0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NSVMMBT5088LT3G

NSVMMBT5088LT3G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT346

  • 描述:

    TRANS NPN 30V 0.05A SOT23-3

  • 数据手册
  • 价格&库存
NSVMMBT5088LT3G 数据手册
MMBT5088L, MMBT5089L Low Noise Transistors NPN Silicon Features • S and NSV Prefix for Automotive and Other Applications Requiring • www.onsemi.com Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant SOT−23 (TO−236) CASE 318 STYLE 6 MAXIMUM RATINGS Rating Symbol Value Unit Collector −Emitter Voltage MMBT5088L MMBT5089L VCEO Collector −Base Voltage MMBT5088L MMBT5089L VCBO Emitter −Base Voltage VEBO 4.5 Vdc IC 50 mAdc Collector Current − Continuous COLLECTOR 3 Vdc 30 25 1 BASE Vdc 35 30 2 EMITTER MARKING DIAGRAM THERMAL CHARACTERISTICS Characteristic Total Device Dissipation FR−5 Board, (Note 1) TA = 25°C Derate above 25°C Thermal Resistance, Junction−to−Ambient Total Device Dissipation Alumina Substrate, (Note 2) TA = 25°C Derate above 25°C Thermal Resistance, Junction−to−Ambient Junction and Storage Temperature Symbol Max Unit 225 1.8 mW mW/°C 556 °C/W 300 2.4 mW mW/°C RqJA 417 °C/W TJ, Tstg −55 to +150 °C 1x M G G PD RqJA PD Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. FR−5 = 1.0 x 0.75 x 0.062 in. 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina. 1 1x = Device Code x = Q for MMBT5088L SMMBT5088L x = R for MMBT5089L SMMBT5089L M = Date Code* G = Pb−Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location. ORDERING INFORMATION Package Shipping† MMBT5088LT1G, SMMBT5088LT1G SOT−23 (Pb−Free) 3,000 / Tape & Reel NSVMMBT5088LT3G SOT−23 (Pb−Free) 10,000 / Tape & Reel MMBT5089LT1G, SMMBT5089LT1G SOT−23 (Pb−Free) 3,000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 1994 October, 2016 − Rev. 6 1 Publication Order Number: MMBT5088LT1/D MMBT5088L, MMBT5089L ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max 30 25 − − 35 30 − − − − 50 50 − − 50 100 MMBT5088L MMBT5089L 300 400 900 1200 (IC = 1.0 mAdc, VCE = 5.0 Vdc) MMBT5088L MMBT5089L 350 450 − − (IC = 10 mAdc, VCE = 5.0 Vdc) MMBT5088L MMBT5089L 300 400 − − − 0.5 − 0.8 50 − − 4.0 − 10 350 450 1400 1800 − − 3.0 2.0 Unit OFF CHARACTERISTICS V(BR)CEO Collector −Emitter Breakdown Voltage (IC = 1.0 mAdc, IB = 0) MMBT5088L MMBT5089L Collector −Base Breakdown Voltage (IC = 100 mAdc, IE = 0) Vdc V(BR)CBO MMBT5088L MMBT5089L Collector Cutoff Current (VCB = 20 Vdc, IE = 0) (VCB = 15 Vdc, IE = 0) MMBT5088L MMBT5089L Emitter Cutoff Current (VEB(off) = 3.0 Vdc, IC = 0) (VEB(off) = 4.5 Vdc, IC = 0) MMBT5088L MMBT5089L Vdc ICBO nAdc IEBO nAdc ON CHARACTERISTICS DC Current Gain (IC = 100 mAdc, VCE = 5.0 Vdc) hFE Collector −Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) VCE(sat) Base −Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) VBE(sat) − Vdc Vdc SMALL− SIGNAL CHARACTERISTICS Current −Gain — Bandwidth Product (IC = 500 mAdc, VCE = 5.0 Vdc, f = 20 MHz) fT Collector−Base Capacitance (VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz emitter guarded) Ccb Emitter−Base Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz collector guarded) Ceb Small Signal Current Gain (IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 1.0 kHz) MHz pF pF hfe MMBT5088L MMBT5089L Noise Figure (IC = 100 mAdc, VCE = 5.0 Vdc, RS = 10 kW, f = 1.0 kHz) − NF MMBT5088L MMBT5089L dB Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. RS in en IDEAL TRANSISTOR Figure 1. Transistor Noise Model www.onsemi.com 2 MMBT5088L, MMBT5089L NOISE CHARACTERISTICS (VCE = 5.0 Vdc, TA = 25°C) NOISE VOLTAGE 30 30 BANDWIDTH = 1.0 Hz BANDWIDTH = 1.0 Hz 20 RS ≈ 0 IC = 10 mA en , NOISE VOLTAGE (nV) en , NOISE VOLTAGE (nV) 20 3.0 mA 10 1.0 mA 7.0 5.0 RS ≈ 0 f = 10 Hz 10 100 Hz 7.0 10 kHz 1.0 kHz 5.0 300 mA 3.0 10 20 50 100 200 3.0 0.01 0.02 500 1k 2k 5k 10k 20k 50k 100k f, FREQUENCY (Hz) Figure 2. Effects of Frequency IC = 10 mA 3.0 mA 1.0 mA 300 mA 0.3 100 mA 0.2 RS ≈ 0 0.1 10 20 10 mA 50 100 200 10 16 3.0 1.0 0.7 0.5 5.0 20 BANDWIDTH = 1.0 Hz 2.0 0.05 0.1 0.2 0.5 1.0 2.0 IC, COLLECTOR CURRENT (mA) Figure 3. Effects of Collector Current NF, NOISE FIGURE (dB) In, NOISE CURRENT (pA) 10 7.0 5.0 100 kHz BANDWIDTH = 10 Hz to 15.7 kHz 12 500 mA 8.0 IC = 1.0 mA 100 mA 10 mA 4.0 30 mA 0 10 500 1k 2k 5k 10k 20k 50k 100k f, FREQUENCY (Hz) 20 Figure 4. Noise Current 50 100 200 500 1k 2k 5k 10k 20k 50k 100k RS, SOURCE RESISTANCE (OHMS) Figure 5. Wideband Noise Figure 100 Hz NOISE DATA 20 BANDWIDTH = 1.0 Hz IC = 10 mA 16 100 mA 100 70 50 NF, NOISE FIGURE (dB) VT, TOTAL NOISE VOLTAGE (nV) 300 200 3.0 mA 1.0 mA 30 300 mA 20 10 7.0 5.0 30 mA 10 mA IC = 10 mA 3.0 mA 1.0 mA 12 300 mA 8.0 100 mA 30 mA 4.0 10 mA BANDWIDTH = 1.0 Hz 0 3.0 10 20 10 50 100 200 500 1k 2k 5k 10k 20k 50k 100k RS, SOURCE RESISTANCE (OHMS) Figure 6. Total Noise Voltage 20 50 100 200 500 1k 2k 5k 10k 20k 50k 100k RS, SOURCE RESISTANCE (OHMS) Figure 7. Noise Figure www.onsemi.com 3 h FE, DC CURRENT GAIN (NORMALIZED) MMBT5088L, MMBT5089L 4.0 3.0 VCE = 5.0 V 2.0 TA = 125°C 25°C 1.0 -55°C 0.7 0.5 0.4 0.3 0.2 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 IC, COLLECTOR CURRENT (mA) 1.0 2.0 3.0 5.0 10 Figure 8. DC Current Gain 1.0 RθVBE, BASE-EMITTER TEMPERATURE COEFFICIENT (mV/ °C) -0.4 TJ = 25°C V, VOLTAGE (VOLTS) 0.8 0.6 VBE @ VCE = 5.0 V 0.4 0.2 -0.8 -1.2 TJ = 25°C to 125°C -1.6 -2.0 -55°C to 25°C VCE(sat) @ IC/IB = 10 0 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA) 50 -2.4 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 IC, COLLECTOR CURRENT (mA) 100 8.0 C, CAPACITANCE (pF) 6.0 TJ = 25°C Cob 4.0 3.0 Ceb Cib Ccb 2.0 1.0 0.8 0.1 0.2 1.0 2.0 5.0 0.5 10 20 VR, REVERSE VOLTAGE (VOLTS) 50 100 Figure 9. Temperature Coefficients f T, CURRENT-GAIN — BANDWIDTH PRODUCT (MHz) Figure 11. “On” Voltages 20 50 100 Figure 12. Capacitance 500 300 200 100 VCE = 5.0 V TJ = 25°C 70 50 1.0 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA) 50 70 100 Figure 10. Current−Gain — Bandwidth Product www.onsemi.com 4 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOT−23 (TO−236) CASE 318−08 ISSUE AS DATE 30 JAN 2018 SCALE 4:1 D 0.25 3 E 1 2 T HE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. DIM A A1 b c D E e L L1 HE T L 3X b L1 VIEW C e TOP VIEW A A1 SIDE VIEW SEE VIEW C c MIN 0.89 0.01 0.37 0.08 2.80 1.20 1.78 0.30 0.35 2.10 0° MILLIMETERS NOM MAX 1.00 1.11 0.06 0.10 0.44 0.50 0.14 0.20 2.90 3.04 1.30 1.40 1.90 2.04 0.43 0.55 0.54 0.69 2.40 2.64 −−− 10 ° MIN 0.035 0.000 0.015 0.003 0.110 0.047 0.070 0.012 0.014 0.083 0° INCHES NOM 0.039 0.002 0.017 0.006 0.114 0.051 0.075 0.017 0.021 0.094 −−− MAX 0.044 0.004 0.020 0.008 0.120 0.055 0.080 0.022 0.027 0.104 10° GENERIC MARKING DIAGRAM* END VIEW RECOMMENDED SOLDERING FOOTPRINT XXXMG G 1 3X 2.90 3X XXX = Specific Device Code M = Date Code G = Pb−Free Package 0.90 *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. 0.95 PITCH 0.80 DIMENSIONS: MILLIMETERS STYLE 1 THRU 5: CANCELLED STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE STYLE 11: STYLE 12: PIN 1. ANODE PIN 1. CATHODE 2. CATHODE 2. CATHODE 3. CATHODE−ANODE 3. ANODE STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE STYLE 18: STYLE 19: STYLE 20: PIN 1. NO CONNECTION PIN 1. CATHODE PIN 1. CATHODE 2. CATHODE 2. ANODE 2. ANODE 3. GATE 3. ANODE 3. CATHODE−ANODE STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42226B SOT−23 (TO−236) STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NSVMMBT5088LT3G 价格&库存

很抱歉,暂时无法提供与“NSVMMBT5088LT3G”相匹配的价格&库存,您可以联系我们找货

免费人工找货