0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FOD8318

FOD8318

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOIC16

  • 描述:

    OPTOISO 4.243KV GATE DRIVER 16SO

  • 数据手册
  • 价格&库存
FOD8318 数据手册
DATA SHEET www.onsemi.com 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing SOIC16 W CASE 751EN MARKING DIAGRAM FOD8318 ON Description The FOD8318 is an advanced 2.5 A output current IGBT drive optocoupler capable of driving most 1200 V / 150 A IGBTs. It is ideally suited for fast−switching driving of power IGBTs and MOSFETs used in motor control inverter applications and high−performance power systems. It consists of an integrated gate drive optocoupler featuring low RDS(ON) CMOS transistors to drive the IGBT from rail to rail and an integrated high−speed isolated feedback for fault sensing. The FOD8318 has an active Miller clamp fuction to shut off the IGBT during a high dv/dt situation without the need of a negative supply voltage. It offers critical protection features necessary for preventing fault conditions that lead to destructive thermal runaway of IGBTs. It utilizes onsemi’s proprietary OPTOPLANAR® coplanar packaging technology and optimized IC design to achieve high noise immunity, characterized by high common mode rejection and power supply rejection specifications. The device is housed in a compact 16−pin small outline plastic package that meets the 8 mm creepage and clearance requirements. • High Noise Immunity Characterized by Common Mode Rejection 35 kV / ms Minimum Common Mode Rejection (Vcm = 1500 Vpeak) 2.5 A Peak Output Current Driving Capability for Most 1200 V / 150 A IGBT Optically Isolated Fault Sensing Feedback Active Miller Clamp to Shut Off the IGBT During High dv/dt without Needing a Negative Supply Voltage “Soft” IGBT Turn−off Built−in IGBT Protection ♦ Desaturation Detection ♦ Under−voltage Lock Out (UVLO) Protection Wide Supply Voltage Range from 15 V to 30 V ♦ Use of P−Channel MOSFETs at Output Stage Enables Output Voltage Swing Close to the Supply Rail (Rail−to−rail Output) 3.3 V / 5 V, CMOS/TTL−compatible Inputs High Speed ♦ 250 ns Max. Propagation Delay over Full Operating Temperature Range ♦ • • • • • • • © Semiconductor Components Industries, LLC, 2010 November, 2022 − Rev. 3 D X YY KK J 8318 = Device Number, e.g., ‘8318’ for FOD8318 V = DIN EN/IEC60747−5−5 Option (Only Appears on Component Ordered with this Option) D = Plant code, e.g., ‘D’ X = Last−digit Year Code, e.g., ‘B’ for 2011 YY = Two−digit Work Week Ranging from ‘01’ to ‘53’ KK = Lot Traceability Code J = Package Assembly Code, J ORDERING INFORMATION See detailed ordering and shipping information on page 27 of this data sheet. Features (continued) Features • 8318 V 1 • Extended Industrial Temperate Range, −40°C to 100°C Temperature Range • Safety and Regulatory Approvals ♦ UL1577, 4,243 VRMS for 1 min. DIN EN/IEC 60747−5−5,1,414 Vpeak Working Insulation Voltage, 8000 Vpeak Transient Isolation Voltage Ratings RDS(ON) of 1 W (Typ.) Offers Lower Power Dissipation User Configurable: Inverting, Non−inverting, Auto−reset, Auto−shutdown 8 mm Creepage and Clearance Distances ♦ • • • Applications • Industrial Inverter • Induction Heating • Isolated IGBT Drive Publication Order Number: FOD8318/D FOD8318 TRUTH TABLE VIN+ VIN– UVLO (VDD2 – VE) DESAT Detected? FAULT VOUT* X X Active X X LOW X X X Yes LOW LOW LOW X X X X LOW X HIGH X X X LOW HIGH LOW Not Active No HIGH HIGH *VOUT is always LOW with ‘clamp’ being active (gate voltage < 2 V above VSS). PIN DEFINITIONS Pin No. Name Description 1 VIN+ Non−inverting gate drive control input 2 VIN– Inverting gate drive control input 3 VDD1 Positive input supply voltage (3 V to 5.5 V) 4 GND1 Input ground 5 RESET Fault reset input 6 FAULT Fault output 7 VLED1+ LED 1 anode (must be left unconnected) 8 VLED1− LED 1 cathode (must be connected to ground) 9 VSS 10 VCLAMP Output supply voltage (negative) 11 VO Gate drive output voltage 12 VS Source of pull−up PMOS transistor 13 VDD2 14 DESAT Desaturation voltage input 15 VLED2+ LED 2 anode (must be left unconnected) 16 VE Active Miller clamp supply voltage Positive output supply voltage Output supply voltage / IGBT emitter VIN+ 1 16 VE VIN– 2 15 VLED2+ VDD1 3 14 DESAT GND 4 13 VDD2 RESET 5 12 VS FAULT 6 11 VO VLED1+ 7 10 VSS VLED1− * 8 9 Figure 1. www.onsemi.com 2 VSS FOD8318 BLOCK DIAGRAM VLED1+ 7 Output IC VDD1 3 VIN+ VIN– 1 2 6 FAULT 13 Input IC 12 11 UVLO GND1 VLED1– Driver LED1 Gate Drive Optocoupler VS VO 4 8 Shield DESAT 9 RESET VDD2 5 Fault 14 16 LED2 10 Miller Clamp Fault Sense Optocoupler VSS Shield 15 VLED2+ Figure 2. Block Diagram www.onsemi.com 3 VSS DESAT VE VCLAMP FOD8318 SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 60747−5−5. This optocoupler is suitable for “safe electrical insulation” only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.) Parameter Min. Typ. Max. Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Mains Voltage < 150 Vrms − I–IV − For Rated Mains Voltage < 300 Vrms − I–IV − For Rated Mains Voltage < 450 Vrms − I–IV − For Rated Mains Voltage < 600 Vrms − I–IV − For Rated Mains Voltage < 1000 Vrms − I–III − Climatic Classification − 40/100/21 − Pollution Degree (DIN VDE 0110/1.89) − 2 − 175 − − Symbol Unit CTI Comparative Tracking Index VPR Input to Output Test Voltage, Method b, VIORM x 1.875 = VPR, 100 % Production Test with tm = 1 s, Partial Discharge < 5 pC 2,651 − − Vpeak Input to Output Test Voltage, Method a, VIORM x 1.5 = VPR, Type and Sample Test with tm = 60 s, Partial Discharge < 5 pC 2,121 − − Vpeak VIORM Maximum Working Insulation Voltage 1,414 − − Vpeak VIOTM Highest Allowable Over Voltage 8,000 − − Vpeak External Creepage 8 − − mm External Clearance 8 − − mm Insulation Thickness 0.5 − − mm Safety Limit Values – Maximum Values Allowed in the Event of a Failure Case Temperature 150 − − °C Input Power 100 − − mW Output Power 600 − − mW Insulation Resistance at TS, VIO = 500 V 109 − − W TCase PS,INPUT PS,OUTPUT RIO www.onsemi.com 4 FOD8318 ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Symbol Value Unit TSTG Storage Temperature −40 to +125 °C TOPR Operating Temperature −40 to +100 °C Junction Temperature −40 to +125 °C TSOL Lead Wave Solder Temperature (No Solder Immersion) Refer to page 26 for reflow temperature profile. 260 for 10 s °C IFAULT Fault Output Current 15 mA IO(PEAK) Peak Output Current (Note 1) 3 A VE – VSS Negative Output Supply Voltage (Note 2) 0 to 15 V VDD2 – VE Positive Output Supply Voltage TJ VO(peak) VDD2 – VSS VDD1 VIN+, VIN− and VRESET VFAULT VS Parameter −0.5 to 35 – (VE – VSS) V Gate Drive Output Voltage −0.5 to 35 V Output Supply Voltage −0.5 to 35 V Positive Input Supply Voltage −0.5 to 6 V Input Voltages −0.5 to VDD1 V Fault Pin Voltage −0.5 to VDD1 V VSS + 6.5 to VDD2 V VE to VE +25 V 1.7 A −0.5 to VDD2 V Source of Pull−up PMOS Transistor Voltage VDESAT DESAT Voltage ICLAMP Peaking Clamping Sinking Current VCLAMP Miller Clamping Voltage PDI Input Power Dissipation (Note 3, 5) 100 mW PDO Output Power Dissipation (Note 4, 5) 600 mW Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Maximum pulse width = 10 ms, maximum duty cycle = 0.2 %. 2. This negative output supply voltage is optional. It’s only needed when negative gate drive is implemented. A schottky diode is recommended to be connected between VE and VSS to protect against a reverse voltage greater than 0.5 V. Refer to application information, “Active Miller Clamp Function” on page 24. 3. No derating required across temperature range. 4. Derate linearly above 64°C, free air temperature at a rate of 10.2 mW/°C. 5. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings. RECOMMENDED OPERATING CONDITIONS Symbol Min Max Unit −40 +100 °C Input Supply Voltage (Note 6) 3 5.5 V Total Output Supply Voltage 15 30 V VE – VSS Negative Output Supply Voltage 0 15 V VDD2 – VE Positive Output Supply Voltage (Note 6) 15 30 – (VE – VSS) V VSS + 7.5 VDD2 V TA VDD1 VDD2 – VSS VS Parameter Ambient Operating Temperature Source of Pull−up PMOS Transistor Voltage Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 6. During power up or down, it is important to ensure that VIN+ remains LOW until both the input and output supply voltages reach the proper recommended operating voltage to avoid any momentary instability at the output state. Refer to “Time to Good Power” section on page 24. www.onsemi.com 5 FOD8318 ISOLATION CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at TA = 25°C) Symbol Parameter Conditions Min Typ Max Unit 4,243 − − VRMS VI−O = 500 V (Note 7) − 1011 − W VI−O = 0 V, freq = 1.0 MHz (Note 7) − 1 − pF VISO Input−Output Isolation Voltage TA = 25°C, R.H.< 50 %, t = 1.0 min, II−O < 10 mA, 50 Hz (Note 7, 8, 9) RISO Isolation Resistance CISO Isolation Capacitance 7. Device is considered a two terminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together. 8. 4,243 VRMS for 1−minute duration is equivalent to 5,091 VRMS for 1−second duration. 9. The Input−Output Isolation Voltage is a dielectric voltage rating as per UL1577. It should not be regarded as an input−output continuous voltage rating. For the continuous working voltage rating, refer to the equipment level safety specification or DIN EN/IEC 60747−5−5 Safety and Insulation Ratings Table on page 4. ELECTRICAL CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at VDD1 = 5 V, VDD2 – VSS = 30 V, VE – VSS = 0 V, TA = 25°C unless otherwise specified.) Symbol Parameter VIN+L, VIN−L, VRESETL VIN+H, VIN−H, VRESETH Min Typ Max Unit Logic Low Input Voltages − − 0.8 V Logic High Input Voltages 2.0 − − V VIN = 0.4 V −0.5 −0.001 − mA IIN+L, IIN−L, Logic Low Input Currents IRESETL Conditions Figure I FAULTL FAULT Logic Low Output Current VFAULT = 0.4 V 5.0 12.0 − mA IFAULTH FAULT Logic High Output Current VFAULT = VDD1 −40 0.002 − mA 37 High Level Output Current VO = VDD2 – 3 V −1 −2.5 − A 4, 9, 38 −2.5 − − A 1 3 − A VO = VSS + 6 V (Note 11) 2.5 − − A 70 125 170 mA 6, 43 − V 7, 9, 40 IOH VO = VDD2 – 6 V (Note 10) IOL Low Level Output Current VO = VSS + 3 V 3, 37 5, 39 IOLF Low Level Output Current During Fault Condition VO – VSS = 14 V VOH High Level Output Voltage IO = –100 mA (Note 12, 13, 14) VS – 1.0 V VS – 0.5 V VOL Low Level Output Voltage IO = 100 mA − 0.1 0.5 V 8, 10, 40 IDD1H High Level Supply Current VIN+ = VDD1 = 5.5 V, VIN– = 0 V − 14 17 mA 11, 41 IDD1L Low Level Supply Current VIN+ = VIN− = 0 V, VDD1 = 5.5 V − 2 3 mA IDD2H High Level Output Supply Current VO = Open (Note 14) − 1.7 3 mA IDD2L 12, 13, 42 Low Level Output Supply Current VO = Open − 1.8 2.8 mA ISH High Level Source Current IO = 0 mA − 0.65 1.5 mA 42 ISL Low Level Source Current IO = 0 mA − 0.6 1.4 mA 42 IEL VE Low Level Supply Current −0.8 −0.5 − mA 15, 42 IEH VE High Level Supply Current −0.5 −0.25 − mA −0.13 −0.25 −0.33 mA ICHG Blanking Capacitor Charge Current VDESAT = 2 V (Note 14, 15) IDSCHG Blanking Capacitor Discharge Current VDESAT = 7 V 10 36 − mA 43 VUVLO+ Under−Voltage Lockout Threshold (Note 14) VO > 5 V at 25°C 10.8 11.7 12.7 V VO < 5 V at 25°C 9.8 10.7 11.7 V 17, 31, 44 Under−Voltage Lockout Threshold Hysteresis At 25°C 0.4 1.0 − V DESAT Threshold (Note 14) VDD2 – VE > VUVLO−, VO < 5 V 6.0 6.5 7.2 V VUVLO− UVLOHYS VDESAT www.onsemi.com 6 14, 43 18, 43 FOD8318 ELECTRICAL CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at VDD1 = 5 V, VDD2 – VSS = 30 V, VE – VSS = 0 V, TA = 25°C unless otherwise specified.) (continued) Symbol VCLAMP_ Parameter Conditions Clamping Threshold Voltage Min Typ Max Unit Figure − 2.2 − V 35, 54 0.35 1.2 − A 34, 53 THRES ICLAMPL Clamp Low Level Sinking Current VO = VSS + 2.5 V Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 10. Maximum pulse width = 10 ms, maximum duty cycle = 0.2 %. 11. Maximum pulse width = 4.99 ms, maximum duty cycle = 99.8 %. 12. VOH is measured with the DC load current in this testing (maximum pulse width = 1 ms, maximum duty cycle = 20 %). When driving capacitive loads, VOH approaches VDD as IOH approaches zero units. 13. Positive output supply voltage (VDD2 – VE) should be at least 15 V. This ensures adequate margin in excess of the maximum under−voltage lockout threshold VUVLO+ of 13.5 V. 14. When VDD2 – VE > VUVLO and output state VO of the FOD8318 is allowed to go HIGH, the DESAT detection feature is active and provides the primary source of IGBT protection. UVLO is needed to ensure DESAT detection is functional. 15. The blanking time, tBLANK, is adjustable by an external capacitor (CBLANK) where tBLANK = CBLANK x (VDESAT / ICHG). SWITCHING CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at VDD1 = 5 V, VDD2 – VSS = 30 V, VE – VSS = 0 V, TA = 25°C unless otherwise specified.) Symbol Parameter tPHL Propagation Delay Time to Logic Low Output (Note 17) tPLH Propagation Delay Time to Logic High Output (Note 18) PWD PDD Skew Conditions Min Typ Max Unit Figure − 140 250 ns − 160 250 ns 19, 20, 21, 22, 23, 24, 45, 53 Pulse Width Distortion, | tPHL – tPLH | (Note 19) − 20 100 ns Propagation Delay Difference between Any Two Parts or Channels, (tPHL – tPLH) (Note 20) –150 − 150 ns Rg = 10 W Cg = 10 nF, f = 10 kHz, Duty Cycle = 50 % (Note 16) 45, 55 tR Output Rise Time (10 % – 90 %) − 25 − ns tF Output Fall Time (90 % – 10 %) − 25 − ns tDESAT(90 %) DESAT Sense to 90 % VO Delay (Note 21) − 450 700 ns 25, 46 tDESAT(10 %) DESAT Sense to 10 % VO Delay (Note 21) − 2.7 4.0 ms 26, 28, 29, 46 tDESAT(FAULT) DESAT Sense to Low Level FAULT Signal Delay (Note 22) − 1.4 5.0 ms 27, 46, 56 tDESAT(LOW) DESAT Sense to DESAT Low Propagation Delay (Note 23) − 250 − ns 46 tRESET(FAULT) RESET to High Level FAULT Signal Delay (Note 24) 3 6 20 ms 30, 47, 56 tDESAT(MUTE) DESAT Input Mute 10 22 35 ms PWRESET RESET Signal Pulse Width 1.2 − − ms tUVLO ON UVLO Turn On Delay (Note 25) − 4 − ms tUVLO OFF UVLO Turn Off Delay (Note 26) − 3 − ms tGP Time to Good Power (Note 27) VDD2 = 0 to 30 V in 10 ms Ramp − 2.5 − ms 32, 33, 48 | CMH | Common Mode Transient Immunity at Output High TA = 25°C, VDD1 = 5 V, VDD2 = 25 V, VSS = Ground, VCM = 1500 Vpeak (Note 28) 35 50 − kV/ms 50, 51 | CML | Common Mode Transient Immunity at Output Low TA = 25°C, VDD1 = 5 V, VDD2 = 25 V, VSS = Ground, VCM = 1500 Vpeak (Note 29) 35 50 − kV/ms 49, 52 Rg = 10 W, Cg = 10 nF, VDD2 – VSS = 30 V VDD2 = 20 V in 1.0 ms Ramp 16. This load condition approximates the gate load of a 1200 V / 150 A IGBT. www.onsemi.com 7 31, 48 FOD8318 17. tPHL propagation delay is measured from the 50 % level on the falling edge of the input pulse (VIN+, VIN−) to the 50 % level of the falling edge of the VO signal. Refer to Figure 55. 18. tPHL propagation delay is measured from the 50 % level on the rising edge of the input pulse (VIN+, VIN−) to the 50 % level of the rising edge of the VO signal. Refer to Figure 55. 19. PWD is defined as | tPHL – tPLH | for any given device. 20. The difference between tPHL and tPLH between any two FOD8318 parts under same operating conditions, with equal loads. 21. This is the amount of time the DESAT threshold must be exceeded before VO begins to go LOW. This is supply voltage dependent. Refer to Figure 56. 22. This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes LOW. Refer to Figure 56. 23. This is the amount of time the DESAT threshold must be exceeded before VO begins to go LOW and the FAULT output to go LOW. Refer to Figure 56. 24. This is the amount of time from when RESET is asserted LOW, until FAULT output goes HIGH. Refer to Figure 56. 25. tUVLO ON UVLO turn−on delay is measured from VUVLO+ threshold voltage of the output supply voltage (VDD2) to the 5 V level of the rising edge of the VO signal. 26. tUVLO OFF UVLO turn−off delay is measured from VUVLO– threshold voltage of the output supply voltage (VDD2) to the 5 V level of the falling edge of the VO signal. 27. tGP time to good power is measured from 13.5 V level of the rising edge of the output supply voltage (VDD2) to the 5 V level of the rising edge of the VO signal. 28. Common mode transient immunity at output HIGH state is the maximum tolerable negative dVcm / dt on the trailing edge of the common mode pulse, VCM, to assure that the output remains in HIGH state (i.e., VO > 15 V or FAULT > 2 V). 29. Common mode transient immunity at output LOW state is the maximum positive tolerable dVcm / dt on the leading edge of the common mode pulse, VCM, to assure that the output remains in a LOW state (i.e., VO < 1.0 V or FAULT < 0.8 V). www.onsemi.com 8 FOD8318 IOH, HIGH LEVEL OUTPUT CURRENT (A) TYPICAL PERFORMANCE CHARACTERISTICS IFAULT, FAULT CURRENT (mA) 50 40 30 20 VDD1 = 5 V VIN+ = 5 V ILED2+ = 10 mA TA = 25°C 10 0 0 1 2 3 4 VFAULTL, FAULT VOLTAGE (V) 5 7 6 VO = VSS + 6 V 5 4 VO = VSS + 3 V 3 2 1 0 −40 VDD2 − VSS = 30 V VDD1 = 5 V −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 0.1 IO = −650 mA IO = −100 mA −0.1 −0.2 −0.3 −0.4 −0.5 −40 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 5 V −20 0 20 40 60 TA, TEMPERATURE (°C) 80 5 VO = VDD2 − 6 V 4 3 VO = VDD2 − 3 V 2 1 0 −40 VDD2 − VSS = 30 V VDD1 = 5 V −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 150 TA = −40 °C 125 TA = 25 °C TA = 100 °C 100 75 VDD2 − VSS = 30 V VDD1 = 5 V 50 0 5 10 15 20 25 VO, OUTPUT VOLTAGE (V) 30 Figure 6. Low Level Output Current During Fault Condition (IOLF) vs. Output Voltage (VOL) VOL, LOW LEVEL OUTPUT VOLTAGE (V) VOH − VDD2, LOW LEVEL OUTPUT VOLTAGE DROP (V) Figure 5. Low Level Output Current (IOL) vs. Temperature 0.0 6 Figure 4. High Level Output Current (IOH) vs. Temperature IOLF, LOW LEVEL OUTPUT CURRENT DURING FAULT CONDITION (mA) IOL, LOW LEVEL OUTPUT CURRENT (A) Figure 3. FAULT Logic Low Output Current (IFAULTL) vs. FAULT Logic Low Output Voltage (VFAULTL) 7 100 0.25 0.20 0.15 IO = 100 mA 0.10 0.05 0.00 −40 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 0 V −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 Figure 8. Low Level Output Voltage (VOL) vs. Temperature Figure 7. High Level Output Voltage Drop (VOH − VDD) vs. Temperature www.onsemi.com 9 FOD8318 VOL, LOW LEVEL OUTPUT VOLTAGE (V) VOH, HIGH LEVEL OUTPUT VOLTAGE (V) TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 30 29 TA = −40 °C 25 °C 28 100 °C 27 26 25 0.0 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 5 V 2.0 0.5 1.0 1.5 2.5 IOH, HIGH LEVEL OUTPUT CURRENT (A) IDD1, SUPPLY CURRENT (mA) 20 VDD1 = 5 V VIN+ = 0 V (IDD1L) / 5 V (IDD1H) 15 IDD1H 10 5 IDD1L 0 −40 −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 Figure 11. Supply Current (IDD1) vs. Temperature 3 TA = 100 °C 25 °C 2 −40 °C 1 0 0.0 0.5 1.0 1.5 2.0 2.5 IOL, LOW LEVEL OUTPUT CURRENT (A) 2.2 2.0 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 0 V (IDD2L) / 5 V (IDD2H) 1.8 IDD2L IDD2H 1.6 1.4 1.2 1.0 −40 −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 Figure 12. Output Supply Current (IDD2) vs. Temperature 2.2 −0.15 VDD1 = 5 V VIN+ = 0 V (IDD2L) / 5 V (IDD2H) 2.0 ICHG, BLANKING CAPACITOR CHARGING CURRENT (mA) IDD2, OUTPUT SUPPLY CURRENT (mA) VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 0 V Figure 10. Low Level Output Voltage (VOL) vs. Low Level Output Current (IOL) IDD2, OUTPUT SUPPLY CURRENT (mA) Figure 9. High Level Output Voltage (VOH) vs. High Level Output Current (IOH) 4 IDD2L 1.8 IDD2H 1.6 1.4 1.2 1.0 15 20 25 VDD2, OUTPUT SUPPLY VOLTAGE (V) −0.20 −0.25 −0.30 −40 30 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 5 V VDESAT = 0 to 6 V −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 Figure 14. Blanking Capacitor Charge Current (ICHG) vs. Temperature Figure 13. Output Supply Current (IDD2) vs. Output Supply Voltage (VDD2) www.onsemi.com 10 FOD8318 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) −0.2 3.0 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 0 V (IEL) / 5 V (IEH) IS, SOURCE CURRENT (mA) IE, SUPPLY CURRENT (mA) 0.0 IEH −0.4 IEL −0.6 −0.8 −40 −20 0 20 40 60 TA, TEMPERATURE (°C) 80 1.5 1.0 0.5 0.5 1.0 1.5 IO, OUTPUT CURRENT (mA) 2.0 7.0 VDESAT, DESAT THRESHOLD (V) VUVLO, UNDER VOLTAGE LOCKOUT THRESHOLD (V) VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 5 V Figure 16. Source Current (IS) vs. Output Current (IO) VUVLO+ 10 VUVLO− 5 VDD1 = 5 V VIN+ = 5 V 0 −40 −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 6.8 6.6 6.4 6.2 6.0 −40 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 5 V −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 Figure 18. DESAT Threshold (VDESAT) vs. Temperature Figure 17. Under Voltage Lockout Threshold (VUVLO) vs. Temperature 0.25 0.25 tP, PROPAGATION DELAY (ms) tP, PROPAGATION DELAY (ms) 100°C 0.0 0.0 100 15 0.20 tPLH 0.15 tPHL 0.05 −40 25°C 2.0 Figure 15. Supply Current (IE) vs. Temperature 0.10 −40°C 2.5 VDD2 − VSS = 30 V VDD1 = 5 V f = 10 kHz 50% Duty Cycle RL = 10 W CL = 10 nF −20 0 20 40 60 TA, TEMPERATURE (°C) 80 0.20 tPLH 0.15 tPHL 0.10 0.05 15 100 Figure 19. Propagation Delay (tP) vs. Temperature VDD1 = 5 V f = 10 kHz 50% Duty Cycle RL = 10 W CL = 10 nF 20 25 VDD2, SUPPLY VOLTAGE (V) Figure 20. Propagation Delay (tP) vs. Supply Voltage (VDD2) www.onsemi.com 11 30 FOD8318 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 0.18 VDD2 − VSS = 30 V f = 10 kHz 50% Duty Cycle RL = 10 W CL = 10 nF 0.18 tPHL, PROPAGATION DELAY (ms) tPLH, PROPAGATION DELAY (ms) 0.20 0.16 0.14 0.12 −40 VDD1 = 4.5 V VDD1 = 5.0 V VDD1 = 5.5 V −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 Figure 21. Propagation Delay Time to Logic High Output (tPLH) vs. Temperature 0.14 0.12 0.10 −40 VDD1 = 4.5 V VDD1 = 5.0 V VDD1 = 5.5 V −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 0.20 tP, PROPAGATION DELAY (ms) tP, PROPAGATION DELAY (ms) 0.16 Figure 22. Propagation Delay Time to Logic Low Output (tPHL) vs. Temperature 0.20 0.18 tPLH 0.16 tPHL 0.14 VDD2 − VSS = 30 V VDD1 = 5 V f = 10 kHz 50% Duty Cycle RL = 10 W 0.12 0.10 0 0.18 0.16 0.12 100 0 tPHL 50 10 20 30 40 RL, LOAD RESISTANCE (W) Figure 24. Propagation Delay (tP) vs. Load Resistance (RL) 4.0 tDESAT(10%), DESAT SENSE TO 10% VO DELAY (ms) VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 5 V RL = 10 W CL = 10 nF 0.4 0.2 0.0 −40 VDD2 − VSS = 30 V VDD1 = 5 V f = 10 kHz 50% Duty Cycle CL = 10 nF 0.10 20 40 60 80 CL, LOAD CAPACITANCE (nF) 0.8 0.6 tPLH 0.14 Figure 23. Propagation Delay (tP) vs. Load Capacitance (CL) tDESAT(90%), DESAT SENSE TO 90% VO DELAY (ms) VDD2 − VSS = 30 V f = 10 kHz 50% Duty Cycle RL = 10 W CL = 10 nF −20 0 20 40 60 TA, TEMPERATURE (°C) 80 3.5 VDD2 − VSS = 30 V 3.0 2.5 2.0 VDD2 − VSS = 15 V 1.5 1.0 −40 100 VDD1 = 5 V VIN+ = 5 V RL = 10 W CL = 10 nF −20 0 20 40 60 TA, TEMPERATURE (°C) 80 Figure 26. DESAT Sense to 10% VO Delay (tDESAT(10%)) vs. Temperature Figure 25. DESAT Sense to 90% VO Delay (tDESAT(90%)) vs. Temperature www.onsemi.com 12 100 FOD8318 1.8 10 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 5 V RL = 10 W CL = 10 nF 1.6 tDESAT(10%), DESAT SENSE TO 10% VO DELAY (ms) tDESAT(FAULT), DESAT SENSE TO LOW LEVEL FAULT SIGNAL DELAY (ms) TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1.4 VE − VSS = 0 V 1.2 VE − VSS = 15 V 1.0 0.8 −40 0 20 40 60 TA, TEMPERATURE (°C) 80 VDD2 − VSS = 30 V VDD2 − VSS = 15 V 1.5 1.0 0.5 0.0 10 20 30 40 RL, LOAD RESISTANCE (W) 50 Figure 29. DESAT Sense to 10% VO Delay (tDESAT(10%)) vs. Load Resistance (RL) 5.0 VDD2 − VSS = 20 V VDD1 = 5 V VIN+ = 5 V f = 50 Hz 50% Duty Cycle tUVLO ON 3.5 tUVLO OFF 3.0 2.5 −20 0 20 40 60 TA, TEMPERATURE (°C) 80 25 5 10 15 20 CL, LOAD CAPACITANCE (nF) 30 9 VDD2 − VSS = 30 V VIN+ = VDD1 RL = 10 W CL = 10 nF 8 7 VDD1 = 4.5 V 6 5 VDD1 = 5.5 V VDD1 = 5.0 V 4 3 −40 −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 Figure 30. RESET to High Level FAULT Signal Delay (tRESET(FAULT)) vs. Temperature tGP, TIME TO GOOD POWER (ms) tUVLO, UNDER VOLTAGE LOCKOUT THRESHOLD DELAY (ms) VDD2 − VSS = 15 V Figure 28. DESAT Sense to 10% VO Delay (tDESAT(10%)) vs. Load Capacitance (CL) 2.0 2.0 −40 2 0 2.5 4.0 VDD2 − VSS = 30 V 4 tRESET(FAULT), RESET TO HIGH LEVEL FAULT SIGNAL DELAY (ms) tDESAT(10%), DESAT SENSE TO 10% VO DELAY (ms) VDD1 = 5 V VIN+ = 5 V CL = 10 nF 4.5 6 100 4.0 3.0 8 0 −20 Figure 27. DESAT Sense to Low Level FAULT Signal Delay (tDESAT(FAULT)) vs. Temperature 3.5 VDD1 = 5 V VIN+ = 5 V RL = 10 W 100 5 VDD1 = 5 V VIN+ = 5 V f = 50 Hz 50% Duty Cycle 4 3 2 1 0 15 20 25 VDD2, SUPPLY VOLTAGE (V) Figure 32. Time to Good Power (tGP) vs. Supply Voltage (VDD2) Figure 31. Under Voltage Lockout Threshold Delay (tUVLO) vs. Temperature www.onsemi.com 13 30 FOD8318 5 4 3.0 VDD2 − VSS = 30 V VDD1 = 5 V VIN+ = 5 V f = 50 Hz 50% Duty Cycle ICLAMP, CLAMP LOW LEVEL SINKING CURRENT (A) tGP, TIME TO GOOD POWER (ms) TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 3 2 1 0 −40 −20 0 20 40 60 TA, TEMPERATURE (°C) 80 2.0 1.8 1.6 0 20 40 60 TA, TEMPERATURE (°C) 0.5 3.0 VDD2 – VSS = 30 V VDD1 = 5 V VIN+ = 0 V −20 1.0 80 −20 0 20 40 60 TA, TEMPERATURE (°C) 80 100 Figure 34. Clamp Low Level Sinking Current (ICLAMPL) vs. Temperature 2.2 1.4 −40 1.5 0 −40 ICLAMP, CLAMP LOW LEVEL SINKING CURRENT (A) VCLAMP, CLAMP PIN THRESHOLD VOLTAGE (V) 2.4 2.0 100 Figure 33. Time to Good Power (tGP) vs. Temperature 2.6 VDD2 – VSS = 30 V VDD1 = 5 V VIN+ = 5 V VCLAMP = 2.5 V 2.5 2.5 2.0 1.5 1.0 0.5 0 100 Figure 35. Clamping Threshold Voltage (VCLAMP) vs. Temperature VDD2 – VSS = 30 V VDD1 = 5 V VIN+ = 0 V 0 0.5 1.0 1.5 2.0 2.5 VCLAMP, CLAMP VOLTAGE (V) Figure 36. Clamp Low Level Sinking Current (ICLAMPL) vs. Clamp Voltage (VCLAMP) www.onsemi.com 14 3.0 FOD8318 TEST CIRCUITS FOD8318 + 5V – 1 VIN+ VE 2 VIN– VLED2+ 15 3 VDD1 4 GND1 5 0.1 mF 16 DESAT 14 VDD2 13 RESET VS 12 6 FAULT VO 11 IFAULT 7 VLED1+ VCLAMP 10 VFAULT = 0.4 V for IFAULTL VFAULT = 5.0 V for IFAULTH 8 VLED1−* VSS 9 VFAULT – + A 0.1 mF 10 mA Switch A closed for IFAULTL Switch A opened for IFAULTH Figure 37. Fault Output Current (IFAULTL) and (IFAULTH) Test Circuit FOD8318 Pulse Gen PW = 10 ms Period = 5 ms + – 0.1 mF – 5V + 1 VIN+ VE 2 VIN– VLED2+ 15 3 VDD1 4 GND1 5 16 DESAT 14 VDD2 13 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1−* VSS 9 + – 0.1 mF 0.1 mF 47 mF VE 0.1 mF 47 mF + VO – + – 30 V 3 kW Figure 38. High Level Output Current (IOH) Test Circuit FOD8318 Pulse Gen PW = 4.99 ms Period = 5 ms + – 0.1 mF – 5V + 1 VIN+ VE 2 VIN– VLED2+ 15 3 VDD1 4 GND1 5 16 DESAT 14 VDD2 13 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1−* VSS 9 0.1 mF 0.1 mF 47 mF 3 kW Figure 39. Low Level Output Current (IOL) Test Circuit www.onsemi.com 15 + – VE + – 30 V + – VO 0.1 mF 47 mF FOD8318 TEST CIRCUITS (Continued) A FOD8318 B 0.1 mF + – 5V 1 V IN+ VE 16 2 V IN– V LED2+ 15 3 V DD1 DESAT 14 4 GND1 V DD2 13 5 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 8 V LED1−* V SS 9 0.1 mF + – 100 mA pulsed VO B A 3 kW Switch A for VOH test Switch B for VOL test VE 0.1 mF 30 V + – 100 mA pulsed Figure 40. High Level (VOH) and Low Level (VOL) Output Voltage Test Circuit A FOD8318 B 0.1 mF 5V + – 1 V IN+ VE 16 2 V IN– V LED2+ 15 3 V DD1 DESAT 14 4 GND1 V DD2 13 5 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 8 V LED1−* V SS 9 IDD1 Switch A for IDD1H test Switch B for IDD1L test Figure 41. High Level (IDD1H) and Low Level (IDD1L) Supply Current Test Circuit A B 0.1 mF 5V + – IE FOD8318 1 V IN+ VE 16 2 V IN– V LED2+ 15 3 V DD1 DESAT 14 4 GND1 V DD2 13 5 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 V SS 9 8 Switch A for IDD2H, ISH and IEH test Switch B for IDD2L, ISL and IEL test V LED1−* 0.1 mF 16 + – IDD2 IS VO 0.1 mF Figure 42. High Level (IDD2H), Low Level (IDD2L) Output Supply Current, High Level (ISH), Low Level (ISL) Source Current, VE High Level (IEH), and VE Low Level (IEL) Supply Current Test Circuit www.onsemi.com VE 30 V + – FOD8318 TEST CIRCUITS (Continued) FOD8318 1 V IN+ VE 2 V IN– V LED2+ 15 16 0.1 mF + 5V – 3 V DD1 4 GND1 5 RESET DESAT 14 V DD2 13 VS 12 6 FAULT VO 7 V LED1+ V CLAMP 10 8 V LED1−* 11 3 kW V SS ICHG/DSCHG + – V DESAT 0.1 mF + – VE V RL VO + 30 V – RL 0.1 mF IOLF 10 nF 9 Figure 43. Low Level Output Current During Fault Conditions (IOLF), Blanking Capacitor Charge Current (ICHG), Blanking Capacitor Discharging Current (IDSCHG), and DESAT Threshold (VDESAT) Test Circuit FOD8318 0.1 mF + 5V – 1 V IN+ VE 2 V IN– V LED2+ 15 3 V DD1 4 GND1 5 16 DESAT 14 V DD2 13 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 8 V LED1−* V SS VO 0.1 mF DC Sweep + 0 to 15 V – (100 steps) Parameter Analyzer 9 Figure 44. Under−Voltage Lockout Threshold (VUVLO) Test Circuit F = 10 kHz DC = 50 % + – 0.1 mF + 5V – FOD8318 1 V IN+ VE 2 V IN– V LED2+ 15 3 V DD1 4 GND1 5 16 DESAT 14 V DD2 13 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 8 V LED1−* 0.1 mF VE V CL VO 0.1 mF + 30 V – RL 3 kW 10 nF V SS 9 Figure 45. Propagation Delay (tPLH, tPHL), Pulse Width Distortion (PWD), Rise Time (tR), and Fall Time (tF) Test Circuit www.onsemi.com 17 + – FOD8318 TEST CIRCUITS (Continued) LOW to HIGH + FOD8318 – + 5V – 0.1 mF 1 V IN+ VE 16 2 V IN– V LED2+ 15 3 V DD1 DESAT 14 4 GND1 V DD2 13 5 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 8 V LED1−* V SS 9 100 pF 0.1 mF VE VO + – + 30 V – 0.1 mF RL 3 kW V FAULT 10 nF Figure 46. DESAT Sense (tDESAT(90 %), tDESAT(10 %)), DESAT Fault (tDESAT(FAULT)), and (tDESAT(LOW)) Test Circuit FOD8318 0.1 mF + 5V – 3 kW VE 1 V IN+ 2 V IN– V LED2+ 15 3 V DD1 DESAT 14 4 GND1 V DD2 13 5 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 8 V LED1−* V SS 9 Strobe 8 V 0.1 mF VE 0.1 mF 30 V VO + – + – RL + V FAULT 16 – 10 nF Figure 47. Reset Delay (tRESET(FAULT)) Test Circuit FOD8318 0.1 mF + 5V – 1 V IN+ VE 16 2 V IN– V LED2+ 15 3 V DD1 DESAT 14 4 GND1 V DD2 13 5 RESET VS 12 6 FAULT VO 11 3 kW 7 V LED1+ V CLAMP 10 8 V LED1−* V SS 9 0.1 mF VE + – VO 0.1 mF + V DD2** – **1.0 ms ramp for tUVLO **10 ms ramp for tGP Figure 48. Under−Voltage Lockout Delay (tUVLO) and Time to Good Power (tGP) Test Circuit www.onsemi.com 18 FOD8318 TEST CIRCUITS (Continued) FOD8318 5V 0.1 mF 1 kW 300 pF 1 VIN+ VE 16 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 VDD2 13 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1−* VSS 9 25 V 0.1 mF SCOPE 10 W 10 nF VCM Floating GND Figure 49. Common Mode Low (CML) Test Circuit at LED1 Off FOD8318 5V 0.1 mF 1 kW 300 pF Floating GND 1 VIN+ VE 16 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 VDD2 13 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1− * VSS 9 25 V VCM Figure 50. Common Mode High (CMH) Test Circuit at LED1 On www.onsemi.com 19 0.1 mF SCOPE 10 W 10 nF FOD8318 TEST CIRCUITS (Continued) FOD8318 5V 0.1 mF 1 V IN+ VE 16 2 V IN– VLED2+ 15 3 V DD1 DESAT 14 4 GND1 VDD2 13 5 RESET VS 12 6 FAULT VO 11 7 V LED1+ VCLAMP 10 8 V LED1−* VSS 9 25 V 0.1 mF 1 kW SCOPE 300 pF 10 W 10 nF VCM Floating GND Figure 51. Common Mode High (CMH) Test Circuit at LED2 Off FOD8318 5V 0.1 mF 1 kW SCOPE 300 pF 1 VIN+ VE 16 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 VDD2 13 750 W 25 V 0.1 mF 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1− * VSS 9 10 W 10 nF VCM Floating GND Figure 52. Common Mode Low (CML) Test Circuit at LED2 On www.onsemi.com 20 + – 9V FOD8318 TEST CIRCUITS (Continued) FOD8318 + 5V – 0.1 mF 1 V IN+ VE 16 2 V IN– V LED2+ 15 3 V DD1 DESAT 14 4 GND1 V DD2 13 5 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 8 V LED1−* V SS 9 0.1 mF 0V + – 0.1 mF + – ICLAMPL + 3 kW Pulsed – V CLAMP Figure 53. Clamp Low Level Sinking Current (ICLAMPL) A FOD8318 S1 1 V IN+ VE 16 2 V IN– V LED2+ 15 3 V DD1 DESAT 14 4 GND1 V DD2 13 5 RESET VS 12 6 FAULT VO 11 7 V LED1+ V CLAMP 10 8 V LED1−* V SS 9 B + 5V – 0.1 mF 0.1 mF + 30 V – Initially set S1 to A before connecting 3 V to clamp pin. Then switch to B before sweeping down to get the VCLAMP_THRES, clamping threshold voltage. Figure 54. Clamp Pin Threshold Voltage (VCLAMP) 21 + – 0.1 mF 3 kW www.onsemi.com 0V 50 W + Sweep from 3 V –+ to V CLAMP_THRES FOD8318 TIMING DIAGRAMS V IN+ 2.5 V V IN– 0V 2.5 V tR tF 90% 50% 10% VO tPHL tPLH Figure 55. Propagation Delay (tPLH, tPHL), Rise Time (tR), and Fall Time (tF) Timing Diagram 50% RESET t DESAT (LOW) 7V VDESAT tRESET (FAULT) 50% t DESAT (90%) 90% VO 10% t DESAT (10%) 50% (0.5 x V DD1 ) FAULT t DESAT (FAULT) Figure 56. Definitions for Fault Reset Input (RESET), Desaturation Voltage Input (DESAT), Output Voltage (VO), and Fault Output (FAULT) Timing Waveforms www.onsemi.com 22 FOD8318 APPLICATION INFORMATION VIN+ 2 VIN– VLED2+ 15 3 V DD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT 11 7 VLED1+ 8 VLED1− * VE 16 1 mF 10 mF C BLANK 100 pF D DESAT 1 kW 3 kW Micro Controller 5 V + 0.1 mF – FOD8318 1 330 pF VDD2 13 VO – + Q1 + V DD2 = 15 V – 1 mF + VF VCE Rg – 3−Phase Output VCLAMP 10 Q2 9 VSS + VCE – Figure 57. Recommended Application Circuit Functional Description The relationship between the inputs and output are illustrated in the Figure 59. During normal operation, when no fault is detected, the FAULT output, which is an open−drain configuration, is latched to HIGH state. This allows the gate driver to be controlled by the input logic signal. When a fault is detected, the FAULT output is latched to LOW state. This condition remains until the input logic is pulled to LOW and the RESET pin is also pulled LOW for a period longer than PWRESET. The functional behavioral of FOD8318 is illustrated by the detailed internal schematic shown in Figure 58. This explains the interaction and sequence of internal and external signals, together with the timing diagrams. Non−Inverting and Inverting Inputs There are two CMOS/TTL−compatible inputs, VIN+ and VIN−, to control the IGBT in non−inverting and inverting configurations, respectively. When VIN− is set to LOW state, VIN+ controls the driver output, VO, in non−inverting configuration. When VIN+ is set to HIGH state, VIN− controls the driver output in inverting configuration. 250 mA + – VDD1 3 VLED+ VIN+ 1 7 VIN– 2 FAULT 14 DESAT VDESAT Gate Drive Optocoupler 16 VE UVLO Comparator 6 – + 13 12 V 12 4 VDD2 VS GND1 Delay VLED1– 8 R S RESET 5 11 Q Fault Sense Optocoupler 50x 5 ms Pulse Generator 1x 15 VLED2+ Figure 58. Detailed Internal Schematic www.onsemi.com 23 VO 9, 10 VSS FOD8318 Gate Driver Output A pair of PMOS and NMOS comprise the output driver stage, which facilitates close to rail−to−rail output swing. This feature allows a tight control of gate voltage during on−state and short−circuit condition. The output driver is typically to sink 2 A and source 2 A at room temperature. Due to the low RDS(ON) of the MOSFETs, the power dissipation is reduced as compared to those bipolar−type driver output stages. The absolute maximum rating of the output peak current, IO(PEAK), is 3 A; therefore the careful selection of the gate resistor, Rg, is required to limit the short−circuit current of the IGBT. As shown in Figure 58, gate driver output is influenced by signals from the photodetector circuitry, the UVLO comparator, and the DESAT signals. Under no−fault condition, normal operation resumes while the supply voltage is above the UVLO threshold, the output of the photodetector drives the MOSFETs of the output stage. The logic circuitry of the output stage ensures that the push−pull devices are never “ON” simultaneously. When the output of the photodetector is HIGH, the output, VO, is pulled to HIGH state by turning on the PMOS. When the output of the photodetector is LOW, VO is pulled to LOW state by turning on the NMOS. When VDD2 supply goes below VUVLO, which is the designated UVLO threshold at the comparator, VO is pulled down to LOW state regardless of photodetector output. When desaturation is detected, VO turns off slowly as it is pulled LOW by the 1XNMOS device. The input to the fault sense circuitry is latched to HIGH state and turns on the LED. When VO goes below 2 V, the 50XNMOS device turns on again, clamping the IGBT gate firmly to VSS. The Fault Sense signal remains latched in the HIGH state until the LED of the gate driver circuitry turns off. external capacitance (CBLANK), FAULT threshold voltage (VDESAT), and DESAT charge current (ICHG) as: t BLANK + C BLANK V DESAT ń I CHG (eq. 1) With a recommended 100 pF DESAT capacitor, the nominal blanking time is: 100 pF 7 V ń 250 mA + 2.8 ms “Soft” Turn−Off The soft turn−off feature ensures the safe turn off of the IGBT under fault conditions. This reduces the voltage spike on the collector of the IGBT. Without this, the IGBT would see a heavy spike on the collector and result in permanent damage to the device. Under−Voltage Lockout Under−voltage detection prevents the application of insufficient gate voltage to the IGBT. This could be dangerous, as it would drive the IGBT out of saturation and into the linear operation where the losses are very high and quickly overheated. This feature ensures the proper operating of the IGBTs. The output voltage, VO, remains LOW regardless of the inputs as long as the supply voltage, VDD2 – VE, is less than VUVLO+. When the supply voltage falls below VUVLO−, VO goes LOW, as illustrated in Figure 61. Active Miller Clamp Function An active Miller clamp feature allows the sinking of the Miller current to the ground or emitter of the IGBT during a high−dV/dt situation. Instead of driving the IGBT gate to a negative supply voltage to increase the safety margin, the device has a dedicated VCLAMP pin to control the Miller current. During turn−off, the gate voltage of the IGBT is monitored and the VCLAMP output is activated when the gate voltage goes below 2 V (relative to VSS). The Miller clamp NMOS transistor is then turned on and provides a low resistive path for the Miller current. This helps prevent a self−turn−on due to the parasitic Miller capacitor in power switches. The clamp voltage is VOL + 2.5 V maximum for a Miller current up to 1200 mA. In this way, the VCLAMP function does not affect the turn−off characteristic. It helps to clamp the gate to the LOW level throughout the turn−off time. During turn−on, where the input of the driver is activated, the VCLAMP function is disabled or opened. Desaturation Protection, FAULT Output Desaturation detection protection ensures the protection of the IGBT at short−circuit by monitoring the collector−emitter voltage of the IGBT in the half bridge. When the DESAT voltage goes up and reaches above the threshold voltage, a short−circuit condition is detected and the driver output stage executes a “soft” IGBT turn−off and is eventually driven LOW, as illustrated in Figure 60. The FAULT open−drain output is triggered active LOW to report a desaturation error. It is only cleared by activating active LOW by the external controller to the RESET input with the input logic is pulled to LOW. The DESAT fault detector should be disabled for a short period (blanking time) before the IGBT turns on to allow the collector voltage to fall below DESAT threshold. This blanking period protects against false trigger of the DESAT while the IGBT is turning on. The blanking time is controlled by the internal DESAT charge current, the DESAT voltage threshold, and the external DESAT capacitor (capacitor between DESAT and VE pin). The nominal blanking time can be calculated using Time to Good Power At initial power up, the LED is off and the output of the gate driver should be in the LOW state. Sometimes race conditions exist that causes the output to follow the VE (assuming VDD2 and VE are connected externally), until all of the circuits in the output IC have stabilized. This condition can result in output transitions or transients that are coupled to the driven IGBT. These glitches can cause the high−side and low−side IGBTs to conduct shoot−through current that may result in destructive damage to the power semiconductor devices. ON has introduced a initial turn−on www.onsemi.com 24 FOD8318 delay, generally called “time−to−good power”. This delay, typically 2.5 ms, is only present during the initial power−up of the device. Once powered, the “time−to−good power” delay is determined by the delay of the UVLO circuitry. If the LED is “ON” during the initial turn−on activation, LOW−to−HIGH transition at the output of the gate driver only occurs 2.5 ms after the VDD2 power is applied. V IN– V IN+ VO Figure 59. Input/Output Relationship Normal Operation V IN– Fault Condition Reset 0V 5V V IN+ 0V Blanking Time RESET 7V V DESAT VO FAULT Figure 60. Timing Relationship Among DESAT, FAULT, and RESET V IN– 5V 0V V IN+ V UVLO+ V DD2 −VE VO Figure 61. UVLO for Output Side www.onsemi.com 25 V UVLO– FOD8318 REFLOW PROFILE 260 240 220 200 TP Max. Ramp−up Rate = 3°C/S Max. Ramp−down Rate = 6°C/S tP TL Tsmax Temperature (°C) 180 160 tL Preheat Area Tsmin 140 ts 120 100 80 60 40 20 0 120 240 360 Time 25°C to Peak Time (seconds) Profile Freature Pb−Free Assembly Profile Temperature Minimum (Tsmin) 150°C Temperature Maximum (Tsmax) 200°C Time (tS) from (Tsmin to Tsmax) 60 − 120 seconds Ramp−up Rate (tL to tP) 3°C/second max. Liquidous Temperature (TL) 217°C Time (tL) Maintained Above (TL) 60 – 150 seconds Peak Body Package Temperature 260°C +0°C / –5°C Time (tP) within 5°C of 260°C 30 seconds Ramp−down Rate (TP to TL) 6°C/second max. Time 25°C to Peak Temperature 8 minutes max. Figure 62. Reflow Profile www.onsemi.com 26 FOD8318 ORDERING INFORMATION Package Shipping† FOD8318 SOIC16 W, SO 16−Pin (Pb−Free) 50 Units / Tube FOD8318R2 SOIC16 W, SO 16−Pin (Pb−Free) 750 Units / Tape & Reel FOD8318V SOIC16 W, SO 16−Pin, DIN EN/IEC 60747−5−5 Option (Pb−Free) 50 Units / Tube FOD8318R2V SOIC16 W, SO 16−Pin, DIN EN/IEC 60747−5−5 Option (Pb−Free) 750 Units / Tape & Reel Part Number †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 30. All packages are lead free per JEDEC: J−STD−020B standard. OPTOPLANAR is registered trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. www.onsemi.com 27 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC16 W CASE 751EN ISSUE A GENERIC MARKING DIAGRAM* AWLYWW XXXXXXXXXX XXXXXXXXXX DOCUMENT NUMBER: DESCRIPTION: XXXX A WL Y WW 98AON13751G SOIC16 W DATE 24 AUG 2021 = Specific Device Code *This information is generic. Please refer to = Assembly Location device data sheet for actual part marking. = Wafer Lot Pb−Free indicator, “G” or microdot “G”, may = Year or may not be present. Some products may = Work Week not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
FOD8318 价格&库存

很抱歉,暂时无法提供与“FOD8318”相匹配的价格&库存,您可以联系我们找货

免费人工找货