0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF6V2010GNR1

MRF6V2010GNR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO270AA

  • 描述:

    FET RF 110V 220MHZ TO-270-2

  • 数据手册
  • 价格&库存
MRF6V2010GNR1 数据手册
NXP Semiconductors Technical Data RF Power Field Effect Transistors Document Number: MRF6V2010N Rev. 6, 9/2016 N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for CW large--signal output and driver applications with frequencies up to 450 MHz. Devices are unmatched and are suitable for use in industrial, medical and scientific applications.  Typical CW performance at 220 MHz: VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W Power gain — 23.9 dB Drain efficiency — 62%  Capable of handling 10:1 VSWR @ 50 Vdc, 220 MHz, 10 W CW output power Features  Characterized with series equivalent large--signal impedance parameters  Qualified up to a maximum of 50 VDD operation  Integrated ESD protection  225C capable plastic package MRF6V2010N MRF6V2010NB MRF6V2010GN 10--450 MHz, 10 W, 50 V LATERAL N--CHANNEL BROADBAND RF POWER MOSFETs TO--270--2 PLASTIC MRF6V2010N TO--272--2 PLASTIC MRF6V2010NB TO--270G--2 PLASTIC MRF6V2010GN Gate 2 1 Drain (Top View) Note: Exposed backside of the package is the source terminal for the transistor. Figure 1. Pin Connections  2007–2008, 2010, 2016 NXP B.V. RF Device Data NXP Semiconductors MRF6V2010N MRF6V2010NB MRF6V2010GN 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS --0.5, +110 Vdc Gate--Source Voltage VGS --0.5, +10 Vdc Storage Temperature Range Tstg -- 65 to +150 C TC 150 C TJ 225 C Symbol Value (2,3) Unit RJC 3.0 C/W Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 81C, 10 W CW Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) A Charge Device Model (per JESD22--C101) IV Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit IGSS — — 10 Adc V(BR)DSS 110 — — Vdc Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 50 Adc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 2.5 mA Gate Threshold Voltage (VDS = 10 Vdc, ID = 28 Adc) VGS(th) 1 1.68 3 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 30 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.68 3.5 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 70 mAdc) VDS(on) — 0.26 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.13 — pF Output Capacitance (VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 7.3 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz) Ciss — 16.3 — pF Characteristic Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (ID = 5 mA, VGS = 0 Vdc) On Characteristics Dynamic Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.nxp.com/RF/calculators. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. (continued) MRF6V2010N MRF6V2010NB MRF6V2010GN 2 RF Device Data NXP Semiconductors Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (In NXP Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W, f = 220 MHz, CW Power Gain Gps 22.5 23.9 25.5 dB Drain Efficiency D 58 62 — % Input Return Loss IRL — --14 --9 dB Table 6. Ordering Information Device Tape and Reel Information Package MRF6V2010NR1 R1 Suffix = 500 Units, 24 mm Tape Width, 13--inch Reel TO--270--2 MRF6V2010NBR1 R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel TO--272--2 MRF6V2010GNR1 R1 Suffix = 500 Units, 24 mm Tape Width, 13--inch Reel TO--270G--2 ATTENTION: The MRF6V2010N, MRF6V2010NB and MRF6V2010GN are high power devices and special considerations must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which exceed the maximum allowable operating junction temperature. Refer to NXP Application Note AN3263 (for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to ensure proper mounting of these devices. MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 3 B2 L2 B1 VBIAS + + C2 C3 + C11 C4 C5 C6 C7 C12 C13 C14 C15 VSUPPLY C16 C8 L3 R1 RF INPUT Z1 Z2 L1 Z3 Z5 Z6 Z8 Z9 Z10 C1 Z11 C18 Z4 C9 Z1 Z2 Z3 Z4 Z5 Z6 Z7 RF OUTPUT C10 C17 DUT 0.235 x 0.082 Microstrip 1.190 x 0.082 Microstrip 0.619 x 0.082 Microstrip 0.190 x 0.270 Microstrip 0.293 x 0.270 Microstrip 0.120 x 0.270 Microstrip Z7 Z8 Z9 Z10 Z11 PCB 0.062 x 0.270 Microstrip 0.198 x 0.082 Microstrip 5.600 x 0.082 Microstrip 0.442 x 0.082 Microstrip 0.341 x 0.082 Microstrip Arlon CuClad 250GX--0300--55--22, 0.030, r = 2.55 Figure 2. MRF6V2010N(NB) Test Circuit Schematic Table 7. MRF6V2010N(NB) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1, B2 95 , 100 MHz Long Ferrite Beads 2743021447 Fair--Rite C1, C8, C11, C18 1000 pF Chip Capacitors ATC100B102JT50XT ATC C2 10 F, 35 V Tantalum Capacitor T491D106K035AT Kemet C3 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet C4, C13 39 K pF Chip Capacitors ATC200B393KT50XT ATC C5, C14 22 K pF Chip Capacitors ATC200B223KT50XT ATC C6, C15 0.1 F Chip Capacitors CDR33BX104AKYS Kemet C7, C12 2.2 F, 50 V Chip Capacitors C1825C225J5RAC Kemet C9 0.6--4.5 pF Variable Capacitor, Gigatrim 27271SL Johanson C10 12 pF Chip Capacitor ATC100B120JT500XT ATC C16 470 F, 63 V Electrolytic Capacitor ESMG630ELL471MK205 United Chemi--Con C17 27 pF Chip Capacitor ATC100B270JT500XT ATC L1 17.5 nH Inductor B06T CoilCraft L2, L3 82 nH Inductors 1812SMS--82NJ CoilCraft R1 120 , 1/4 W Chip Resistor CRCW1206120RFKEA Vishay MRF6V2010N MRF6V2010NB MRF6V2010GN 4 RF Device Data NXP Semiconductors C14 C5 C13 C6 C4 C7 C3 B2 L2 B1 C2 C15 R1 C12 C11 C8 L3 CUT OUT AREA L1 C1 C16 C17 C18 C10 C9 MRF6V2010N/NB Rev. 3 Figure 3. MRF6V2010N(NB) Test Circuit Component Layout MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 5 TYPICAL CHARACTERISTICS 100 100 ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) Ciss 10 Coss Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 1 10 1 Crss 0 10 20 40 30 10 1 50 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Figure 4. Capacitance versus Drain--Source Voltage Figure 5. DC Safe Operating Area 0.35 25 0.3 24 0.2 2.75 V 0.15 2.63 V 2.5 V 0.1 0.05 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) 0 Gps, POWER GAIN (dB) VGS = 3 V 0.25 0 20 40 60 80 100 100 200 10 20 IDQ = 45 mA 38 mA 23 30 mA 22 23 mA 21 20 15 mA VDD = 50 Vdc f1 = 220 MHz 19 2.25 V 18 120 0.1 1 DRAIN VOLTAGE (VOLTS) Pout, OUTPUT POWER (WATTS) CW Figure 6. DC Drain Current versus Drain Voltage Figure 7. CW Power Gain versus Output Power --20 15 mA --25 23 mA --30 47 Pout, OUTPUT POWER (dBm) ID, DRAIN CURRENT (AMPS) TC = 25C 0.1 0.1 30 mA --35 38 mA --40 45 mA --45 --50 IDQ = 60 mA --55 VDD = 50 Vdc f1 = 220 MHz, f2 = 220.1 MHz Two--Tone Measurements 100 kHz Tone Spacing 1 10 20 Ideal 45 P3dB = 40.87 dBm (12.2 W) 43 P1dB = 40.43 dBm (11.04 W) 41 Actual 39 37 13 VDD = 50 Vdc, IDQ = 30 mA f = 220 MHz 15 17 19 21 23 Pout, OUTPUT POWER (WATTS) PEP Pin, INPUT POWER (dBm) Figure 8. Third Order Intermodulation Distortion versus Output Power Figure 9. CW Output Power versus Input Power MRF6V2010N MRF6V2010NB MRF6V2010GN 6 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS 45 26 TC = --30_C Pout, OUTPUT POWER (dBm) 22 20 18 45 V 16 40 V 35 V 30 V 14 25 V 12 10 50 V IDQ = 30 mA f = 220 MHz VDD = 20 V 0 2 40 85_C 25_C 35 30 VDD = 50 Vdc IDQ = 30 mA f = 220 MHz 25 20 4 6 8 10 12 0 14 10 5 20 15 25 Pout, OUTPUT POWER (WATTS) CW Pin, INPUT POWER (dBm) Figure 10. Power Gain versus Output Power Figure 11. Power Output versus Power Input 26 25 Gps, POWER GAIN (dB) 25_C --30_C 63 Gps 24 85_C TC = --30_C 23 72 54 45 22 36 21 D 25_C 85_C 20 27 18 VDD = 50 Vdc IDQ = 30 mA f = 220 MHz 19 18 0.1 D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 24 9 0 1 10 20 Pout, OUTPUT POWER (WATTS) CW Figure 12. Power Gain and Drain Efficiency versus CW Output Power Gps @ 220 MHz 25 70 D @ 130 MHz 60 50 24 D @ 64 MHz 23 40 D @ 220 MHz 22 30 D @ 450 MHz 20 21 20 VDD = 50 Vdc IDQ = 30 mA Gps @ 450 MHz 0 2 4 6 8 107 106 10 19 0 MTTF (HOURS) Gps, POWER GAIN (dB) 26 108 80 Gps @ 64 MHz Gps @ 130 MHz D, DRAIN EFFICIENCY (%) 27 10 Pout, OUTPUT POWER (WATTS) CW Figure 13. Power Gain and Drain Efficiency versus CW Output Power 12 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 10 W CW, and D = 62%. MTTF calculator available at http://www.nxp.com/RF/calculators. Figure 14. MTTF versus Junction Temperature MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 7 Zo = 50  Zsource f = 220 MHz f = 220 MHz Zload VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W CW f MHz Zsource  Zload  220 20 + j25 75 + j44 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance MRF6V2010N MRF6V2010NB MRF6V2010GN 8 RF Device Data NXP Semiconductors C10 C9 C8 C14 C6 C7 C16 B2 C15 L5 B1 C5 C13 C4 L1 R1 L2 C2 C3 CUT OUT AREA C1 C17 C18 L3 C19 L4 C11 C12 130 MHz Rev. 1 Figure 16. MRF6V2010N(NB) Test Circuit Component Layout — 130 MHz Table 8. MRF6V2010N(NB) Test Circuit Component Designations and Values — 130 MHz Part Description Part Number Manufacturer B1, B2 95 , 100 MHz Long Ferrite Beads, Surface Mount 2743021447 Fair--Rite C1, C5, C18, C19 1000 pF Chip Capacitors ATC100B102JT50XT ATC C2, C12 0.6--4.5 pF Variable Capacitors, Gigatrim 27271SL Johanson C3 27 pF Chip Capacitor ATC100B270JT500XT ATC C4, C13 2.2 F, 50 V Chip Capacitors C1825C225J5RAC Kemet C6, C14 0.1 F, 50 V Chip Capacitors CDR33BX104AKYM Kemet C7, C15 22K pF Chip Capacitors ATC200B223KT50XT ATC C8, C16 39K pF Chip Capacitors ATC200B393KT50XT ATC C9 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet C10 10 F, 35 V Tantalum Capacitor T491D106K035AT Kemet C11 16 pF Chip Capacitor ATC100B160JT500XT ATC C17 330 F, 63 V Electrolytic Capacitor MCRH63V337M13X21--RH Multicomp L1 17.5 nH Inductor B06T CoilCraft L2, L5 82 nH Inductors 1812SMS--82NJ CoilCraft L3 35.5 nH Inductor B09T CoilCraft L4 43 nH Inductor B10T CoilCraft R1 100 , 1/4 W Chip Resistor CRCW1206100RFKEA Vishay PCB PCB Material 0.030” CuClad 250GX--0300--55--22, 0.030, r = 2.55 Arlon MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 9 C10 C9 C8 C16 C6 C7 L4 C4 L1 C2 C11 C5 R1 C19 L2 L3 C12 CUT OUT AREA C20 C1 B2 C17 B1 C3 C18 C15 C13 C14 450 MHz Rev. 1 Figure 17. MRF6V2010N(NB) Test Circuit Component Layout — 450 MHz Table 9. MRF6V2010N(NB) Test Circuit Component Designations and Values — 450 MHz Part Description Part Number Manufacturer B1, B2 95 , 100 MHz Long Ferrite Beads, Surface Mount 2743021447 Fair--Rite C1, C5, C12, C15 240 pF Chip Capacitors ATC100B241JT200XT ATC C2, C3 10 pF Chip Capacitors ATC100B100JT500XT ATC C4, C11 2.2 F, 50 V Chip Capacitors C1825C225J5RAC Kemet C6, C16 0.1 uF 50V Chip Capacitors CDR33BX104AKYM Kemet C7, C17 22K pF Chip Capacitors ATC200B223KT50XT ATC C8, C18 39K pF Chip Capacitors ATC200B393KT50XT ATC C9 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet C10 10 F, 35 V Tantalum Capacitor T491D106K035AT Kemet C13, C14 6.2 pF Chip Capacitors ATC100B6R2BT500XT ATC C19 470 F, 63 V Electrolytic Capacitor MCGPR63V477M13X26--RH Multicomp C20 47 F, 50 V Electrolytic Capacitor 476KXM050M Illinois Cap L1 17.5 nH Inductor B06T CoilCraft L2, L4 82 nH Inductors 1812SMS--82NJ CoilCraft L3 5.0 nH Inductor A02T CoilCraft R1 120 , 1/4 W Chip Resistor CRCW1206120RFKEA Vishay PCB PCB Material 0.030” CuClad 250GX--0300--55--22, 0.030, r = 2.55 Arlon MRF6V2010N MRF6V2010NB MRF6V2010GN 10 RF Device Data NXP Semiconductors C11 C10 C9 C18 C7 C8 C20 L6 B1 C6 C5 C4 C16 C1 R1 L3 C2 C3 C21 C17 L2 CUT OUT AREA L1 B2 C19 L4 C15 L5 C14 C12 C13 64 MHz Rev. 1 Figure 18. MRF6V2010N(NB) Test Circuit Component Layout — 64 MHz Table 10. MRF6V2010N(NB) Test Circuit Component Designations and Values — 64 MHz Part Description Part Number Manufacturer B1, B2 95  100 MHz Long Ferrite Beads, Surface Mount 2743021447 Fair--Rite C1, C5, C15, C17 1000 pF Chip Capacitors ATC100B102JT50XT ATC C2 91 pF Chip Capacitor ATC100B910JT500XT ATC C3, C14 22 pF Chip Capacitors ATC100B220JT500XT ATC C4, C16 2.2 F, 50 V Chip Capacitors C1825C225J5RAC Kemet C6 220 nF, 50 V Chip Capacitor C1812C224J5RAC Kemet C7, C18 0.1 F, 50 V Chip Capacitors CDR33BX104AKYM Kemet C8, C19 100K pF Chip Capacitors ATC200B104KT50XT ATC C9, C20 22K pF Chip Capacitors ATC200B223KT50XT ATC C10 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet C11 10 F, 35 V Tantalum Capacitor T491D106K035AT Kemet C12 68 pF Chip Capacitor ATC100B680JT500XT ATC C13 27 pF Chip Capacitor ATC100B270JT500XT ATC C21 330 F, 63 V Electrolytic Capacitor MCRH63V337M13X21--RH Multicomp L1 17.5 nH Inductor B06T CoilCraft L2 43 nH Inductor B10T CoilCraft L3, L4, L5, L6 82 nH Inductors 1812SMS--82NJ CoilCraft R1 180 , 1/4 W Chip Resistor CRCW1206180RFKEA Vishay PCB PCB Material 0.030 CuClad 250GX--0300--55--22, 0.030, r = 2.55 Arlon MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 11 Zo = 50  f = 450 MHz Zsource f = 450 MHz Zload f = 220 MHz Zsource f = 130 MHz Zsource f = 220 MHz Zload f = 64 MHz Zsource f = 130 MHz Zload f = 64 MHz Zload VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W CW f MHz Zsource  Zload  64 37.5 + j15.1 94.5 + j16.7 130 26.7 + j21.3 83.8 + j35.0 220 20.0 + j25.4 75.0 + j44.0 450 7.70 + j21.0 43.0 + j49.0 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 19. Series Equivalent Source and Load Impedance MRF6V2010N MRF6V2010NB MRF6V2010GN 12 RF Device Data NXP Semiconductors 50 OHM TYPICAL CHARACTERISTICS Table 11. Common Source S--Parameters (VDD = 50 V, IDQ = 30 mA, TA = 25C, 50 Ohm System) S11 S21 S12 S22 f MHz |S11|  |S21|  |S12|  |S22|  10 0.997 --5.0 11.520 175.6 0.000790 84.6 0.960 --0.8 20 0.994 --9.5 11.419 171.6 0.00157 84.3 0.962 --3.5 30 0.992 --14.5 11.356 167.9 0.00232 78.1 0.963 --5.5 40 0.987 --19.3 11.278 164.1 0.00307 74.6 0.964 --7.7 50 0.981 --24.0 11.187 160.1 0.00380 71.0 0.964 --9.9 60 0.974 --28.6 11.042 156.1 0.00449 67.4 0.963 --12.1 70 0.965 --33.0 10.848 152.1 0.00513 63.8 0.961 --14.2 80 0.955 --37.4 10.636 148.2 0.00574 60.4 0.958 --16.3 90 0.944 --41.6 10.405 144.5 0.00631 57.0 0.955 --18.4 100 0.933 --45.7 10.147 140.8 0.00683 53.8 0.951 --20.4 120 0.912 --53.3 9.603 134.2 0.00776 47.9 0.944 --24.2 140 0.892 --60.4 9.061 127.9 0.00851 42.4 0.936 --27.9 160 0.873 --66.7 8.516 122.2 0.00914 37.6 0.929 --31.3 180 0.856 --72.7 7.993 116.9 0.00967 32.9 0.923 --34.6 200 0.841 --78.1 7.497 112.1 0.0101 28.7 0.918 --37.9 220 0.828 --83.0 7.040 107.5 0.0104 24.9 0.914 --41.1 240 0.819 --87.5 6.612 103.3 0.0107 21.3 0.912 --44.2 260 0.810 --91.7 6.214 99.3 0.0109 18.0 0.909 --47.2 280 0.804 --95.5 5.845 95.7 0.0110 15.0 0.908 --50.2 300 0.799 --99.0 5.507 92.2 0.0112 11.9 0.907 --53.0 320 0.796 --102.2 5.192 88.8 0.0112 9.1 0.906 --55.9 340 0.794 --105.1 4.901 85.7 0.0113 6.5 0.906 --58.6 360 0.793 --107.8 4.630 82.8 0.0112 4.1 0.906 --61.4 380 0.793 --110.4 4.382 79.9 0.0112 2.0 0.906 --64.1 400 0.794 --112.7 4.152 77.2 0.0112 --0.3 0.906 --66.7 420 0.796 --114.9 3.937 74.6 0.0112 --2.5 0.907 --69.3 440 0.798 --116.9 3.733 72.2 0.0111 --4.4 0.907 --71.8 460 0.800 --118.8 3.547 69.8 0.0110 --6.5 0.908 --74.2 480 0.803 --120.5 3.372 67.6 0.0109 --8.5 0.908 --76.7 500 0.807 --122.2 3.213 65.4 0.0108 --10.0 0.909 --79.0 520 0.810 --123.8 3.061 63.3 0.0107 --11.9 0.910 --81.3 540 0.814 --125.4 2.919 61.2 0.0105 --13.5 0.911 --83.6 560 0.817 --126.8 2.784 59.3 0.0104 --14.9 0.912 --85.8 580 0.821 --128.1 2.661 57.5 0.0103 --16.6 0.914 --87.9 600 0.825 --129.3 2.545 55.7 0.0101 --18.1 0.915 --90.0 620 0.829 --130.5 2.436 53.9 0.00996 --19.6 0.917 --92.1 640 0.833 --131.6 2.334 52.2 0.00981 --21.0 0.918 --94.1 660 0.837 --132.7 2.237 50.5 0.00963 --22.4 0.920 --96.0 680 0.840 --133.8 2.144 48.9 0.00946 --23.7 0.921 --97.9 700 0.843 --134.8 2.058 47.3 0.00928 --25.0 0.923 --99.7 720 0.847 --135.8 1.977 45.8 0.00910 --26.1 0.924 --101.4 740 0.850 --136.8 1.900 44.4 0.00894 --27.3 0.926 --103.0 760 0.854 --137.8 1.828 43.0 0.00876 --28.6 0.928 --104.7 780 0.857 --138.7 1.760 41.6 0.00859 --29.7 0.930 --106.2 (continued) MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 13 50 OHM TYPICAL CHARACTERISTICS Table 10. Common Source S--Parameters (VDD = 50 V, IDQ = 30 mA, TA = 25C, 50 Ohm System) (continued) S11 S21 S12 S22 f MHz |S11|  |S21|  |S12|  |S22|  800 0.858 --139.7 1.697 40.2 0.00839 --31.1 0.932 --107.6 820 0.861 --140.7 1.636 38.9 0.00818 --32.1 0.934 --109.0 840 0.864 --141.6 1.578 37.6 0.00798 --33.1 0.935 --110.4 860 0.867 --142.6 1.523 36.4 0.00781 --33.8 0.936 --111.7 880 0.870 --143.5 1.471 35.1 0.00763 --34.8 0.938 --112.9 900 0.873 --144.5 1.421 33.9 0.00745 --35.9 0.939 --114.1 MRF6V2010N MRF6V2010NB MRF6V2010GN 14 RF Device Data NXP Semiconductors PACKAGE DIMENSIONS MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 15 MRF6V2010N MRF6V2010NB MRF6V2010GN 16 RF Device Data NXP Semiconductors MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 17 MRF6V2010N MRF6V2010NB MRF6V2010GN 18 RF Device Data NXP Semiconductors MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 19 MRF6V2010N MRF6V2010NB MRF6V2010GN 20 RF Device Data NXP Semiconductors MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 21 MRF6V2010N MRF6V2010NB MRF6V2010GN 22 RF Device Data NXP Semiconductors MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 23 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following resources to aid your design process. Application Notes  AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  AN1955: Thermal Measurement Methodology of RF Power Amplifiers  AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages  AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator  RF High Power Model To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Feb. 2007  Initial release of data sheet 1 May 2007  Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C1, C8, C11, C18, C4, C13, C5, and C14, p. 3  Corrected Series Impedance Zsource and Zload values, Fig. 13, Series Equivalent Source and Load Impedance, p. 7 2 Aug. 2007  Replaced Case Outline 1265--08 with 1265--09, Issue K, p. 1, 12--14. Corrected cross hatch pattern in bottom view and changed its dimensions (D2 and E3) to minimum value on source contact (D2 changed from Min--Max .290--.320 to .290 Min; E3 changed from Min--Max .150--.180 to .150 Min). Added JEDEC Standard Package Number.  Replaced Case Outline 1337--03 with 1337--04, p. 1, 15--17. Issue D: Removed Drain--ID label from View Y--Y on Sheet 2. Renamed E2 to E3. Added cross--hatch region dimensions D2 and E2.  Corrected Test Circuit Component part number in Table 6, Component Designations and Values for R1, p. 3  Added Figure 12, Power Gain and Drain Efficiency versus CW Output Power, p. 6  Corrected plot points to show 50 Ohms in Figure 14, Series Equivalent Source and Load Impedance, p. 7  Added Figures 15--17, Test Circuit Component Layout and Tables 7--9, Test Circuit Component Designations and Values to show 130, 450 and 64 MHz, respectively, p. 8--10  Added Figure 18, Series Equivalent Source and Load Impedance to show 64, 130, 220 and 450 MHz plot points, p. 11 3 Feb. 2008  Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150C, p. 1  Corrected Ciss test condition to indicate AC stimulus on the VGS connection versus the VDS connection, Dynamic Characteristics table, p. 2  Replaced Case Outline 1337--04, Issue D, with 1337--04, Issue E, p. 15--17. Corrected document number 98ASA99191D on Sheet 3. 4 Mar. 2008  Corrected Zsource (37.5 + j15.1) and Zload (94.5 + j16.7) 64 MHz values and replotted both, p. 11  Added S--Parameter table, p. 12, 13 (continued) MRF6V2010N MRF6V2010NB MRF6V2010GN 24 RF Device Data NXP Semiconductors REVISION HISTORY (continued) Revision Date 5 Apr. 2010 Description  Operating Junction Temperature increased from 200C to 225C in Maximum Ratings table, related “Continuous use at maximum temperature will affect MTTF” footnote added and changed 200C to 225C in Capable Plastic Package bullet, p. 1  Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 20 6 Sept. 2016  Added part number MRF6V2010GN, pp. 1, 3  Added TO--270G--2 package isometric, p. 1, and Mechanical Outline, pp. 21--23  Table 3, ESD Protection Characteristics, removed the word “Minimum” after the ESD class rating. ESD ratings are characterized during new product development but are not 100% tested during production. ESD ratings provided in the data sheet are intended to be used as a guideline when handling ESD sensitive devices, p. 2  Fig. 14, MTTF versus Junction Temperature: MTTF end temperature on graph changed to match maximum operating junction temperature, p. 7  Replaced Case Outline TO--270--2, Issue K (Case 1265--09), with TO--270--2, Issue R, pp. 15--17. Issue P: changed dimension A to AA and D to DD on Sheets 1 and 3. Added tolerance bbb and feature control frame to dimensions E and E5. Issue R: incorporated NXP logo. MRF6V2010N MRF6V2010NB MRF6V2010GN RF Device Data NXP Semiconductors 25 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2007–2008, 2010, 2016 NXP B.V. MRF6V2010N MRF6V2010NB MRF6V2010GN Document Number: MRF6V2010N Rev. 6, 9/2016 26 RF Device Data NXP Semiconductors
MRF6V2010GNR1 价格&库存

很抱歉,暂时无法提供与“MRF6V2010GNR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货