0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NLAS4051DTR2G

NLAS4051DTR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP16

  • 描述:

    IC MUX/DEMUX 8X1 16TSSOP

  • 数据手册
  • 价格&库存
NLAS4051DTR2G 数据手册
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. NLAS4051 Analog Multiplexer/ Demultiplexer TTL Compatible, Single−Pole, 8−Position Plus Common Off http://onsemi.com The NLAS4051 is an improved version of the MC14051 and MC74HC4051 fabricated in sub−micron Silicon Gate CMOS technology for lower RDS(on) resistance and improved linearity with low current. This device may be operated either with a single supply or dual supply up to ±3.0 V to pass a 6.0 VPP signal without coupling capacitors. When operating in single supply mode, it is only necessary to tie VEE, pin 7 to ground. For dual supply operation, VEE is tied to a negative voltage, not to exceed maximum ratings. MARKING DIAGRAMS 16 SOIC−16 D SUFFIX CASE 751B 1 1 16 Features • Improved RDS(on) Specifications • Pin for Pin Replacement for MAX4051 and MAX4051A • 1 One Half the Resistance Operating at 5.0 V Single or Dual Supply Operation ♦ Single 2.5−5.0 V Operation, or Dual ±3.0 V Operation ♦ With VCC of 3.0 to 3.3 V, Device Can Interface with 1.8 V Logic, No Translators Needed ♦ Address and Inhibit Logic are Over−Voltage Tolerant and May Be Driven Up +6.0 V Regardless of VCC Improved Linearity Over Standard HC4051 Devices Packages Pb−Free Packages are Available* VCC 16 1 NO1 NO2 NO4 NO0 NO6 ADDC ADDB ADDA 15 14 13 12 2 3 NO3 COM 4 5 NO7 NO5 11 6 10 7 Inhibit VEE NLAS 4051 ALYWG G TSSOP−16 DT SUFFIX CASE 948F ♦ • • Popular SOIC, and Space Saving TSSOP, and QSOP 16 Pin • NLAS4051G AWLYWW 1 16 QSOP−16 QS SUFFIX CASE 492 1 S4051 ALYW 1 A WL, L Y WW, W G or G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package ORDERING INFORMATION Package Shipping † NLAS4051DR2 SOIC−16 2500/Tape & Reel NLAS4051DR2G SOIC−16 (Pb−Free) 2500/Tape & Reel NLAS4051DTR2 TSSOP−16 2500/Tape & Reel Device 9 NLAS4051DTR2G TSSOP−16 2500/Tape & Reel (Pb−Free) 8 GND NLAS4051QSR Figure 1. Pin Connection (Top View) QSOP−16 2500/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2006 May, 2006 − Rev. 3 1 Publication Order Number: NLAS4051/D NLAS4051 NO0 TRUTH TABLE Address NO1 Inhibit C B A ON SWITCHES* 1 X don’t care X don’t care X don’t care All switches open 0 0 0 0 COM−NO0 0 0 0 1 COM−NO1 NO4 0 0 1 0 COM−NO2 NO5 0 0 1 1 COM−NO3 0 1 0 0 COM−NO4 0 1 0 1 COM−NO5 0 1 1 0 COM−NO6 0 1 1 1 COM−NO7 NO2 NO3 COM NO6 NO7 ADDC ADDB ADDA *NO and COM pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction. LOGIC Inhibit Figure 2. Logic Diagram ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS Symbol Value Unit Negative DC Supply Voltage Parameter (Referenced to GND) VEE −7.0 to )0.5 V Positive DC Supply Voltage (Note 1) (Referenced to GND) (Referenced to VEE) VCC −0.5 to )7.0 −0.5 to )7.0 V VIS VEE −0.5 to VCC )0.5 V VIN −0.5 to 7.0 V I $50 mA −65 to )150 _C Analog Input Voltage Digital Input Voltage (Referenced to GND) DC Current, Into or Out of Any Pin Storage Temperature Range TSTG Lead Temperature, 1 mm from Case for 10 Seconds TL 260 _C Junction Temperature under Bias TJ )150 _C Thermal Resistance SOIC TSSOP QSOP JA 143 164 164 °C/W Power Dissipation in Still Air, SOIC TSSOP QSOP PD 500 450 450 mW MSL Level 1 FR UL 94 V−0 @ 0.125 in VESD u2000 u200 u1000 V ILATCHUP $300 mA Moisture Sensitivity Flammability Rating ESD Withstand Voltage Latchup Performance Oxygen Index: 30% − 35% Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) Above VCC and Below GND at 125°C (Note 5) Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. The absolute value of VCC $|VEE| ≤ 7.0. 2. Tested to EIA/JESD22−A114−A. 3. Tested to EIA/JESD22−A115−A. 4. Tested to JESD22−C101−A. 5. Tested to EIA/JESD78. http://onsemi.com 2 NLAS4051 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol Min Max Unit Negative DC Supply Voltage Parameter (Referenced to GND) VEE −5.5 GND V Positive DC Supply Voltage (Referenced to GND) (Referenced to VEE) VCC 2.5 2.5 5.5 6.6 V VIS VEE VCC V (Note 6) (Referenced to GND) VIN 0 5.5 V TA −55 125 _C tr, tf 0 0 100 20 ns/V Analog Input Voltage Digital Input Voltage Operating Temperature Range, All Package Types VCC = 3.0 V $ 0.3 V VCC = 5.0 V $ 0.5 V Input Rise/Fall Time (Channel Select or Enable Inputs) 6. Unused digital inputs may not be left open. All digital inputs must be tied to a high−logic voltage level or a low−logic input voltage level. DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND) Parameter Symbol Condition Guaranteed Limit VCC V −55 to 25°C v85°C v125°C Unit Minimum High−Level Input Voltage, Address and Inhibit Inputs VIH 2.5 3.0 4.5 5.5 1.75 2.1 3.15 3.85 1.75 2.1 3.15 3.85 1.75 2.1 3.15 3.85 V Maximum Low−Level Input Voltage, Address and Inhibit Inputs VIL 2.5 3.0 4.5 5.5 .45 0.9 1.35 1.65 .45 0.9 1.35 1.65 .45 0.9 1.35 1.65 V VIN = 6.0 or GND IIN 0 V to 6.0 V $0.1 $1.0 $1.0 A Address, Inhibit and VIS = VCC or GND ICC 6.0 4.0 40 80 A Maximum Input Leakage Current, Address or Inhibit Inputs Maximum Quiescent Supply Current (per Package) ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ DC ELECTRICAL CHARACTERISTICS − Analog Section Symbol Parameter Guaranteed Limit VCC V VEE V −55 to 25°C v85_C v125_C Unit RON 3.0 4.5 3.0 0 0 −3.0 86 37 26 108 46 33 120 55 37  Test Conditions Maximum “ON” Resistance (Note 7) VIN = VIL or VIH VIS = (VEE to VCC) |IS| = 10 mA (Figures 4 thru 9) Maximum Difference in “ON” Resistance Between Any Two Channels in the Same Package VIN = VIL or VIH, VIS= 2.0 V VIS = ½ (VCC − VEE), VIS= 3.0 V |IS| = 10 mA, VIS= 2.0 V RON 3.0 4.5 3.0 0 0 −3.0 15 13 10 20 18 15 20 18 15  ON Resistance Flatness |IS| = 10 mA VCOM = 1, 2, 3.5 V VCOM = 2, 0, 2 V Rflat(ON) 4.5 3.0 4 2 4 2 5 3  3.0 Maximum Off−Channel Leakage Current Switch Off VIN = VIL or VIH VIO = VCC −1.0 V or VEE +1.0 V (Figure 17) INC(OFF) INO(OFF) 6.0 3.0 0 −3.0 0.1 0.1 5.0 5.0 100 100 nA Maximum On−Channel Leakage Current, Channel− to−Channel Switch On VIO = VCC −1.0 V or VEE +1.0 V (Figure 17) ICOM(ON) 6.0 3.0 0 −3.0 0.1 0.1 5.0 5.0 100 100 nA 7. At supply voltage (VCC) approaching 2.5 V the analog switch on−resistance becomes extremely non−linear. Therefore, for low voltage operation it is recommended that these devices only be used to control digital signals. http://onsemi.com 3 NLAS4051 ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ AC CHARACTERISTICS (Input tr = tf = 3 ns) Guaranteed Limit Parameter Minimum Break−Before− Make Time Symbol Test Conditions VIN = VIL or VIH VIS = VCC RL = 300  CL = 35 pF (Figure 19) −55 to 25_C VCC V VEE V Min Typ* v85_C v125_C Unit 3.0 4.5 3.0 0.0 0.0 −3.0 1.0 1.0 1.0 6.5 5.0 3.5 − − − − − − ns tBBM *Typical Characteristics are at 25_C. AC CHARACTERISTICS (CL = 35 pF, Input tr = tf = 3 ns) Guaranteed Limit v85°C −55 to 25°C VCC V VEE V tTRANS 2.5 3.0 4.5 3.0 Turn−on Time (Figures 14, 15, 20, and 21) Inhibit to NO or NC tON Turn−off Time (Figures 14, 15, 20, and 21) Inhibit to NO or NC tOFF Maximum Input Capacitance, Select Inputs CIN 8 CNO or CNC 10 Common I/O CCOM 10 Feedthrough C(ON) 1.0 Symbol Parameter Transition Time (Address Selection Time) (Figure 18) Min Typ Max 0 0 0 −3.0 22 20 16 16 40 28 23 23 2.5 3.0 4.5 3.0 0 0 0 −3.0 22 18 16 16 2.5 3.0 4.5 3.0 0 0 0 −3.0 22 18 16 16 Min v125°C Max Min Max Unit 45 30 25 25 50 35 30 28 ns 40 28 23 23 45 30 25 25 50 35 30 28 ns 40 28 23 23 45 30 25 25 50 35 30 28 ns Typical @ 25°C, VCC = 5.0 V Analog I/O pF ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V) Parameter Condition Symbol Typ VCC V VEE V 25°C Unit Maximum On−Channel Bandwidth or Minimum Frequency Response VIS = ½ (VCC − VEE) Source Amplitude = 0 dBm (Figures 10 and 22) BW 3.0 4.5 6.0 3.0 0.0 0.0 0.0 −3.0 80 90 95 95 MHz Off−Channel Feedthrough Isolation f =100 kHz; VIS = ½ (VCC − VEE) Source = 0 dBm (Figures 12 and 22) VISO 3.0 4.5 6.0 3.0 0.0 0.0 0.0 −3.0 −93 −93 −93 −93 dB Maximum Feedthrough On Loss VIS = ½ (VCC − VEE) Source = 0 dBm (Figures 10 and 22) VONL 3.0 4.5 6.0 3.0 0.0 0.0 0.0 −3.0 −2 −2 −2 −2 dB Charge Injection VIN = VCC to VEE, fIS = 1 kHz, tr = tf = 3 ns RIS = 0 , CL= 1000 pF, Q = CL * VOUT (Figures 16 and 23) Q 5.0 3.0 0.0 −3.0 9.0 12 pC Total Harmonic Distortion THD + Noise fIS = 1 MHz, RL = 10 K, CL = 50 pF, VIS = 5.0 VPP sine wave VIS = 6.0 VPP sine wave (Figure 13) 6.0 3.0 0.0 −3.0 0.10 0.05 http://onsemi.com 4 THD % NLAS4051 100 100 10 2.0 V 80 RON () ICC (nA) 1 0.1 0.01 40 VCC = 3.0 V 0.001 3.0 V 4.5 V 5.5 V 20 0.0001 VCC = 5.0 V 0.00001 −40 −20 0 20 60 80 100 0 −4.0 120 −2.0 0 2.0 4.0 6.0 Temperature (°C) VIS (VDC) Figure 3. ICC versus Temp, VCC = 3 V and 5 V Figure 4. RON versus VCC, Temp = 255C 50 100 125°C 90 125°C 85°C 40 80 25°C 70 60 RON () RON () 60 50 85°C 40 25°C 30 20 −55°C 30 10 20 −55°C 10 0 0 0.5 1.0 1.5 0 2.0 1.0 2.0 2.5 Figure 5. Typical On Resistance VCC = 2.0 V, VEE = 0 V Figure 6. Typical On Resistance VCC = 3.0 V, VEE = 0 V 3.0 25 125°C 125°C 85°C 20 15 15 RON () 20 25°C 10 85°C 10 25°C −55°C −55°C 5 5 0 0 1.5 VCom (V) 25 RON () 0.5 VCom (V) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VCom (V) VCom (V) Figure 7. Typical On Resistance VCC = 4.5 V, VEE = 0 V Figure 8. Typical On Resistance VCC = 5.5 V, VEE = 0 V http://onsemi.com 5 4.0 4.5 NLAS4051 25 125°C 85°C RON () 20 15 10 −55°C 25°C 5 0 −4 −2 0 VCom (V) 2 4 Figure 9. Typical On Resistance VCC = 3.3 V, VEE = −3.3 V 90 40 72 PHASE SHIFT 18%/DIV (dB) 50 BANDWIDTH (dB) 30 20 10 0 −10 BANDWIDTH (ON−RESPONSE) −20 −30 −40 54 36 18 0 PHASE SHIFT −18 −36 −54 −72 −50 −90 0.1 1.0 10 100 0.1 FREQUENCY (mHz) 1.0 10 100 FREQUENCY (mHz) Figure 10. Bandwidth, VCC = 5.0 V Figure 11. Phase Shift, VCC = 5.0 V 0 0 −20 DISTORTION (%) OFF ISOLATION 10 dB/DIV −10 −30 −40 −50 −60 −70 3.0 5.5 4.5 0.1 $3.3 −80 −90 −100 0.01 0.1 1.0 10 100 10 FREQUENCY (mHz) 100 1000 10000 10000 FREQUENCY (mHz) Figure 12. Off Isolation, VCC = 5.0 V Figure 13. Total Harmonic Distortion http://onsemi.com 6 NLAS4051 30 30 VCC = 4.5 V 25 20 20 TIME (ns) TIME (ns) TA = 25_C 25 15 tON (ns) 10 15 tOFF (ns) 5 0 2.5 3 3.5 4 4.5 10 tON 5 tOFF 0 −55 5 −40 25 85 125 VCC (VOLTS) Temperature (°C) Figure 14. tON and tOFF versus VCC Figure 15. tON and tOFF versus Temp 3.0 100 2.5 10 VCC = 5 V LEAKAGE (nA) Q (pC) 2.0 1.5 1.0 0.5 1 ICOM(ON) 0.1 ICOM(OFF) VCC = 3 V 0.01 0 VCC = 5.0 V INO(OFF) −0.5 0.001 0 1 3 4 5 −55 −20 25 70 85 125 VCOM (V) TEMPERATURE (°C) Figure 16. Charge Injection versus COM Voltage Figure 17. Switch Leakage versus Temperature VCC 0.1 F 2 VCC Output VOUT VEE 300  Input 50% 50% 0V 35 pF VCC 90% Output Address Select Pin VEE 10% ttrans Figure 18. Channel Selection Propagation Delay http://onsemi.com 7 ttrans NLAS4051 VCC DUT VCC Input Output GND VOUT 0.1 F 300  tBMM 35 pF 90% 90% of VOH Output Address Select Pin GND Figure 19. tBBM (Time Break−Before−Make) VCC DUT Input VCC 0.1 F 50% 0V Output VOUT Open 50% 300  VOH 35 pF 90% 90% Output GND Enable Input tON tOFF Figure 20. tON/tOFF VCC VCC Input DUT Output 50% 300  VOUT Open 50% 0V VCC 35 pF Output Input 10% VOL Enable tOFF Figure 21. tON/tOFF http://onsemi.com 8 10% tON NLAS4051 50  DUT Reference Transmitted Input Output 50  Generator 50  Channel switch Address and Inhibit/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. VISO, Bandwidth and VONL are independent of the input signal direction. ǒVVOUT Ǔ for VIN at 100 kHz IN V VONL = On Channel Loss = 20 Log ǒ OUTǓ for VIN at 100 kHz to 50 MHz VIN VISO = Off Channel Isolation = 20 Log Bandwidth (BW) = the frequency 3 dB below VONL Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/VONL DUT VCC VIN Output Open GND CL Output Off Off On VIN Figure 23. Charge Injection: (Q) TYPICAL OPERATION +5.0 V 16 +3.0 V VCC 16 VEE VEE 7 GND 8 GND VCC 7 8 −3.0 V Figure 24. 5.0 Volts Single Supply VCC = 5.0 V, VEE = 0 Figure 25. Dual Supply VCC = 3.0 V, VEE = −3.0 V http://onsemi.com 9 VOUT NLAS4051 PACKAGE DIMENSIONS SOIC−16 D SUFFIX CASE 751B−05 ISSUE J NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 16 9 −B− 1 P 8 PL 0.25 (0.010) 8 B M S G R K DIM A B C D F G J K M P R F X 45 _ C −T− SEATING PLANE J M D 16 PL 0.25 (0.010) M T B S A MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 S TSSOP−16 CASE 948F−01 ISSUE A 16X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S K ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 2X L/2 16 9 J1 B −U− L SECTION N−N J PIN 1 IDENT. 8 1 N 0.15 (0.006) T U S 0.25 (0.010) A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. M N F DETAIL E −W− C 0.10 (0.004) −T− SEATING PLANE H D DETAIL E G http://onsemi.com 10 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.18 0.28 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.007 0.011 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ NLAS4051 PACKAGE DIMENSIONS QSOP−16 QS SUFFIX CASE 492−01 ISSUE O −A− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. THE BOTTOM PACKAGE SHALL BE BIGGER THAN THE TOP PACKAGE BY 4 MILS (NOTE: LEAD SIDE ONLY). BOTTOM PACKAGE DIMENSION SHALL FOLLOW THE DIMENSION STATED IN THIS DRAWING. 4. PLASTIC DIMENSIONS DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 6 MILS PER SIDE. 5. BOTTOM EJECTOR PIN WILL INCLUDE THE COUNTRY OF ORIGIN (COO) AND MOLD CAVITY I.D. Q R H x 45_ U RAD. 0.013 X 0.005 DP. MAX −B− MOLD PIN MARK RAD. 0.005−0.010 TYP G L 0.25 (0.010) M P T DETAIL E V K C N 8 PL INCHES DIM MIN MAX A 0.189 0.196 B 0.150 0.157 C 0.061 0.068 D 0.008 0.012 F 0.016 0.035 G 0.025 BSC H 0.008 0.018 J 0.0098 0.0075 K 0.004 0.010 L 0.230 0.244 M 0_ 8_ N 0_ 7_ P 0.007 0.011 Q 0.020 DIA R 0.025 0.035 U 0.025 0.035 V 0_ 8_ MILLIMETERS MIN MAX 4.80 4.98 3.81 3.99 1.55 1.73 0.20 0.31 0.41 0.89 0.64 BSC 0.20 0.46 0.249 0.191 0.10 0.25 5.84 6.20 0_ 8_ 0_ 7_ 0.18 0.28 0.51 DIA 0.64 0.89 0.64 0.89 0_ 8_ −T− D 16 PL 0.25 (0.010) SEATING PLANE M T B S A S J M F DETAIL E ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 11 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NLAS4051/D
NLAS4051DTR2G 价格&库存

很抱歉,暂时无法提供与“NLAS4051DTR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货