0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF1K50GNR5

MRF1K50GNR5

  • 厂商:

    NXP(恩智浦)

  • 封装:

    OM-1230G-4L

  • 描述:

    WIDEBANDRFPOWERLDMOSTRANSIST

  • 数据手册
  • 价格&库存
MRF1K50GNR5 数据手册
NXP Semiconductors Technical Data Document Number: MRF1K50N Rev. 0, 11/2016 RF Power LDMOS Transistors MRF1K50N MRF1K50GN High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs These high ruggedness devices are designed for use in high VSWR industrial, scientific and medical applications, as well as radio and VHF TV broadcast, sub--GHz aerospace and mobile radio applications. Their unmatched input and output design allows for wide frequency range use from 1.8 to 500 MHz. 1.8–500 MHz, 1500 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS Typical Performance: VDD = 50 Vdc Frequency (MHz) Signal Type Pout (W) Gps (dB) ηD (%) 87.5--108 (1,2) CW 1421 CW 23.1 83.2 230 (3,4) Pulse (100 μsec, 20% Duty Cycle) 1500 Peak 23.4 75.1 OM--1230--4L PLASTIC MRF1K50N Load Mismatch/Ruggedness Frequency (MHz) 230 (3) Signal Type VSWR Pulse (100 μsec, 20% Duty Cycle) > 65:1 at all Phase Angles Pin (W) Test Voltage 15 Peak (3 dB Overdrive) 50 Result No Device Degradation OM--1230G--4L PLASTIC MRF1K50GN 1. Data from 87.5–108 MHz broadband reference circuit (page 5). 2. The values shown are the center band performance numbers across the indicated frequency range. 3. Data from 230 MHz narrowband production test fixture (page 11). 4. All data measured in fixture with device soldered to heatsink. Features • High drain--source avalanche energy absorption capability • Unmatched input and output allowing wide frequency range utilization • Device can be used single--ended or in a push--pull configuration • Characterized from 30 to 50 V for ease of use • Suitable for linear application • Integrated ESD protection with greater negative gate--source voltage range for improved Class C operation • Recommended driver: MRFE6VS25N (25 W) Typical Applications • Industrial, Scientific, Medical (ISM) – Laser generation – Plasma etching – Particle accelerators – MRI and other medical applications – Industrial heating, welding and drying systems • Broadcast – Radio broadcast – VHF TV broadcast • Aerospace – VHF omnidirectional range (VOR) – HF and VHF communications – Weather radar • Mobile Radio – VHF and UHF base stations © 2016 NXP B.V. RF Device Data NXP Semiconductors Gate A 3 1 Drain A Gate B 4 2 Drain B (Top View) Note: Exposed backside of the package is the source terminal for the transistor. Figure 1. Pin Connections MRF1K50N MRF1K50GN 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +133 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 50 Vdc Storage Temperature Range Tstg – 65 to +150 °C Case Operating Temperature Range TC –40 to +150 °C Operating Junction Temperature Range (1,2) TJ –40 to +225 °C Total Device Dissipation @ TC = 25°C Derate above 25°C PD 2941 14.71 W W/°C Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 80°C, 1500 W CW, 50 Vdc, IDQ(A+B) = 200 mA, 98 MHz RθJC 0.068 °C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 75°C, 1500 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz ZθJC 0.015 °C/W Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Charge Device Model (per JESD22--C101) C3, passes 2000 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Off Characteristics Symbol Min Typ Max Unit IGSS — — 1 μAdc 133 — — Vdc (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 100 mAdc) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 133 Vdc, VGS = 0 Vdc) IDSS — — 100 mAdc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 2130 μAdc) VGS(th) 1.7 2.2 2.7 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID(A+B) = 100 mAdc, Measured in Functional Test) VGS(Q) 1.9 2.4 2.9 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 2.4 Adc) VDS(on) — 0.15 — Vdc Forward Transconductance (4) (VDS = 10 Vdc, ID = 36 Adc) gfs — 33.5 — S On Characteristics 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.nxp.com/RF/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. Each side of device measured separately. (continued) MRF1K50N MRF1K50GN 2 RF Device Data NXP Semiconductors Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 5.77 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 219 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 683 — pF Dynamic Characteristics (1) Functional Tests (2,3) (In NXP Production Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 1500 W Peak (300 W Avg.), f = 230 MHz, 100 μsec Pulse Width, 20% Duty Cycle Power Gain Gps 21.5 23.0 25.0 dB Drain Efficiency ηD 68.0 73.0 — % Input Return Loss IRL — –16 –9 dB Table 6. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) 230 Signal Type VSWR Pin (W) Pulse (100 μsec, 20% Duty Cycle) > 65:1 at all Phase Angles 15 Peak (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation Table 7. Ordering Information Device MRF1K50NR5 MRF1K50GNR5 Tape and Reel Information R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel Package OM--1230--4L OM--1230G--4L 1. Each side of device measured separately. 2. Devices tested without thermal grease or solder under the transistor. 3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 3 TYPICAL CHARACTERISTICS 1.08 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 1.06 Ciss 1000 NORMALIZED VGS(Q) C, CAPACITANCE (pF) 10000 Coss 100 Crss 500 mA IDQ(A+B) = 100 mA VDD = 50 Vdc 1.04 1.02 1500 mA 2000 mA 1 0.98 0.96 10 0.94 1 0 10 20 30 40 0.92 –50 50 –25 0 25 50 75 100 TC, CASE TEMPERATURE (°C) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. IDQ (mA) Slope (mV/°C) 100 –2.76 500 –2.38 1500 –2.20 2000 –1.76 Figure 2. Capacitance versus Drain--Source Voltage Figure 3. Normalized VGS versus Quiescent Current and Case Temperature 108 VDD = 50 Vdc ID = 35.2 Amps MTTF (HOURS) 107 106 105 104 103 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http:/www.nxp.com/RF/calculators. Figure 4. MTTF versus Junction Temperature — CW MRF1K50N MRF1K50GN 4 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Table 8. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 200 mA, Pin = 7 W, CW Frequency (MHz) Gps (dB) ηD (%) Pout (W) 87.5 22.5 81.7 1257 98 23.1 83.2 1421 108 22.8 79.1 1328 MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 5 87.5–108 MHz BROADBAND REFERENCE CIRCUIT — 2.88″ × 5.12″ (73 mm × 130 mm) C6 C28 C25 C7 C22 C26 C21 L4 C27 C5 L1 R2 C20 C19 C18 C17 C4 C11 R1 C3 C1 C16 Q1 C24 C12 C2* L2 swedddddddd C23* C15* L3 R3 C13 C14* C8 MRF1K50N Rev. 0 C9 C10 D87696 *C2, C14, C15 and C23 are mounted vertically. Note: Q1 leads are soldered to the PCB with L3 soldered directly on top of the drain leads. 0.26 (6.5) 0.63 (16.0) 0.26 (6.6) L3 total wire length = 2.04″ (52 mm) Inches (mm) Figure 5. MRF1K50N 87.5–108 MHz Broadband Reference Circuit Component Layout Figure 6. MRF1K50N 87.5–108 MHz Broadband Reference Circuit Component Layout — Bottom MRF1K50N MRF1K50GN 6 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Table 9. MRF1K50N Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz Part Description Part Number Manufacturer C1, C3, C6, C9, C18, C19, C20, C21, C22 1000 pF Chip Capacitors ATC100B102JT50XT ATC C2 33 pF Chip Capacitor ATC100B330JT500XT ATC C4, C5, C8 10,000 pF Chip Capacitors ATC200B103KT50XT ATC C7, C10, C15, C16, C17, C23 470 pF Chip Capacitors ATC100B471JT200XT ATC C11 91 pF, 300 V Mica Capacitor MIN02-002EC910J-F CDE C12 56 pF, 300 V Mica Capacitor MIN02-002DC560J-F CDE C13 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C14, C24 12 pF Chip Capacitors ATC100B120GT500XT ATC C25, C26, C27 220 μF, 100 V Electrolytic Capacitors EEV-FK1A221M Panasonic C28 22 μF, 35 V Electrolytic Capacitor UUD1V220MCL1GS Nichicon L1, L2 17.5 nH Inductors, 6 Turns B06TJLC Coilcraft L3 1.5 mm Non--Tarnish Silver Plated Copper Wire SP1500NT-001 Scientific Wire Company L4 22 nH Inductor 1212VS-22NMEB Coilcraft Q1 RF Power LDMOS Transistor MRF1K50N NXP R1 10 Ω, 1/4 W Chip Resistor CRCW120610R0JNEA Vishay R2, R3 33 Ω, 2 W Chip Resistors 1-2176070-3 TE Connectivity PCB Arlon TC350 0.030″, εr = 3.5 D87696 MTL Note: Refer to MRF1K50N’s printed circuit boards and schematics to download the 87.5–108 MHz heatsink drawing. MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 7 TYPICAL CHARACTERISTICS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT 27 83 ηD 25 81 79 24 23 77 Gps 22 1600 21 1500 Pout 20 19 18 87 1400 VDD = 50 Vdc, Pin = 7 W, lDQ(A+B) = 200 mA 89 91 95 93 97 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) 26 ηD, DRAIN EFFICIENCY (%) 85 99 101 103 105 107 1300 1200 109 f, FREQUENCY (MHz) Figure 7. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power Pout, OUTPUT POWER (WATTS) PEAK 1600 98 MHz 1400 1200 87.5 MHz 1000 108 MHz 800 600 400 200 VDD = 50 Vdc, IDQ(A+B) = 200 mA 0 0 1 3 2 4 5 6 7 8 9 Pin, INPUT POWER (WATTS) Figure 8. CW Output Power versus Input Power and Frequency 28 87.5 MHz 27 98 MHz 60 108 MHz 40 108 MHz 26 20 98 MHz 25 24 1600 Pout 1200 87.5 MHz 23 98 MHz 108 MHz 22 21 80 ηD 800 Gps 400 VDD = 50 Vdc, lDQ(A+B) = 200 mA 0 1 2 3 4 ηD, DRAIN EFFICIENCY (%) 29 Gps, POWER GAIN (dB) 100 87.5 MHz 5 6 7 8 Pout, OUTPUT POWER (WATTS) 30 0 9 Pin, INPUT POWER (WATTS) Figure 9. Power Gain, Drain Efficiency and CW Output Power versus Input Power and Frequency MRF1K50N MRF1K50GN 8 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Zo = 10 Ω Zsource f = 108 MHz f = 108 MHz f = 87.5 MHz f = 87.5 MHz Zload f MHz Zsource Ω Zload Ω 87.5 4.07 + j5.13 3.92 + j2.89 98 3.93 + j4.84 3.39 + j2.35 108 3.50 + j4.72 2.83 + j2.56 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Ω = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network 50 Ω + Z load Figure 10. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 9 HARMONIC MEASUREMENTS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT F1 H2 H3 H4 Fundamental (F1) 87.5 MHz 175 MHz –32 dB 262.5 MHz –28 dB 350 MHz –44 dB –32 dB H3 H2 H3 H4 H2 (175 MHz) (262.5 MHz) (350 MHz) –28 dB –44 dB H4 Center: 228.5 MHz 35 MHz Span: 350 MHz Figure 11. 87.5 MHz Harmonics @ 1200 W CW MRF1K50N MRF1K50GN 10 RF Device Data NXP Semiconductors 230 MHz NARROWBAND PRODUCTION TEST FIXTURE — 6.0″ × 4.0″ (152 mm × 102 mm) C10 C6 C27 C12 C9 D79536 Coax1 Coax3 L3 C4* C21* C22* C23* CUT OUT AREA C16 C17 C24 L4 Coax4 C26 MRF1K50N Rev. 0 C11 C7 C18* C19* C20* C14 C15 C13 R2 Coax2 C5 L1 L2 C3 C1 C29 C25 R1 C2 C28 C30 C31 C32 C8 *C4, C18, C19, C20, C21, C22 and C23 are mounted vertically. Figure 12. MRF1K50N Narrowband Test Circuit Component Layout — 230 MHz Table 10. MRF1K50N Narrowband Test Circuit Component Designations and Values — 230 MHz Part Description Part Number Manufacturer C1, C2, C3 22 pF Chip Capacitors ATC100B220JT500XT ATC C4 27 pF Chip Capacitor ATC100B270JT500XT ATC C5, C6 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C7, C9 0.1 μF Chip Capacitors CDR33BX104AKWS AVX C8, C10 220 nF Chip Capacitors C1812C224K5RACTU Kemet C11, C12, C25, C26 1000 pF Chip Capacitors ATC100B102JT50XT ATC C13 51 pF Chip Capacitor ATC100B510JT500XT ATC C14 24 pF Chip Capacitor ATC800R240JT500XT ATC C15, C16, C17 20 pF Chip Capacitors ATC800R200JT500XT ATC C18, C19, C20, C21, C22, C23 240 pF Chip Capacitors ATC100B241JT200XT ATC C24 8.2 pF Chip Capacitor ATC100B8R2CT500XT ATC C27, C28, C29, C30, C31, C32 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp Coax1, 2, 3, 4 25 Ω Semi Rigid Coax Cables, 2.2″ Shield Length UT-141C-25 Micro--Coax L1, L2 5 nH Inductors A02TKLC Coilcraft L3, L4 6.6 nH Inductors GA3093-ALC Coilcraft R1, R2 10 Ω, 1/4 W Chip Resistors CRCW120610R0JNEA Vishay PCB Arlon AD255A 0.030″, εr = 2.55 D79536 MTL MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 11 TYPICAL CHARACTERISTICS — 230 MHz PRODUCTION TEST FIXTURE Pout, OUTPUT POWER (WATTS) PEAK 1800 VDD = 50 Vdc, f = 230 MHz Pulse Width = 100 μsec, 20% Duty Cycle 1600 1400 1200 Pin = 6.5 W 1000 800 600 Pin = 3.2 W 400 200 0 0 0.5 1.5 1 2 2.5 3 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 13. Output Power versus Gate--Source Voltage at a Constant Input Power 25 60 56 52 48 40 24 28 32 36 40 IDQ(A+B) = 900 mA 23 60 ηD 600 mA 21 300 mA 40 900 mA 100 mA 17 10 44 80 Gps 19 44 100 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 μsec, 20% Duty Cycle 20 100 mA 300 mA 600 mA 100 1000 0 2000 Pout, OUTPUT POWER (WATTS) PEAK Pin, INPUT POWER (dBm) PEAK f (MHz) P1dB (W) P3dB (W) 230 1629 1857 Figure 15. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 14. Output Power versus Input Power 80 Gps, POWER GAIN (dB) 25 70 Gps 23 21 19 17 50 TC = –40_C ηD 25_C 11 30 40 30 85_C 15 13 60 20 85_C 25_C 10 –40_C 100 1000 0 2000 IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 μsec, 20% Duty Cycle 26 Gps, POWER GAIN (dB) 27 28 90 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 μsec, 20% Duty Cycle ηD, DRAIN EFFICIENCY (%) 29 24 22 20 VDD = 30 V 18 16 0 200 400 600 35 V 800 40 V 45 V 50 V 1000 1200 1400 1600 1800 2000 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 16. Power Gain and Drain Efficiency versus Output Power Figure 17. Power Gain versus Output Power and Drain--Source Voltage MRF1K50N MRF1K50GN 12 RF Device Data NXP Semiconductors ηD, DRAIN EFFICIENCY (%) 64 27 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 μsec, 20% Duty Cycle Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 68 230 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource Ω Zload Ω 230 1.0 + j2.0 1.7 + j0.9 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Ω Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 Ω + Zload Figure 18. Narrowband Series Equivalent Source and Load Impedance — 230 MHz MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 13 PACKAGE DIMENSIONS MRF1K50N MRF1K50GN 14 RF Device Data NXP Semiconductors MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 15 MRF1K50N MRF1K50GN 16 RF Device Data NXP Semiconductors MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 17 MRF1K50N MRF1K50GN 18 RF Device Data NXP Semiconductors MRF1K50N MRF1K50GN RF Device Data NXP Semiconductors 19 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File Development Tools • Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Nov. 2016 Description • Initial Release of Data Sheet MRF1K50N MRF1K50GN 20 RF Device Data NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2016 NXP B.V. MRF1K50N MRF1K50GN Document Number: RF Device Data MRF1K50N Rev. 0,Semiconductors 11/2016 NXP 21
MRF1K50GNR5 价格&库存

很抱歉,暂时无法提供与“MRF1K50GNR5”相匹配的价格&库存,您可以联系我们找货

免费人工找货