0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FDI038AN06A0

FDI038AN06A0

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT226

  • 描述:

    MOSFET N-CH 60V 80A TO-262AB

  • 数据手册
  • 价格&库存
FDI038AN06A0 数据手册
N-Channel PowerTrench® MOSFET 60 V, 80 A, 3.8 mΩ Features Applications • RDS(on) = 3.5 mΩ ( Typ.) @ VGS = 10 V, ID = 80 A • Synchronous Rectification for ATX / Server / Telecom PSU • QG(tot) = 96 nC ( Typ.) @ VGS = 10 V • Battery Protection Circuit • Low Miller Charge • Motor drives and Uninterruptible Power Supplies • Low Qrr Body Diode • UIS Capability (Single Pulse and Repetitive Pulse) Formerly developmental type 82584 D GD S TO-220 G DS I2-PAK G S MOSFET Maximum Ratings TC = 25°C unless otherwise noted Symbol Parameterr FDP038AN06A0 FDI038AN06A0 Unit VDSS Drain to Source Voltage 60 V VGS Gate to Source Voltage ±20 V Drain Current ID Continuous (TC < 151oC, VGS = 10V) 80 A Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 62oC/W) 17 A Pulsed EAS PD TJ, TSTG Single Pulse Avalanche Energy (Note 1) Figure 4 A 625 mJ Power dissipation 310 W Derate above 25oC 2.07 W/oC -55 to 175 oC Operating and Storage Temperature Thermal Characteristics RθJC Thermal Resistance, Junction to Case, Max. RθJA Thermal Resistance, Junction to Ambient, Max. (Note 2) ©2002 Semiconductor Components Industries, LLC. September-2017,Rev. 3 0.48 o C/W 62 o C/W Publication Order Number: FDP038AN06A0/D FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET FDP038AN06A0 / FDI038AN06A0 Device Marking FDP038AN06A0 Device FDP038AN06A0 Package TO-220 Reel Size Tube Tape Width N/A Quantity 50 units FDI038AN06A0 FDI038AN06A0 I2-PAK Tube N/A 50 units Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Unit 60 - - - V - 1 - - 250 µA VGS = ±20V - - ±100 nA - 4 V Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 50V VGS = 0V TC = 150oC On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 2 ID = 80A, VGS = 10V - 0.0035 0.0038 ID = 40A, VGS = 6V - 0.0049 0.0074 ID = 80A, VGS = 10V, TJ = 175oC - 0.0071 0.0078 Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V Qg(TH) Threshold Gate Charge VGS = 0V to 2V Qgs Gate to Source Gate Charge Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge Switching Characteristics VDS = 25V, VGS = 0V, f = 1MHz VDD = 30V ID = 80A Ig = 1.0mA - 6400 - - 1123 - pF pF - 367 - pF 96 124 nC - 12 15 nC - 26 - nC - 15 - nC - 27 - nC (VGS = 10V) tON Turn-On Time - - 175 ns td(ON) Turn-On Delay Time - 17 - ns tr Rise Time td(OFF) Turn-Off Delay Time tf tOFF - 144 - ns - 34 - ns Fall Time - 60 - ns Turn-Off Time - - 115 ns VDD = 30V, ID = 80A VGS = 10V, RGS = 2.4Ω Drain-Source Diode Characteristics ISD = 80A - - 1.25 V ISD = 40A - - 1.0 V Reverse Recovery Time ISD = 75A, dISD/dt = 100A/µs - - 38 ns Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/µs - - 39 nC VSD Source to Drain Diode Voltage trr QRR Notes: 1: Starting TJ = 25°C, L = 0.255mH, IAS = 70A. 2: Pulse Width = 100s www.onsemi.com 2 FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET Package Marking and Ordering Information 1.2 250 CURRENT LIMITED BY PACKAGE ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 200 150 100 50 0.2 0 0 25 50 75 100 150 125 0 25 175 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 o TC, CASE TEMPERATURE ( C) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 3000 1000 IDM, PEAK CURRENT (A) TC = 25oC TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I25 150 VGS = 10V 100 10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) Figure 4. Peak Current Capability www.onsemi.com 3 10-1 100 101 FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 2000 100 10µs 1000 100 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 10ms 1 DC SINGLE PULSE TJ = MAX RATED TC = 25oC STARTING TJ = 25oC IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 100µs STARTING TJ = 150oC 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 0.1 1 10 1 0.01 100 0.1 1 10 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) 100 NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515 Figure 5. Forward Bias Safe Operating Area Figure 6. Unclamped Inductive Switching Capability 160 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VGS = 20V ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 160 120 80 TJ = 175oC TJ = 25oC 40 120 VGS = 6V VGS = 5V 80 40 TJ = -55oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 0 0 3.0 3.5 4.0 4.5 5.0 5.5 VGS , GATE TO SOURCE VOLTAGE (V) 6 0 Figure 7. Transfer Characteristics 0.5 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) 1.5 Figure 8. Saturation Characteristics 2.5 6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE DRAIN TO SOURCE ON RESISTANCE(mΩ) VGS = 10V VGS = 6V 5 4 VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.0 1.5 1.0 VGS = 10V, ID =80A 3 0 20 40 60 80 0.5 -80 ID, DRAIN CURRENT (A) Figure 9. Drain to Source On Resistance vs Drain Current -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature www.onsemi.com 4 200 FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 1.4 1.2 VGS = VDS, ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 1.2 1.0 0.8 0.6 0.4 0.2 -80 -40 0 40 80 120 160 1.1 1.0 0.9 200 -80 -40 TJ, JUNCTION TEMPERATURE (oC) Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 10000 80 120 160 200 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) CISS = CGS + CGD CRSS = CGD VGS = 0V, f = 1MHz 1 VDD = 30V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 80A ID = 40A 2 0 100 0.1 40 10 COSS ≅ CDS + CGD 1000 0 TJ , JUNCTION TEMPERATURE (oC) 10 60 0 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 13. Capacitance vs Drain to Source Voltage 25 50 Qg, GATE CHARGE (nC) 75 100 Figure 14. Gate Charge Waveforms for Constant Gate Current www.onsemi.com 5 FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted VDS BVDSS tP L VDS VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG VDD VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS VGS VGS = 10V + Qgs2 VDD DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 18. Gate Charge Waveforms Figure 17. Gate Charge Test Circuit VDS tON tOFF td(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS VGS 0 Figure 19. Switching Time Test Circuit 50% 10% 50% PULSE WIDTH Figure 20. Switching Time Waveforms www.onsemi.com 6 FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET Test Circuits and Waveforms .SUBCKT FDP038AN06A0 2 1 3 ; rev July 04, 2002 Ca 12 8 1.5e-9 Cb 15 14 1.5e-9 Cin 6 8 6.1e-9 LDRAIN DPLCAP DRAIN 2 5 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD 5 51 ESLC EVTHRES + 19 8 + LGATE GATE 1 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + RSLC2 Ebreak 11 7 17 18 69.3 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 RLDRAIN RSLC1 51 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE Lgate 1 9 4.81e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 4.63e-9 LSOURCE CIN 8 7 SOURCE 3 RSOURCE RLSOURCE RLgate 1 9 48.1 RLdrain 2 5 10 RLsource 3 7 46.3 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A 12 S2A S1B CA 17 18 RVTEMP S2B 13 19 CB 6 8 VBAT 5 8 EDS - IT 14 + + EGS Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 1e-4 Rgate 9 20 1.36 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 2.8e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD RBREAK 15 14 13 13 8 - + 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),10))} .MODEL DbodyMOD D (IS=2.4E-11 N=1.04 RS=1.65e-3 TRS1=2.7e-3 TRS2=2e-7 + CJO=4.35e-9 M=5.4e-1 TT=1e-9 XTI=3.9) .MODEL DbreakMOD D (RS=1.5e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.7e-9 IS=1e-30 N=10 M=0.47) .MODEL MmedMOD NMOS (VTO=3.3 KP=9 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.36 T_abs=25) .MODEL MstroMOD NMOS (VTO=4.00 KP=275 IS=1e-30 N=10 TOX=1 L=1u W=1u T_abs=25) .MODEL MweakMOD NMOS (VTO=2.72 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=13.6 RS=0.1 T_abs=25) .MODEL RbreakMOD RES (TC1=9e-4 TC2=-9e-7) .MODEL RdrainMOD RES (TC1=4e-2 TC2=3e-4) .MODEL RSLCMOD RES (TC1=1e-3 TC2=1e-5) .MODEL RsourceMOD RES (TC1=5e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-6.7e-3 TC2=-1.5e-5) .MODEL RvtempMOD RES (TC1=-2.5e-3 TC2=1e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-1.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-1) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. www.onsemi.com 7 FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET PSPICE Electrical Model rev July 4, 2002 template FDP038AN06A0 n2,n1,n3 = m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=2.4e-11,nl=1.04,rs=1.65e-3,trs1=2.7e-3,trs2=2e-7,cjo=4.35e-9,m=5.4e-1,tt=1e-9,xti=3.9) dp..model dbreakmod = (rs=1.5e-1,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.7e-9,isl=10e-30,nl=10,m=0.47) m..model mmedmod = (type=_n,vto=3.3,kp=9,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.00,kp=275,is=1e-30, tox=1) LDRAIN m..model mweakmod = (type=_n,vto=2.72,kp=0.03,is=1e-30, tox=1,rs=0.1DP ) LCAP 5 sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-1.5) 10 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-4) RLDRAIN sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=0.5) RSLC1 51 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1) RSLC2 c.ca n12 n8 = 1.5e-9 ISCL c.cb n15 n14 = 1.5e-9 c.cin n6 n8 = 6.1e-9 DBREAK 50 DRAIN 2 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 69.3 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 EBREAK + 17 18 - MMED MSTRO CIN 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE S1A i.it n8 n17 = 1 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - IT 14 + + res.rlgate n1 n9 = 48.1 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 46.3 DBODY MWEAK 6 RLGATE l.lgate n1 n9 = 4.81e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 4.63e-9 11 16 - + 8 22 RVTHRES m.mmed n16 n6 n8 n8 = model=mmedmod, temp=m_temp, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, temp=m_temp, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, temp=m_temp, l=1u, w=1u res.rbreak n17 n18 = 1, tc1=9e-4,tc2=-9e-7 res.rdrain n50 n16 = 1e-4, tc1=4e-2,tc2=3e-4 res.rgate n9 n20 = 1.36 res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=1e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.8e-3, tc1=5e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-6.7e-3,tc2=-1.5e-5 res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=1e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10)) } www.onsemi.com 8 FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET SABER Electrical Model th REV 23 July 4, 2002 JUNCTION FDP038AN06A0T CTHERM1 TH 6 6.45e-3 CTHERM2 6 5 3e-2 CTHERM3 5 4 1.4e-2 CTHERM4 4 3 1.65e-2 CTHERM5 3 2 4.85e-2 CTHERM6 2 TL 1e-1 RTHERM1 CTHERM1 6 RTHERM1 TH 6 3.24e-3 RTHERM2 6 5 8.08e-3 RTHERM3 5 4 2.28e-2 RTHERM4 4 3 1e-1 RTHERM5 3 2 1.1e-1 RTHERM6 2 TL 1.4e-1 RTHERM2 CTHERM2 5 SABER Thermal Model RTHERM3 SABER thermal model FDP035AN06A0T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =6.45e-3 ctherm.ctherm2 6 5 =3e-2 ctherm.ctherm3 5 4 =1.4e-2 ctherm.ctherm4 4 3 =1.65e-2 ctherm.ctherm5 3 2 =4.85e-2 ctherm.ctherm6 2 tl =1e-1 CTHERM3 4 RTHERM4 CTHERM4 3 rtherm.rtherm1 th 6 =3.24e-3 rtherm.rtherm2 6 5 =8.08e-3 rtherm.rtherm3 5 4 =2.28e-2 rtherm.rtherm4 4 3 =1e-1 rtherm.rtherm5 3 2 =1.1e-1 rtherm.rtherm6 2 tl=1.4e-1 } RTHERM5 CTHERM5 2 CTHERM6 RTHERM6 tl www.onsemi.com 9 CASE FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET SPICE Thermal Model FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET Mechanical Dimensions TO-220 3L Figure 21. TO-220, Molded, 3Lead, Jedec Variation AB Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor’s worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products. Dimension in Millimeters www.onsemi.com 10 FDP038AN06A0 / FDI038AN06A0 — N-Channel PowerTrench® MOSFET Mechanical Dimensions TO-262 3L (I2PAK) Figure 22. 3LD, TO262, Jedec Variation AA (I2PAK) Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor’s worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products. Dimension in Millimeters www.onsemi.com 11 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com ❖ © Semiconductor Components Industries, LLC N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com
FDI038AN06A0 价格&库存

很抱歉,暂时无法提供与“FDI038AN06A0”相匹配的价格&库存,您可以联系我们找货

免费人工找货