0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MPSW45AG

MPSW45AG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TO92-3

  • 描述:

    TRANS NPN DARL 50V 1A TO-92

  • 数据手册
  • 价格&库存
MPSW45AG 数据手册
MPSW45, MPSW45A One Watt Darlington Transistors NPN Silicon http://onsemi.com Features • Pb−Free Packages are Available* COLLECTOR 3 BASE 2 MAXIMUM RATINGS Rating Symbol Value Unit Collector −Emitter Voltage MPSW45 MPSW45A VCES 40 50 Vdc Collector −Base Voltage MPSW45 MPSW45A VCBO 50 60 Vdc VEBO 12 Vdc Collector Current − Continuous IC 1.0 Adc Total Device Dissipation @ TA = 25°C Derate above 25°C PD 1.0 8.0 W mW/°C Total Device Dissipation @ TC = 25°C Derate above 25°C PD 2.5 20 W mW/°C TJ, Tstg −55 to +150 °C Characteristic Symbol Max Unit Thermal Resistance, Junction−to−Ambient RqJA 125 °C/W Thermal Resistance, Junction−to−Case RqJC 50 °C/W Emitter −Base Voltage Operating and Storage Junction Temperature Range THERMAL CHARACTERISTICS Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. EMITTER 1 12 1 3 STRAIGHT LEAD BULK PACK 2 3 BENT LEAD TAPE & REEL AMMO PACK TO−92 1 WATT (TO−226) CASE 29−10 STYLE 1 MARKING DIAGRAM MPS W45x AYWW G G MPSW45x = Device Code x = 45A Devices A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2010 August, 2010 − Rev. 4 1 Publication Order Number: MPSW45/D MPSW45, MPSW45A ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max 40 50 − − 50 60 − − 12 − − − 100 100 − 100 25,000 15,000 4,000 150,000 − − Unit OFF CHARACTERISTICS Collector −Emitter Breakdown Voltage (IC = 100 mAdc, VBE = 0) MPSW45 MPSW45A Collector −Base Breakdown Voltage (IC = 100 mAdc, IE = 0) MPSW45 MPSW45A Emitter −Base Breakdown Voltage (IE = 10 mAdc, IC = 0) V(BR)CES V(BR)CBO V(BR)EBO Collector Cutoff Current (VCB = 30 Vdc, IE = 0) (VCB = 40 Vdc, IE = 0) MPSW45 MPSW45A Emitter Cutoff Current (VEB = 10 Vdc, IC = 0) ICBO IEBO Vdc Vdc Vdc nAdc nAdc ON CHARACTERISTICS (Note 1) DC Current Gain (IC = 200 mAdc, VCE = 5.0 Vdc) (IC = 500 mAdc, VCE = 5.0 Vdc) (IC = 1.0 Adc, VCE = 5.0 Vdc) hFE − Collector −Emitter Saturation Voltage (IC = 1.0 Adc, IB = 2.0 mAdc) VCE(sat) − 1.5 Vdc Base−Emitter Saturation Voltage (IC = 1.0 Adc, IB = 2.0 mAdc) VBE(sat) − 2.0 Vdc Base −Emitter On Voltage (IC = 1.0 Adc, VCE = 5.0 Vdc) VBE(on) − 2.0 Vdc fT 100 − MHz Ccb − 6.0 pF SMALL−SIGNAL CHARACTERISTICS Current−Gain − Bandwidth Product (IC = 200 mAdc, VCE = 5.0 Vdc, f = 100 MHz) Collector−Base Capacitance (VCB = 10 Vdc, IE = 0, f = 1.0 MHz) 1. Pulse Test: Pulse Width v 300 ms; Duty Cycle v 2.0%. RS in en IDEAL TRANSISTOR Figure 1. Transistor Noise Model http://onsemi.com 2 MPSW45, MPSW45A NOISE CHARACTERISTICS (VCE = 5.0 Vdc, TA = 25°C) 500 2.0 BANDWIDTH = 1.0 Hz RS ≈ 0 i n, NOISE CURRENT (pA) en, NOISE VOLTAGE (nV) 200 BANDWIDTH = 1.0 Hz 100 10 mA 50 100 mA 20 IC = 1.0 mA 10 1.0 0.7 0.5 IC = 1.0 mA 0.3 0.2 100 mA 0.1 0.07 0.05 10 mA 0.03 0.02 10 20 5.0 10 20 50 100 200 500 1k 2k 5k 10k 20k f, FREQUENCY (Hz) 50k 100k 50 100 200 Figure 3. Noise Current 14 200 BANDWIDTH = 10 Hz TO 15.7 kHz 12 BANDWIDTH = 10 Hz TO 15.7 kHz 100 NF, NOISE FIGURE (dB) VT, TOTAL WIDEBAND NOISE VOLTAGE (nV) Figure 2. Noise Voltage 500 1k 2k 5k 10k 20k 50k 100k f, FREQUENCY (Hz) IC = 10 mA 70 50 100 mA 30 20 1.0 mA 10 1.0 2.0 10 10 mA 8.0 100 mA 6.0 4.0 IC = 1.0 mA 2.0 5.0 10 20 50 100 200 RS, SOURCE RESISTANCE (kΩ) 500 1000 0 1.0 Figure 4. Total Wideband Noise Voltage 2.0 5.0 10 20 50 100 200 RS, SOURCE RESISTANCE (kΩ) Figure 5. Wideband Noise Figure http://onsemi.com 3 500 1000 MPSW45, MPSW45A SMALL−SIGNAL CHARACTERISTICS 20 |h fe |, SMALL-SIGNAL CURRENT GAIN 4.0 TJ = 25°C C, CAPACITANCE (pF) 10 7.0 Cibo Cobo 5.0 3.0 2.0 0.04 0.1 0.2 0.4 1.0 2.0 4.0 VR, REVERSE VOLTAGE (VOLTS) 10 20 VCE = 5.0 V f = 100 MHz TJ = 25°C 2.0 1.0 0.8 0.6 0.4 0.2 0.5 40 1.0 200k hFE, DC CURRENT GAIN TJ = 125°C 100k 70k 50k 25°C 30k 20k 10k 7.0k 5.0k -55°C VCE = 5.0 V 3.0k 2.0k 5.0 7.0 10 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) 500 TJ = 25°C 2.5 IC = 10 mA RθV, TEMPERATURE COEFFICIENTS (mV/°C) TJ = 25°C 1.4 V, VOLTAGE (VOLTS) 50 mA 250 mA 500 mA 2.0 1.5 1.0 0.5 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 IB, BASE CURRENT (mA) 100 200 500 1000 Figure 9. Collector Saturation Region 1.6 VBE(sat) @ IC/IB = 1000 1.2 VBE(on) @ VCE = 5.0 V 1.0 0.8 VCE(sat) @ IC/IB = 1000 0.6 10 500 3.0 Figure 8. DC Current Gain 5.0 7.0 0.5 10 20 50 100 200 IC, COLLECTOR CURRENT (mA) Figure 7. High Frequency Current Gain VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 6. Capacitance 2.0 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) 500 -1.0 -2.0 *APPLIES FOR IC/IB ≤ hFE/3.0 25°C TO 125°C *RqVC FOR VCE(sat) -55°C TO 25°C -3.0 25°C TO 125°C -4.0 qVB FOR VBE -5.0 -55°C TO 25°C -6.0 5.0 7.0 10 Figure 10. “On” Voltages 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) Figure 11. Temperature Coefficients http://onsemi.com 4 500 r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) MPSW45, MPSW45A 1.0 0.7 0.5 D = 0.5 0.2 0.3 0.2 0.05 0.1 SINGLE PULSE 0.1 0.07 0.05 SINGLE PULSE ZθJC(t) = r(t) • RθJCTJ(pk) - TC = P(pk) ZθJC(t) ZθJA(t) = r(t) • RθJATJ(pk) - TA = P(pk) ZθJA(t) 0.03 0.02 0.01 0.1 0.2 0.5 1.0 2.0 10 5.0 20 50 t, TIME (ms) 100 200 500 1.0k 2.0k 5.0k 10k Figure 12. Thermal Response IC, COLLECTOR CURRENT (mA) 1.0k 700 500 FIGURE A 1.0 ms tP 300 TC = 25°C TA = 25°C 200 100 ms PP 1.0 s 100 70 50 PP t1 30 CURRENT LIMIT THERMAL LIMIT SECOND BREAKDOWN LIMIT 20 10 0.4 0.6 1/f t DUTYCYCLE + t1f + 1 tP PEAK PULSE POWER = PP 40 1.0 2.0 4.0 6.0 10 20 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 13. Active Region Safe Operating Area Design Note: Use of Transient Thermal Resistance Data ORDERING INFORMATION Package Shipping† MPSW45G TO−92 (Pb−Free) 5,000 Units / Box MPSW45RLREG TO−92 (Pb−Free) 2,000 / Tape & Reel TO−92 5,000 Units / Box TO−92 (Pb−Free) 5,000 Units / Box TO−92 2,000 / Tape & Reel TO−92 (Pb−Free) 2,000 / Tape & Reel TO−92 2,000 / Ammo Pack TO−92 (Pb−Free) 2,000 / Ammo Pack Device MPSW45A MPSW45AG MPSW45ARLRA MPSW45ARLRAG MPSW45AZL1 MPSW45AZL1G †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TO−92 (TO−226) 1 WATT CASE 29−10 ISSUE D SCALE 1:1 12 3 STRAIGHT LEAD 1 DATE 05 MAR 2021 2 3 BENT LEAD STYLES AND MARKING ON PAGE 3 DOCUMENT NUMBER: DESCRIPTION: 98AON52857E TO−92 (TO−226) 1 WATT Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 3 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TO−92 (TO−226) 1 WATT CASE 29−10 ISSUE D DATE 05 MAR 2021 STYLES AND MARKING ON PAGE 3 DOCUMENT NUMBER: DESCRIPTION: 98AON52857E TO−92 (TO−226) 1 WATT Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 3 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com TO−92 (TO−226) 1 WATT CASE 29−10 ISSUE D DATE 05 MAR 2021 STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR STYLE 2: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. DRAIN 2. SOURCE 3. GATE STYLE 6: PIN 1. GATE 2. SOURCE & SUBSTRATE 3. DRAIN STYLE 7: PIN 1. SOURCE 2. DRAIN 3. GATE STYLE 8: PIN 1. DRAIN 2. GATE 3. SOURCE & SUBSTRATE STYLE 9: PIN 1. BASE 1 2. EMITTER 3. BASE 2 STYLE 10: PIN 1. CATHODE 2. GATE 3. ANODE STYLE 11: PIN 1. ANODE 2. CATHODE & ANODE 3. CATHODE STYLE 12: PIN 1. MAIN TERMINAL 1 2. GATE 3. MAIN TERMINAL 2 STYLE 13: PIN 1. ANODE 1 2. GATE 3. CATHODE 2 STYLE 14: PIN 1. EMITTER 2. COLLECTOR 3. BASE STYLE 15: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 STYLE 16: PIN 1. ANODE 2. GATE 3. CATHODE STYLE 17: PIN 1. COLLECTOR 2. BASE 3. EMITTER STYLE 18: PIN 1. ANODE 2. CATHODE 3. NOT CONNECTED STYLE 19: PIN 1. GATE 2. ANODE 3. CATHODE STYLE 20: PIN 1. NOT CONNECTED 2. CATHODE 3. ANODE STYLE 21: PIN 1. COLLECTOR 2. EMITTER 3. BASE STYLE 22: PIN 1. SOURCE 2. GATE 3. DRAIN STYLE 23: PIN 1. GATE 2. SOURCE 3. DRAIN STYLE 24: PIN 1. EMITTER 2. COLLECTOR/ANODE 3. CATHODE STYLE 25: PIN 1. MT 1 2. GATE 3. MT 2 STYLE 26: PIN 1. 2. 3. STYLE 27: PIN 1. MT 2. SUBSTRATE 3. MT STYLE 28: PIN 1. CATHODE 2. ANODE 3. GATE STYLE 29: PIN 1. NOT CONNECTED 2. ANODE 3. CATHODE STYLE 30: PIN 1. DRAIN 2. GATE 3. SOURCE STYLE 32: PIN 1. BASE 2. COLLECTOR 3. EMITTER STYLE 33: PIN 1. RETURN 2. INPUT 3. OUTPUT STYLE 34: PIN 1. INPUT 2. GROUND 3. LOGIC STYLE 35: PIN 1. GATE 2. COLLECTOR 3. EMITTER VCC GROUND 2 OUTPUT STYLE 31: PIN 1. GATE 2. DRAIN 3. SOURCE GENERIC MARKING DIAGRAM* XXXXX XXXXX ALYWG G XXXX A L Y W G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. DOCUMENT NUMBER: DESCRIPTION: 98AON52857E TO−92 (TO−226) 1 WATT Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 3 OF 3 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MPSW45AG 价格&库存

很抱歉,暂时无法提供与“MPSW45AG”相匹配的价格&库存,您可以联系我们找货

免费人工找货