register (address3Dh) .......................92 PLL_Ctrl register bits .......................................92 Setting of feedback divider PLLDiv_FB [1:0] ....92 PLLDiv_Out register (address 3Eh) ................ 92 PLLDiv_Out bits .............................................. 93 Setting for the output divider ratio PLLDiv_Out [7:0] ............................................. 93 LPCD_QMin register (address 3Fh) ................ 93 LPCD_QMin bits ............................................. 93 LPCD_QMax register (address 40h) ............... 94 LPCD_QMax bits ............................................ 94 LPCD_IMin register (address 41h) ..................94 LPCD_IMin bits ............................................... 94 LPCD_Result_I register (address 42h) ............95 LPCD_I_Result bits ......................................... 95 LPCD_Result_Q register (address 43h) ..........95 LPCD_Q_Result bits ....................................... 95 LPCD_Options register (address 3Ah) ............ 95 LPCD_Options .................................................96 PinEn register (address 44h) .......................... 96 PinEn bits ........................................................ 96 PinOut register (address 45h) ......................... 97 PinOut bits .......................................................97 PinIn register (address 46h) ............................97 PinIn bits ......................................................... 97 SigOut register (address 47h) ......................... 98 SigOut bits .......................................................98 Version register (address 7Fh) ........................98 Version bits ..................................................... 99 Limiting values .............................................. 100 Operating conditions MFRC63102HN ........... 101 Operating conditions MFRC63103HN ........... 101 Thermal characteristics ................................. 102 Characteristics ...............................................103 SPI timing characteristics .............................. 106 I2C-bus timing in fast mode and fast mode plus ................................................................ 106 Protocol Number 00: ISO/IEC14443-A 106 / MIFARE Classic ............................................ 119 Protocol Number 01: ISO/IEC14443-A 212/ MIFARE Classic ............................................ 120 Protocol Number 02: ISO/IEC14443-A 424/ MIFARE Classic ............................................ 120 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 145 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Tab. 205. Protocol Number 03: ISO/IEC14443-A 848/ MIFARE Classic ............................................ 121 Tab. 206. Protocol Number 04: ISO/IEC14443-B 106 ... 122 Tab. 207. Protocol Number 05: ISO/IEC14443-B 212 ... 123 Tab. 208. Protocol Number 06: ISO/IEC14443-B 424 ... 123 Tab. 209. Protocol Number 07: ISO/IEC14443-B 848 ... 124 Tab. 210. ISO/IEC14443-A 106 / MIFARE Classic ........125 Tab. 211. ISO/IEC14443-A 212/ MIFARE Classic .........126 Tab. 212. ISO/IEC14443-A 424/ MIFARE Classic .........126 Tab. 213. ISO/IEC14443-A 848/ MIFARE Classic .........127 Tab. 214. ISO/IEC14443-B 106 .....................................127 Tab. 215. ISO/IEC14443-B 212 .....................................128 Tab. 216. ISO/IEC14443-B 424 .....................................129 Tab. 217. ISO/IEC14443-B 848 .....................................129 MFRC631 Product data sheet COMPANY PUBLIC Tab. 218. Tab. 219. Tab. 220. Tab. 221. Tab. 222. Tab. 223. Tab. 224. Tab. 225. Tab. 226. Tab. 227. Tab. 228. Tab. 229. Tab. 230. Tab. 231. JIS X 6319-4 (FeliCa) 212 ............................ 130 JIS X 6319-4 (FeliCa) 424 ............................ 130 ISO/IEC15693 SLI 1/4 - SSC- 26 ..................131 ISO/IEC15693 SLI 1/4 - SSC-53 ................... 132 ISO/IEC15693 SLI 1/256 - DSC ....................132 EPC/UID - SSC -26 ...................................... 133 EPC-V2 - 2/424 .............................................133 EPC-V2 - 4/424 .............................................134 EPC-V2 - 2/848 .............................................134 EPC-V2 - 4/848 .............................................135 Jewel ............................................................. 136 ISO/IEC14443 - B 106 EMVCo Optimized .... 136 Abbreviations .................................................138 Revision history ............................................. 141 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 146 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Figures Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. Fig. 11. Fig. 12. Fig. 13. Fig. 14. Fig. 15. Fig. 16. Fig. 17. Fig. 18. Fig. 19. Simplified block diagram of the MFRC631 ........ 5 Pinning configuration HVQFN32 (SOT617-1) ........................................................6 Detailed block diagram of the MFRC631 ...........8 Read/write mode ............................................. 12 Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic ....... 12 Data coding and framing according to ISO/ IEC 14443 A ................................................... 13 Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic ....... 13 SOF and EOF according to ISO/IEC 14443 B ...................................................................... 14 Connection to host with SPI ............................15 Connection to host with SPI ............................17 Example for UART Read ................................ 19 Example diagram for a UART write .................19 I2C-bus interface ............................................. 20 Bit transfer on the I2C-bus. ............................. 20 START and STOP conditions ......................... 21 Acknowledge on the I2C- bus ......................... 22 Data transfer on the I2C- bus ......................... 22 First byte following the START procedure ....... 22 Register read and write access .......................24 MFRC631 Product data sheet COMPANY PUBLIC Fig. 20. Fig. 21. Fig. 22. Fig. 23. Fig. 24. Fig. 25. Fig. 26. Fig. 27. Fig. 28. Fig. 29. Fig. 30. Fig. 31. Fig. 32. Fig. 33. Fig. 34. Fig. 35. Fig. 36. Fig. 37. Fig. 38. I2C interface enables convenient MIFARE SAM integration ...............................................26 Boundary scan cell path structure ................... 28 General dependences of modulation .............. 32 Example 1: overshoot_t1 = 2d; overhoot_t2 = 5d. ................................................................ 34 Example 2: overshoot_t1 = 0d; overhoot_t2 = 5d ................................................................. 35 Block diagram of receiver circuitry .................. 36 Block diagram of the active Antenna concept .. 37 Overview SIGIN/SIGOUT Signal Routing ........39 Sector arrangement of the EEPROM .............. 41 Quartz connection ........................................... 45 Internal PDown to voltage regulator logic ........49 Pin RX input voltage ..................................... 105 Timing for fast and standard mode devices on the I2C-bus .............................................. 107 Typical application antenna circuit diagram ... 108 Package outline SOT617-1 (HVQFN32) ........111 Packing information 1 tray .............................114 Packing information 5 tray .............................115 Tray details ....................................................116 Packing information Reel .............................. 117 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 147 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus Contents 1 2 3 4 5 6 6.1 7 7.1 7.2 7.2.1 7.2.1.1 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 7.3 7.3.1 General description ............................................ 1 Features and benefits .........................................2 Quick reference data .......................................... 3 Ordering information .......................................... 4 Block diagram ..................................................... 5 Pinning information ............................................ 6 Pin description ................................................... 6 Functional description ........................................8 Interrupt controller ............................................. 8 Timer module ...................................................10 Timer modes ....................................................10 Time-Out- and Watch-Dog-Counter .................11 Wake-up timer ................................................. 11 Stop watch .......................................................11 Programmable one-shot timer ......................... 11 Periodical trigger ..............................................11 Contactless interface unit ................................ 12 Communication mode for ISO/IEC14443 type A and for MIFARE Classic .......................12 7.3.2 ISO/IEC14443B functionality ........................... 13 7.4 Host interfaces .................................................14 7.4.1 Host interface configuration ............................. 14 7.4.2 SPI interface .................................................... 15 7.4.2.1 General ............................................................ 15 7.4.2.2 Read data ........................................................ 15 7.4.2.3 Write data ........................................................ 16 7.4.2.4 Address byte ....................................................16 7.4.2.5 Timing Specification SPI ..................................16 7.4.3 RS232 interface ............................................... 17 7.4.3.1 Selection of the transfer speeds ...................... 17 7.4.3.2 Framing ............................................................18 7.4.4 I2C-bus interface ............................................. 19 7.4.4.1 General ............................................................ 20 7.4.4.2 I2C Data validity .............................................. 20 7.4.4.3 I2C START and STOP conditions ................... 21 7.4.4.4 I2C byte format ................................................21 7.4.4.5 I2C Acknowledge .............................................21 7.4.4.6 I2C 7-bit addressing ........................................ 22 7.4.4.7 I2C-register write access ................................. 23 7.4.4.8 I2C-register read access ................................. 23 7.4.4.9 I2CL-bus interface ........................................... 24 7.4.5 SAM interface .................................................. 25 7.4.5.1 SAM functionality ............................................. 25 7.4.5.2 SAM connection .............................................. 26 7.4.6 Boundary scan interface ..................................26 7.4.6.1 Interface signals .............................................. 27 7.4.6.2 Test Clock (TCK) .............................................27 7.4.6.3 Test Mode Select (TMS) ................................. 27 7.4.6.4 Test Data Input (TDI) ...................................... 28 7.4.6.5 Test Data Output (TDO) .................................. 28 7.4.6.6 Data register .................................................... 28 7.4.6.7 Boundary scan cell .......................................... 28 7.4.6.8 Boundary scan path ........................................ 28 7.4.6.9 Boundary Scan Description Language (BSDL) ............................................................. 29 7.4.6.10 Non-IEEE1149.1 commands ........................... 30 MFRC631 Product data sheet COMPANY PUBLIC 7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.6 7.6.1 7.6.2 7.6.2.1 7.6.2.2 7.6.3 7.6.3.1 7.6.3.2 7.6.4 7.6.5 7.7 7.7.1 7.7.2 7.7.2.1 Buffer ............................................................... 30 Overview .......................................................... 30 Accessing the FIFO buffer ...............................30 Controlling the FIFO buffer .............................. 31 Status Information about the FIFO buffer ........ 31 Analog interface and contactless UART .......... 31 General ............................................................ 32 TX transmitter .................................................. 32 Overshoot protection ....................................... 34 Bit generator .................................................... 35 Receiver circuitry ............................................. 35 General ............................................................ 35 Block diagram ..................................................35 Active antenna concept ................................... 37 Symbol generator ............................................ 40 Memory ............................................................ 40 Memory overview .............................................40 EEPROM memory organization .......................40 Product information and configuration - Page 0 ....................................................................... 41 7.7.3 EEPROM initialization content LoadProtocol ... 43 7.8 Clock generation ..............................................45 7.8.1 Crystal oscillator .............................................. 45 7.8.2 IntegerN PLL clock line ................................... 46 7.8.3 Low Frequency Oscillator (LFO) ......................46 7.9 Power management .........................................47 7.9.1 Supply concept ................................................ 47 7.9.2 Power reduction mode .....................................47 7.9.2.1 Power-down ..................................................... 47 7.9.2.2 Standby mode ................................................. 48 7.9.2.3 Modem off mode ............................................. 48 7.9.3 Low-Power Card Detection (LPCD) ................. 48 7.9.4 Reset and start-up time ................................... 48 7.10 Command set .................................................. 49 7.10.1 General ............................................................ 49 7.10.2 Command set overview ................................... 49 7.10.3 Command functionality .................................... 50 7.10.3.1 Idle command .................................................. 50 7.10.3.2 LPCD command .............................................. 50 7.10.3.3 Load key command ......................................... 50 7.10.3.4 MFAuthent command ...................................... 51 7.10.3.5 Receive command ........................................... 51 7.10.3.6 Transmit command .......................................... 51 7.10.3.7 Transceive command ...................................... 51 7.10.3.8 WriteE2 command ........................................... 52 7.10.3.9 WriteE2PAGE command ................................. 52 7.10.3.10 ReadE2 command ........................................... 52 7.10.3.11 LoadReg command ......................................... 52 7.10.3.12 LoadProtocol command ...................................52 7.10.3.13 LoadKeyE2 command ..................................... 53 7.10.3.14 StoreKeyE2 command .....................................53 7.10.3.15 GetRNR command .......................................... 54 7.10.3.16 SoftReset command ........................................ 54 8 MFRC631 registers ............................................55 8.1 Register bit behavior ....................................... 55 8.2 MFRC631 registers overview .......................... 55 All information provided in this document is subject to legal disclaimers. Rev. 4.5 — 12 September 2018 227445 © NXP B.V. 2018. All rights reserved. 148 / 149 MFRC631 NXP Semiconductors High-performance ISO/IEC 14443 A/B frontend MFRC631 and MFRC631 plus 8.3 8.3.1 8.4 8.4.1 8.5 8.5.1 8.5.2 8.5.3 8.5.4 8.6 8.6.1 8.6.2 8.6.3 8.6.4 8.7 8.7.1 8.7.2 8.7.3 8.7.4 8.8 8.8.1 8.8.2 8.8.2.1 8.8.2.2 8.8.2.3 8.8.2.4 8.8.2.5 8.8.2.6 8.8.2.7 8.8.2.8 8.8.2.9 8.8.2.10 8.8.2.11 8.8.2.12 8.8.2.13 8.8.2.14 8.8.2.15 8.8.2.16 8.8.2.17 8.8.2.18 8.8.2.19 8.8.2.20 8.8.2.21 8.8.2.22 8.8.2.23 8.8.2.24 8.9 8.9.1 8.9.2 8.9.3 8.9.4 8.10 8.10.1 8.10.2 8.11 8.11.1 Command configuration ...................................57 Command ........................................................ 57 SAM configuration register .............................. 58 HostCtrl ............................................................ 58 FIFO configuration register .............................. 59 FIFOControl ..................................................... 59 WaterLevel .......................................................59 FIFOLength ......................................................60 FIFOData ......................................................... 60 Interrupt configuration registers ....................... 61 IRQ0 register ................................................... 61 IRQ1 register ................................................... 62 IRQ0En register ............................................... 62 IRQ1En ............................................................ 63 Contactless interface configuration registers ... 64 Error ................................................................. 64 Status ...............................................................65 RxBitCtrl ...........................................................66 RxColl .............................................................. 66 Timer configuration registers ........................... 67 TControl ........................................................... 67 T0Control ......................................................... 68 T0ReloadHi ...................................................... 69 T0ReloadLo ..................................................... 69 T0CounterValHi ............................................... 69 T0CounterValLo ...............................................70 T1Control ......................................................... 70 T1ReloadHi ...................................................... 71 T1ReloadLo ..................................................... 71 T1CounterValHi ............................................... 71 T1CounterValLo ...............................................72 T2Control ......................................................... 72 T2ReloadHi ...................................................... 73 T2ReloadLo ..................................................... 73 T2CounterValHi ............................................... 74 T2CounterValLoReg ........................................ 74 T3Control ......................................................... 74 T3ReloadHi ...................................................... 75 T3ReloadLo ..................................................... 75 T3CounterValHi ............................................... 76 T3CounterValLo ...............................................76 T4Control ......................................................... 77 T4ReloadHi ...................................................... 77 T4ReloadLo ..................................................... 78 T4CounterValHi ............................................... 78 T4CounterValLo ...............................................79 Transmitter configuration registers .................. 79 TxMode ............................................................ 79 TxAmp ..............................................................79 TxCon .............................................................. 80 Txl .................................................................... 81 CRC configuration registers .............................81 TxCrcPreset ..................................................... 81 RxCrcCon ........................................................ 82 Transmitter configuration registers .................. 83 TxDataNum ......................................................83 8.11.2 8.11.3 8.11.4 8.11.5 8.12 8.13 8.13.1 8.13.2 8.13.3 8.13.4 8.13.5 8.13.6 8.14 8.14.1 8.14.2 8.14.3 8.14.4 8.15 8.15.1 8.15.2 8.15.3 8.15.4 8.15.5 8.15.6 8.16 8.16.1 8.16.2 8.16.3 8.16.4 8.17 8.17.1 9 10 11 12 12.1 13 13.1 13.1.1 13.1.2 13.1.3 13.1.4 14 15 16 17 17.1 17.2 18 19 20 21 TxDATAModWidth ........................................... 83 TxSym10BurstLen ........................................... 84 TxWaitCtrl ........................................................ 85 TxWaitLo ..........................................................85 FrameCon ........................................................ 86 Receiver configuration registers ...................... 86 RxSofD .............................................................86 RxCtrl ............................................................... 87 RxWait ............................................................. 88 RxThreshold .....................................................88 Rcv ...................................................................88 RxAna .............................................................. 89 Clock configuration .......................................... 90 SerialSpeed ..................................................... 90 LFO_Trimm ......................................................91 PLL_Ctrl Register ............................................ 91 PLLDiv_Out ......................................................92 Low-power card detection configuration registers ........................................................... 93 LPCD_QMin .....................................................93 LPCD_QMax ....................................................94 LPCD_IMin .......................................................94 LPCD_Result_I ................................................ 95 LPCD_Result_Q .............................................. 95 LPCD_Options ................................................. 95 Pin configuration .............................................. 96 PinEn ............................................................... 96 PinOut .............................................................. 97 PinIn .................................................................97 SigOut .............................................................. 98 Version register ............................................... 98 Version .............................................................98 Limiting values ................................................ 100 Recommended operating conditions ............ 101 Thermal characteristics .................................. 102 Characteristics ................................................ 103 Timing characteristics .................................... 106 Application information .................................. 108 Antenna design description ........................... 108 EMC low pass filter ....................................... 108 Antenna matching ..........................................109 Receiving circuit .............................................109 Antenna coil ...................................................109 Package outline ...............................................111 Handling information ...................................... 113 Packing information ........................................114 Appendix .......................................................... 119 LoadProtocol command register initialization . 119 MFRC63103 EEPROM configuration ............ 125 Abbreviations .................................................. 138 References ....................................................... 140 Revision history .............................................. 141 Legal information ............................................ 142 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2018. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 12 September 2018 Document identifier: MFRC631 Document number: 227445
MFRC63102HN,151 价格&库存

很抱歉,暂时无法提供与“MFRC63102HN,151”相匹配的价格&库存,您可以联系我们找货

免费人工找货