0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIMX8MD6DVAJZAB

MIMX8MD6DVAJZAB

  • 厂商:

    NXP(恩智浦)

  • 封装:

    FBGA621

  • 描述:

    I.MX 8MDUAL 17X17 NO LID 621FBGA

  • 数据手册
  • 价格&库存
MIMX8MD6DVAJZAB 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number: IMX8MDQLQCEC Rev. 3, 04/2021 MIMX8MQ6DVAJZAA MIMX8MQ5DVAJZAA MIMX8MQ6DVAJZIB MIMX8MD6DVAJZAB i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products MIMX8MQ6DVAJZAB MIMX8MQ5DVAJZAB MIMX8MD6DVAJZAA Package Information Bare Die Package FBGA 17 x 17 mm, 0.65 mm pitch Ordering Information See Table 2 on page 6 1 i.MX 8M Dual / 8M QuadLite / 8M Quad introduction The i.MX 8M Dual / 8M QuadLite / 8M Quad processors represent NXP’s latest market of connected streaming audio/video devices, scanning/imaging devices, and various devices requiring high-performance, low-power processors. The i.MX 8M Dual / 8M QuadLite / 8M Quad processors feature advanced implementation of a quad Arm® Cortex®-A53 core, which operates at speeds of up to 1.5 GHz. A general purpose Cortex®-M4 core processor is for low-power processing. The DRAM controller supports 32-bit/16-bit LPDDR4, DDR4, and DDR3L memory. There are a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth, GPS, displays, and camera sensors. The i.MX 8M Quad and i.MX 8M Dual processors have hardware acceleration for video playback up to 4K, and can drive the video outputs up to 60 fps. Although the i.MX 8M QuadLite processor does not have hardware acceleration for video decode, it allows for video playback with software decoders if needed. NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. 1. i.MX 8M Dual / 8M QuadLite / 8M Quad introduction . . . 1 1.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6 2. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1. Recommended connections for unused interfaces 12 3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 13 3.2. Power supplies requirements and restrictions . . . 27 3.3. PLL electrical characteristics . . . . . . . . . . . . . . . . 29 3.4. On-chip oscillators . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. I/O DC parameters . . . . . . . . . . . . . . . . . . . . . . . 32 3.6. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . 34 3.7. Output buffer impedance parameters . . . . . . . . . 37 3.8. System modules timing . . . . . . . . . . . . . . . . . . . . 39 3.9. External peripheral interface parameters . . . . . . 40 4. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1. Boot mode configuration pins . . . . . . . . . . . . . . . 76 4.2. Boot device interface allocation . . . . . . . . . . . . . . 77 5. Package information and contact assignments . . . . . . . 78 5.1. 17 x 17 mm package information . . . . . . . . . . . . 78 5.2. DDR pin function list for 17 x 17 mm package . . 98 6. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 i.MX 8M Dual / 8M QuadLite / 8M Quad introduction Table 1. Features Subsystem Arm Cortex-A53 MPCore platform Feature Quad symmetric Cortex-A53 processors: • 32 KB L1 Instruction Cache • 32 KB L1 Data Cache • Support L1 cache RAMs protection with parity/ECC Support of 64-bit Armv8-A architecture: • 1 MB unified L2 cache • Support L2 cache RAMs protection with ECC • Frequency of 1.5 GHz Arm Cortex-M4 core platform 16 KB L1 Instruction Cache 16 KB L1 Data Cache 256 KB tightly coupled memory (TCM) Connectivity Two PCI Express Gen2 interfaces Two USB 3.0/2.0 controllers with integrated PHY interfaces Two Ultra Secure Digital Host Controller (uSDHC) interfaces One Gigabit Ethernet controller with support for EEE, Ethernet AVB, and IEEE 1588 Four Universal Asynchronous Receiver/Transmitter (UART) modules Four I2C modules Three SPI modules External memory interface 32/16-bit DRAM interface: LPDDR4-3200, DDR4-2400, DDR3L-1600 8-bit NAND-Flash eMMC 5.0 Flash SPI NOR Flash QuadSPI Flash with support for XIP GPIO and pin multiplexing GPIO modules with interrupt capability Input/output multiplexing controller (IOMUXC) to provide centralized pad control On-chip memory Boot ROM (128 KB) On-chip RAM (128 KB + 32 KB) Power management Temperature sensor with programmable trip points Flexible power domain partitioning with internal power switches to support efficient power management i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 2 NXP Semiconductors i.MX 8M Dual / 8M QuadLite / 8M Quad introduction Table 1. Features (continued) Subsystem Multimedia Feature Video Processing Unit: • 4Kp60 HEVC/H.265 main, and main 10 decoder • 4Kp60 VP9 decoder • 4Kp30 AVC/H.264 decoder • 1080p60 MPEG-2, MPEG-4p2, VC-1, VP8, RV9, AVS, MJPEG, H.263 decoder Graphic Processing Unit: • 4 shader • 267 million triangles/sec • 1.6 Giga pixel/sec • 32 GFLOPs 32-bit or 64 GFLOPs 16-bit • Support OpenGL ES 1.1, 2.0, 3.0, 3.1, Open CL 1.2, and Vulkan HDMI Display Interface: • HDMI 2.0a supporting one display: resolution up to 4096 x 2160 at 60 Hz, support HDCP 2.2 and HDCP 1.41 • 20+ Audio interfaces 32-bit @ 384 kHz fs, with Time Division Multiplexing (TDM) support • S/PDIF input and output • Audio Return Channel (ARC) on HDMI • Upscale HD graphics to 4K for display • Downscale 4K video to HD for display • Display Port • Embedded Display Port MIPI-DSI Display Interface: • MIPI-DSI 4 channels supporting one display, resolution up to 1920 x 1080 at 60 Hz • LCDIF display controller • Output can be LCDIF output or DC display controller output Audio: • S/PDIF input and output • Five synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, and codec/DSP interfaces, including one SAI with 16 Tx and 16 Rx channels, one SAI with 8 Tx and 8 Rx channels, and three SAI with 2 Tx and 2 Rx channels • One SAI for 8 Tx channels for HDMI output audio • One S/PDIF input for HDMI ARC input Camera inputs: • Two MIPI-CSI2 camera inputs (4-lane each) Security Resource Domain Controller (RDC) supports four domains and up to eight regions Arm TrustZone (TZ) architecture On-chip RAM (OCRAM) secure region protection using OCRAM controller High Assurance Boot (HAB) Cryptographic acceleration and assurance (CAAM) module Secure non-volatile storage (SNVS): Secure real-time clock (RTC) Secure JTAG controller (SJC) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 3 i.MX 8M Dual / 8M QuadLite / 8M Quad introduction Table 1. Features (continued) Subsystem System debug Feature Arm CoreSight debug and trace architecture TPIU to support off-chip real-time trace ETF with 4 KB internal storage to provide trace buffering Unified trace capability for Quad Cortex-A53 and Cortex-M4 CPUs Cross Triggering Interface (CTI) Support for 5-pin (JTAG) debug interface 1 Please contact the NXP sales and marketing team for order details on HDCP enable parts. NOTE The actual feature set depends on the part numbers as described in Table 2. Functions such as display and camera interfaces, and connectivity interfaces, may not be enabled for specific part numbers. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 4 NXP Semiconductors i.MX 8M Dual / 8M QuadLite / 8M Quad introduction 1.1 Block diagram Figure 1 shows the functional modules in the i.MX 8M Dual / 8M QuadLite / 8M Quad processor system. Security TrustZone DRM Ciphers Secure Clock Main CPU Platform Connectivity and I/O 1 GB Ethernet (IEEE1588, EEE, and AVB) Quad Cortex-A53 32 KB I-cache 32 KB D-cache S/PDIF Rx and Tx, I2S/SAI x6 FPU NEON PCIe 2.0 x2 (1-lane, each) eFuse Key Storage 1 MB L2 Cache Random Number USB 3.0/2.0 OTG x2 32 KB Secure RAM Low Power, Security CPU Cortex-M4 System Control Smart DMA x2 Timer x3 PWM x4 Watchdog x3 Temp Monitor Secure JTAG Temperature Sensor 16 KB I-cache UART x4, 5 Mbps I2C x4, SPI x3 16 KB D-cache 256 KB TCM HDMI 2.0a output HDCP 2.2 MIPI DSI Display x1 MIPI CSI2 Capture x2 Multimedia 3D Graphics: 4 Shader OpenGL/ES 3.1, CL 1.2, Vulkan External Memory 4Kp60 HEVC/H.265 4Kp60 VP9 4Kp30 H.264 Decoder and VP9 LPDDR4-3200 DDR4-2400 DDR3L-1600 1080p60 MPEG-2, MPEG-4p2, VC-1, VP8, RV9, AVS, MJPEG, H.263 Decoder 2x eMMC 5/SD 3 NAND CTL (BCH62) 4Kp60 Display QuadSPI (XIP) Figure 1. i.MX 8M Dual / 8M QuadLite / 8M Quad system block diagram i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 5 i.MX 8M Dual / 8M QuadLite / 8M Quad introduction 1.2 Ordering information Table 2 shows examples of orderable sample part numbers covered by this data sheet. This table does not include all possible orderable part numbers. If your desired part number is not listed in the table, or you have questions about available parts, contact your NXP representative. Table 2. Orderable part numbers Family Part number Part differentiator Cortex-A Qualification Temperature CPU speed tier Tj (C) grade Package i.MX 8M Quad MIMX8MQ6DVAJZAA VPU decode, HDR10, MIMX8MQ6DVAJZAB GPU, 4x A53 1.5 GHz Consumer 0 to +95 17 x 17 mm, 0.65 mm pitch, FBGA i.MX 8M Quad MIMX8MQ6DVAJZIB VPU decode, HDR10, GPU, 4x A53, Dolby Digital Plus (DD+) support1 1.5 GHz Consumer 0 to +95 17 x 17 mm, 0.65 mm pitch, FBGA i.MX 8M Dual MIMX8MD6DVAJZAA VPU decode, HDR10, MIMX8MD6DVAJZAB GPU, 2x A53 1.5 GHz Consumer 0 to +95 17 x 17 mm, 0.65 mm pitch, FBGA 1.5 GHz Consumer 0 to +95 17 x 17 mm, 0.65 mm pitch, FBGA i.MX 8M QuadLite 1 MIMX8MQ5DVAJZAA GPU, No VPU, 4x A53 MIMX8MQ5DVAJZAB Supply of this Implementation of Dolby technology does not convey a license nor imply a right under any patent, or any other industrial or intellectual property right of Dolby Laboratories, to use this Implementation in any finished end-user or ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories. Figure 2 describes the part number nomenclature so that the users can identify the characteristics of the specific part number. Contact an NXP representative for additional details. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 6 NXP Semiconductors i.MX 8M Dual / 8M QuadLite / 8M Quad introduction MIMX8MQ@+VA$$%A Silicon revision Qualification level Fusing options Part number series – Arm core based Core frequency – Arm Axx Package type – all ROHS Part differentiator Data Sheet Temperature Qualification level Part differentiator @ Samples P M VPU decode + HDR10, GPU 6 Mass Production Special S GPU, No VPU (QuadLite) 5 Temperature Tj + Frequency Consumer: 0 to +95oC D 1.5 GHz JZ C 1.3 GHz HZ ROHS Fusing % Industrial: -40 to 105oC Package type Part number series IMX8MQ Description 17 x 17 mm, 0.65 mm pitch, FCBGA bare die VA Silicon Rev A Rev. 1.0 A Rev. 2.0 B $$ - A HDCP NXP programmed C Dolby Digital Plus (DD+) I Quad core IMX8MD Dual core Note 1: Part number with Dolby IP require verification of the Dolby License prior to quoting and prior to shipment. Contact Commercial Marketing. Figure 2. Part number nomenclature—i.MX 8M Dual / 8M QuadLite / 8M Quad processors *Please contact the NXP sales and marketing team for order details on HDCP enable parts. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 7 Modules list 2 Modules list The i.MX 8M Dual / 8M QuadLite / 8M Quad of processors contain a variety of digital and analog modules. Table 3 describes these modules in alphabetical order. Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list Block mnemonic Block name APBH-DMA NAND Flash and BCH ECC DMA Controller Arm Arm Platform The Arm Core Platform includes a quad Cortex-A53 core and a Cortex-M4 core. The Cortex-A53 core includes associated sub-blocks, such as the Level 2 Cache Controller, Snoop Control Unit (SCU), General Interrupt Controller (GIC), private timers, watchdog, and CoreSight debug modules. The Cortex-M4 core is used as a customer microcontroller. BCH Binary-BCH ECC Processor The BCH module provides up to 62-bit ECC encryption/decryption for NAND Flash controller (GPMI) CAAM Cryptographic accelerator and assurance module CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, entropy source generator, and a Pseudo Random Number Generator (PRNG). The PRNG is certifiable by the Cryptographic Algorithm Validation Program (CAVP) of the National Institute of Standards and Technology (NIST). CAAM also implements a Secure Memory mechanism. In i.MX 8M Dual / 8M QuadLite / 8M Quad processors, the secure memory provided is 32 KB. CCM GPC SRC Brief description DMA controller used for GPMI2 operation. Clock Control Module, General These modules are responsible for clock and reset distribution in the Power Controller, System Reset system, and also for the system power management. Controller CSU Central Security Unit The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 8M Dual / 8M QuadLite / 8M Quad platform. CTI-0 CTI-1 CTI-2 CTI-3 CTI-4 Cross Trigger Interface Cross Trigger Interface (CTI) allows cross-triggering based on inputs from masters attached to CTIs. The CTI module is internal to the Cortex-A53 core platform. DAP Debug Access Port The DAP provides real-time access for the debugger without halting the core to access: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. DC Display Controller DDRC Double Data Rate Controller Dual display controller The DDR Controller has the following features: • Supports 32/16-bit LPDDR4-3200, DDR4-2400, and DDR3L-1600 • Supports up to 8 Gbyte DDR memory space i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 8 NXP Semiconductors Modules list Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list (continued) Block mnemonic Block name Brief description eCSPI1 eCSPI2 eCSPI3 Configurable SPI Full-duplex enhanced Synchronous Serial Interface, with data rate up to 52 Mbit/s. Configurable to support Master/Slave modes, only one chip select is supported. EIM NOR-Flash / PSRAM interface The EIM NOR-FLASH / PSRAM provides: • Support for 16-bit (in Muxed I/O mode only) PSRAM memories (sync and async operating modes), at slow frequency • Support for 16-bit (in muxed and non muxed I/O modes) NOR-Flash memories, at slow frequency • Multiple chip selects ENET1 Ethernet Controller The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual (IMX8MDQLQRM) for details. GIC Generic Interrupt Controller The GIC handles all interrupts from the various subsystems and is ready for virtualization. GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 General Purpose I/O Modules Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O. GPMI General Purpose Memory Interface The GPMI module supports up to 8x NAND devices and 62-bit ECC encryption/decryption for NAND Flash Controller (GPMI2). GPMI supports separate DMA channels for each NAND device. GPT1 GPT2 GPT3 GPT4 GPT5 GPT6 General Purpose Timer Each GPT is a 32-bit “free-running” or “set-and-forget” mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set-and-forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. GPU3D Graphics Processing Unit-3D HDMI Tx HDMI Tx interface I2C1 I2C2 I2C3 I2C4 I2C Interface The GPU3D provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays. The HDMI module provides an HDMI standard interface port to an HDMI 2.0a-compliant display. I2C provides serial interface for external devices. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 9 Modules list Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list (continued) Block mnemonic Block name Brief description IOMUXC IOMUX Control This module enables flexible I/O multiplexing. Each IO pad has a default as well as several alternate functions. The alternate functions are software configurable. LCDIF LCD interface The LCDIF is a general purpose display controller used to drive a wide range of display devices varying in size and capability. MIPI CSI2 (four-lane) MIPI Camera Serial Interface This module provides two four-lane MIPI camera serial interfaces, each of them can operate up to a maximum bit rate of 1.5 Gbps. MIPI DSI (four-lane) MIPI Display Serial Interface This module provides a four-lane MIPI display serial interface operating up to a maximum bit rate of 1.5 Gbps. OCOTP_CTRL OTP Controller The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non volatility. OCRAM On-Chip Memory controller The On-Chip Memory controller (OCRAM) module is designed as an interface between the system’s AXI bus and the internal (on-chip) SRAM memory module. In i.MX 8M Dual / 8M QuadLite / 8M Quad processors, the OCRAM is used for controlling the 128 KB multimedia RAM through a 64-bit AXI bus. PCIe1 PCIe2 2x PCI Express 2.0 PMU Power Management Unit Integrated power management unit. Used to provide power to various SoC domains. PWM1 PWM2 PWM3 PWM4 Pulse Width Modulation The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images. It can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. QSPI Quad SPI The PCIe IP provides PCI Express Gen 2.0 functionality. The Quad SPI module acts as an interface to external serial flash devices. This module contains the following features: • Flexible sequence engine to support various flash vendor devices • Single pad/Dual pad/Quad pad mode of operation • Single Data Rate/Double Data Rate mode of operation • Parallel Flash mode • DMA support • Memory mapped read access to connected flash devices • Multi master access with priority and flexible and configurable buffer for each master i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 10 NXP Semiconductors Modules list Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list (continued) Block mnemonic Block name Brief description SAI1 SAI2 SAI3 SAI4 SAI5 SAI6 Synchronous Audio Interface The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. SDMA Smart Direct Memory Access The SDMA is a multichannel flexible DMA engine. It helps in maximizing system performance by offloading the various cores in dynamic data routing. It has the following features: • Powered by a 16-bit Instruction-Set micro-RISC engine • Multi channel DMA supporting up to 32 time-division multiplexed DMA channels • 48 events with total flexibility to trigger any combination of channels • Memory accesses including linear, FIFO, and 2D addressing • Shared peripherals between Arm and SDMA • Very fast Context-Switching with 2-level priority based preemptive multi tasking • DMA units with auto-flush and prefetch capability • Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) • DMA ports can handle unidirectional and bidirectional flows (Copy mode) • Up to 8-word buffer for configurable burst transfers for EMIv2.5 • Support of byte-swapping and CRC calculations • Library of Scripts and API is available SJC Secure JTAG Controller The SJC provides JTAG interface (designed to be compatible with JTAG TAP standards) to internal logic. The i.MX 8M Dual / 8M QuadLite / 8M Quad of processors use JTAG port for production, testing, and system debugging. Additionally, the SJC provides BSR (Boundary Scan Register) standard support and designed to be compatible with IEEE 1149.1. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The SJC of the i.MX 8M Dual / 8M QuadLite / 8M Quad incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SNVS Secure Non-Volatile Storage SPDIF1 SPDIF2 Sony Philips Digital Interconnect Format A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. It supports Transmitter and Receiver functionality. TEMPSENSOR Temperature Sensor Temperature sensor TZASC Trust-Zone Address Space Controller Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, and Master Key Control. The TZASC (TZC-380 by Arm) provides security address region control functions required for intended application. It is used on the path to the DRAM controller. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 11 Modules list Table 3. i.MX 8M Dual / 8M QuadLite / 8M Quad modules list (continued) Block mnemonic Block name Brief description UART1 UART2 UART3 UART4 UART Interface Each of the UARTv2 modules supports the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd, or none) • Programmable baud rates up to 4 Mbps. This is a higher max baud rate relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F standard. • 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud uSDHC1 uSDHC2 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller The i.MX 8M Dual / 8M QuadLite / 8M Quad SoC characteristics: All the MMC/SD/SDIO controller IPs are based on the uSDHC IP. They are designed to support: • SD/SDIO standard, up to version 3.0. • MMC standard, up to version 5.0. • 1.8 V and 3.3 V operation, but do not support 1.2 V operation. • 1-bit/4-bit SD and SDIO modes, 1-bit/4-bit/8-bit MMC mode. One uSDHC controller (SD1) can support up to an 8-bit interface, the other controller (SD2) can only support up to a 4-bit interface. USB 3.0/2.0 2.1 2x USB 3.0/2.0 controllers and Two USB controllers and PHYs that support USB 3.0 and USB 2.0. PHYs Each USB instance contains: • USB 3.0 core, which can operate in both 3.0 and 2.0 mode VPU Video Processing Unit A high performing video processing unit (VPU), which covers many SD-level and HD-level video decoders. See the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual (IMX8MDQLQRM) for a complete list of the VPU’s decoding and encoding capabilities. WDOG1 WDOG2 WDOG3 Watchdog The watchdog (WDOG) timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line. XTALOSC Crystal Oscillator interface The XTALOSC module enables connectivity to an external crystal oscillator device. Recommended connections for unused interfaces The recommended connections for unused analog interfaces can be found in the Section, “Unused Input/Output Terminations,” in the hardware development guide for the device. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 12 NXP Semiconductors Electrical characteristics 3 Electrical characteristics This section provides the device and module-level electrical characteristics for the i.MX 8M Dual / 8M QuadLite / 8M Quad processors. 3.1 Chip-level conditions This section provides the device-level electrical characteristics for the IC. See Table 4 for a quick reference to the individual tables and sections. Table 4. i.MX 8M Dual / 8M QuadLite / 8M Quad chip-level conditions For these characteristics, … Topic appears … Absolute maximum ratings on page 13 FPBGA package thermal resistance on page 15 Operating ranges on page 18 External clock sources on page 21 Maximum supply currents on page 21 Power modes on page 23 USB PHY Suspend current consumption on page 25 3.1.1 Absolute maximum ratings CAUTION Stresses beyond those listed under Table 5 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operating ranges or parameters tables is not implied. Table 5. Absolute maximum ratings Parameter description Symbol Min Max Unit Notes Core supply voltages VDD_ARM VDD_SOC -0.3 1.1 V 1.1 V is for VDD_ARM overdrive Power supply for GPU VDD_GPU -0.3 1.1 V 1.1 V is for overdrive Power supply for VPU VDD_VPU -0.3 1.1 V Nominal mode -0.3 1.1 V Overdrive mode VDD_DRAM -0.3 1.05 V — NVCC_DRAM -0.3 1.42 V — Core voltage DDR I/O supply voltage i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 13 Electrical characteristics Table 5. Absolute maximum ratings (continued) Parameter description Symbol Min Max Unit Notes Power supply for analog domain VDDA_1P8 -0.3 1.98 V — NVCC_JTAG, NVCCGPIO1, NVCC_ENT, NVCC_SD1, NVCC_SD2, NVCC_NAND, NVCC_SA1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_ECSPI, NVCC_I2C, NVCC_UART -0.3 3.6 V 1.8 V mode/3.3 V mode NVCC_SNVS -0.3 3.6 V 3.3 V mode only VDD_SNVS -0.3 0.99 V — PLL 1.8 V supply voltage VDDA_DRAM -0.3 1.89 V — Supply for 25 MHz crystal VDDA_1P8_XTAL_25M -0.3 1.98 V — Supply for 27 MHz crystal VDDA_1P8_XTAL_27M -0.3 1.98 V — HDMI_AVDDCLK -0.3 0.99 — HDMI_AVDDIO -0.3 1.90 — HDMI_AVDDCORE -0.3 0.99 — PCIE_VP -0.3 0.99 V — PCIE_VPH -0.3 3.63 V — PCIE_VPTX -0.3 0.99 V — MIPI_VDDA -0.3 1.1 V — MIPI_VDDHA -0.3 1.98 V — MIPI_VDD -0.3 1.1 V — MIPI_VDDPLL -0.3 1.1 V USB1_VDD33, USB1_VPH, USB2_VDD33, USB2_VPH -0.3 3.63 V — USB_VBUS input detected USB1_VBUS, USB2_VBUS -0.3 5.25 V — Input voltage on USB*_DP, USB*_DN pins USB1_DP/USB1_DN USB2_DP/USB2_DN -0.3 USB1_VDD33 USB2_VDD33 V — Temperature sensor VDD_1P8_TSENSOR -0.3 1.98 V — EFUSE_VQPS -0.3 1.98 V — Input/output voltage range Vin/Vout -0.3 OVDD1+0.3 V — Storage temperature range TSTORAGE –40 150 oC — GPIO supply voltage SNVS IO supply voltage VDD_SNVS supply voltage HDMI supply voltage PCIe PHY supply voltage MIPI supply voltage USB high supply voltage Fuse power 1 OVDD is the I/O supply voltage. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 14 NXP Semiconductors Electrical characteristics Table 6. Electrostatic discharge and latch up ratings Parameter description Rating Reference Comment Electrostatic Discharge (ESD) Human Body Model (HBM) ±1000 V JS-001-2017 — Charged Device Model (CDM) ±250 V JS-002-2018 — Latch UP (LU) Immunity level: • Class I@ 25 oC ambient temperature • Class II @ 105 oC ambient temperature A A JESD78E 3.1.2 3.1.2.1 — Thermal resistance FPBGA package thermal resistance Table 7 displays the thermal resistance data. Table 7. Thermal resistance data Rating Junction to Ambient1 Junction to Ambient1 Test conditions Symbol 17 x 17 pkg value Unit Single-layer board (1s); natural convection2 Four-layer board (2s2p); natural convection2 RJA RJA oC/W Single-layer board (1s); airflow 200 ft/min2,3 Four-layer board (2s2p); airflow 200 ft/min2,3 RJA RJA Bare die: 13.9 oC/W Bare die: 16.4 oC/W oC/W Junction to Board1,4 — RJB Bare die: 4.6 oC/W Junction to Case1,5 — RJC Bare die: 0.1 oC/W 1 2 3 4 5 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified package. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 3.1.3 Power architecture The power architecture of the chip is defined based on the assumption that PMIC is always used to supply all the power rails to the processor. The digital logic inside chip will be supplied with four supplies: VDD_ARM, VDD_GPU, VDD_VPU, and VDD_SOC. They are expected to be directly supplied externally through power pads. The ARM supply is separated with SoC because ARM A53 platform need to support DVFS, e.g., ARM requires 1.0 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 15 Electrical characteristics V overdrive to run at 1.4 GHz. For any application that only runs ARM core below 1.2 GHz, VDD_ARM and VDD_SOC power rails can be connected together and supplied with 0.9 V. VPU/GPU supply is separated with SoC because VPU/GPU might need overdrive to support higher frame rate. The GPIO pads will have external power supply for 3.3 V and 1.8 V IO voltage. The IO pad core voltage will be supplied directly by VDD_SOC. The DRAM controller and PHY have three external power supplies: 0.9 V/1.0 V for controller and PHY digital logic, 1.8 V for PHY analog circuit, and 1.1/1.2/1.35 V for I/O. The DRAM pads will also have VREF supply which is always ½ of the NVCC_DRAM. The two DRAM channels will have all their power rails separated, this allows one of the channel to be fully power down when only single channel is used in the application. For all the integrated analog modules, their 1.8 V power will be supplied externally through power pads. This supply is separated with other power pads to keep them clean. For all the integrated PCIe PHY, HDMI PHY, MIPI PHY, and USB PHY, their 3.3 V, 1.8 V, and 0.9 V power will be supplied externally through power pads. The powers to those PHYs can be shared to reduce the number of power supplies from the PMIC. For SNVS/RTC, both the 0.9 V core logic supply and 3.3 V I/O pad supply will also be supplied directly from the PMIC. If the PMIC does not have 0.9 V output, an external LDO can be used to generate the 0.9 V supply from 3.3 V. There are no integrated LDOs inside the chip. Figure 3 is the power architecture diagram for the whole chip. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 16 NXP Semiconductors Electrical characteristics PMIC Cortex A53 Platform 0.9V/1.0V Digital VDD_ARM CPU #1 CPU #0 L1 Cache L1 Cache CPU #3 CPU #2 L1 Cache L1 Cache L2 Controller & SCU L2 Cache Memory 0.9V Digital 0.9V/1.0V Digital VDD_GPU GPU VDD_VPU VPU VDD_SOC 0.9V Digital SOC (Always ON) DISPLAYMIX 3.3V IO NVCC_XXX 3.3V GPIO PAD NVCC_XXX 1.8V GPIO PAD 1.8V IO EFUSE_VQPS VDDA_1P8 1.8V Analog eFuse PLL Temperature Sensor VDDA_0P9 XTAL DRAM PLL 0.9V/1.0V Digital VDD_DRAM VDDA_DRAM 1.1/1.2/1.35V DRAM IO 1.8V PHY NVCC_DRAM DRAM Controller DRAM PHY PCIE_VPH PCIE_VP PCIE_VPTX PCIe PHY HDMI_AVDDIO 0.9V PHY HDMI_AVDDCLK HDMI_AVDDCORE HDMI PHY MIPI_VDDHA MIPI_VDDPLL MIPI_VDDA 3.3V PHY MIPI PHY USB_P1_VDD33 USB_P1_VPH USB_P1_DVDD USB_P1_VP USB PHY 1 USB_P1_VPTX USB_P2_VDD33 USB_P2_VPH USB_P2_DVDD USB_P2_VP USB PHY 2 USB_P2_VPTX VDD_SNVS SNVS_LP 0.9V SNVS 3.3V SNVS IO NVCC_SNVS PMIC PAD Figure 3. Power architecture i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 17 Electrical characteristics 3.1.4 Operating ranges Table 8 provides the operating ranges of the i.MX 8M Dual / 8M QuadLite / 8M Quad processors. For details on the chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual (IMX8MDQLQRM). Table 8. Operating ranges Parameter description Symbol Min Typ Max1 Unit Comment Power supply for Quad-A53 VDD_ARM 0.81 0.9 1.05 V Nominal mode—the maximum Arm core frequency supported in this mode is 1000 MHz. 0.9 1.0 1.05 V Overdrive mode—the maximum Arm core frequency supported in this mode is defined in Table 2. Power supply for SoC logic VDD_SOC 0.81 0.9 0.99 V — Power supply for GPU VDD_GPU 0.81 0.9 1.05 V Nominal mode—the maximum GPU frequency supported in this mode is 800 MHz. 0.9 1.0 1.05 V Overdrive mode—the maximum GPU frequency supported in this mode is 1 GHz. 0.81 0.9 1.05 V Nominal mode—the maximum VPU frequency supported in this mode is 550/500/588 MHz. 0.9 1.0 1.05 V Overdrive mode—the maximum VPU G2/G1/AXI Bus frequency supported in this mode is 660/600/800 MHz. 0.81 0.9 1.05 V Nominal mode—the maximum DRAM working frequency supported in this mode is 933 MHz. 0.99 1.0 1.05 V Overdrive mode—the maximum DRAM working frequency supported in this mode is 1600 MHz VDDA_1P8 1.62 1.8 1.98 V Power for internal analog blocks—must match the range of voltages that the rechargeable backup battery supports. VDDA_DRAM 1.71 1.8 1.89 V — VDD_SNVS 0.81 0.9 0.99 V — Power supply for VPU Core voltage Power Supply Analog Domain PLL 1.8 V supply voltage Backup battery supply range VDD_VPU VDD_DRAM i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 18 NXP Semiconductors Electrical characteristics Table 8. Operating ranges (continued) Symbol Min Typ Max1 Unit Supply for 25 MHz crystal VDD_1P8_XTAL_25M 1.6 1.8 1.98 V — Supply for 27 MHz crystal VDD_1P8_XTAL_27M 1.6 1.8 1.98 V — Temperature sensor VDD_1P8_TSENSOR 1.6 1.8 1.98 V — USB supply voltages USB1_VDD33/ USB1_VPH 3.069 3.3 3.63 V This rail is for USB USB2_VDD33/ USB2_VPH 3.069 3.3 3.63 V This rail is for USB USB1/2_DVDD 0.837 0.900 0.990 V 0.9 V supply for USB high speed operation USB1/2_VP 0.837 0.900 0.990 V 0.9 V supply for USB super speed operation USB1/2_VPTX 0.837 0.900 0.990 V 0.9 V supply for PHY transmit USB1_VBUS/ USB2_VBUS 0.8 1.4 5.25 V — NVCC_DRAM 1.06 1.10 1.17 V LPDDR4 1.14 1.2 1.26 V DDR4 1.28 1.35 1.42 V DDR3L V Set to one-half NVCC_DRAM Parameter description DDR I/O supply voltage DRAM_VREF GPIO supply voltages 0.49 x 0.5 x 0.51 x NVCC_D NVCC_D NVCC_D RAM RAM RAM Comment NVCC_JTAG, NVCC_SD1, NVCC_SD2, NVCC_NAND, NVCC_SAI1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_ECSPI, NVCC_I2C, NVCC_UART 1.65, 3.0 1.8, 3.3 1.95, 3.6 V — NVCC_ENET 1.65, 2.25 3.0 1.8, 2.5 3.3 1.95, 2.75 3.6 V — NVCC_GPIO1 1.65 3.0 1.8, 3.3 1.95, 3.6 V Power for GPIO1_IO00 ~ GPIO1_IO15 NVCC_SNVS 3.0 3.3 3.6 V Power for 3.3 V only i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 19 Electrical characteristics Table 8. Operating ranges (continued) Parameter description HDMI supply voltage MIPI supply voltage Voltage rails supplied for 1.8 V PHY Temperature sensor accuracy2 Fuse power Junction temperature, consumer Symbol Min Typ Max1 Unit HDMI_AVDDCLK 0.850 0.900 0.990 V 0.9 V supply for HDMI high speed clock HDMI_AVDDIO 1.700 1.800 1.900 V 1.8 V supply for HDMI bias and PLL HDMI_AVDDCORE 0.850 0.900 0.990 V 0.9 V supply for HDMI analog MIPI_VDDA 0.81 0.9/1.0 1.1 V Analog core power supply MIPI_VDDHA 1.62 1.8 1.98 V Analog IO power supply MIPI_VDD 0.81 0.9/1.0 1.1 V Digital core power supply MIPI_VDDPLL 0.81 0.9/1.0 1.1 V Analog supply for MIPI PLL PCIE_VPH 1.674 1.8 1.98 V Set PCIE1/2_VREG_BYPASS = 1 to bypass internal regulator 3.069 3.3 3.63 V Set PCIE1/2_VREG_BYPASS = 0 to use internal regulator PCIE_VP, PCIE_VPTX 0.837 0.9 0.99 V Supplied from PMIC Tdelta — ±3 — °C Typical accuracy over the range 0°C to 95°C EFUSE_VQPS 1.71 1.8 1.98 V Power supply for internal use T 0 — +95 oC See Table 2 for complete list of junction temperature capabilities. J Comment 1 Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the supply tolerance) is recommended. This result in an optimized power/speed ratio. 2 For consumer products, the operating range (including system boot) of temperature sensor is from 0°C to 95°C. Otherwise, it may cause a misleading out-of-range indication. 3.1.5 External clock sources A 25 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for CPU, BUS, and high-speed interfaces. For fractional PLLs, the 25 MHz clock from the oscillator can be directly used as the PLL reference clock. A 27 MHz oscillator is used as the reference clock for HDMI PHY. Also it can be used as the alternative source for the fractional PLLs. A 32 kHz clock input pin is used as the RTC clock source. It is expected to be supplied by an external 32.768 kHz oscillator. Two pairs of differential clock inputs, named as CLK1P and CLK1N, can be used as the reference clock for the PLL. This is mainly used for a high-speed clock input during testing. Four clock inputs to the CCM from normal GPIO pads via IOMUX can be used as the clock sources in the CCM. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 20 NXP Semiconductors Electrical characteristics Table 9 shows the interface frequency requirements. Table 9. External input clock frequency Parameter description Symbol Min Typ Max Unit RTC1,2 fckil — 32.7683 — kHz XTALI_25M/XTALO_25M2 fxtal 20 25 40 MHz XTALI_27M/XTALO_27M2 fxtal 20 27 40 MHz 1 External oscillator or a crystal with internal oscillator amplifier. The required frequency stability of this clock source is application dependent. 3 Recommended nominal frequency 32.768 kHz. 2 The typical values shown in Table 9 are required for use with NXP BSPs to ensure precise time keeping and USB operation. For RTC operation, two clock sources are available.The decision of choosing a clock source should be made based on real-time clock use and precision timeout. 3.1.6 Maximum supply currents Power consumption is highly dependent on the application. Estimating the maximum supply currents required for power supply design is difficult because the use cases that requires maximum supply current is not a realistic use cases. To help illustrate the effect of the application on power consumption, data was collected while running consumer standard benchmarks that are designed to be compute and graphic intensive. The results provided are intended to be used as guidelines for power supply design. Table 10. Maximum supply currents1 Power rail Max current Unit VDD_ARM 384 to 24101 mA VDD_SOC 18701 mA 1400 to VDD_GPU 0 to 20401 mA VDD_VPU 6101 mA 0 to VDD_DRAM 600 to 8701 mA VDDA_0P9 50 mA VDDA_1P8 20 mA VDDA_DRAM 30 mA VDD_SNVS 5 mA NVCC_SNVS 5 mA i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 21 Electrical characteristics Table 10. Maximum supply currents1 (continued) Power rail NVCC_ Max current Unit Imax = N x C x V x (0.5 x F) Where: N—Number of IO pins supplied by the power line C—Equivalent external capacitive load V—IO voltage (0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F). In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. NVCC_DRAM 375 to 7501 mA DRAM_VFEF 10 mA USB1_DVDD 9.2 mA USB2_DVDD 9.2 mA USB1_VP 35.7 mA USB2_VP 35.7 mA USB1_VPTX 21.2 mA USB2_VPTX 21.2 mA USB1_VDD33 24.5 mA USB2_VDD33 24.5 mA USB1_VPH 20.3 mA USB2_VPH 20.3 mA PCIE_VP (PCIE1) 38.1 mA PCIE_VP (PCIE2) 38.1 mA PCIE_VPH (PCIE1) 43 mA PCIE_VPH (PCIE2) 43 mA PCIE_VPTX (PCIE1) 14.3 mA PCIE_VPTX (PCIE2) 14.3 mA HDMI_AVDDCLK 95.89 mA HDMI_AVDDIO 6.551 mA MIPI_VDDA (DSI) 17.1 mA MIPI_VDDHA (DSI) 4.2 mA MIPI_VDD (DSI) 14.4 mA MIPI_VDDPLL (DSI) 3.8 mA MIPI_VDDA (CSI1/2) 18.79 mA HDMI_AVDDCORE i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 22 NXP Semiconductors Electrical characteristics Table 10. Maximum supply currents1 (continued) Power rail Max current Unit MIPI_VDDHA (CSI1/2) 2.97 mA EFUSE_VQPS 96.35 mA 1 Use case dependent 3.1.7 Power modes The i.MX 8M Dual / 8M QuadLite / 8M Quad processors support the following power modes: • RUN Mode: All external power rails are on, CPU is active and running; other internal modules can be on/off based on application. • IDLE Mode: When there is no thread running and all high-speed devices are not active, the CPU can automatically enter this mode. The CPU can be in the power-gated state but with L2 data retained, DRAM and the bus clock are reduced. Most of the internal logic is clock gated but still remains powered. The M4 core can remain running. Compared with RUN mode, all the external power rails from the PMIC remain the same, and most of the modules still remain in their state. • Deep Sleep Mode (DSM): The most efficient power saving mode where all the clocks are off and all the unnecessary power supplies are off. • SNVS Mode: This mode is also called RTC mode. Only the power for the SNVS domain remains on to keep RTC and SNVS logic alive. • OFF Mode: All power rails are off. Table 11. Chip power in different LP mode Mode SNVS VDD_SNVS (1.0 V) 1.39 NVCC_SNVS (3.6 V) 4.25 2 Deep Sleep Mode (DSM) Max.1 Supply Unit mA Total 17 mW VDD_SOC (1.0 V) 148.50 mA VDDA_1P8 (2.0 V) 12.82 VDDA_0P9 (1.0 V) 0.30 VDDA_DRAM (1.8 V) 0.50 VDD_SNVS (1.0 V) 0.25 NVCC_SNVS (3.3 V) 4.80 NVCC_DRAM (1.17 V) 4.51 Total2 197 mW i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 23 Electrical characteristics Table 11. Chip power in different LP mode (continued) Mode Max.1 Supply IDLE RUN Unit VDD_ARM (1.0 V) 152.10 mA VDD_SOC (1.0 V) 132.90 VDD_DRAM (1.0 V) 44.10 VDDA_1P8 (2.0 V) 13.53 VDDA_0P9 (1.0 V) 0.30 VDDA_DRAM (1.8 V) 1.32 VDD_SNVS (1.0 V) 0.25 NVCC_SNVS (3.3 V) 4.34 NVCC_DRAM (1.17 V) 13.12 Total2 389 mW Total 1 to 4 W All the power numbers defined in the table are based on typical silicon at 25oC. Use case dependent Sum of the listed supply rails. 1 2 Table 12 summarizes the external power supply states in all the power modes. Table 12. The power supply states Power rail OFF SNVS SUSPEND IDLE RUN VDD_ARM OFF OFF OFF ON ON VDD_SOC OFF OFF ON ON ON VDD_GPU OFF OFF OFF OFF ON/OFF VDD_VPU OFF OFF OFF OFF ON/OFF VDD_DRAM OFF OFF OFF ON ON VDDA_0P9 OFF OFF ON ON ON VDDA_1P8 OFF OFF ON ON ON VDDA_DRAM OFF OFF ON ON ON VDD_SNVS OFF ON ON ON ON NVCC_SNVS OFF ON ON ON ON NVCC_ OFF OFF ON ON ON NVCC_DRAM OFF OFF ON ON ON DRAM_VREF OFF OFF OFF ON ON i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 24 NXP Semiconductors Electrical characteristics 3.1.8 USB PHY Suspend current consumption 3.1.8.1 Low power Suspend Mode The VBUS Valid comparators and their associated bandgap circuits are enabled by default. Table 13 shows the USB interface current consumption in Suspend mode with default settings. Table 13. USB PHY current consumption in Suspend mode1 Current 1 USB1_VDD33 USB2_VDD33 154  154  Low Power Suspend is enabled by setting USBx_PORTSC1 [PHCD]=1 [Clock Disable (PLPSCD)]. 3.1.8.2 Power-Down modes Table 14 shows the USB interface current consumption with only the OTG block powered down. Table 14. USB PHY current consumption in Sleep mode1 Current 1 USB1_VDD33 USB2_VD33 520  520  VBUS Valid comparators can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1. This signal powers down only the VBUS Valid comparator, and does not control power to the Session Valid Comparator, ADP Probe and Sense comparators, or ID detection circuitry. In Power-Down mode, everything is powered down, including the USB_VBUS valid comparators and their associated bandgap circuity in typical condition. Table 15 shows the USB interface current consumption in Power-Down mode. Table 15. USB PHY current consumption in Power-Down mode1 Current 1 USB1_VDD33 USB2_VDD33 146  146  The VBUS Valid Comparators and their associated bandgap circuits can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1 and USBNC_OTG*_PHY_CFG2[DRVVBUS0] to 0, respectively. 3.1.9 PCIe PHY 2.1 DC electrical characteristics Table 16. PCIe recommended operating conditions Parameter PCIE_VP Description Min Max Unit V Low Power Supply Voltage for PHY Core — 0.837 0.99 PCIE_VPTX PHY transmit supply — 0.837 0.99 PCIE_VPH High Power Supply Voltage for PHY Core 1.8 1.674 1.98 3.3 3.069 3.63 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 25 Electrical characteristics Table 16. PCIe recommended operating conditions (continued) Parameter Description TA Commercial Temperature Range TJ Simulation Junction Temperature Range Min Max Unit 0 70 °C -40 125 °C Note: VDD should have no more than 40 mVpp AC power supply noise superimposed on the high power supply voltage for the PHY core (1.8 V nominal DC value). At the same time, VDD should have no more than 20 mVpp AC power supply noise superimposed on the low power supply voltage for the PHY core (1.0 V nominal value or 1.1 V overdrive DC value). The power supply voltage variation for the PHY core should have less than ±5% including the board-level power supply variation and on-chip power supply variation due to the finite impedances in the package. Table 17. PCIe DC electrical characteristics Parameter Description Min Typ Max Unit 0.9 - 7% 0.9 0.9 + 10% V Normal — 40 — mW Partial Mode — 27 — mW Slumber Mode — 7 — mW Full Powerdown — 0.2 — mW PCIE1_VP, Power Supply Voltage PCIE2_VP PD Power Consumption Table 18. PCIe PHY high-speed characteristics High Speed I/O Characteristics Description Unit Interval TX Serial output rise time (20% to 80%) TX Serial output fall time (80% to 20%) TX Serial data output voltage (Differential, pk–pk) PCIe Tx deterministic jitter < 1.5 MHz PCIe Tx deterministic jitter > 1.5 MHz Symbol Speed Min. Typ. Max. Unit UI 2.5 Gbps — 400 — ps 5.0 Gbps — 200 — 2.5 Gbps 100 — — 5.0 Gbps 100 — — 2.5 Gbps 100 — — 5.0 Gbps 100 — — 2.5 Gbps 800 — 1100 5.0 Gbps 600 — 900 2.5 Gbps 3 — — 5.0 Gbps 3 — — 2.5 Gbps — — 20 5.0 Gbps — — 10 TTXRISE TTXFALL VTX TRJ TDJ ps ps mVp–p ps, rms ps, pk–pk i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 26 NXP Semiconductors Electrical characteristics Table 18. PCIe PHY high-speed characteristics (continued) High Speed I/O Characteristics Description RX Serial data input voltage (Differential pk–pk) Symbol Speed Min. Typ. Max. Unit VRX 2.5 Gbps 120 — 1200 mVp–p 5.0 Gbps 120 — 1200 Table 19. PCIe PHY reference clock timing requirements (vp is PIE_VP, 0.9 V power supply) Symbol Parameter Min. Typ. Max. Unit Condition FREF_OFFSET Reference clock frequency offset -300 — 30 ppm — DJREF_CLK Reference clock cycle to cycle jitter — — 35 ps DJ across all frequencies DCREF_CLK Duty cycle 40 — 60 % — VCMREF_CLK Common mode input level 0 — vp V Differential inputs VDREF_CLK Differential input swing -0.3 — — VPP Differential inputs VOLREF_CLK Single-ended input logic low -0.3 — -0.3 V If single-ended input is used. VOHREF_CLK Single-ended input logic high vp - 0.3 — vp + 0.3 V If single-ended input is used. SWREF_CLK Input edge rate — — — V/ns — REF_CLK_SKEW Reference clock skew (±) — — 200 ps — PCIe PHY interface is compliant with PCIe Express GEN2. 3.2 Power supplies requirements and restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: • Excessive current during power-up phase • Prevention of the device from booting • Irreversible damage to the processor (worst-case scenario) 3.2.1 Power-up sequence The i.MX 8M Dual / 8M QuadLite / 8M Quad processors have the following power-up sequence requirements: • Turn on NVCC_SNVS • Turn on VDD_SNVS • RTC_RESET_B release (after 32K clock stable and before POR_B release, no constraint with any other power supplies) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 27 Electrical characteristics • • • • • Turn on VDD_SOC and VDDA_0P9 Turn on VDD_ARM, VDD_GPU, VDD_VPU, and VDD_DRAM (no sequence between these four rails) Turn on VDDA_1P8_XXX, VDDA_DRAM (no sequence between these rails) Turn on NVCC_XXX and NVCC_DRAM (no sequence between these rails) POR_B release (it should be asserted during the entire power up sequence) If the GPU/VPU is not used during the ROM boot sequence, VDD_GPU/VDD_VPU can stay off to reduce the power during boot, and then turned on by software afterwards. During the chip power up, the power of the PCIe PHY, USB PHY, HDMI PHY, and MIPI PHY could stay off. After chip power up, the power of these PHys should be turned on. If any of the PHY power are turned on during the power up sequence, the POR_B can be released after the PHY power is stable. 3.2.2 Power-down sequence The i.MX 8M Dual / 8M QuadLite / 8M Quad processors have the following power-down sequence requirements: • Turn off NVCC_SNVS and VDD_SNVS last • Turn off VDD_SOC after the other power rails or at the same time as other rails • No sequence for other power rails during power down 3.2.3 Power supplies usage I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about the I/O power supply of each pin, see “Power Rail” columns in the pin list tables of Section 5, Package information and contact assignments.” Table 20 lists the modules in each power domain. Table 20. The modules in the power domains Power Domain Modules in the domain VDD_ARM Arm A53 VDD_GPU GC7000L GPU VDD_VPU G1 and G2 VPU VDD_DRAM DRAM controller and PHY VDD_SNVS SNVS_LP VDD_SOC All the other modules i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 28 NXP Semiconductors Electrical characteristics 3.3 PLL electrical characteristics Table 21. PLL electrical parameters PLL type Parameter Value AUDIO_PLL1 Clock output range 650 MHz ~ 1.3 GHz Reference clock 25 MHz Lock time 50 s Jitter ±1% of output period, 50 ps Clock output range 650 MHz ~ 1.3 GHz Reference clock 25 MHz Lock time 50 s Jitter ±1% of output period,  50 ps Clock output range 650 MHz ~ 1.3 GHz Reference clock 25 MHz Lock time 50 s Clock output range 650 MHz ~ 1.3 GHz Reference clock 25 MHz Lock time 70 s Clock output range 800 MHz Reference clock 25 MHz Lock time 70 s Clock output range 1 GHz Reference clock 25 MHz Lock time 70 s Clock output range 600 MHz ~ 1GHz Reference clock 25 MHz Lock time 70 s Clock output range 800 MHz ~1.6 GHz Reference clock 25 MHz Lock time 50 s Clock output range 400 MHz–800 MHz Reference clock 25 MHz Lock time 70 s AUDIO_PLL2 VIDEO_PLL1 VIDEO_PLL2 SYS_PLL1 SYS_PLL2 SYS_PLL3 ARM_PLL DRAM_PLL i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 29 Electrical characteristics Table 21. PLL electrical parameters (continued) PLL type Parameter Value GPU_PLL Clock output range 800 MHz ~1.6 GHz Reference clock 25 MHz Lock time 50 s Clock output range 400 MHz ~ 800 MHz Reference clock 25 MHz Lock time 50 s VPU_PLL 3.4 3.4.1 On-chip oscillators OSC25M and OSC27M A 25 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for the CPU, BUS, and high-speed interfaces. For fractional PLLs, the 25 MHz clock from the oscillator can be used as the PLL reference clock directly. A 27 MHz oscillator is used as the reference clock for HDMI PHY. It can also be used as the alternative source for the fractional PLLs. Table 22 lists the electrical specifications of this oscillator when loaded with an NX5032GA 40 MHz crystal unit at 40 MHz frequency. All values are valid only for the device TJ operating specification of -40 oC to 125 oC. Table 22. Electrical specification of oscillator @ 1.8 V Parameter Min Typ Max Unit 250 — 800 mV Power consumption (analog supply RMS current in OSC mode)2, 3 — — 4 mA Start-up time1, 2 — — 2 ms Voltage swing on external pin1 1 The start-up time is dependent upon crystal characteristics, board leakage, etc.; high ESR and excessive capacitive loads can cause long start-up time. 2 Electrical parameters are subject to change. 3 Maximum current is observed during startup. After oscillation is stable, the current from HV supply comes down. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 30 NXP Semiconductors Electrical characteristics Table 23 shows the transconductance specification of the oscillator (in mA/V). Table 23. Transconductance specification of oscillator GM_sel Min Max 10 25 111 Table 24 shows the input clock specifications. Table 24. Input clock specification Parameter Min Typ Max Unit Clock Frequency in OSC mode 20 — 40 MHz Input Clock Frequency in Bypass mode — — 50 MHz Input Clock Rise/Fall Time in Bypass mode — — 1 ns 47.50 50 52.50 % Input Clock Duty Cycle in Bypass mode Table 25 shows core output clock specification. Table 25. Core output clock specification Parameter Min Typ Max Unit Output Clock Frequency in OSC mode 20 — 40 MHz Output Clock Duty Cycle in OSC mode 45 50 55 % Output Clock Frequency in Bypass mode — — 50 MHz Capacitive Loading on Outputs Clock — 150 500 fF Output Clock Rise/Fall Time in Bypass mode — 0.1 0.5 ns Output Clock Duty Cycle in Bypass mode 40 50 60 % Table 26 shows VIL/VIH specification at EXTAL. Table 26. Transconductance specification of oscillator Parameter VILEXTAL VIHEXTAL Condition VREF = 0.5 x avdd (xosc HV supply) Min Max Unit 0 VREF - 0.5 V VREF + 0.5 avdd i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 31 Electrical characteristics 3.5 I/O DC parameters This section includes the DC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for LPDDR4, DDR4, and DDR3L modes • Differential I/O (CLKx) 3.5.1 General purpose I/O (GPIO) DC parameters Table 27 shows DC parameters for GPIO pads. The parameters in Table 27 are guaranteed per the operating ranges in Table 8, unless otherwise noted. Table 27. GPIO DC parameters Parameter Symbol Test Conditions Min Typ Max Unit High-level output voltage VOH (1.8 V) Min VDD, IOH = –100 A, IOH = –2 mA VDD - 0.2, VDD - 0.45 — — V VDD - 0.2 2.4 — — V Min VDD, IOH = 100 A, IOH = 3 mA — — 0.2 0.2 x VDD V — — 0.2 0.4 V VOH (3.3 V) Low-level output voltage VOL (1.8 V) VOL (3.3 V) VIH (1.8 V) ipp_lvttl_en = 0 0.7 x VDD — VDD V VIH (3.3 V) ipp_lvttl_en = 1 2 — VDD V VIH_1VCOMS ipp_lvttl_en = 0 0.7 x VDD — VDD V VIL (1.8 V) ipp_lvttl_en = 0 0 — 0.2 x VDD V VIL_emmc (1.8 V) ipp_lvttl_en = 0 0 — 0.35 x VDD V VIL (3.3 V) ipp_lvttl_en = 1 0 — 0.8 V VIL_emmc (3.3 V) ipp_lvttl_en = 0 0 — 0.25 x VDD V VIL_1vcmos (3.3 V) ipp_lvttl_en = 0 0 — 0.2 x VDD V VHYS (1.8 V) ipp_hys = 1 — 0.15 — V VHYS (3.3 V) ipp_hys = 1 — 0.2 — V Pull-up resistor — — 30 x 0.75 30 30 x 1.25 K Pull-down resistor — — 95 x 0.75 95 95 x 1.25 K High level input current1 IIH — -50 — 50 A current1 IIL — -50 — 50 A High-level input voltage (3.3 V) Low-level input voltage Input hysteresis Low level input i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 32 NXP Semiconductors Electrical characteristics 1 The leakage limit for the following pins: HDMI_TX (several) is ±200 A; HDMI_AUX_N/P is ±65 A; PMIC_ON_REQ is ±60 A; PMIC_STBY_REQ is ±80 A; RTC_RESET_B is ±60 A; ONOFF is ±60 A; POR_B is ±60 A; and SD2_CD_B is ±60 A. 3.5.2 DDR I/O DC electrical characteristics The DDR I/O pads support LPDDR 4, DDR4, and DDR3L operational modes. The DDR Memory Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs. DDRMC operation is contingent upon the board’s DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 8M Dual / 8M QuadLite / 8M Quad application processor. Table 28. DC input logic level Characteristics Symbol Min Max Unit DC input logic high1 VIH(DC) VREF +100 — mV DC input logic low VIL(DC) — VREF –100 1 It is the relationship of the VDDQ of the driving device and the VREF of the receiving device that determines noise margins. However, in the case of VIH(DC) max (that is, input overdrive), it is the VDDQ of the receiving device that is referenced. Table 29. Output DC current drive Characteristics Symbol Min Max Unit Output minimum source DC current1 IOH(DC) –4 — mA Output minimum sink DC current IOL(DC) 4 — mA DC output high voltage(IOH = –0.1mA),2 VOH 0.9 x VDDQ — V DC output low voltage(IOL = 0.1mA), VOL — 0.1 x VDDQ V Symbol Min Max Unit IIH –40 40 A IIL –40 40 A 1 When DDS = [111] and without ZQ calibration. The values of VOH and VOL are valid only for 1.2 V range. 2 Table 30. Input DC current1 Characteristics High level input current2,3 Low level input current, The leakage limit for the following pins: DRAM_AC00, DRAM_AC01, DRAM_AC20, and DRAM_AC21 are ±300 A; DRAM_RESET_N is ±200 A. 2 The values of V OH and VOL are valid only for 1.2 V range. 3 Driver Hi-Z and input power-down (PD = High) 1 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 33 Electrical characteristics 3.5.2.1 LPDDR4 mode I/O DC parameters Table 31. LPDDR4 I/O DC electrical parameters Symbol Test Conditions Min Max Unit High-level output voltage VOH Ioh= -0.1 mA 0.9 x OVDD — V Low-level output voltage VOL Iol= 0.1 mA — 0.1 x OVDD V Input Reference Voltage Vref — 0.49 x OVDD 0.51 x OVDD V DC High-Level input voltage Vih_DC — VRef + 0.100 OVDD V DC Low-Level input voltage Vil_DC — OVSS VRef – 0.100 Parameters 1 V Differential Input Logic High Vih_diff — 0.26 See note Differential Input Logic Low Vil_diff — See note -0.26 — Mmpupd — –15 15 % Rres — — 10  Rkeep — 110 175 K Iin VI = 0, VI = OVDD -2.5 2.5 A Pull-up/Pull-down Impedance Mismatch 240 unit calibration resolution Keeper Circuit Resistance Input current (no pull-up/down) 1 — The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 3.5.3 Differential I/O port (CLKx_P/N) The clock I/O interface is designed to be compatible with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits (2001), for details. The CLK1_P/CLK1_N is input only, while CLK2_P/CLK2_N is output only. 3.6 I/O AC parameters This section includes the AC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for DDR3L/DDR4/LPDDR4 modes • Differential I/O (CLKx) The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and Figure 5. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 34 NXP Semiconductors Electrical characteristics From Output Under Test Test Point CL CL includes package, probe and fixture capacitance Figure 4. Load circuit for output 80% 80% 20% Output (at pad) tf tr OVDD 20% 0V Figure 5. Output transition time waveform 3.6.1 General purpose I/O AC parameters This section presents the I/O AC parameters for GPIO in different modes. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers. Table 32. Maximum input cell delay time Max Delay PAD Y (ns) Cell name VDD = 1.62 V T = 125°C WCS model — VDD = 3.0V T = 125°C WCS model 1.54 — 1.3 PBIJGTOV36PUD_MCLAMP_LVGPIO_EW Table 33. Output cell delay time for fixed load Simulated Cell Delay A PAD (ns) Parameter VDD = 1.62 V, T = 125°C VDD = 2.97 V, T = 125°C dse[2:0] fsel[1:0] 011 00 011 Driver Type CL = 15 pF CL = 15 pF 3 x Slow Slew 3.1 3.3 11 3 x Fast Slew 2.1 2.6 100 00 4 x Slow Slew 3.7 3.9 100 11 4 x Fast Slew 2.3 2.8 101 00 5 x Slow Slew 3.1 3.5 101 11 5 x Fast Slew 2.1 2.5 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 35 Electrical characteristics Table 33. Output cell delay time for fixed load (continued) Simulated Cell Delay A PAD (ns) Parameter VDD = 1.62 V, T = 125°C VDD = 2.97 V, T = 125°C dse[2:0] fsel[1:0] 111 00 111 11 Driver Type CL = 15 pF CL = 15 pF 7 x Slow Slew 2.9 3.1 7 x Fast Slew 1.8 2.3 Table 34. Maximum frequency of operation for input Maximum frequency (MHz) 3.6.2 VDD = 1.8 V, CL = 15 pF, fast — VDD = 3.3 V, CL = 20 pF, fast 200 — 160 Clock I/O AC parameters—CLKx_N/CLKx_P The differential output transition time waveform is shown in Figure 6. vddi 50% 50% ipp_do 0V Tphld Tplhd padn padp 70% 30% 30% Ttlh Vod = padp - padn Voh 70% Vol Tthl 0V 0 V (differential) Figure 6. Differential LVDS driver transition time waveform i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 36 NXP Semiconductors Electrical characteristics Table 35 shows the AC parameters for clock I/O. Table 35. I/O AC parameters of LVDS pad Symbol Parameter Tphld Output Differential propagation delay high to low Tplhd Output Differential propagation delay low to high Ttlh Output Transition time low to high Tthl Output Transition time high to low Tphlr Input Differential propagation delay high to low Tplhr Input Differential propagation delay low to high Ttx F Test conditions Rload = 100  between padp and padn, Cload = 2pF, at 125 °C, TYP, 1.62 V OVDD, and 0.9 V VDDI Min Typ Max Unit Notes — — 0.92 — — 0.92 — — 0.58 — — 0.73 Rload = 100  between padp and padn, at 125 °C, TYP, 1.62 V OVDD, and 0.9 V VDDI — — 0.83 — — 0.83 Transmitter startup time (ipp-obe low to high) — — — 40 Operating frequency — — ns 1 2 ns 3 ns 4 600 1000 MHz — 1 At TYP, 125 °C, 1.62 V OVDD, and 0.9 V VDDI. Measurement levels are 50 - 50%. Output differential signal measured. At TYP, 125 °C, 1.62 V OVDD, and 0.9 V VDDI. Measurement levels are 20 - 80%. Output differential signal measured. 3 At TYP, 125 °C, 1.62 V OVDD, and 0.9 V VDDI. Measurement levels are 50 - 50%. 4 TX startup time is defined as the time taken by transmitter for settling after its ipp_obe has been asserted. It is to stabilize the current reference. Functionality is guaranteed only after the startup time. 2 3.7 Output buffer impedance parameters This section defines the I/O impedance parameters of the i.MX 8M Dual / 8M QuadLite / 8M Quad processors for the following I/O types: • Double Data Rate I/O (DDR) for LPDDR4, DDR4, and DDR3L modes • Differential I/O (CLKx) NOTE DDR I/O output driver impedance is measured with “long” transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 7). i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 37 Electrical characteristics OVDD PMOS (Rpu) Ztl W, L = 20 inches ipp_do pad predriver Cload = 1p NMOS (Rpd) OVSS U,(V) Vin (do) VDD t,(ns) 0 U,(V) Vout (pad) OVDD Vref2 Vref1 Vref t,(ns) 0 Rpu = Vovdd - Vref1 x Ztl Vref1 Rpd = Vref2 x Ztl Vovdd - Vref2 Figure 7. Impedance matching load for measurement i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 38 NXP Semiconductors Electrical characteristics 3.7.1 DDR I/O output buffer impedance Table 36 shows DDR I/O output buffer impedance of i.MX 8M Dual / 8M QuadLite / 8M Quad processors. Table 36. DDR I/O output buffer impedance Parameter Output Driver Impedance Symbol Rdrv Test Conditions DSE (Drive Strength) Typical NVCC_DRAM = 1.35 V (DDR3L) DDR_SEL = 11 NVCC_DRAM = 1.2 V (DDR4) NVCC_DRAM = 1.1 V (LPDDR4) DDR_SEL = 10 000000 Hi-Z Hi-Z Hi-Z 000010 240 240 240 000110 120 120 120 001010 80 80 80 001110 60 60 60 011010 48 48 48 011110 40 40 40 111010 34 34 34 Unit  Note: 1. Output driver impedance is controlled across PVTs using ZQ calibration procedure. 2. Calibration is done against 240  external reference resistor. 3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs. 3.7.2 Differential I/O output buffer impedance The Differential CCM interface is designed to be compatible with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits (2001) for details. 3.8 System modules timing This section contains the timing and electrical parameters for the modules in each i.MX 8M Dual / 8M QuadLite / 8M Quad processor. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 39 Electrical characteristics 3.8.1 Reset timings parameters Figure 8 shows the reset timing and Table 37 lists the timing parameters. POR_B (Input) CC1 Figure 8. Reset timing diagram Table 37. Reset timing parameters ID CC1 3.8.2 Parameter Duration of POR_B to be qualified as valid. Min Max Unit 1 — RTC_XTALI cycle WDOG Reset timing parameters Figure 9 shows the WDOG reset timing and Table 38 lists the timing parameters. WDOGx_B (Output) CC3 Figure 9. WDOGx_B timing diagram Table 38. WDOGx_B timing parameters ID CC3 Parameter Duration of WDOG1_B Assertion Min Max Unit 1 — RTC_XTALI cycle NOTE RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 ms. NOTE WDOGx_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUXC chapter of the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual (IMX8MDQLQRM) for detailed information. 3.9 External peripheral interface parameters The following subsections provide information on external peripheral interfaces. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 40 NXP Semiconductors Electrical characteristics 3.9.1 ECSPI timing parameters This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes. 3.9.1.1 ECSPI Master mode timing Figure 10 depicts the timing of ECSPI in master mode. Table 39 lists the ECSPI master mode timing characteristics. ECSPIx_RDY_B ECSPIx_SS_B CS10 CS2 CS3 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS7 CS3 CS2 ECSPIx_MOSI CS8 CS9 ECSPIx_MISO Figure 10. ECSPI Master mode timing diagram Table 39. ECSPI Master mode timing parameters ID Parameter 2 Min Max Unit CS1 ECSPIx_SCLK Cycle Time–Read ECSPIx_SCLK Cycle Time–Write tclk 43 15 — ns CS2 ECSPIx_SCLK High or Low Time–Read ECSPIx_SCLK High or Low Time–Write tSW 21.5 7 — ns CS3 ECSPIx_SCLK Rise or Fall1 tRISE/FALL — — ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 — ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 — ns CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF) tPDmosi -1 1 ns CS8 ECSPIx_MISO Setup Time tSmiso 18 — ns CS9 ECSPIx_MISO Hold Time tHmiso 0 — ns tSDRY 5 — ns CS10 RDY to ECSPIx_SS_B 1 Symbol Time2 See specific I/O AC parameters Section 3.6, I/O AC parameters.” SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 41 Electrical characteristics 3.9.1.2 ECSPI Slave mode timing Figure 11 depicts the timing of ECSPI in Slave mode. Table 40 lists the ECSPI Slave mode timing characteristics. ECSPIx_SS_B CS2 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS2 CS9 ECSPIx_MISO CS7 CS8 ECSPIx_MOSI Figure 11. ECSPI Slave mode timing diagram Table 40. ECSPI Slave mode timing parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time–Read ECSPI_SCLK Cycle Time–Write tclk 15 43 — ns CS2 ECSPIx_SCLK High or Low Time–Read ECSPIx_SCLK High or Low Time–Write tSW 7 21.5 — ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5 — ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5 — ns CS7 ECSPIx_MOSI Setup Time tSmosi 4 — ns CS8 ECSPIx_MOSI Hold Time tHmosi 4 — ns CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF) tPDmiso 4 19 ns i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 42 NXP Semiconductors Electrical characteristics 3.9.2 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC timing This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (single data rate) timing, eMMC4.4/4.41 (dual data rate) timing and SDR104/50 (SD3.0) timing. 3.9.2.1 SD/eMMC4.3 (single data rate) AC timing Figure 12 depicts the timing of SD/eMMC4.3, and Table 41 lists the SD/eMMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 12. SD/eMMC4.3 timing Table 41. SD/eMMC4.3 interface timing specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns 3.6 ns Card Input Clock SD1 uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD 6.6 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 43 Electrical characteristics Table 41. SD/eMMC4.3 interface timing specification (continued) ID Parameter Symbols Min Max Unit uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time SD8 4 uSDHC Input Hold Time tISU 2.5 — ns tIH 1.5 — ns 1 In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0 – 25 MHz. In High-speed mode, clock frequency can be any value between 0 – 50 MHz. 3 In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0 – 20 MHz. In High-speed mode, clock frequency can be any value between 0 – 52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 2 3.9.2.2 eMMC4.4/4.41 (dual data rate) AC timing Figure 13 depicts the timing of eMMC4.4/4.41. Table 42 lists the eMMC4.4/4.41 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 13. eMMC4.4/4.41 timing Table 42. eMMC4.4/4.41 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz 6.9 ns uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.7 uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 44 NXP Semiconductors Electrical characteristics Table 42. eMMC4.4/4.41 interface timing specification (continued) ID Parameter Symbols Min Max Unit SD3 uSDHC Input Setup Time tISU 2.4 — ns SD4 uSDHC Input Hold Time tIH 1.3 — ns 3.9.2.3 HS400 DDR AC timing—eMMC5.0 only Figure 14 depicts the timing of HS400 mode, and Table 43 lists the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6, and SD7 parameters in Table 45 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode. SD1 SD3 SD2 SCK SD4 SD5 DAT0 DAT1 ... SD4 SD5 Output from uSDHC to eMMC DAT7 Strobe Input from eMMC to uSDHC SD6 DAT0 DAT1 ... SD7 DAT7 Figure 14. HS400 Mode timing Table 43. HS400 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock frequency fPP 0 200 MHz SD2 Clock low time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock high time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs DAT (Reference to SCK) SD4 Output skew from data of edge of SCK tOSkew1 0.45 — ns SD5 Output skew from edge of SCk to data tOSkew2 0.45 — ns uSDHC Input/Card Outputs DAT (Reference to Strobe) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 45 Electrical characteristics Table 43. HS400 interface timing specification (continued) ID Parameter Symbols Min Max Unit SD6 uSDHC input skew tRQ — 0.45 ns SD7 uSDHC hold skew tRQH — 0.45 ns 3.9.2.4 HS200 Mode timing Figure 15 depicts the timing of HS200 mode, and Table 44 lists the HS200 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 8-bit output from uSDHC to eMMC 8-bit input from eMMC to uSDHC SD8 Figure 15. HS200 mode timing iti Table 44. HS200 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5 — ns SD2 Clock Low Time tCL 0.3 x tCLK 0.7 x tCLK ns SD3 Clock High Time tCH 0.3 x tCLK 0.7 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) SD5 uSDHC Output Delay tOD -1.6 1 ns — ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1 SD8 1 uSDHC Output Data Window tODW 0.5 x tCLK HS200 is for 8 bits while SDR104 is for 4 bits. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 46 NXP Semiconductors Electrical characteristics 3.9.2.5 SDR50/SDR104 AC timing Figure 16 depicts the timing of SDR50/SDR104, and Table 45 lists the SDR50/SDR104 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 8-bit output from uSDHC to eMMC SD6 SD7 8-bit input from eMMC to uSDHC SD8 Figure 16. SDR50/SDR104 timing Table 45. SDR50/SDR104 interface timing specification ID Parameter Symbols Min Max Unit 5 — ns Card Input Clock SD1 Clock Frequency Period tCLK SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD -3 1 ns 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD -1.6 uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in DDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.4 — ns SD7 uSDHC Input Hold Time tIH 1.4 — ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 1 uSDHC Output Data Window tODW 0.5 x tCLK — ns Data window in SDR100 mode is variable. 3.9.2.6 Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 27, "GPIO DC parameters," on page 32. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 47 Electrical characteristics 3.9.3 Ethernet controller (ENET) AC electrical specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 3.9.3.1 RMII mode timing Figure 17 shows RMII mode timings. Table 46 describes the timing parameters (M16–M21) shown in the figure. M16 M17 ENET_CLK (input) M18 ENET_TX_DATA (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER M20 M21 Figure 17. RMII mode signal timing diagram Table 46. RMII signal timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 — ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid — 15 ns M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup 4 — ns M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 — ns i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 48 NXP Semiconductors Electrical characteristics Table 47. RMII signal mapping Pad name Description Mode Alt Mode Direction Comment ENET_MDC enet1.MDC RMII/RGMII ALT0 O — ENET_MDIO enet1.MDIO RMII/RGMII ALT0 I/O — ENET_TD3 RGMII.TD3 RGMII ALT0 O Only used for RGMII ENET_TD2 RMII.CLK; RGMII.TD2 RMII/RGMII ALT0 I/O Used as RMII clock and RGMII data, there are two RGMII clock schemes. • MAC generate output 50M reference clock for PHY, and MAC also uses this 50M clock. • MAC uses external 50M clock. ENET_TD1 RMII and RGMII.TD1 RMII/RGMII ALT0 O — ENET_TD0 RMII and RGMII.TD0 RMII/RGMII ALT0 O — ENET_TX_CTL RMII.TX_EN; RGMII.TX_CTL RMII/RGMII ALT0 O — ENET_TXC RMII.TX_ERR; RGMII.TX_CLK RGMII ALT0/ALT1 O For RMII, ENET_TXC works as RMII.TX_ERR, need to work in the ALT1 mode. For RGMII, ENET_TXC works as RGMII_TX_CLK, need to work in the ALT0 mode. ENET_RX_CTL RMII.RX_EN (CRS_DV); RGMII.RX_CTL RMII/RGMII ALT0 I — ENET_RXC RMII.RX_ERR; RGMII.RX_CLK RGMII ALT0/ALT1 I For RMII, ENET_RXC works as RMII.RX_ERR, need to work in the ALT1 mode. For RGMII, ENET_RXC works as RGMII_RX_CLK, need to work in the ALT0 mode. ENET_RD0 RMII and RGMII.RD0 RMII/RGMII ALT0 I — ENET_RD1 RMII and RGMII.RD1 RMII/RGMII ALT0 I — ENET_RD2 RGMII RD2 RGMII ALT0 I — ENET_RD3 RGMII RD3 RGMII ALT0 I — GPIO1_IO06 enet1.MDC RMII/RGMII ALT1 O — GPIO1_IO07 enet1.MDIO RMII/RGMII ALT1 I/O — i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 49 Electrical characteristics Table 47. RMII signal mapping (continued) Pad name Description Mode Alt Mode Direction I2C1_SCL enet1.MDC RMII/RGMII ALT1 O — I2C1_SDA enet1.MDIO RMII/RGMII ALT1 I/O — GPIO1_IO08 enet1.1588_EVE NT0_IN RMII/RGMII ALT1 I Capture/compare block input/output event bus signal. When configured for capture and a rising edge is detected, the current timer value is latched and transferred into the corresponding ENET_TCCRn register for inspection by software. When configured for comparison, the corresponding signal 1588_EVENT is asserted for one cycle when the timer reaches the comparsion value programmed in the register ENET_TCCRn. An interrupt or DMA request can be triggered if the corresponding bit in the ENET_TCSRn[TIE] or ENET_TCSRn[TDRE] is set. GPIO1_IO00 ENET_PHY_REF _CLK_ROOT RGMII ALT1 O Reference clock is for PHY. 3.9.3.2 Comment RGMII signal switching specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices. Table 48. RGMII signal switching specifications1 Symbol Tcyc 2 Clock cycle duration TskewT3 TskewR Data to clock output skew at transmitter Min. Max. Unit 7.2 8.8 ns -500 500 ps 3 Data to clock input skew at receiver 1 2.6 ns 4 Duty cycle for Gigabit 45 85 % 4 Duty cycle for 10/100T 40 90 % Rise/fall time (20–80%) — 0.98 ns Duty_G Duty_T Tr/Tf Description 1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b 2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. 3 For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 50 NXP Semiconductors Electrical characteristics 2'-))?48#ATTRANSMITTER 4SKEW4 2'-))?48$NNTO 2'-))?48?#4, 48%. 48%22 4SKEW2 2'-))?48#ATRECEIVER Figure 18. RGMII transmit signal timing diagram original 2'-))?28#ATTRANSMITTER 4SKEW4 2'-))?28$NNTO 2'-))?28?#4, 28$6 28%22 4SKEW2 2'-))?28#ATRECEIVER Figure 19. RGMII receive signal timing diagram original 2'-))?28#SOURCEOFDATA )NTERNALDELAY 4SETUP4 4HOLD4 4SETUP2 4HOLD2 2'-))?28$NNTO 2'-))?28?#4, 28$6 28%22 2'-))?28#ATRECEIVER Figure 20. RGMII receive signal timing diagram with internal delay 3.9.4 General-purpose media interface (GPMI) timing The GMPI controller of the i.MX 8M Dual / 8M QuadLite / 8M Quad processor is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode separately, as described in the following subsections. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 51 Electrical characteristics 3.9.4.1 Asynchronous mode AC timing (ONFI 1.0 compatible) Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 21 through Figure 24 depicts the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 49 describes the timing parameters (NF1–NF17) that are shown in the figures. NF2 NF1 .!.$?#,% .!.$?#%?" NF3 NF4 .!.$?7%?" NF5 .!.$?!,% NF6 NF7 NF8 .!.$?$!4!XX NF9 Command Figure 21. Command Latch cycle timing diagram NF1 .!.$?#,% .!.$?#%?" NF3 NF10 .!.$?7%?" NF5 .!.$?!,% NF11 NF7 NF6 NF8 NAND_DATAxx NF9 Address Figure 22. Address Latch cycle timing diagram .!.$?#,% .!.$?#%?" NF1 NF3 NF10 .!.$?7%?" .!.$?!,% NF5 NF7 NF6 NF8 .!.$?$!4!XX NF11 NF9 Data to NF Figure 23. Write Data Latch cycle timing diagram i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 52 NXP Semiconductors Electrical characteristics .!.$?#,% .!.$?#%?" NF14 .!.$?2%?" .!.$?2%!$9?" NF15 NF13 NF12 NF16 .!.$?$!4!XX NF17 Data from NF Figure 24. Read Data Latch cycle timing diagram (Non-EDO Mode) .!.$?#,% .!.$?#%?" NF14 NF13 .!.$?2%?" .!.$?2%!$9?" NF15 NF12 NF17 NF16 NAND_DATAxx Data from NF Figure 25. Read Data Latch cycle timing diagram (EDO mode) Table 49. Asynchronous mode timing parameters1 ID Parameter Timing T = GPMI Clock Cycle Symbol Min. Unit Max. NF1 NAND_CLE setup time tCLS (AS + DS)  T - 0.12 [see notes2,3] ns NF2 NAND_CLE hold time tCLH DH  T - 0.72 [see note2] ns NF3 NAND_CE0_B setup time tCS (AS + DS + 1)  T [see notes3,2] ns NF4 NAND_CE0_B hold time tCH (DH+1)  T - 1 [see note2] ns NF5 NAND_WE_B pulse width tWP DS  T [see note2] ns NF6 NAND_ALE setup time tALS (AS + DS)  T - 0.49 [see notes3,2] ns NF7 NAND_ALE hold time tALH DH  T - 0.42 [see note2] ns NF8 Data setup time tDS DS  T - 0.26 [see note2] ns NF9 Data hold time tDH DH  T - 1.37 [see note2] ns NF10 Write cycle time tWC (DS + DH)  T [see note2] ns NF11 NAND_WE_B hold time tWH DH  T [see note2] ns NF12 Ready to NAND_RE_B low tRR4 NF13 NAND_RE_B pulse width tRP DS  T [see note2] ns NF14 READ cycle time tRC (DS + DH)  T [see note2] ns NF15 NAND_RE_B high hold time tREH DH  T [see note2] ns (AS + 2)  T [see 3,2] — ns i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 53 Electrical characteristics Table 49. Asynchronous mode timing parameters1 (continued) ID Parameter Timing T = GPMI Clock Cycle Symbol Unit Min. Max. NF16 Data setup on read tDSR — (DS  T -0.67)/18.38 [see notes5,6] ns NF17 Data hold on read tDHR 0.82/11.83 [see notes5,6] — ns 1 GPMI’s Asynchronous mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = GPMI clock period -0.075 ns (half of maximum p-p jitter). NF12 is guaranteed by the design. Non-EDO mode. EDO mode, GPMI clock  100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0). 2 3 4 5 6 In EDO mode (Figure 24), NF16/NF17 are different from the definition in non-EDO mode (Figure 23). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI samples NAND_DATAxx at the rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual [IMX8MDQLQRM]). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 54 NXP Semiconductors Electrical characteristics 3.9.4.2 Source synchronous mode AC timing (ONFI 2.x compatible) Figure 26 to Figure 28 show the write and read timing of Source Synchronous mode. NF19 NF18 .!.$?#%?" NF23 NAND_CLE NF25 NF26 NF24 NAND_ALE NF25 NF26 NAND_WE/RE_B NF22 NAND_CLK NAND_DQS NAND_DQS Output enable NF20 NF20 NF21 NF21 NAND_DATA[7:0] CMD ADD NAND_DATA[7:0] Output enable Figure 26. Source Synchronous mode command and address timing diagram i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 55 Electrical characteristics .!.$?#%?" NF19 NF18 NF23 .!.$?#,% NF23 .!.$?!,% NF25 NF26 NF25 NF26 NF24 NF24 NAND_WE/RE_B NF22 .!.$?#,+ NF27 NF27 .!.$?$13 .!.$?$13 Output enable NF29 NF29 .!.$?$1;= NF28 NF28 .!.$?$1;= Output enable Figure 27. Source Synchronous mode data write timing diagram .!.$?#%?" NF18 NF19 NF23 .!.$?#,% NAND_ALE .!.$?7%2% NF23 NF25 NF26 NF25 NF26 NF24 NF24 NF25 NF25 NF22 NF26 .!.$?#,+ .!.$?$13 .!.$?$13 /UTPUTENABLE .!.$?$!4!;= .!.$?$!4!;= /UTPUTENABLE Figure 28. Source Synchronous mode data read timing diagram i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 56 NXP Semiconductors Electrical characteristics .!.$?$13 NF30 .!.$?$!4!;= D0 NF30 D1 D2 D3 NF31 NF31 Figure 29. NAND_DQS/NAND_DQ read valid window Table 50. Source Synchronous mode timing parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min. NF18 NAND_CE0_B access time NF19 NAND_CE0_B hold time tCE tCH Unit Max. CE_DELAY  T - 0.79 [see note 2] 0.5  tCK - 0.63 [see note2] ns ns NF20 Command/address NAND_DATAxx setup time tCAS 0.5  tCK - 0.05 ns NF21 Command/address NAND_DATAxx hold time tCAH 0.5  tCK - 1.23 ns tCK — NF22 clock period ns tPRE PRE_DELAY  T - 0.29 [see NF24 postamble delay tPOST POST_DELAY  T - 0.78 [see NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5  tCK - 0.86 ns NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5  tCK - 0.37 ns NF23 preamble delay NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see note2] note2] note2] ns ns ns NF28 Data write setup — 0.25  tCK - 0.35 — NF29 Data write hold — 0.25  tCK - 0.85 — NF30 NAND_DQS/NAND_DQ read setup skew — — 2.06 — NF31 NAND_DQS/NAND_DQ read hold skew — — 1.95 — 1 GPMI’s Source Synchronous mode output timing can be controlled by the module’s internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings. 2 T = tCK(GPMI clock period) –0.075 ns (half of maximum p-p jitter). For DDR Source Synchronous mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual [IMX8MDQLQRM]). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 57 Electrical characteristics 3.9.4.3 3.9.4.3.1 ONFI NV-DDR2 mode (ONFI 3.2 compatible) Command and address timing ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible),” for details. 3.9.4.3.2 Read and write timing ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 3.9.4.4, Toggle mode AC Timing,” for details. 3.9.4.4 3.9.4.4.1 Toggle mode AC Timing Command and address timing NOTE Toggle mode command and address timing is the same as ONFI 1.0 compatible Asynchronous mode AC timing. See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible),” for details. 3.9.4.4.2 Read and write timing Figure 30. Toggle mode data write timing i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 58 NXP Semiconductors Electrical characteristics DEV?CLK .!.$?#%X?" .& .!.$?#,% .!.$?!,% .!.$?7%?" T#+  .& T#+ .& .!.$?2%?" T#+ T#+ T#+ .!.$?$13 .!.$?$!4!;= Figure 31. Toggle mode data read timing Table 51. Toggle mode timing parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min. Unit Max. NF1 NAND_CLE setup time tCLS (AS + DS)  T - 0.12 [see note2s,3] NF2 NAND_CLE hold time tCLH DH  T - 0.72 [see note2] NF3 NAND_CE0_B setup time tCS (AS + DS)  T - 0.58 [see notes,2] NF4 NAND_CE0_B hold time tCH DH  T - 1 [see note2] NF5 NAND_WE_B pulse width tWP DS  T [see note2] NF6 NAND_ALE setup time tALS (AS + DS)  T - 0.49 [see notes,2] NF7 NAND_ALE hold time tALH DH  T - 0.42 [see note2] NF8 Command/address NAND_DATAxx setup time tCAS DS  T - 0.26 [see note2] NF9 Command/address NAND_DATAxx hold time tCAH DH  T - 1.37 [see note2] NF18 NAND_CEx_B access time tCE CE_DELAY  T [see notes4,2] — ns NF22 clock period tCK — — ns tPRE PRE_DELAY  T [see notes5,2] — ns NF23 preamble delay i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 59 Electrical characteristics Table 51. Toggle mode timing parameters1 (continued) ID Parameter Timing T = GPMI Clock Cycle Symbol Unit Min. Max. NF24 postamble delay tPOST POST_DELAY  T +0.43 [see note2] — ns NF28 Data write setup tDS6 0.25  tCK - 0.32 — ns 0.25  tCK - 0.79 — ns — 3.18 ns — 3.27 ns NF29 Data write hold 6 tDH 7 NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ NF31 NAND_DQS/NAND_DQ read hold skew tQHS7 1 The GPMI toggle mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these register’s settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter). CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level. PRE_DELAY+1  (AS+DS) Shown in Figure 30. Shown in Figure 31. 2 3 4 5 6 7 For DDR Toggle mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI samples NAND_DATA[7:0] at both the rising and falling edges of a delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by the GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual [IMX8MDQLQRM]). Generally, the typical delay value is equal to 0x7, which means a 1/4 clock cycle delay is expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. 3.9.5 HDMI 2.0 Tx module timing parameters See the following specifications: • HDMI 2.0a specification (HDMI.org) • DisplayPort 1.3 standard (VESA.org) — DP supports 1.6 GHz (RBR), 2.7 GHz (HBR), and 5.4 GHz (HBR2) rates. Those rates are managed in API (Host). — RBR supports 1080p60 (RGB 8b), HBR supports 4kp30 (RGB 8b) and HBR2 supports 4kp60 (RGB 8b). See bandwidth details below. Effective bandwidth per rate with 4 lanes: — RBR: 1.62 x 4 x 8 / 10 = 5.184 Gbps — HBR: 2.7 x 4 x 8 / 10 = 8.64 Gbps i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 60 NXP Semiconductors Electrical characteristics — HBR2: 1.62 x4 x 8 / 10 = 17.28 Gbps Bandwidth required per resolution (CEA-861-F): — 1920 x 1080 (24 b/px) 60 fps: 3.56 Gbps — 3840 x 2160 (24 b/px) 30 fps: 7.13 Gbps — 3840 x 2160 (24 b/px) 30 fps: 14.26 Gbps Embedded DisplayPort 1.4 standard (VESA.org) — eDP link rates: R216 (2.16 Gbps), R243 (2.43 Gbps), R324 (3.24 Gbps), and R432 (4.32 Gbps) — Fast Link Training is also supported • DDC link requires external pull-up resistors to be connected to a 5 V supply. The following table provides the range for those pull-ups. Table 52. Pull-up resistors for DDC link 3.9.6 Ball Name Min Typ Max Unit HDMI_TX0_DDC_SCL 1.5 — 2 K HDMI_TX0_DDC_SDA 1.5 — 2 K I2C bus characteristics The Inter-Integrated Circuit (I2C) provides functionality of a standard I2C master and slave. The I2C is designed to be compatible with the I2C Bus Specification, version 2.1, by Philips Semiconductor (now NXP Semiconductors). 3.9.7 MIPI D-PHY timing parameters This section describes MIPI D-PHY electrical specifications. 3.9.7.1 MIPI HS-TX specifications Table 53. MIPI high-speed transmitter DC specifications Symbol VCMTX1 |VCMTX|(1,0) High Speed Transmit Static Common Mode Voltage VCMTX mismatch when Output is Differential-1 or Differential-0 Min Typ Max Unit 150 200 250 mV — — 3 mV 140 200 270 mV |VOD|1 High Speed Transmit Differential Voltage |VOD| VOD mismatch when Output is Differential-1 or Differential-0 — — 12 mV VOHHS1 High Speed Output High Voltage — — 360 mV ZOS Single Ended Output Impedance 40 50 62.5  Single Ended Output Impedance Mismatch — — 10 % ZOS 1 Parameter Value when driving into load impedance anywhere in the ZID range. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 61 Electrical characteristics Table 54. MIPI high-speed transmitter AC specifications Symbol Min Typ Max Unit VCMTX(HF) Common-level variations above 450 MHz — — 8 mVRMS VCMTX(LF) Common-level variation between 50-450 MHz — — 10 mVPEAK 160 — 0.3 UI ps Min Typ Max Unit tR and 1 Parameter tF1 Rise Time and Fall Time (20% to 80%) UI is the long-term average unit interval. 3.9.7.2 MIPI LP-TX specifications Table 55. MIPI low-power transmitter DC specifications Symbol VOH1 Thevenin Output High Level 1.1 1.2 1.3 V VOL Thevenin Output Low Level -50 — 50 mV Output Impedance of Low Power Transmitter 110 — —  ZOLP2 1 2 Parameter This specification can only be met when limiting the core supply variation from 1.1 V to 1.3 V. Although there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification is met. Table 56. MIPI low-power transmitter AC specifications Symbol TRLP /TFLP1 TREOT 1,2,3 TLP-PULSE-TX4 TLP-PER-TX V/tSR1,5,6,7 CLOAD Parameter Min Typ Max Unit 15% to 85% Rise Time and Fall Time — — 25 ns 30% to 85% Rise Time and Fall Time — — 35 ns Pulse width of the LP exclusive-OR clock: First LP exclusive-OR clock pulse after Stop state or last pulse before Stop state 40 — — ns Pulse width of the LP exclusive-OR clock: All other pulses 20 — — ns Period of the LP exclusive-OR clock 90 — — ns Slew Rate @ CLOAD = 0 pF 30 — 500 mV/ns Slew Rate @ CLOAD = 5 pF 30 — 200 mV/ns Slew Rate @ CLOAD = 20 pF 30 — 150 mV/ns Slew Rate @ CLOAD = 70 pF 30 — 100 mV/ns Load Capacitance 0 — 70 pF 1 CLOAD includes the low equivalent transmission line capacitance of TX and RX are assumed to always be < 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay. 2 The rise-time of T REOT starts from the HS common-level at the moment when the differential amplitude drops below 70 mV, due to stopping of the differential drive. 3 With an additional load capacitance CCM between 0 to 60 pF on the termination center, tap at RX side of the lane. 4 This parameter value can be lower than TLPX, due to differences in rise vs. fall signal slopes, trip levels, and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 62 NXP Semiconductors Electrical characteristics 5 When the output voltage is between 15% and 85% of the fully settled LP signal levels. Measured as average across any 50 mV segment of the output signal transition. 7 This value represents a corner point in a piecewise linear curve. 6 3.9.7.3 MIPI LP-RX specifications Table 57. MIPI low power receiver DC specifications Symbol Parameter Min Typ Max Unit 880 — 1300 mV VIH Logic 1 input voltage VIL Logic 0 input voltage, not in ULP state — — 550 mV Logic 0 input voltage, ULP state — — 300 mV Input hysteresis 25 — — mV Min Typ Max Unit VIL-ULPS VHYST Table 58. MIPI low power receiver AC specifications Symbol Parameter eSPIKE1,2 Input pulse rejection — — 300 V.ps TMIN-RX3 Minimum pulse width response 20 0 0 ns VINT Peak Interference amplitude — — 200 mV fINT Interference frequency 450 — — MHz Min Typ Max Unit 1 Time-voltage integration of a spike above VIL when in LP-0 state or below VIH when in LP-1 state. An impulse below this value will not change the receiver state. 3 An input pulse greater than this value shall toggle the output. 2 3.9.7.4 MIPI LP-CD specifications Table 59. MIPI contention detector DC specifications Symbol Parameter VIHCD Logic 1 contention threshold 450 — — mV VILCD Logic 0 contention threshold — — 200 mV Min Typ Max Unit Pad signal voltage range -50 — 1350 mV Pin leakage current -30 — 30 A Ground shift -50 — 50 mV 3.9.7.5 MIPI DC specifications Table 60. MIPI input characteristics DC specifications Symbol VPIN ILEAK1 VGNDSH Parameter i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 63 Electrical characteristics Table 60. MIPI input characteristics DC specifications (continued) VPIN(absmax)2 Maximum pin voltage level TVPIN(absmax)3 Maximum transient time above VPIN(max) or below VPIN(min) -0.15 — 1.45 V — — 20 ns 1 When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is in LP receive mode. 2 This value includes ground shift. 3 The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1 transition or vice versa. For all other situations it must stay within the VPIN range. 3.9.8 PCIe PHY parameters The PCIe interface is designed to be compatible with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard. 3.9.8.1 PCIEx_RESREF reference resistor connection The impedance calibration process requires connection of reference resistor 200  1% precision resistor on PCIEx_RESREF pads to ground. It is used for termination impedance calibration. 3.9.9 Pulse width modulator (PWM) timing parameters This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 32 depicts the timing of the PWM, and Table 61 lists the PWM timing parameters. 0 0 07-N?/54 Figure 32. PWM timing Table 61. PWM output timing parameters ID Min Max Unit PWM Module Clock Frequency 0 ipg_clk (66 MHz) MHz P1 PWM output pulse width high 15 — ns P2 PWM output pulse width low 15 — ns 3.9.10 Parameter Quad SPI (QSPI) timing parameters This section describes the electrical information for QSPI. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 64 NXP Semiconductors Electrical characteristics Measurement is with a load of 35 pF on SCK and SIO pins and an input slew rate of 1 V/ns. 3.9.10.1 SDR Mode QSPIx_SCLK TIS TIH TIS TIH QSPIx_DATA[0:3] Figure 33. QuadSPI input/read timing (SDR mode with internal sampling) Table 62. QuadSPI input timing (SDR mode with internal sampling) Value Symbol Parameter Unit TIS Setup time for incoming data TIH Hold time requirement for incoming data 1 Min Max 8.67 — ns 0 — ns 2 3 4 QSPIx_SCLK QSPIx_DATA[0:3] TIS TIH TIS TIH QSPIx_DQS Figure 34. QuadSPI input/read timing (SDR mode with loopback DQS sampling) Table 63. QuadSPI input/read timing (SDR mode with loopback DQS sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 2 — ns TIH Hold time requirement for incoming data 1 — ns • NOTE For internal sampling, the timing values assume using sample point 0, that is QuadSPIx_SMPR[SDRSMP] = 0. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 65 Electrical characteristics • For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data. QSPIx_SCLK TCSS TCSH TCK QSPIx_CS TDVO TDVO QSPIx_SIO TDHO TDHO Figure 35. QuadSPI output/write timing (SDR mode) Table 64. QuadSPI output/write timing (SDR mode) Value Symbol Parameter Unit Min Max TDVO Output data valid time — 2 ns TDHO Output data hold time -0.5 — ns TCK SCK clock period 10 — ns TCSS Chip select output setup time 3 — ns TCSH Chip select output hold time 3 — ns NOTE Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register; the default value of 3 is shown on the timing. See the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual (IMX8MDQLQRM) for more details. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 66 NXP Semiconductors Electrical characteristics 3.9.10.2 DDR mode QSPIx_SCLK TIS TIH TIS TIH QSPIx_DATA[0:3] Figure 36. QuadSPI input/read timing (DDR mode with internal sampling) Table 65. QuadSPI input/read timing (DDR mode with internal sampling) Value Symbol Parameter Unit TIS Setup time for incoming data TIH Hold time requirement for incoming data 1 Min Max 8.67 — ns 0 — ns 2 3 4 QSPIx_SCLK QSPIx_DATA[0:3] TIS TIH TIS TIH QSPIx_DQS Figure 37. QuadSPI input/read timing (DDR mode with loopback DQS sampling) Table 66. QuadSPI input/read timing (DDR mode with loopback DQS sampling) Value Symbol Parameter Unit Min Max TIS Setup time for incoming data 2 — ns TIH Hold time requirement for incoming data 1 — ns • NOTE For internal sampling, the timing values assume using sample point 0, that is QuadSPIx_SMPR[SDRSMP] = 0. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 67 Electrical characteristics • For loopback DQS sampling, the data strobe is output to the DQS pad together with the serial clock. The data strobe is looped back from DQS pad and used to sample input data. 1 2 QSPIx_SCLK TCSS TCK TCSH QSPIx_CS TDVO QSPIx_SIO TDHO TDVO TDHO Figure 38. QuadSPI output/write timing (DDR mode) Table 67. QuadSPI output/write timing (DDR mode) Value Symbol Parameter Unit Min Max TDVO Output data valid time — (0.25 x TSCLK) + 2 ns TDHO Output data hold time (0.25 x TSCLK) - 0.5 — ns TCK SCK clock period 20 — ns TCSS Chip select output setup time 3 — SCK cycle(s) TCSH Chip select output hold time 3 — ns NOTE Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register; the default value of 3 is shown on the timing. See the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual (IMX8MDQLQRM) for more details. 3.9.11 SAI/I2S switching specifications This section provides the AC timings for the SAI in Master (clocks driven) and Slave (clocks input) modes. All timings are given for non inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. Table 68. Master mode SAI timing Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 20 — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 40 — ns i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 68 NXP Semiconductors Electrical characteristics Table 68. Master mode SAI timing (continued) Num Characteristic Min Max Unit S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid — 15 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 15 ns S8 SAI_BCLK to SAI_TXD invalid 0 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns Figure 39. SAI timing—Master modes Table 69. Slave mode SAI timing Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 40 — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 10 — ns S14 SAI_FA input hold after SAI_BCLK 2 — ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 20 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 — ns S17 SAI_RXD setup before SAI_BCLK 10 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 69 Electrical characteristics Figure 40. SAI Timing — Slave Modes 3.9.12 SPDIF timing parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 70 and Figure 41 and Figure 42 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode. Table 70. SPDIF timing parameters Timing Parameter Range Parameter Symbol Unit Min Max SPDIF_IN Skew: asynchronous inputs, no specs apply — — 0.7 ns SPDIF_OUT output (Load = 50 pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 24.2 31.3 ns SPDIF_OUT output (Load = 30 pf) • Skew • Transition rising • Transition falling — — — — — — Modulating Rx clock (SPDIF_SR_CLK) period srckp SPDIF_SR_CLK high period 1.5 13.6 18.0 ns 40.0 — ns srckph 16.0 — ns SPDIF_SR_CLK low period srckpl 16.0 — ns Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 — ns SPDIF_ST_CLK high period stclkph 16.0 — ns SPDIF_ST_CLK low period stclkpl 16.0 — ns i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 70 NXP Semiconductors Electrical characteristics srckp srckpl SPDIF_SR_CLK srckph VM VM (Output) Figure 41. SPDIF_SR_CLK timing diagram stclkp stclkpl SPDIF_ST_CLK stclkph VM VM (Input) Figure 42. SPDIF_ST_CLK timing diagram 3.9.13 3.9.13.1 UART I/O configuration and timing parameters UART RS-232 I/O configuration in different modes The UART interfaces of the i.MX 8M Dual / 8M QuadLite / 8M Quad processors can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0—DCE mode). Table 71 shows the UART I/O configuration based on the enabled mode. Table 71. UART I/O configuration vs. mode DTE Mode DCE Mode Port Direction Description Direction Description UARTx_RTS_B Output UARTx_RTS_B from DTE to DCE Input UARTx_RTS_B from DTE to DCE UARTx_CTS_B Input UARTx_CTS_B from DCE to DTE Output UARTx_CTS_B from DCE to DTE UARTx_TX_ DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE UARTx_RX_DATA Output Serial data from DTE to DCE Input Serial data from DTE to DCE 3.9.13.2 UART RS-232 Serial mode timing This section describes the electrical information of the UART module in the RS-232 mode. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 71 Electrical characteristics 3.9.13.2.1 UART transmitter Figure 43 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit format. Table 72 lists the UART RS-232 Serial mode transmit timing characteristics. UA1 Start Bit UARTx_TX_DATA (output) Possible Parity Bit UA1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Par Bit STOP BIT Bit 7 Next Start Bit UA1 UA1 Figure 43. UART RS-232 Serial mode transmit timing diagram Table 72. RS-232 Serial mode transmit timing parameters ID Parameter UA1 1 2 Transmit Bit Time Symbol Min Max Unit tTbit 1/Fbaud_rate1 - Tref_clk2 1/Fbaud_rate + Tref_clk — Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). 3.9.13.2.2 UART receiver Figure 44 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 73 lists Serial mode receive timing characteristics. UA2 UARTx_RX_DATA (output) Start Bit Possible Parity Bit UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT UA2 Next Start Bit UA2 Figure 44. UART RS-232 Serial mode receive timing diagram Table 73. RS-232 Serial mode receive timing parameters ID Parameter Symbol Min Max Unit UA2 Receive Bit Time1 tRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 72 NXP Semiconductors Electrical characteristics 3.9.14 USB PHY parameters This section describes the USB-OTG PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 3.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 3.0 Specification is not applicable to Host port): • USB ENGINEERING CHANGE NOTICE — Title: 5V Short Circuit Withstand Requirement Change — Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE — Title: Pull-up/Pull-down resistors — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: Suspend Current Limit Changes — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: USB 2.0 Phase Locked SOFs — Applies to: Universal Serial Bus Specification, Revision 2.0 • On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification — Revision 2.0, version 1.1a, July 27, 2010 • Battery Charging Specification (available from USB-IF) — Revision 1.2, December 7, 2010 3.9.14.1 USB_OTG*_REXT reference resistor connection The bias generation and impedance calibration process for the USB OTG PHYs requires connection of reference resistors 200  1% precision on each of USB_OTG1_REXT and USB_OTG2_REXT pads to ground. 3.9.15 USB 2.0 PHY parameters USB 2.0 PHY parameters are compatible with USB 3.0 PHY. See Section 3.9.16, USB 3.0 PHY parameters for more detailed information. 3.9.16 USB 3.0 PHY parameters This section describes the electrical information about USB 3.0 PHY. Table 74 shows the USB 3.0 PHY junction temperature. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 73 Electrical characteristics Table 74. USB 3.0 PHY junction temperature Min Max -40 C 125 C Table 75 shows the USB 3.0 PHY power dissipation of SuperSpeed 5-Gbps operation. Table 75. USB 3.0 PHY power dissipation: SuperSpeed 5-Gbps operation (unit: for current is mA, for power is mW) Mode Conditions Current from USB1/2_VP Current from USB1/2_VPTX Current from USB1/2_VPH Total Current Total Power U0 TT/WC 25.700/35.700 15.000/21.200 14.000/20.300 54.700/77.200 82.800/130.000 Power-Down TT/WC 0.318/2.550 0.012/0.184 0.012/0.030 0.34/2.764 0.337/2.816 Table 76 shows the USB 3.0 PHY power dissipation: HS/FS/LS operation. Table 76. USB 3.0 PHY power dissipation: HS/FS/LS operations (unit: for current is mA, for power is mW) Mode Conditions Current from USB1/2_DVDD Current from USB1/2_VDD33 Total Current Total Power HS TX TT/WC 4.800/9.200 24.000/24.400 28.800/33.600 83.500/97.700 FS TX TT/WC 2.800/6.800 22.100/24.500 24.900/31.200 75.400/95.500 LS TX TT/WC 3.500/7.700 19.300/20.400 22.800/28.100 66.900/81.700 Power-Down TT/WC 0.048/3.690 0.065/0.146 0.112/3.386 0.257/4.182 Suspend TT/WC 0.047/3.690 0.066/0.154 0.113/3.844 0.261/4.213 Battery Charging TT/WC 0.122/3.760 6.350/5.780 6.472/9.540 21.065/24.704 Table 77 shows the worst-case maximum current. Table 77. Worst-Case maximum current USB1/2_VPH USB1/2_VP USB1/2_VPTX USB1/2_VDD33 USB1/2_DVDD Unit 20.3 35.7 21.2 24.5 9.2 mA Table 78 shows the USB power pin supplies. Table 78. USB power pin supplies Pin Name Description Value USB1/2_VDD PHY analog and digital high-speed supply 0.9 V (+22.2%, -7%) USB1/2_VP PHY analog and digital SuperSpeed supply 0.9 V (+22.2%, -7%) USB1/2_VPTX PHY transmit supply 0.9 V (+22.2%, -7%) USB1/2_VDD33 High supply for high-speed operation IO 3.3 V (+10%, -7%) USB1/2_VPH High supply for SuperSpeed operation IO 3.3 V (+10%, -7%) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 74 NXP Semiconductors Electrical characteristics Table 79 shows the external component values. Table 79. External component values Component Pin Name External resistor (resref) Value 200 (±1%) USB1_RESREF/USB2_RESREF Table 80 shows the minimum ESD protection target levels. Table 80. Minimum ESD protection target levels ESD Category Minimum Protection Level Human Body Model (HBM) (JS-001-2014) Charged Device Model (CDM) (JESD22-C101F) 2 KV 2 6 A peak discharge current Machine Model (MM) (JESD22_A115C) 1 JEDEC Class 100 V C2/C1 (500 V/ 250 V)1 N/A Support for either 500 V or 250 V CDM target level is dependent on maximum discharge current generated in final SoC/package implementation. Table 81 shows the supply impedance requirements. Table 81. Supply impedance requirements Lgd + Lvp(nH) LVSSA + LDVDD(nH) Lgd + Lvptx(nH) LVSSA + LVDD33 (nH) Lgd + Lvph(nH) < 2.4 < 2.4 < 2.4 < 2.8 < 2.8 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 75 Boot mode configuration 4 Boot mode configuration This section provides information on Boot mode configuration pins allocation and boot devices interfaces allocation. 4.1 Boot mode configuration pins Table 82 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the “System Boot, Fusemap, and eFuse” chapter in the i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processor Reference Manual (IMX8MDQLQRM). Table 82. Fuses and associated pins used for boot Pin Direction at Reset eFuse name State during reset (POR_B asserted) State after reset (POR_B deasserted) BOOT_MODE0 Input N/A Input with 95 K pull down Input with 95 K pull down Boot mode selection BOOT_MODE1 Input N/A Input with 95 K pull down Input with 95 K pull down Boot mode selection SAI1_RXD0 Input BOOT_CFG[0] Input with 95 K pull down SAI1_RXD1 Input BOOT_CFG[1] Input with 95 K pull down SAI1_RXD2 Input BOOT_CFG[2] Input with 95 K pull down SAI1_RXD3 Input BOOT_CFG[3] Input with 95 K pull down SAI1_RXD4 Input BOOT_CFG[4] Input with 95 K pull down SAI1_RXD5 Input BOOT_CFG[5] Input with 95 K pull down SAI1_RXD6 Input BOOT_CFG[6] Input with 95 K pull down SAI1_RXD7 Input BOOT_CFG[7] Input with 95 K pull down SAI1_TXD0 Input BOOT_CFG[8] Input with 95 K pull down SAI1_TXD1 Input BOOT_CFG[9] Input with 95 K pull down SAI1_TXD2 Input BOOT_CFG[10] Input with 95 K pull down Input with 95 K pull down Boot options pin value overrides Input with 95 K pull down fuse settings for Input with 95 K pull down BT_FUSE_SEL = “0“. Signal Input with 95 K pull down configuration as fuse override input Input with 95 K pull down at power up. These Input with 95 K pull down are special I/O lines that control the boot Input with 95 K pull down configuration during product Input with 95 K pull down development. In Input with 95 K pull down production, the boot configuration can Input with 95 K pull down be controlled by Input with 95 K pull down fuses. SAI1_TXD3 Input BOOT_CFG[11] Input with 95 K pull down Input with 95 K pull down SAI1_TXD4 Input BOOT_CFG[12] Input with 95 K pull down Input with 95 K pull down SAI1_TXD5 Input BOOT_CFG[13] Input with 95 K pull down Input with 95 K pull down SAI1_TXD6 Input BOOT_CFG[14] Input with 95 K pull down Input with 95 K pull down SAI1_TXD7 Input BOOT_CFG[15] Input with 95 K pull down Input with 95 K pull down Details i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 76 NXP Semiconductors Boot mode configuration 4.2 Boot device interface allocation Table 83 lists the interfaces that can be used by the boot process in accordance with the specific Boot mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 83. Interface allocation during boot Interface IP Instance Allocated Pads During Boot NAND Flash GPMI SD/MMC USDHC-1 GPIO1_IO03, GPIO1_IO06, GPIO1_IO07, 1, 4, or 8-bit SD1_RESET_B, SD1_CLK, SD1_CMD, SD1_STROBE, SD1_DATA0, SD1_DATA1, SD1_DATA2,SD1_DATA3,SD1_DATA4,SD1_DATA5, SD1_DATA6, SD1_DATA7 SD/MMC USDHC-2 GPIO1_IO04, GPIO1_IO08, GPIO1_IO07, 1 or 4-bit SD2_RESET_B, SD2_CD_B, SD2_WP, SD2_CLK, SD2_CMD, SD2_DATA0, SD2_DATA1, SD2_DATA2, SD2_DATA3 USB USB_OTG PHY NAND_ALE, NAND_CE0_B, NAND_CLE, NAND_DATA00, NAND_DATA01, NAND_DATA02, NAND_DATA03, NAND_DATA04, NAND_DATA05, NAND_DATA06, NAND_DATA07, NAND_DQS, NAND_RE_B, NAND_READY_B, NAND_WE_B, NAND_WP_B — Comment 8-bit, only CS0 is supported. — i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 77 Package information and contact assignments 5 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing. 5.1 5.1.1 17 x 17 mm package information 17 x 17 mm, 0.65 mm pitch, ball matrix Figure 45 shows the top, bottom, and side views of the 17 × 17 mm BGA package. i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 78 NXP Semiconductors Package information and contact assignments Figure 45. 17 x 17 mm BGA, package top, bottom, and side Views i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 79 Package information and contact assignments 5.1.2 17 x 17 mm supplies contact assignments and functional contact assignments Table 84 shows supplies contact assignments for the 17 x 17 mm package. Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm supplies contact assignments Supply Rail Name Ball(s) Postion(s) Remark EFUSE_VQPS R17 Supply for eFuse Programming HDMI_AVDDCLK V3 Supply for HDMI PHY HDMI_AVDDCORE U3, U4 Supply for HDMI PHY HDMI_AVDDIO P2 Supply for HDMI PHY MIPI_VDD E15, F15 Supply for MIPI PHY MIPI_VDDA E17, E18, F17, F18 Supply for MIPI PHY MIPI_VDDHA C18, D17, D18 Supply for MIPI PHY MIPI_VDDPLL F19 Supply for MIPI PHY NVCC_DRAM Y12, Y14, AA10, AA15, AB3, AB8, AB17, AB23, AC3, AC6, AC8, AC14, AC17, AC20, AC23, AD5, AD18, AD21 Supply for DRAM Interface NVCC_ECSPI F5 Supply for ESCPI Interface NVCC_ENET T18 Supply for ENET Interface NVCC_GPIO1 R5, R6 Supply for GPIO1 Interface NVCC_I2C H7 Supply for I2C Interface NVCC_JTAG W4 Supply for JTAG Interface NVCC_NAND L18, M18 Supply for NAND Interface NVCC_SAI1 K3, L3 Supply for SAI Interface NVCC_SAI2 J7 Supply for SAI Interface NVCC_SAI3 E3 Supply for SAI Interface NVCC_SAI5 M3 Supply for SAI Interface NVCC_SD1 L23, M23 Supply for SD Interface NVCC_SD2 N23 Supply for SD Interface NVCC_SNVS W18 Supply for SNVS Interface NVCC_UART D8 Supply for UART Interface PCIE_VP F22, G22 Supply for PCIe PHY PCIE_VPH H23, J23 Supply for PCIe PHY PCIE_VPTX F23, G23 Supply for PCIe PHY USB1_DVDD E12 Supply for USB PHY USB1_VDD33 G12 Supply for USB PHY i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 80 NXP Semiconductors Package information and contact assignments Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm supplies contact assignments (continued) USB1_VP D12 Supply for USB PHY USB1_VPH F12 Supply for USB PHY USB1_VPTX C12 Supply for USB PHY USB2_DVDD E11 Supply for USB PHY USB2_VDD33 G11 Supply for USB PHY USB2_VP D11 Supply for USB PHY USB2_VPH F11 Supply for USB PHY USB2_VPTX C11 Supply for USB PHY VDD_ARM G14, G15, G16, H14, H15, H16, J15, J16, K15, Supply for Arm Core K16, L15, L16, M15, M16 VDD_DRAM U10, U11, U12, U13, U14, V9, V10, V11, V12, Supply for DRAM Module V13, V14, V15, Y6, Y8, Y10, Y16, Y18, Y20 VDD_GPU J9, J10, K9, K10, L9, L10, M9, M10 Supply for GPU VDD_SNVS R18 Supply for SNVS Logic VDD_SOC K12, L12, L13, M12, M13, N13, P12, P13, P15, Supply for SOC Logic P16, R8, R9, R10, R11, R12, R13, R14, R15, R16, T8, T17 VDD_VPU N8, N9, N10, P9, P10 Supply for VPU VDDA_0P9 V18 Supply for SOC Logic VDDA_1P8_FPLL U17 Supply for Frac PLL VDDA_1P8_FPLL_ARM K14 Supply for Arm PLL VDDA_1P8_LVDS U23 Supply for LVDS Interface VDDA_1P8_SPLL W17 Supply for SSCG PLL VDDA_1P8_SPLL_DRAM T15 Supply for DRAM PLL VDDA_1P8_SPLL_VIDEO2 N11 Supply for VIDEO PLL2 VDDA_1P8_TSENSOR T16 Supply for temperature sensor VDDA_1P8_XTAL_25M W24 Supply for XTAL VDDA_1P8_XTAL_27M W23 Supply for XTAL VDDA_DRAM AA11 Supply for DRAM Module i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 81 Package information and contact assignments Table 84. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm supplies contact assignments (continued) VSS A2, A24, B1, B25, C8, C10, C13, C15, C24, — D10, D13, D15, D23, E4, E10, E13, E14, E16, E19, E20, E21, E22, E23, F10, F13, F14, F16, F20, G9, G10, G13, G17, G18, G24, H8, H9, H10, H11, H12, H13, H17, H18, J3, J8, J11, J12, J13, J14, J17, J18, J19, K8, K11, K17, K18, K23, L8, L11, L14, L17, M8, M11, M14, M17, N3, N14, N15, N16, N17, N18, P6, P8, P11, P14, P17, P18, P23, R7, T3, T4, T9, T10, T11, T12, T13, U8, U9, U15, U18, V4, V8, V16, W1, W7, W8, W9, W10, W11, W12, W13, W14, W15, W16, W25, Y2, Y3, Y4, Y5, Y7, Y9, Y11, Y13, Y15, Y17, Y19, Y21, Y22, Y23, Y24, AA5, AA16, AA21, AB2, AB9, AB11, AB18, AB24, AC4, AC19, AC22, AD1, AD7, AD9, AD11, AD13, AD16, AD25, AE2, AE5, AE21, AE24 VSSA_FPLL U16 Return path of VDDA_1P8_FPLL VSSA_FPLL_ARM K13 Return path of VDDA_1P8_FPLL_ARM VSSA_SPLL V17 Return path of VDDA_1P8_SPLL VSSA_SPLL_DRAM T14 Return path of VDDA_1P8_SPLL_DRAM VSSA_SPLL_VIDEO2 N12 Return path of VDDA_1P8_SPLL_VIDEO2 VSSA_XTAL_25M V23 Return path of VDDA_1P8_XTAL_25M VSSA_XTAL_27M W22 Return path of VDDA_1P8_XTAL_27M Table 85 shows an alpha-sorted list of functional contact assignments for the 17 x 17 mm package. Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value BOOT_MODE0 W6 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_ MODE[0] Input PD (90 K) BOOT_MODE1 V6 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_ MODE[1] Input PD (90 K) CLK1_P R23 VDDA LVDS — — — — CLK1_N T23 VDDA LVDS — — — — CLK2_P T22 VDDA LVDS — — — — CLK2_N U22 VDDA LVDS — — — — DRAM_AC00 AC16 NVCC_DRAM DDR — — — — i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 82 NXP Semiconductors Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value DRAM_AC01 AE17 NVCC_DRAM DDR — — — — DRAM_AC02 AE18 NVCC_DRAM DDR — — — — DRAM_AC03 AC18 NVCC_DRAM DDR — — — — DRAM_AC04 AD14 NVCC_DRAM DDR — — — — DRAM_AC05 AE14 NVCC_DRAM DDR — — — — DRAM_AC06 AE13 NVCC_DRAM DDR — — — — DRAM_AC07 AB15 NVCC_DRAM DDR — — — — DRAM_AC08 AD17 NVCC_DRAM DDR — — — — DRAM_AC09 AE16 NVCC_DRAM DDR — — — — DRAM_AC10 AD20 NVCC_DRAM DDR — — — — DRAM_AC11 AE20 NVCC_DRAM DDR — — — — DRAM_AC12 AD19 NVCC_DRAM DDR — — — — DRAM_AC13 AE19 NVCC_DRAM DDR — — — — DRAM_AC14 AB16 NVCC_DRAM DDR — — — — DRAM_AC15 AC15 NVCC_DRAM DDR — — — — DRAM_AC16 AE15 NVCC_DRAM DDR — — — — DRAM_AC17 AD15 NVCC_DRAM DDR — — — — DRAM_AC19 AB14 NVCC_DRAM DDR — — — — DRAM_AC20 AD10 NVCC_DRAM DDR — — — — DRAM_AC21 AE10 NVCC_DRAM DDR — — — — DRAM_AC22 AD8 NVCC_DRAM DDR — — — — DRAM_AC23 AC9 NVCC_DRAM DDR — — — — DRAM_AC24 AD12 NVCC_DRAM DDR — — — — DRAM_AC25 AE12 NVCC_DRAM DDR — — — — DRAM_AC26 AB12 NVCC_DRAM DDR — — — — DRAM_AC27 AA12 NVCC_DRAM DDR — — — — DRAM_AC28 AC7 NVCC_DRAM DDR — — — — DRAM_AC29 AE7 NVCC_DRAM DDR — — — — DRAM_AC30 AE6 NVCC_DRAM DDR — — — — DRAM_AC31 AD6 NVCC_DRAM DDR — — — — i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 83 Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value DRAM_AC32 AE8 NVCC_DRAM DDR — — — — DRAM_AC33 AE9 NVCC_DRAM DDR — — — — DRAM_AC34 AC10 NVCC_DRAM DDR — — — — DRAM_AC35 AB10 NVCC_DRAM DDR — — — — DRAM_AC36 AC12 NVCC_DRAM DDR — — — — DRAM_AC37 AE11 NVCC_DRAM DDR — — — — DRAM_AC38 AC11 NVCC_DRAM DDR — — — — DRAM_ALERT_N AC13 NVCC_DRAM DDR — — — — DRAM_DM0 AD23 NVCC_DRAM DDR — — — — DRAM_DM1 AB20 NVCC_DRAM DDR — — — — DRAM_DM2 AD3 NVCC_DRAM DDR — — — — DRAM_DM3 AB6 NVCC_DRAM DDR — — — — DRAM_DQ00 AE23 NVCC_DRAM DDR — — — — DRAM_DQ01 AD24 NVCC_DRAM DDR — — — — DRAM_DQ02 AE22 NVCC_DRAM DDR — — — — DRAM_DQ03 AD22 NVCC_DRAM DDR — — — — DRAM_DQ04 AA24 NVCC_DRAM DDR — — — — DRAM_DQ05 Y25 NVCC_DRAM DDR — — — — DRAM_DQ06 AA25 NVCC_DRAM DDR — — — — DRAM_DQ07 AB25 NVCC_DRAM DDR — — — — DRAM_DQ08 AB22 NVCC_DRAM DDR — — — — DRAM_DQ09 AA22 NVCC_DRAM DDR — — — — DRAM_DQ10 AA23 NVCC_DRAM DDR — — — — DRAM_DQ11 AA20 NVCC_DRAM DDR — — — — DRAM_DQ12 AA18 NVCC_DRAM DDR — — — — DRAM_DQ13 AB19 NVCC_DRAM DDR — — — — DRAM_DQ14 AA19 NVCC_DRAM DDR — — — — DRAM_DQ15 AA17 NVCC_DRAM DDR — — — — DRAM_DQ16 AE3 NVCC_DRAM DDR — — — — DRAM_DQ17 AD2 NVCC_DRAM DDR — — — — i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 84 NXP Semiconductors Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value DRAM_DQ18 AE4 NVCC_DRAM DDR — — — — DRAM_DQ19 AD4 NVCC_DRAM DDR — — — — DRAM_DQ20 AA2 NVCC_DRAM DDR — — — — DRAM_DQ21 Y1 NVCC_DRAM DDR — — — — DRAM_DQ22 AA1 NVCC_DRAM DDR — — — — DRAM_DQ23 AB1 NVCC_DRAM DDR — — — — DRAM_DQ24 AB4 NVCC_DRAM DDR — — — — DRAM_DQ25 AA4 NVCC_DRAM DDR — — — — DRAM_DQ26 AA3 NVCC_DRAM DDR — — — — DRAM_DQ27 AA6 NVCC_DRAM DDR — — — — DRAM_DQ28 AA8 NVCC_DRAM DDR — — — — DRAM_DQ29 AB7 NVCC_DRAM DDR — — — — DRAM_DQ30 AA7 NVCC_DRAM DDR — — — — DRAM_DQ31 AA9 NVCC_DRAM DDR — — — — DRAM_DQS0_N AC25 NVCC_DRAM DDRCLK — — — — DRAM_DQS0_P AC24 NVCC_DRAM DDRCLK — — — — DRAM_DQS1_N AC21 NVCC_DRAM DDRCLK — — — — DRAM_DQS1_P AB21 NVCC_DRAM DDRCLK — — — — DRAM_DQS2_N AC1 NVCC_DRAM DDRCLK — — — — DRAM_DQS2_P AC2 NVCC_DRAM DDRCLK — — — — DRAM_DQS3_N AC5 NVCC_DRAM DDRCLK — — — — DRAM_DQS3_P AB5 NVCC_DRAM DDRCLK — — — — DRAM_RESET_N AB13 NVCC_DRAM DDR — — — — DRAM_VREF AA14 NVCC_DRAM DDR — — — — DRAM_ZN AA13 NVCC_DRAM DDR — — — — ECSPI1_MISO B4 NVCC_ECSPI GPIO ALT5 GPIO5.IO[8] Input PD (90 K) ECSPI1_MOSI A4 NVCC_ECSPI GPIO ALT5 GPIO5.IO[7] Input PD (90 K) ECSPI1_SCLK D5 NVCC_ECSPI GPIO ALT5 GPIO5.IO[6] Input PD (90 K) ECSPI1_SS0 D4 NVCC_ECSPI GPIO ALT5 GPIO5.IO[9] Input PD (90 K) ECSPI2_MISO B5 NVCC_ECSPI GPIO ALT5 GPIO5.IO[12] Input PD (90 K) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 85 Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value ECSPI2_MOSI E5 NVCC_ECSPI GPIO ALT5 GPIO5.IO[11] Input PD (90 K) ECSPI2_SCLK C5 NVCC_ECSPI GPIO ALT5 GPIO5.IO[10] Input PD (90 K) ECSPI2_SS0 A5 NVCC_ECSPI GPIO ALT5 GPIO5.IO[13] Input PD (90 K) ENET_MDC N20 NVCC_ENET GPIO ALT5 GPIO1.IO[16] Input PD (90 K) ENET_MDIO N19 NVCC_ENET GPIO ALT5 GPIO1.IO[17] Input PD (90 K) ENET_RD0 U19 NVCC_ENET GPIO ALT5 GPIO1.IO[26] Input PD (90 K) ENET_RD1 U21 NVCC_ENET GPIO ALT5 GPIO1.IO[27] Input PD (90 K) ENET_RD2 U20 NVCC_ENET GPIO ALT5 GPIO1.IO[28] Input PD (90 K) ENET_RD3 V19 NVCC_ENET GPIO ALT5 GPIO1.IO[29] Input PD (90 K) ENET_RXC T20 NVCC_ENET GPIO ALT5 GPIO1.IO[25] Input PD (90 K) ENET_RX_CTL T21 NVCC_ENET GPIO ALT5 GPIO1.IO[24] Input PD (90 K) ENET_TD0 R20 NVCC_ENET GPIO ALT5 GPIO1.IO[21] Input PD (90 K) ENET_TD1 R21 NVCC_ENET GPIO ALT5 GPIO1.IO[20] Input PD (90 K) ENET_TD2 R19 NVCC_ENET GPIO ALT5 GPIO1.IO[19] Input PD (90 K) ENET_TD3 P20 NVCC_ENET GPIO ALT5 GPIO1.IO[18] Input PD (90 K) ENET_TXC T19 NVCC_ENET GPIO ALT5 GPIO1.IO[23] Input PD (90 K) ENET_TX_CTL P19 NVCC_ENET GPIO ALT5 GPIO1.IO[22] Input PD (90 K) GPIO1_IO00 T6 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[0] Input PD (90 K) GPIO1_IO013 T7 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[1] Input PD (90 K) GPIO1_IO02 R4 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[2] Input PD (27 K) GPIO1_IO03 P4 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[3] Input PD (90 K) GPIO1_IO04 P5 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[4] Input PD (90 K) GPIO1_IO054 P7 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[5] Input PU (27 K) GPIO1_IO06 N5 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[6] Input PD (90 K) GPIO1_IO07 N6 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[7] Input PD (90 K) GPIO1_IO08 N7 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[8] Input PD (90 K) GPIO1_IO09 M6 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[9] Input PD (90 K) GPIO1_IO10 M7 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[10] Input PD (90 K) GPIO1_IO11 L6 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[11] Input PD (90 K) GPIO1_IO12 L7 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[12] Input PD (90 K) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 86 NXP Semiconductors Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value GPIO1_IO13 K6 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[13] Input PD (90 K) GPIO1_IO14 K7 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[14] Input PD (90 K) GPIO1_IO15 J6 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[15] Input PD (90 K) HDMI_AUX_N V2 HDMI_AVDDIO PHY — — — — HDMI_AUX_P V1 HDMI_AVDDIO PHY — — — — HDMI_CEC W3 HDMI_AVDDIO PHY — — — — HDMI_DDC_SCL R3 HDMI_AVDDIO PHY — — — — HDMI_DDC_SDA P3 HDMI_AVDDIO PHY — — — — HDMI_HPD W2 HDMI_AVDDIO PHY — — — — HDMI_REFCLK_N R1 HDMI_AVDDIO PHY — — — — HDMI_REFCLK_P R2 HDMI_AVDDIO PHY — — — — HDMI_REXT P1 HDMI_AVDDIO PHY — — — — HDMI_TX_M_LN_0 T2 HDMI_AVDDIO PHY — — — — HDMI_TX_M_LN_1 U1 HDMI_AVDDIO PHY — — — — HDMI_TX_M_LN_2 N1 HDMI_AVDDIO PHY — — — — HDMI_TX_M_LN_3 M2 HDMI_AVDDIO PHY — — — — HDMI_TX_P_LN_0 T1 HDMI_AVDDIO PHY — — — — HDMI_TX_P_LN_1 U2 HDMI_AVDDIO PHY — — — — HDMI_TX_P_LN_2 N2 HDMI_AVDDIO PHY — — — — HDMI_TX_P_LN_3 M1 HDMI_AVDDIO PHY — — — — I2C1_SCL E7 NVCC_I2C GPIO ALT5 GPIO5.IO[14] Input PD (90 K) I2C1_SDA E8 NVCC_I2C GPIO ALT5 GPIO5.IO[15] Input PD (90 K) I2C2_SCL G7 NVCC_I2C GPIO ALT5 GPIO5.IO[16] Input PD (90 K) I2C2_SDA F7 NVCC_I2C GPIO ALT5 GPIO5.IO[17] Input PD (90 K) I2C3_SCL G8 NVCC_I2C GPIO ALT5 GPIO5.IO[18] Input PD (90 K) I2C3_SDA E9 NVCC_I2C GPIO ALT5 GPIO5.IO[19] Input PD (90 K) I2C4_SCL F8 NVCC_I2C GPIO ALT5 GPIO5.IO[20] Input PD (90 K) I2C4_SDA F9 NVCC_I2C GPIO ALT5 GPIO5.IO[21] Input PD (90 K) JTAG_MOD U7 NVCC_JTAG GPIO ALT0 cjtag_wrapper.MOD Input PD (90 K) JTAG_TCK T5 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TCK Input PU 27 K) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 87 Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value JTAG_TDI W5 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TDI Input PU (27 K) JTAG_TDO U5 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TDO Input PU (27 K) JTAG_TMS V5 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TMS Input PU (27 K) JTAG_TRST_B U6 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TRST_B Input PU (27 K) MIPI_CSI1_CLK_N A22 MIPI_VDDHA PHY — — — — MIPI_CSI1_CLK_P B22 MIPI_VDDHA PHY — — — — MIPI_CSI1_D0_N A23 MIPI_VDDHA PHY — — — — MIPI_CSI1_D0_P B23 MIPI_VDDHA PHY — — — — MIPI_CSI1_D1_N C22 MIPI_VDDHA PHY — — — — MIPI_CSI1_D1_P D22 MIPI_VDDHA PHY — — — — MIPI_CSI1_D2_N B24 MIPI_VDDHA PHY — — — — MIPI_CSI1_D2_P C23 MIPI_VDDHA PHY — — — — MIPI_CSI1_D3_N C21 MIPI_VDDHA PHY — — — — MIPI_CSI1_D3_P D21 MIPI_VDDHA PHY — — — — MIPI_CSI2_CLK_N A19 MIPI_VDDHA PHY — — — — MIPI_CSI2_CLK_P B19 MIPI_VDDHA PHY — — — — MIPI_CSI2_D0_N C20 MIPI_VDDHA PHY — — — — MIPI_CSI2_D0_P D20 MIPI_VDDHA PHY — — — — MIPI_CSI2_D1_N A20 MIPI_VDDHA PHY — — — — MIPI_CSI2_D1_P B20 MIPI_VDDHA PHY — — — — MIPI_CSI2_D2_N A21 MIPI_VDDHA PHY — — — — MIPI_CSI2_D2_P B21 MIPI_VDDHA PHY — — — — MIPI_CSI2_D3_N C19 MIPI_VDDHA PHY — — — — MIPI_CSI2_D3_P D19 MIPI_VDDHA PHY — — — — MIPI_DSI_CLK_N C16 MIPI_VDDHA PHY — — — — MIPI_DSI_CLK_P D16 MIPI_VDDHA PHY — — — — MIPI_DSI_D0_N A17 MIPI_VDDHA PHY — — — — MIPI_DSI_D0_P B17 MIPI_VDDHA PHY — — — — MIPI_DSI_D1_N A16 MIPI_VDDHA PHY — — — — MIPI_DSI_D1_P B16 MIPI_VDDHA PHY — — — — i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 88 NXP Semiconductors Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value MIPI_DSI_D2_N A18 MIPI_VDDHA PHY — — — — MIPI_DSI_D2_P B18 MIPI_VDDHA PHY — — — — MIPI_DSI_D3_N A15 MIPI_VDDHA PHY — — — — MIPI_DSI_D3_P B15 MIPI_VDDHA PHY — — — — MIPI_DSI_REXT C17 MIPI_VDDHA PHY — — — — NAND_ALE G19 NVCC_NAND GPIO ALT5 GPIO3.IO[0] Input PD (90 K) NAND_CE0_B H19 NVCC_NAND GPIO ALT5 GPIO3.IO[1] Input PD (90 K) NAND_CE1_B G21 NVCC_NAND GPIO ALT5 GPIO3.IO[2] Input PD (90 K) NAND_CE2_B F21 NVCC_NAND GPIO ALT5 GPIO3.IO[3] Input PD (90 K) NAND_CE3_B H20 NVCC_NAND GPIO ALT5 GPIO3.IO[4] Input PD (90 K) NAND_CLE H21 NVCC_NAND GPIO ALT5 GPIO3.IO[5] Input PD (90 K) NAND_DATA00 G20 NVCC_NAND GPIO ALT5 GPIO3.IO[6] Input PD (90 K) NAND_DATA01 J20 NVCC_NAND GPIO ALT5 GPIO3.IO[7] Input PD (90 K) NAND_DATA02 H22 NVCC_NAND GPIO ALT5 GPIO3.IO[8] Input PD (90 K) NAND_DATA03 J21 NVCC_NAND GPIO ALT5 GPIO3.IO[9] Input PD (90 K) NAND_DATA04 L20 NVCC_NAND GPIO ALT5 GPIO3.IO[10] Input PD (90 K) NAND_DATA05 J22 NVCC_NAND GPIO ALT5 GPIO3.IO[11] Input PD (90 K) NAND_DATA06 L19 NVCC_NAND GPIO ALT5 GPIO3.IO[12] Input PD (90 K) NAND_DATA07 M19 NVCC_NAND GPIO ALT5 GPIO3.IO[13] Input PD (90 K) NAND_DQS M20 NVCC_NAND GPIO ALT5 GPIO3.IO[14] Input PD (90 K) NAND_RE_B K19 NVCC_NAND GPIO ALT5 GPIO3.IO[15] Input PD (90 K) NAND_READY_B K20 NVCC_NAND GPIO ALT5 GPIO3.IO[16] Input PD (90 K) NAND_WE_B K22 NVCC_NAND GPIO ALT5 GPIO3.IO[17] Input PD (90 K) NAND_WP_B K21 NVCC_NAND GPIO ALT5 GPIO3.IO[18] Input PD (90 K) ONOFF W21 NVCC_SNVS GPIO ALT0 snvsmix.ONOFF Input PU (27 K) PCIE1_REF_PAD_C LK_N K24 PCIE_VPH PHY — — — — PCIE1_REF_PAD_C LK_P K25 PCIE_VPH PHY — — — — PCIE1_RESREF G25 PCIE_VPH PHY — — — — i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 89 Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value PCIE1_RXN_N H24 PCIE_VPH PHY — — — — PCIE1_RXN_P H25 PCIE_VPH PHY — — — — PCIE1_TXN_N J24 PCIE_VPH PHY — — — — PCIE1_TXN_P J25 PCIE_VPH PHY — — — — PCIE2_REF_PAD_C LK_N F24 PCIE_VPH PHY — — — — PCIE2_REF_PAD_C LK_P F25 PCIE_VPH PHY — — — — PCIE2_RESREF C25 PCIE_VPH PHY — — — — PCIE2_RXN_N D24 PCIE_VPH PHY — — — — PCIE2_RXN_P D25 PCIE_VPH PHY — — — — PCIE2_TXN_N E24 PCIE_VPH PHY — — — — PCIE2_TXN_P E25 PCIE_VPH PHY — — — — PMIC_ON_REQ V20 NVCC_SNVS GPIO ALT0 snvsmix.PMIC_ON_RE Q Output Open-Drain PU (27 K) PMIC_STBY_REQ V21 NVCC_SNVS GPIO ALT0 ccmsrcgpcmix.PMIC_S TBY_REQ Output Low POR_B W20 NVCC_SNVS GPIO ALT0 snvsmix.POR_B Input PU (27 K) RTC V22 NVCC_SNVS GPIO ALT0 snvsmix.RTC Input PD (90 K) RTC_RESET_B W19 NVCC_SNVS GPIO ALT0 snvsmix.RTC_POR_B Input PU (27 K) SAI1_MCLK A3 NVCC_SAI1 GPIO ALT5 GPIO4.IO[20] Input PD (90 K) SAI1_RXC K1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[1] Input PD (90 K) SAI1_RXD05 K2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[2] Input PD (90 K) SAI1_RXD15 L2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[3] Input PD (90 K) SAI1_RXD25 H2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[4] Input PD (90 K) SAI1_RXD35 J2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[5] Input PD (90 K) SAI1_RXD45 J1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[6] Input PD (90 K) SAI1_RXD55 F1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[7] Input PD (90 K) SAI1_RXD65 G2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[8] Input PD (90 K) SAI1_RXD75 G1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[9] Input PD (90 K) SAI1_RXFS L1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[0] Input PD (90 K) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 90 NXP Semiconductors Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball SAI1_TXC Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value E1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[11] Input PD (90 K) SAI1_TXD05 F2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[12] Input PD (90 K) 5 SAI1_TXD1 E2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[13] Input PD (90 K) SAI1_TXD25 B2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[14] Input PD (90 K) 5 SAI1_TXD3 D1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[15] Input PD (90 K) SAI1_TXD45 D2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[16] Input PD (90 K) SAI1_TXD55 C2 NVCC_SAI1 GPIO ALT5 GPIO4.IO[17] Input PD (90 K) SAI1_TXD65 B3 NVCC_SAI1 GPIO ALT5 GPIO4.IO[18] Input PD (90 K) SAI1_TXD75 C1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[19] Input PD (90 K) SAI1_TXFS H1 NVCC_SAI1 GPIO ALT5 GPIO4.IO[10] Input PD (90 K) SAI2_MCLK H5 NVCC_SAI2 GPIO ALT5 GPIO4.IO[27] Input PD (90 K) SAI2_RXC H3 NVCC_SAI2 GPIO ALT5 GPIO4.IO[22] Input PD (90 K) SAI2_RXD0 H6 NVCC_SAI2 GPIO ALT5 GPIO4.IO[23] Input PD (90 K) SAI2_RXFS J4 NVCC_SAI2 GPIO ALT5 GPIO4.IO[21] Input PD (90 K) SAI2_TXC J5 NVCC_SAI2 GPIO ALT5 GPIO4.IO[25] Input PD (90 K) SAI2_TXD0 G5 NVCC_SAI2 GPIO ALT5 GPIO4.IO[26] Input PD (90 K) SAI2_TXFS H4 NVCC_SAI2 GPIO ALT5 GPIO4.IO[24] Input PD (90 K) SAI3_MCLK D3 NVCC_SAI3 GPIO ALT5 GPIO5.IO[2] Input PD (90 K) SAI3_RXC F4 NVCC_SAI3 GPIO ALT5 GPIO4.IO[29] Input PD (90 K) SAI3_RXD F3 NVCC_SAI3 GPIO ALT5 GPIO4.IO[30] Input PD (90 K) SAI3_RXFS G4 NVCC_SAI3 GPIO ALT5 GPIO4.IO[28] Input PD (90 K) SAI3_TXC C4 NVCC_SAI3 GPIO ALT5 GPIO5.IO[0] Input PD (90 K) SAI3_TXD C3 NVCC_SAI3 GPIO ALT5 GPIO5.IO[1] Input PD (90 K) SAI3_TXFS G3 NVCC_SAI3 GPIO ALT5 GPIO4.IO[31] Input PD (90 K) SAI5_MCLK K4 NVCC_SAI5 GPIO ALT5 GPIO3.IO[25] Input PD (90 K) SAI5_RXC L5 NVCC_SAI5 GPIO ALT5 GPIO3.IO[20] Input PD (90 K) SAI5_RXD0 M5 NVCC_SAI5 GPIO ALT5 GPIO3.IO[21] Input PD (90 K) SAI5_RXD1 L4 NVCC_SAI5 GPIO ALT5 GPIO3.IO[22] Input PD (90 K) SAI5_RXD2 M4 NVCC_SAI5 GPIO ALT5 GPIO3.IO[23] Input PD (90 K) SAI5_RXD3 K5 NVCC_SAI5 GPIO ALT5 GPIO3.IO[24] Input PD (90 K) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 91 Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value SAI5_RXFS N4 NVCC_SAI5 GPIO ALT5 GPIO3.IO[19] Input PD (90 K) SD1_CLK L25 NVCC_SD1 GPIO ALT5 GPIO2.IO[0] Input PD (90 K) SD1_CMD L24 NVCC_SD1 GPIO ALT5 GPIO2.IO[1] Input PD (90 K) SD1_DATA0 M25 NVCC_SD1 GPIO ALT5 GPIO2.IO[2] Input PD (90 K) SD1_DATA1 M24 NVCC_SD1 GPIO ALT5 GPIO2.IO[3] Input PD (90 K) SD1_DATA2 N25 NVCC_SD1 GPIO ALT5 GPIO2.IO[4] Input PD (90 K) SD1_DATA3 P25 NVCC_SD1 GPIO ALT5 GPIO2.IO[5] Input PD (90 K) SD1_DATA4 N24 NVCC_SD1 GPIO ALT5 GPIO2.IO[6] Input PD (90 K) SD1_DATA5 P24 NVCC_SD1 GPIO ALT5 GPIO2.IO[7] Input PD (90 K) SD1_DATA6 R25 NVCC_SD1 GPIO ALT5 GPIO2.IO[8] Input PD (90 K) SD1_DATA7 T25 NVCC_SD1 GPIO ALT5 GPIO2.IO[9] Input PD (90 K) SD1_RESET_B R24 NVCC_SD1 GPIO ALT5 GPIO2.IO[10] Input PD (90 K) SD1_STROBE T24 NVCC_SD1 GPIO ALT5 GPIO2.IO[11] Input PD (90 K) SD2_CD_B L21 NVCC_SD2 GPIO ALT5 GPIO2.IO[12] Input PD (90 K) SD2_CLK L22 NVCC_SD2 GPIO ALT5 GPIO2.IO[13] Input PD (90 K) SD2_CMD M22 NVCC_SD2 GPIO ALT5 GPIO2.IO[14] Input PD (90 K) SD2_DATA0 N22 NVCC_SD2 GPIO ALT5 GPIO2.IO[15] Input PD (90 K) SD2_DATA1 N21 NVCC_SD2 GPIO ALT5 GPIO2.IO[16] Input PD (90 K) SD2_DATA2 P22 NVCC_SD2 GPIO ALT5 GPIO2.IO[17] Input PD (90 K) SD2_DATA3 P21 NVCC_SD2 GPIO ALT5 GPIO2.IO[18] Input PD (90 K) SD2_RESET_B R22 NVCC_SD2 GPIO ALT5 GPIO2.IO[19] Input PD (90 K) SD2_WP M21 NVCC_SD2 GPIO ALT5 GPIO2.IO[20] Input PD (90 K) SPDIF_EXT_CLK E6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[5] Input PD (90 K) SPDIF_RX G6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[4] Input PD (90 K) SPDIF_TX F6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[3] Input PD (90 K) TEST_MODE V7 NVCC_JTAG GPIO ALT0 tcu.TEST_MODE Input PD (90 K) UART1_RXD C7 NVCC_UART GPIO ALT5 GPIO5.IO[22] Input PD (90 K) UART1_TXD A7 NVCC_UART GPIO ALT5 GPIO5.IO[23] Input PD (90 K) UART2_RXD B6 NVCC_UART GPIO ALT5 GPIO5.IO[24] Input PD (90 K) UART2_TXD D6 NVCC_UART GPIO ALT5 GPIO5.IO[25] Input PD (90 K) i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 92 NXP Semiconductors Package information and contact assignments Table 85. i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments (continued) Reset condition2 Ball name Ball Power group Ball type1 Default mode (Reset mode) Default function (Signal name) Input/ Output Value UART3_RXD A6 NVCC_UART GPIO ALT5 GPIO5.IO[26] Input PD (90 K) UART3_TXD B7 NVCC_UART GPIO ALT5 GPIO5.IO[27] Input PD (90 K) UART4_RXD C6 NVCC_UART GPIO ALT5 GPIO5.IO[28] Input PD (90 K) UART4_TXD D7 NVCC_UART GPIO ALT5 GPIO5.IO[29] Input PD (90 K) USB1_DN B14 USB1_VDD33 PHY — — — — USB1_DP A14 USB1_VDD33 PHY — — — — USB1_ID C14 USB1_VDD33 PHY — — — — USB1_RESREF A11 USB1_VPH PHY — — — — USB1_RX_N B12 USB1_VPH PHY — — — — USB1_RX_P A12 USB1_VPH PHY — — — — USB1_TX_N B13 USB1_VPH PHY — — — — USB1_TX_P A13 USB1_VPH PHY — — — — USB1_VBUS D14 USB1_VDD33 PHY — — — — USB2_DN B10 USB2_VDD33 PHY — — — — USB2_DP A10 USB2_VDD33 PHY — — — — USB2_ID C9 USB2_VDD33 PHY — — — — USB2_RESREF B11 USB2_VPH PHY — — — — USB2_RX_N B8 USB2_VPH PHY — — — — USB2_RX_P A8 USB2_VPH PHY — — — — USB2_TX_N B9 USB2_VPH PHY — — — — USB2_TX_P A9 USB2_VPH PHY — — — — USB2_VBUS D9 USB2_VDD33 PHY — — — — XTALI_25M U25 VDDA ANALOG — — — — XTALI_27M V25 VDDA ANALOG — — — — XTALO_25M U24 VDDA ANALOG — — — — XTALO_27M V24 VDDA ANALOG — — — — 1 The state immediately after RESET and before ROM firmware or software has executed. The state during, after RESET and before ROM firmware or software has executed. 3 Jtag Active output during reset 4 INT_BOOT output (High) during reset 5 Boot Configure Input 2 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 93 E SAI1_TXC SAI1_TXD1 NVCC_SAI3 VSS ECSPI2_MOSI SPDIF_EXT_CLK I2C1_SCL I2C1_SDA I2C3_SDA VSS USB2_DVDD USB1_DVDD VSS VSS MIPI_VDD VSS MIPI_VDDA MIPI_VDDA VSS VSS VSS VSS VSS PCIE2_TXN_N PCIE2_TXN_P F SAI1_RXD5 94 SAI1_TXD0 SAI3_RXD SAI3_RXC NVCC_ECSPI SPDIF_TX I2C2_SDA I2C4_SCL I2C4_SDA VSS USB2_VPH USB1_VPH VSS VSS MIPI_VDD VSS MIPI_VDDA MIPI_VDDA MIPI_VDDPLL VSS NAND_CE2_B PCIE_VP PCIE_VPTX PCIE2_REF_PAD_CLK_N PCIE2_REF_PAD_CLK_P MIPI_DSI_D2_P MIPI_DSI_D2_N MIPI_DSI_D0_N MIPI_CSI2_D2_N PCIE2_RESREF VSS MIPI_CSI1_D2_N VSS MIPI_CSI1_D0_N 24 PCIE2_RXN_P VSS MIPI_CSI1_D0_P 23 PCIE2_RXN_N MIPI_CSI1_D2_P 22 VSS 21 MIPI_CSI1_D1_P MIPI_CSI1_D1_N MIPI_CSI1_CLK_P MIPI_CSI1_CLK_N MIPI_CSI2_D2_P MIPI_CSI2_D1_N 20 MIPI_CSI1_D3_P MIPI_CSI1_D3_N MIPI_CSI2_D1_P 19 MIPI_CSI2_D0_P MIPI_CSI2_D0_N 18 MIPI_CSI2_D3_P MIPI_CSI2_D3_N MIPI_CSI2_CLK_P MIPI_CSI2_CLK_N MIPI_VDDHA MIPI_DSI_D0_P 17 MIPI_VDDHA MIPI_DSI_REXT MIPI_DSI_D1_N MIPI_DSI_D3_N 16 MIPI_VDDHA MIPI_DSI_D1_P MIPI_DSI_D3_P USB1_DP 15 MIPI_DSI_CLK_P MIPI_DSI_CLK_N VSS USB1_DN USB1_TX_P 14 VSS USB1_ID USB1_TX_N USB1_RX_P 13 USB1_VBUS VSS USB1_RX_N USB1_RESREF 12 VSS USB1_VPTX USB2_RESREF USB2_DP 11 USB1_VP USB2_VPTX USB2_DN USB2_TX_P 10 USB2_VP VSS USB2_TX_N USB2_RX_P 9 VSS USB2_ID USB2_RX_N UART1_TXD 8 USB2_VBUS VSS UART3_TXD UART3_RXD 7 NVCC_UART UART1_RXD UART2_RXD ECSPI2_SS0 6 UART4_TXD UART4_RXD ECSPI2_MISO ECSPI1_MOSI 5 UART2_TXD ECSPI2_SCLK ECSPI1_MISO 4 ECSPI1_SCLK SAI3_TXC SAI1_MCLK 3 ECSPI1_SS0 SAI1_TXD6 VSS A 2 SAI3_TXD SAI1_TXD2 VSS B 5.1.3 SAI3_MCLK SAI1_TXD5 SAI1_TXD7 C 1 SAI1_TXD4 SAI1_TXD3 D Package information and contact assignments i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm 0.65 mm pitch ball map Table 86 shows the i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm, 0.65 mm pitch ball map. Table 86. 17 x 17 mm, 0.65 mm pitch ball map 25 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors L SAI1_RXFS SAI1_RXD1 NVCC_SAI1 SAI5_RXD1 SAI5_RXC GPIO1_IO11 GPIO1_IO12 VSS VDD_GPU VDD_GPU VSS VDD_SOC VDD_SOC VSS VDD_ARM VDD_ARM VSS NVCC_NAND NAND_DATA06 NAND_DATA04 SD2_CD_B SD2_CLK NVCC_SD1 SD1_CMD SD1_CLK M HDMI_TX_P_LN_3 HDMI_TX_M_LN_3 NVCC_SAI5 SAI5_RXD2 SAI5_RXD0 NXP Semiconductors GPIO1_IO09 GPIO1_IO10 VSS VDD_GPU VDD_GPU VSS VDD_SOC VDD_SOC VSS VDD_ARM VDD_ARM VSS NVCC_NAND NAND_DATA07 NAND_DQS SD2_WP SD2_CMD NVCC_SD1 SD1_DATA1 SD1_DATA0 PCIE1_TXN_P PCIE1_RXN_P PCIE1_RESREF VSS PCIE_VPTX 24 PCIE1_REF_PAD_CLK_P PCIE1_RXN_N PCIE_VPH 23 PCIE1_REF_PAD_CLK_N PCIE1_TXN_N PCIE_VPH PCIE_VP NAND_CE1_B 22 VSS NAND_DATA05 NAND_DATA02 NAND_CLE NAND_DATA00 21 NAND_WE_B NAND_DATA03 NAND_CE3_B NAND_ALE 20 NAND_WP_B NAND_DATA01 NAND_CE0_B VSS 19 NAND_READY_B VSS VSS VSS 18 NAND_RE_B VSS VSS VDD_ARM 17 VSS VSS VDD_ARM VDD_ARM 16 VSS VDD_ARM VDD_ARM VDD_ARM 15 VDD_ARM VDD_ARM VDD_ARM VSS 14 VDD_ARM VSS VSS USB1_VDD33 13 VDDA_1P8_FPLL-ARM VSS VSS USB2_VDD33 12 VSSA_FPLL_ARM VSS VSS VSS 11 VDD_SOC VSS VSS VSS 10 VSS VDD_GPU VSS I2C3_SCL 9 VDD_GPU VDD_GPU VSS I2C2_SCL 8 VDD_GPU VSS NVCC_I2C SPDIF_RX 7 VSS NVCC_SAI2 SAI2_RXD0 6 GPIO1_IO14 GPIO1_IO15 SAI2_TXD0 SAI3_RXFS 5 GPIO1_IO13 SAI2_MCLK SAI2_TXFS SAI3_TXFS 4 SAI2_TXC SAI2_RXFS SAI2_RXC SAI1_RXD6 SAI1_RXD7 G 3 SAI5_RXD3 SAI5_MCLK VSS SAI1_RXD2 SAI1_TXFS H 2 NVCC_SAI1 SAI1_RXD3 SAI1_RXD4 J 1 SAI1_RXD0 SAI1_RXC K Package information and contact assignments Table 86. 17 x 17 mm, 0.65 mm pitch ball map (continued) 25 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 95 HDMI_TX_M_LN_1 HDMI_TX_P_LN_1 HDMI_AUX_P 96 HDMI_AUX_N HDMI_AVDDCORE JTAG_TDO JTAG_TRST_B JTAG_MOD VSS VSS VDD_DRAM VDD_DRAM VDD_DRAM VDD_DRAM VDD_DRAM VSS VSSA_FPLL VDDA_1P8_FPLL VSS ENET_RD0 ENET_RD2 ENET_RD1 CLK2_N VDDA_1P8_LVDS XTALO_25M XTALI_25M JTAG_TMS BOOT_MODE1 TEST_MODE VSS VDD_DRAM VDD_DRAM VDD_DRAM VDD_DRAM VDD_DRAM VDD_DRAM VDD_DRAM VSS VSSA_SPLL VDDA_0P9 ENET_RD3 PMIC_ON_REQ PMIC_STBY_REQ RTC VSSA_XTAL_25M XTALO_27M XTALI_27M SD1_DATA6 SD1_DATA3 SD1_DATA5 SD1_DATA2 SD1_DATA4 NVCC_SD2 24 SD1_DATA7 SD1_RESET_B VSS SD2_DATA0 23 SD1_STROBE CLK1_P SD2_DATA2 SD2_DATA1 22 CLK1_N SD2_RESET_B SD2_DATA3 ENET_MDC 21 CLK2_P ENET_TD1 ENET_TD3 ENET_MDIO 20 ENET_RX_CTL ENET_TD0 ENET_TX_CTL VSS 19 ENET_RXC ENET_TD2 VSS VSS 18 ENET_TXC VDD_SNVS VSS VSS 17 NVCC_ENET EFUSE_VQPS VDD_SOC VSS 16 VDD_SOC VDD_SOC VDD_SOC VSS 15 VDDA_1P8_TSENSOR VDD_SOC VSS VDD_SOC 14 VDDA_1P8_SPLL_DRAM VDD_SOC VDD_SOC VSSA_SPLL_VIDEO2 13 VSSA_SPLL_DRAM VDD_SOC VDD_SOC VDDA_1P8_SPLL_VIDEO2 12 VSS VDD_SOC VSS VDD_VPU 11 VSS VDD_SOC VDD_VPU VDD_VPU 10 VSS VDD_SOC VDD_VPU VDD_VPU 9 VSS VDD_SOC VSS GPIO1_IO08 8 VSS VDD_SOC GPIO1_IO05 GPIO1_IO07 7 VDD_SOC VSS VSS GPIO1_IO06 SAI5_RXFS 6 GPIO1_IO01 NVCC_GPIO1 GPIO1_IO04 GPIO1_IO03 5 GPIO1_IO00 NVCC_GPIO1 GPIO1_IO02 4 JTAG_TCK VSS VSS HDMI_TX_P_LN_2 HDMI_TX_M_LN_2 N 3 VSS HDMI_AVDDIO HDMI_REXT P HDMI_DDC_SCL HDMI_DDC_SDA HDMI_REFCLK_P HDMI_REFCLK_N R 2 VSS HDMI_TX_M_LN_0 HDMI_TX_P_LN_0 T 1 HDMI_AVDDCLK HDMI_AVDDCORE U V Package information and contact assignments Table 86. 17 x 17 mm, 0.65 mm pitch ball map (continued) 25 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors NXP Semiconductors DRAM_AC28 DRAM_AC29 DRAM_AC23 DRAM_AC33 DRAM_AC15 DRAM_AC00 DRAM_AC16 DRAM_AC17 DRAM_AC09 VSS NVCC_DRAM DRAM_AC13 DRAM_AC12 DRAM_AC11 DRAM_AC10 DRAM_DQS0_P DRAM_DQS0_N DRAM_DQ01 VSS VSS NVCC_DRAM DRAM_DM0 DRAM_DQ06 DRAM_DQ05 VSS VSS VSS VSS VDDA_1P8_XTAL_25M VDDA_1P8_XTAL_27M VSSA_XTAL_27M 24 DRAM_DQ07 DRAM_DQ04 DRAM_DQ10 DRAM_DQ09 23 VSS NVCC_DRAM DRAM_DQ08 ONOFF 22 DRAM_DQ00 VSS VSS POR_B RTC_RESET_B NVCC_SNVS 21 DRAM_DQ02 DRAM_DQ03 VSS VDD_DRAM VSS VDD_DRAM VDDA_1P8_SPLL 20 DRAM_DQS1_P DRAM_DQ11 DRAM_DQ14 DRAM_DQ12 VSS 19 DRAM_DM1 DRAM_DQ13 VSS DRAM_DQ15 18 NVCC_DRAM DRAM_DQS1_N DRAM_AC03 DRAM_AC02 NVCC_DRAM NVCC_DRAM VSS VSS 17 VSS NVCC_DRAM VDD_DRAM VSS VSS VSS 16 DRAM_AC01 DRAM_AC08 VSS NVCC_DRAM DRAM_VREF NVCC_DRAM VSS 15 DRAM_AC14 DRAM_AC07 DRAM_AC19 DRAM_ZN VSS VSS 14 VSS NVCC_DRAM DRAM_ALERT_N DRAM_RESET_N DRAM_AC27 NVCC_DRAM VSS VSS 13 DRAM_AC05 DRAM_AC04 VSS DRAM_AC26 VDDA_DRAM VDD_DRAM 12 DRAM_AC06 DRAM_AC25 DRAM_AC24 VSS NVCC_DRAM VSS VSS 11 DRAM_AC36 DRAM_AC38 DRAM_AC37 DRAM_AC35 VSS VDD_DRAM 10 VSS DRAM_AC34 DRAM_DQ31 DRAM_DQ28 VSS BOOT_MODE0 9 DRAM_AC21 DRAM_AC20 VSS NVCC_DRAM VSS VDD_DRAM 8 VSS NVCC_DRAM DRAM_DQ30 DRAM_DQ27 JTAG_TDI 7 DRAM_AC32 DRAM_AC22 DRAM_DQ29 DRAM_DM3 VSS NVCC_JTAG HDMI_CEC HDMI_HPD 6 VSS NVCC_DRAM VSS VSS VSS VSS 5 DRAM_AC30 DRAM_AC31 DRAM_DQS3_P DRAM_DQ25 DRAM_DQ26 DRAM_DQ20 VSS W 4 NVCC_DRAM DRAM_DQS3_N DRAM_DQ24 NVCC_DRAM Y DRAM_DQ22 DRAM_DQ21 AA 3 VSS VSS NVCC_DRAM VSS DRAM_DQ23 AB 2 DRAM_DQ18 DRAM_DQ19 DRAM_DM2 DRAM_DQ16 DRAM_DQS2_P DRAM_DQS2_N VSS DRAM_DQ17 AC AD 1 VSS AE Package information and contact assignments Table 86. 17 x 17 mm, 0.65 mm pitch ball map (continued) 25 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 97 Package information and contact assignments 5.2 DDR pin function list for 17 x 17 mm package Table 87 shows the DDR pin function list for 17 x 17 mm package. Table 87. DDR pin function list for 17 x 17 mm package Die level pin name LPDDR4 DDR4 DDR3L BALL DRAM_DQS0_P DQS0_t_A DQSL_t_A DQSL_A AC24 DRAM_DQS0_N DQS0_C_A DQSL_C_A DQSL#_A AC25 DRAM_DM0 DMI0_A DML_N_A / DBIL_n_A DML_A AD23 DRAM_DQ00 DQ0_A DQL0_A DQL0_A AE23 DRAM_DQ01 DQ1_A DQL1_A DQL1_A AD24 DRAM_DQ02 DQ2_A DQL2_A DQL2_A AE22 DRAM_DQ03 DQ3_A DQL3_A DQL3_A AD22 DRAM_DQ04 DQ4_A DQL4_A DQL4_A AA24 DRAM_DQ05 DQ5_A DQL5_A DQL5_A Y25 DRAM_DQ06 DQ6_A DQL6_A DQL6_A AA25 DRAM_DQ07 DQ7_A DQL7_A DQL7_A AB25 DRAM_DQS1_P DQS1_t_A DQSU_t_A DQSU_A AB21 DRAM_DQS1_N DQS1_c_A DQSU_c_A DQSU#_A AC21 DRAM_DM1 DMI1_A DMU_n_A / DBIU_n_A DMU_A AB20 DRAM_DQ08 DQ08_A DQU0_A DQU0_A AB22 DRAM_DQ09 DQ09_A DQU1_A DQU1_A AA22 DRAM_DQ10 DQ10_A DQU2_A DQU2_A AA23 DRAM_DQ11 DQ11_A DQU3_A DQU3_A AA20 DRAM_DQ12 DQ12_A DQU4_A DQU4_A AA18 DRAM_DQ13 DQ13_A DQU5_A DQU5_A AB19 DRAM_DQ14 DQ14_A DQU6_A DQU6_A AA19 DRAM_DQ15 DQ15_A DQU7_A DQU7_A AA17 DRAM_DQS2_P DQS0_t_B DQSL_t_B DQSL_B AC2 DRAM_DQS2_N DQS0_c_B DQSL_c_B DQSL#_B AC1 DRAM_DM2 DMI0_B DML_n_B / DBIL_n_B DML_B AD3 DRAM_DQ16 DQ0_B DQL0_B DQL0_B AE3 DRAM_DQ17 DQ1_B DQL1_B DQL1_B AD2 DRAM_DQ18 DQ2_B DQL2_B DQL2_B AE4 DRAM_DQ19 DQ3_B DQL3_B DQL3_B AD4 DRAM_DQ20 DQ4_B DQL4_B DQL4_B AA2 DRAM_DQ20 DQ4_B DQL4_B DQL4_B AA2 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 98 NXP Semiconductors Package information and contact assignments Table 87. DDR pin function list for 17 x 17 mm package (continued) DRAM_DQ21 DQ5_B DQL5_B DQL5_B Y1 DRAM_DQ22 DQ6_B DQL6_B DQL6_B AA1 DRAM_DQ23 DQ7_B DQL7_B DQL7_B AB1 DRAM_DQS3_P DQS1_t_B DQSU_t_B DQSU_B AB5 DRAM_DQS3_N DQS1_c_B DQSU_c_B DQSU#_B AC5 DRAM_DM3 DMI1_B DMU_n_B / DBIU_n_B DMU_B AB6 DRAM_DQ24 DQ08_B DQU0_B DQU0_B AB4 DRAM_DQ25 DQ09_B DQU1_B DQU1_B AA4 DRAM_DQ26 DQ10_B DQU2_B DQU2_B AA3 DRAM_DQ27 DQ11_B DQU3_B DQU3_B AA6 DRAM_DQ28 DQ12_B DQU4_B DQU4_B AA8 DRAM_DQ29 DQ13_B DQU5_B DQU5_B AB7 DRAM_DQ30 DQ14_B DQU6_B DQU6_B AA7 DRAM_DQ31 DQ15_B DQU7_B DQU7_B AA9 DRAM_RESET_N RESET_N RESET_N RESET# AB13 DRAM_ALERT_N MTEST1 ALERT_n / MTEST1 MTEST1 AC13 DRAM_AC00 CKE0_A CKE0 CKE0 AC16 DRAM_AC01 CKE1_A CKE1 CKE1 AE17 DRAM_AC02 CS0_A CS0_n CS0# AE18 DRAM_AC03 CS1_A C0 — AC18 DRAM_AC04 CK_t_A BG0 BA2 AD14 DRAM_AC05 CK_c_A BG1 A14 AE14 DRAM_AC06 — ACT_n A15 AE13 DRAM_AC07 — A9 A9 AB15 DRAM_AC08 CA0_A A12 A12 / BC# AD17 DRAM_AC09 CA1_A A11 A11 AE16 DRAM_AC10 CA2_A A7 A7 AD20 DRAM_AC11 CA3_A A8 A8 AE20 DRAM_AC12 CA4_A A6 A6 AD19 DRAM_AC13 CA5_A A5 A5 AE19 DRAM_AC14 — A4 A4 AB16 DRAM_AC15 — A3 A3 AC15 DRAM_AC16 — CK_t_A CK_A AE15 DRAM_AC17 — CK_c_A CK#_A AD15 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 99 Package information and contact assignments Table 87. DDR pin function list for 17 x 17 mm package (continued) DRAM_AC19 MTEST MTEST MTEST AB14 DRAM_AC20 CKE0_B CK_t_B CK_B AD10 DRAM_AC21 CKE1_B CK_c_B CK#_B AE10 DRAM_AC22 CS1_B — — AD8 DRAM_AC23 CS0_B — — AC9 DRAM_AC24 CK_t_B A2 A2 AD12 DRAM_AC25 CK_c_B A1 A1 AE12 DRAM_AC26 — BA1 BA1 AB12 DRAM_AC27 — PARITY — AA12 DRAM_AC28 CA2_B A13 A13 AC7 DRAM_AC29 CA3_B BA0 BA0 AE7 DRAM_AC30 CA4_B A10 / AP A10 / AP AE6 DRAM_AC31 CA5_B A0 A0 AD6 DRAM_AC32 CA0_B C2 — AE8 DRAM_AC33 CA1_B CAS_n / A15 CAS# AE9 DRAM_AC34 — WE_n / A14 WE# AC10 DRAM_AC35 — RAS_n / A16 RAS# AB10 DRAM_AC36 — ODT0 ODT0 AC12 DRAM_AC37 — ODT1 ODT1 AE11 DRAM_AC38 — CS1_n CS1# AC11 DRAM_ZN ZQ ZQ ZQ AA13 DRAM_VREF VREF VREF VREF AA14 i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 100 NXP Semiconductors Revision history 6 Revision history Table 88 provides a revision history for this data sheet. Table 88. Revision history Rev. number Date Substantive change(s) Rev. 3 04/2021 • Updated the Fusing option in the Figure 2, "Part number nomenclature—i.MX 8M Dual / 8M QuadLite / 8M Quad processors" • Updated the descriptions of SJC in the Table 3, "i.MX 8M Dual / 8M QuadLite / 8M Quad modules list" • Updated the descriptions of PCIE_VPH in the Table 8, "Operating ranges" Rev. 2 10/2020 • Removed four part numbers in the Table 2, "Orderable part numbers"; added part differentiator, a new part number, and a footnote in the Table 2, "Orderable part numbers" • Updated the Part differentiator and Fusing option in the Figure 2, "Part number nomenclature—i.MX 8M Dual / 8M QuadLite / 8M Quad processors" • Updated the minimum values and removed ESD parameters from Table 5, "Absolute maximum ratings" • Added the Table 6, "Electrostatic discharge and latch up ratings" • Added a new Section 3.1.3, Power architecture • Added a footnote and updated the comment of temperature sensor accuracy in the Table 8, "Operating ranges" • Updated the maximum value of VIH in the Table 57, "MIPI low power receiver DC specifications" • Removed the Section, USB battery charger detection drive impedance • Removed the Section, USB_OTG_CHD_B USB battery charger detection external pullup resistor connection Rev. 1.1 05/2019 • Updated the package type information in the Figure 2, "Part number nomenclature—i.MX 8M Dual / 8M QuadLite / 8M Quad processors" • Updated eCSPI description in the Table 3, "i.MX 8M Dual / 8M QuadLite / 8M Quad modules list" • Added the core voltage, analog domain voltage, PLL 1.8 V voltage, 25 MHz crystal voltage, 27 MHz crystal voltage, DDR I/O voltage, HDMI voltage, MIPI voltage, PCIe voltage, temperature sensor voltage, and fuse power in the Table 5, "Absolute maximum ratings" • Updated the Table 7, "Thermal resistance data" • Updated the RUN mode unit in the Table 11, "Chip power in different LP mode" Rev. 1 Rev. 0.2 10/2018 • Updated the Table 2, "Orderable part numbers" • Updated the Figure 2, "Part number nomenclature—i.MX 8M Dual / 8M QuadLite / 8M Quad processors" 08/2018 • • • • • • • Updated the Table 8, "Operating ranges" Updated the Section 3.1.5, External clock sources Updated the Section 3.1.6, Maximum supply currents Updated the Section 3.2.1, Power-up sequence Updated the Figure 6, "Differential LVDS driver transition time waveform" Updated the Section 3.9.3.1, RMII mode timing Updated the Section 5.1.2, 17 x 17 mm supplies contact assignments and functional contact assignments • Fixed a typo in the Table 86, "17 x 17 mm, 0.65 mm pitch ball map" i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 NXP Semiconductors 101 Revision history Table 88. Revision history (continued) Rev. number Rev. 0.1 Date Substantive change(s) 05/2018 • • • • • • • • • • • • • • • Rev. 0 Added a note in the Table 2, "Orderable part numbers" Updated the Table 3, "i.MX 8M Dual / 8M QuadLite / 8M Quad modules list" Updated the Table 8, "Operating ranges" Updated the Table 10, "Maximum supply currents" Updated the Table 11, "Chip power in different LP mode" Added the Table 12, "The power supply states" Updated the PCIe parameters in the Table 16, "PCIe recommended operating conditions" Updated and added a leakage limit note in the Table 27, "GPIO DC parameters" Added a leakage limit note in the Table 30, "Input DC current" Updated the timing parameters in the Table 39, "ECSPI Master mode timing parameters" and Table 40, "ECSPI Slave mode timing parameters" Updated the Section 3.9.8.1, PCIEx_RESREF reference resistor connection Updated the Table 60, "MIPI input characteristics DC specifications" Removed the SPI interfaces from the Table 83, "Interface allocation during boot" Updated the PCIe and MIPI power group in the Table 85, "i.MX 8M Dual / 8M QuadLite / 8M Quad 17 x 17 mm functional contact assignments" Updated the Table 86, "17 x 17 mm, 0.65 mm pitch ball map" 01/2018 • Initial version i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors Data Sheet for Consumer Products, Rev. 3, 04/2021 102 NXP Semiconductors How To Reach Us Home Page: nxp.com Web Support: nxp.com/support Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products. Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. Suitability for use – Automotive Product (Functional Safety) Suitability for use in automotive applications —This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL-classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as “Critical Table continues on the next page... Applications”), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys’ fees) that NXP may incur related to customer’s incorporation of any product in a Critical Application. Non-automotive products for restricted use in automotive onlySuitability for use in automotive applications — The use of this NXP Semiconductors product is restricted to automotive applications only. It has not been fully qualified for use in automotive applications. The customer of this NXP Semiconductors product therefore understands and accepts that: • The Customer shall only use this NXP Semiconductors product for automotive applications. • This product was not originally designed for automotive use. It will therefore, not be possible to achieve the levels of quality and failure analysis that are normally associated with products explicitly designed for automotive use. • With respect to test-coverage, this product is not fully compliant to AEC-Q100. • All product manufacturing locations are certified according to ISO/TS16949. • Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. Table continues on the next page... No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages. Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers. NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used. All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department. Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Evaluation products —This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose. Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Table continues on the next page... Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions. © NXP B.V. 2018-2021. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 13 April 2021 Document identifier: IMX8MDQLQCEC
MIMX8MD6DVAJZAB 价格&库存

很抱歉,暂时无法提供与“MIMX8MD6DVAJZAB”相匹配的价格&库存,您可以联系我们找货

免费人工找货