0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PZT3904T1G

PZT3904T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT223-3

  • 描述:

    通用三极管 NPN 40V 200mA SOT223

  • 数据手册
  • 价格&库存
PZT3904T1G 数据手册
PZT3904T1G General Purpose Transistor NPN Silicon Features • S Prefix for Automotive and Other Applications Requiring Unique • http://onsemi.com Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant COLLECTOR 2, 4 1 BASE MAXIMUM RATINGS Rating Symbol Value Unit Collector −Emitter Voltage VCEO 40 Vdc Collector −Base Voltage VCBO 60 Vdc Emitter −Base Voltage VEBO 6.0 Vdc IC 200 mAdc Collector Current − Continuous 3 EMITTER 4 1 MARKING DIAGRAM THERMAL CHARACTERISTICS Symbol Max Unit Total Device Dissipation (Note 1) TA = 25°C PD 1.5 12 W mW/°C Thermal Resistance Junction−to−Ambient (Note 1) RqJA Thermal Resistance Junction−to−Lead #4 RqJA Junction and Storage Temperature Range 3 SOT−223 CASE 318E STYLE 1 Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Characteristic 2 TJ, Tstg AYW 1AM G G °C/W 83.3 1 °C/W 35 °C −55 to +150 1. FR−4 with 1 oz and 713 mm2 of copper area. 1AM A Y W G = Specific Device Code = Assembly Location = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Device Package Shipping† PZT3904T1G SOT−223 (Pb−Free) 1,000 / Tape & Reel SPZT3904T1G SOT−223 (Pb−Free) 1,000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2013 September, 2013 − Rev. 6 1 Publication Order Number: PZT3904T1/D PZT3904T1G ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max Unit Collector −Emitter Breakdown Voltage (Note 3) (IC = 1.0 mAdc, IB = 0) V(BR)CEO 40 − Vdc Collector −Base Breakdown Voltage (IC = 10 mAdc, IE = 0) V(BR)CBO 60 − Emitter −Base Breakdown Voltage (IE = 10 mAdc, IC = 0) V(BR)EBO 6.0 − IBL − 50 ICEX − 50 40 70 100 60 30 − − 300 − − − − 0.2 0.3 0.65 − 0.85 0.95 fT 300 − MHz Output Capacitance (VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz) Cobo − 5.0 pF Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) Cibo − 8.0 Input Impedance (VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) hie 1.0 10 kW Voltage Feedback Ratio (VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) hre 0.5 8.0 X 10− 4 Small −Signal Current Gain (VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) hfe 100 400 − Output Admittance (VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) hoe 1.0 40 mMhos Noise Figure (VCE = 5.0 Vdc, IC = 100 mAdc, RS = 1.0 kW, f = 1.0 kHz) nF − 5.0 dB (VCC = 3.0 Vdc, VBE = − 0.5 Vdc, IC = 10 mAdc, IB1 = 1.0 mAdc) td − 35 ns tr − 35 (VCC = 3.0 Vdc, IC = 10 mAdc, IB1 = IB2 = 1.0 mAdc) ts − 200 tf − 50 OFF CHARACTERISTICS (Note 2) Base Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc) Collector Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc) nAdc ON CHARACTERISTICS (Note 3) HFE DC Current Gain (Note 2) (IC = 0.1 mAdc, VCE = 1.0 Vdc) (IC = 1.0 mAdc, VCE = 1.0 Vdc) (IC = 10 mAdc, VCE = 1.0 Vdc) (IC = 50 mAdc, VCE = 1.0 Vdc) (IC = 100 mAdc, VCE = 1.0 Vdc) Collector −Emitter Saturation Voltage (Note 3) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc) VCE(sat) Base −Emitter Saturation Voltage (Note 3) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc) VBE(sat) − Vdc Vdc SMALL−SIGNAL CHARACTERISTICS Current −Gain − Bandwidth Product (IC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz) SWITCHING CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time 2. FR−5 = 1.0  0.75  0.062 in. 3. Pulse Test: Pulse Width v 300 ms, Duty Cycle v 2.0%. DUTY CYCLE = 2% 300 ns +3 V +10.9 V 10 < t1 < 500 ms 275 DUTY CYCLE = 2% t1 +3 V +10.9 V 275 10 k 10 k 0 -0.5 V CS < 4 pF* < 1 ns 1N916 -9.1 V′ < 1 ns * Total shunt capacitance of test jig and connectors Figure 1. Delay and Rise Time Equivalent Test Circuit Figure 2. Storage and Fall Time Equivalent Test Circuit http://onsemi.com 2 CS < 4 pF* PZT3904T1G TYPICAL TRANSIENT CHARACTERISTICS TJ = 25°C TJ = 125°C 10 5000 7.0 2000 5.0 Q, CHARGE (pC) CAPACITANCE (pF) VCC = 40 V IC/IB = 10 3000 Cibo 3.0 Cobo 2.0 1000 700 500 QT 300 200 QA 1.0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 100 70 50 20 30 40 1.0 2.0 3.0 REVERSE BIAS VOLTAGE (VOLTS) Figure 3. Capacitance 20 30 50 70 100 200 Figure 4. Charge Data 500 500 IC/IB = 10 100 70 tr @ VCC = 3.0 V 50 30 20 VCC = 40 V IC/IB = 10 300 200 t r, RISE TIME (ns) 300 200 TIME (ns) 5.0 7.0 10 IC, COLLECTOR CURRENT (mA) 40 V 100 70 50 30 20 15 V 10 7 5 10 2.0 V td @ VOB = 0 V 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 IC, COLLECTOR CURRENT (mA) Figure 5. Turn −On Time Figure 6. Rise Time IC/IB = 10 200 500 t′s = ts - 1/8 tf IB1 = IB2 VCC = 40 V IB1 = IB2 300 200 IC/IB = 20 t f , FALL TIME (ns) t s′ , STORAGE TIME (ns) IC/IB = 20 200 IC, COLLECTOR CURRENT (mA) 500 300 200 7 5 100 70 IC/IB = 20 50 IC/IB = 10 30 20 100 70 50 10 10 7 5 7 5 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 IC/IB = 10 30 20 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 7. Storage Time Figure 8. Fall Time http://onsemi.com 3 200 PZT3904T1G TYPICAL AUDIO SMALL−SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS (VCE = 5.0 Vdc, TA = 25°C, Bandwidth = 1.0 Hz) 14 12 SOURCE RESISTANCE = 200 W IC = 1.0 mA f = 1.0 kHz SOURCE RESISTANCE = 200 W IC = 0.5 mA 8 6 SOURCE RESISTANCE = 1.0 k IC = 50 mA 4 SOURCE RESISTANCE = 500 W IC = 100 mA 2 0 0.1 0.2 0.4 1.0 2.0 IC = 1.0 mA 12 NF, NOISE FIGURE (dB) NF, NOISE FIGURE (dB) 10 IC = 0.5 mA 10 IC = 50 mA 8 IC = 100 mA 6 4 2 4.0 10 20 40 0 100 0.1 0.2 0.4 20 40 0.3 0.5 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 10 5.0 10 1.0 2.0 4.0 10 f, FREQUENCY (kHz) RS, SOURCE RESISTANCE (k W) Figure 9. Figure 10. 100 h PARAMETERS (VCE = 10 Vdc, f = 1.0 kHz, TA = 25°C) 100 hoe, OUTPUT ADMITTANCE (m mhos) h fe , CURRENT GAIN 300 200 100 70 50 30 0.1 0.2 0.3 0.5 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 50 20 10 5 2 1 10 0.1 0.2 Figure 11. Current Gain Figure 12. Output Admittance h re , VOLTAGE FEEDBACK RATIO (X 10 -4 ) h ie , INPUT IMPEDANCE (k OHMS) 20 10 5.0 2.0 1.0 0.5 0.2 0.1 0.2 0.3 0.5 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 10 7.0 5.0 3.0 2.0 1.0 0.7 0.5 10 0.1 Figure 13. Input Impedance 0.2 0.3 0.5 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) Figure 14. Voltage Feedback Ratio http://onsemi.com 4 PZT3904T1G h FE, DC CURRENT GAIN (NORMALIZED) TYPICAL STATIC CHARACTERISTICS 2.0 TJ = +125°C VCE = 1.0 V +25°C 1.0 0.7 -55°C 0.5 0.3 0.2 0.1 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) VCE, COLLECTOR EMITTER VOLTAGE (VOLTS) Figure 15. DC Current Gain 1.0 TJ = 25°C 0.8 IC = 1.0 mA 10 mA 30 mA 100 mA 0.6 0.4 0.2 0 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IB, BASE CURRENT (mA) Figure 16. Collector Saturation Region 1.0 1.2 TJ = 25°C VBE(sat) @ IC/IB =10 0.8 VBE @ VCE =1.0 V 0.6 0.4 VCE(sat) @ IC/IB =10 qVC FOR VCE(sat) 0 -55°C TO +25°C -0.5 -55°C TO +25°C -1.0 +25°C TO +125°C qVB FOR VBE(sat) -1.5 0.2 0 +25°C TO +125°C 0.5 COEFFICIENT (mV/ °C) V, VOLTAGE (VOLTS) 1.0 1.0 2.0 5.0 10 20 50 100 -2.0 200 0 20 40 60 80 100 120 140 160 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 17. “ON” Voltages Figure 18. Temperature Coefficients http://onsemi.com 5 180 200 PZT3904T1G TYPICAL CHARACTERISTICS IC, COLLECTOR CURRENT (A) 1 10 ms 1.0 s 0.1 0.01 1 10 VCE, COLLECTOR−EMITTER VOLTAGE (V) Figure 19. Safe Operating Area http://onsemi.com 6 100 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOT−223 (TO−261) CASE 318E−04 ISSUE R DATE 02 OCT 2018 SCALE 1:1 q q DOCUMENT NUMBER: DESCRIPTION: 98ASB42680B SOT−223 (TO−261) Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2018 www.onsemi.com SOT−223 (TO−261) CASE 318E−04 ISSUE R STYLE 1: PIN 1. 2. 3. 4. BASE COLLECTOR EMITTER COLLECTOR STYLE 2: PIN 1. 2. 3. 4. ANODE CATHODE NC CATHODE STYLE 6: PIN 1. 2. 3. 4. RETURN INPUT OUTPUT INPUT STYLE 7: PIN 1. 2. 3. 4. ANODE 1 CATHODE ANODE 2 CATHODE STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2 STYLE 3: PIN 1. 2. 3. 4. GATE DRAIN SOURCE DRAIN STYLE 8: STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT CANCELLED DATE 02 OCT 2018 STYLE 4: PIN 1. 2. 3. 4. SOURCE DRAIN GATE DRAIN STYLE 5: PIN 1. 2. 3. 4. STYLE 9: PIN 1. 2. 3. 4. INPUT GROUND LOGIC GROUND STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE DRAIN GATE SOURCE GATE STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR GENERIC MARKING DIAGRAM* AYW XXXXXG G 1 A = Assembly Location Y = Year W = Work Week XXXXX = Specific Device Code G = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. DOCUMENT NUMBER: DESCRIPTION: 98ASB42680B SOT−223 (TO−261) Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2018 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
PZT3904T1G 价格&库存

很抱歉,暂时无法提供与“PZT3904T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货
PZT3904T1G
  •  国内价格
  • 1+1.09494
  • 100+1.03964
  • 300+0.98434
  • 500+0.92904
  • 2000+0.90139
  • 5000+0.88480

库存:29