SINGLE CHANNEL T1/E1/J1
LONG HAUL/SHORT HAUL
LINE INTERFACE UNIT
IDT82V2081
FEATURES
•
•
•
•
•
•
•
Single channel T1/E1/J1 long haul/short haul line interface
Supports HPS (hitless protection Switching) for 1+1 protection
without external relays
Receiver sensitivity exceeds -36 dB@772KHz and -43 dB@1024
KHz
Programmable T1/E1/J1 switchability allowing one bill of material for any line condition
Single 3.3 V power supply with 5 V tolerance on digital interfaces
Meets or exceeds specifications in
- ANSI T1.102, T1.403 and T1.408
- ITU I.431, G.703, G.736, G.775 and G.823
- ETSI 300-166, 300-233 and TBR12/13
- AT&T Pub 62411
Software programmable or hardware selectable on:
- Wave-shaping templates for short haul and long haul LBO (Line Build
Out)
- Line terminating impedance (T1:100 , J1:110 E1:75 120
- Adjustment of arbitrary pulse shape
- JA (Jitter Attenuator) position (receive path or transmit path)
- Single rail/dual rail system interfaces
- B8ZS/HDB3/AMI line encoding/decoding
- Active edge of transmit clock (TCLK) and receive clock (RCLK)
- Active level of transmit data (TDATA) and receive data (RDATA)
•
•
•
•
•
•
•
- Receiver or transmitter power down
- High impedance setting for line drivers
- PRBS (pseudo random bit sequence) generation and detection with
215-1 PRBS polynomials for E1
- QRSS (quasi random signal source) generation and detection with
220-1 QRSS polynomials for T1/J1
- 16-bit BPV (bipolar pulse violation) /excess zero/PRBS or QRSS
error counter
- Analog loopback, digital loopback, remote loopback and inband loopback
Cable attenuation indication
Adaptive receive sensitivity
Short circuit protection and internal protection diode for line
drivers
AIS (alarm indication signal) detection
Supports serial control interface, Motorola and Intel multiplexed
interfaces and hardware control mode
Pin compatible 82V2041E T1/E1/J1 short haul LIU and 82V2051E
E1 short haul LIU
Package:
Available in 44-pin TQFP and 48-pin QFN packages
DESCRIPTION
The IDT82V2081 can be configured as a single channel T1, E1 or J1
line interface unit. In the receive path, an adaptive equalizer is integrated
to remove the distortion introduced by cable attenuation. The IDT82V2081
also performs clock/data recovery, AMI/B8ZS/HDB3 line decoding and
detects and reports LOS conditions. In the transmit path, there is an AMI/
B8ZS/HDB3 encoder, waveform shaper and LBOs. There is one jitter attenuator, which can be placed in either the receive path or the transmit path.
The jitter attenuator can also be disabled. The IDT82V2081 supports both
single rail and dual rail system interfaces. To facilitate the network maintenance, a PRBS/QRSS generation/detection circuit is integrated in the chip,
and different types of loopbacks can be set according to the applications.
Four different kinds of line terminating impedance, 75 , 100 110 and
120 are selectable. The IDT82V2081 also provides driver short-circuit
protection and internal protection diodes. The IDT82V2081 can be controlled by either software or hardware.
The IDT82V2081 can be used in LAN, WAN, routers, wireless base stations, IADs, IMAs, IMAPs, gateways, frame relay access devices, CSU/
DSU equipment, etc.
IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.
1
2005 Integrated Device Technology, Inc.
November 14, 2012
DSC-6228/5
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
FUNCTIONAL BLOCK DIAGRAM
Figure-1 Block Diagram
Functional Block Diagram
2
November 14, 2012
Table of Contents
1
IDT82V2081 Pin Configurations ................................................................................................. 8
2
Pin Description .......................................................................................................................... 10
3
Functional Description .............................................................................................................. 16
3.1
Control Mode Selection .................................................................................................... 16
3.2
T1/E1/J1 Mode Selection .................................................................................................. 16
3.3
Transmit Path ................................................................................................................... 16
3.3.1 Transmit Path System Interface.............................................................................. 16
3.3.2 Encoder.................................................................................................................. 16
3.3.3 Pulse Shaper .......................................................................................................... 16
3.3.3.1 Preset Pulse Templates .......................................................................... 16
3.3.3.2 LBO (Line Build Out) ............................................................................... 17
3.3.3.3 User-Programmable Arbitrary Waveform ................................................ 18
3.3.4 Transmit Path Line Interface................................................................................... 22
3.3.5 Transmit Path Power Down .................................................................................... 22
3.4
Receive Path .................................................................................................................... 23
3.4.1 Receive Internal Termination .................................................................................. 23
3.4.2 Line Monitor ............................................................................................................ 24
3.4.3 Adaptive Equalizer .................................................................................................. 25
3.4.4 Receive Sensitivity.................................................................................................. 25
3.4.5 Data Slicer .............................................................................................................. 25
3.4.6 CDR (Clock & Data Recovery)................................................................................ 25
3.4.7 Decoder .................................................................................................................. 25
3.4.8 Receive Path System Interface............................................................................... 26
3.4.9 Receive Path Power Down ..................................................................................... 26
3.5
Jitter Attenuator ................................................................................................................ 26
3.5.1 Jitter Attenuation Function Description ................................................................... 26
3.5.2 Jitter Attenuator Performance ................................................................................. 27
3.6
Los And AIS Detection ...................................................................................................... 27
3.6.1 LOS Detection......................................................................................................... 27
3.6.2 AIS Detection .......................................................................................................... 29
3.7
Transmit And Detect Internal Patterns .............................................................................. 31
3.7.1 Transmit All Ones ................................................................................................... 31
3.7.2 Transmit All Zeros................................................................................................... 31
3.7.3 PRBS/QRSS Generation And Detection................................................................. 31
3.8
Loopback .......................................................................................................................... 31
3.8.1 Analog Loopback .................................................................................................... 31
3.8.2 Digital Loopback ..................................................................................................... 31
Table of Contents
3
November 14, 2012
IDT82V2051E
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.8.3 Remote Loopback................................................................................................... 31
3.8.4 Inband Loopback .................................................................................................... 33
3.8.4.1 Transmit Activate/Deactivate Loopback Code......................................... 33
3.8.4.2 Receive Activate/Deactivate Loopback Code.......................................... 33
3.8.4.3 Automatic Remote Loopback .................................................................. 33
Error Detection/Counting And Insertion ............................................................................ 35
3.9.1 Definition Of Line Coding Error ............................................................................... 35
3.9.2 Error Detection And Counting ................................................................................. 35
3.9.3 Bipolar Violation And PRBS Error Insertion ............................................................ 36
Line Driver Failure Monitoring ........................................................................................... 36
MCLK And TCLK .............................................................................................................. 37
3.11.1 Master Clock (MCLK).............................................................................................. 37
3.11.2 Transmit Clock (TCLK) ........................................................................................... 37
Microcontroller Interfaces ................................................................................................. 38
3.12.1 Parallel Microcontroller Interface ............................................................................ 38
3.12.2 Serial Microcontroller Interface ............................................................................... 38
Interrupt Handling ............................................................................................................. 38
5V Tolerant I/O Pins ......................................................................................................... 39
Reset Operation ................................................................................................................ 39
Power Supply .................................................................................................................... 39
4
Programming Information ........................................................................................................ 40
4.1
Register List And Map ...................................................................................................... 40
4.2
Reserved Registers .......................................................................................................... 40
4.3
Register Description ......................................................................................................... 41
4.3.1 Control Registers .................................................................................................... 41
4.3.2 Transmit Path Control Registers............................................................................. 43
4.3.3 Receive Path Control Registers.............................................................................. 45
4.3.4 Network Diagnostics Control Registers .................................................................. 48
4.3.5 Interrupt Control Registers...................................................................................... 51
4.3.6 Line Status Registers.............................................................................................. 54
4.3.7 Interrupt Status Registers ....................................................................................... 57
4.3.8 Counter Registers ................................................................................................... 59
5
Hardware Control Pin Summary .............................................................................................. 60
6
Test Specifications .................................................................................................................... 62
7
Microcontroller Interface Timing Characteristics ................................................................... 75
7.1
Serial Interface Timing ...................................................................................................... 75
7.2
Parallel Interface Timing ................................................................................................... 76
Table of Contents
4
November 14, 2012
List of Figures
Figure-1
Figure-2
Figure-3
Figure-4
Figure-5
Figure-6
Figure-7
Figure-8
Figure-9
Figure-10
Figure-11
Figure-12
Figure-13
Figure-14
Figure-15
Figure-16
Figure-17
Figure-18
Figure-19
Figure-20
Figure-21
Figure-22
Figure-23
Figure-24
Figure-25
Figure-26
Figure-27
Figure-28
Figure-29
Figure-30
Figure-31
List of Figures
Block Diagram ................................................................................................................. 2
IDT82V2081 TQFP Package Pin Assignment ................................................................ 8
IDT82V2081 NLG Package Pin Assignment ................................................................... 9
E1 Waveform Template Diagram .................................................................................. 17
E1 Pulse Template Test Circuit ..................................................................................... 17
DSX-1 Waveform Template .......................................................................................... 17
Receive Monitor Gain Adaptive Equalizer ..................................................................... 23
Transmit/Receive Line Circuit ....................................................................................... 24
Monitoring Receive Line in Another Chip ...................................................................... 24
Monitor Transmit Line in Another Chip .......................................................................... 24
Jitter Attenuator ............................................................................................................. 26
LOS Declare and Clear ................................................................................................. 27
Analog Loopback .......................................................................................................... 32
Digital Loopback ............................................................................................................ 32
Remote Loopback ......................................................................................................... 33
Auto Report Mode ......................................................................................................... 35
Manual Report Mode ..................................................................................................... 36
TCLK Operation Flowchart ............................................................................................ 37
Serial Microcontroller Interface Function Timing ........................................................... 38
Transmit System Interface Timing ................................................................................ 69
Receive System Interface Timing ................................................................................. 69
E1 Jitter Tolerance Performance .................................................................................. 70
/J1 Jitter Tolerance Performance .................................................................................. 71
E1 Jitter Transfer Performance ..................................................................................... 73
Serial Interface Write Timing ......................................................................................... 75
Serial Interface Read Timing with SCLKE=1 ................................................................ 75
Serial Interface Read Timing with SCLKE=0 ................................................................ 75
Multiplexed Motorola Read Timing ................................................................................ 76
Multiplexed Motorola Write Timing ................................................................................ 77
Multiplexed Intel Read Timing ....................................................................................... 78
Multiplexed Intel Write Timing ....................................................................................... 79
5
November 14, 2012
List of Tables
Table-1
Table-2
Table-3
Table-4
Table-5
Table-6
Table-7
Table-8
Table-9
Table-10
Table-11
Table-12
Table-13
Table-14
Table-15
Table-16
Table-17
Table-18
Table-19
Table-20
Table-21
Table-22
Table-23
Table-24
Table-25
Table-26
Table-27
Table-28
Table-29
Table-30
Table-31
Table-32
Table-33
Table-34
Table-35
Table-36
Table-37
Table-38
Table-39
Table-40
Table-41
List of Tables
Pin Description ..............................................................................................................
Transmit Waveform Value For E1 75 ohm....................................................................
Transmit Waveform Value For E1 120 ohm..................................................................
Transmit Waveform Value For T1 0~133 ft...................................................................
Transmit Waveform Value For T1 133~266 ft...............................................................
Transmit Waveform Value For T1 266~399 ft...............................................................
Transmit Waveform Value For T1 399~533 ft...............................................................
Transmit Waveform Value For T1 533~655 ft...............................................................
Transmit Waveform Value For J1 0~655 ft ...................................................................
Transmit Waveform Value For DS1 0 dB LBO..............................................................
Transmit Waveform Value For DS1 -7.5 dB LBO .........................................................
Transmit Waveform Value For DS1 -15.0 dB LBO .......................................................
Transmit Waveform Value For DS1 -22.5 dB LBO .......................................................
Impedance Matching for Transmitter ............................................................................
Impedance Matching for Receiver ................................................................................
Criteria of Starting Speed Adjustment...........................................................................
LOS Declare and Clear Criteria for Short Haul Mode ...................................................
LOS Declare and Clear Criteria for Long Haul Mode....................................................
AIS Condition ................................................................................................................
Criteria for Setting/Clearing the PRBS_S Bit ................................................................
EXZ Definition ...............................................................................................................
Interrupt Event...............................................................................................................
Register List and Map ...................................................................................................
ID: Device Revision Register ........................................................................................
RST: Reset Register .....................................................................................................
GCF: Global Configuration Register .............................................................................
TERM: Transmit and Receive Termination Configuration Register ..............................
JACF: Jitter Attenuation Configuration Register ...........................................................
TCF0: Transmitter Configuration Register 0 .................................................................
TCF1: Transmitter Configuration Register 1 .................................................................
TCF2: Transmitter Configuration Register 2 .................................................................
TCF3: Transmitter Configuration Register 3 .................................................................
TCF4: Transmitter Configuration Register 4 .................................................................
RCF0: Receiver Configuration Register 0.....................................................................
RCF1: Receiver Configuration Register 1.....................................................................
RCF2: Receiver Configuration Register 2.....................................................................
MAINT0: Maintenance Function Control Register 0......................................................
MAINT1: Maintenance Function Control Register 1......................................................
MAINT2: Maintenance Function Control Register 2......................................................
MAINT3: Maintenance Function Control Register 3......................................................
MAINT4: Maintenance Function Control Register 4......................................................
6
10
18
19
19
19
19
20
20
20
20
21
21
21
22
23
27
28
29
30
31
35
39
40
41
41
41
41
42
43
43
44
44
44
45
46
47
48
48
49
49
49
November 14, 2012
IDT82V2051E
Table-42
Table-43
Table-44
Table-45
Table-46
Table-47
Table-48
Table-49
Table-50
Table-51
Table-52
Table-53
Table-54
Table-55
Table-56
Table-57
Table-58
Table-59
Table-60
Table-61
Table-62
Table-63
Table-64
Table-65
Table-66
Table-67
Table-68
Table-69
List of Tables
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
MAINT5: Maintenance Function Control Register 5......................................................
MAINT6: Maintenance Function Control Register 6......................................................
INTM0: Interrupt Mask Register 0 .................................................................................
INTM1: Interrupt Masked Register 1 .............................................................................
INTES: Interrupt Trigger Edge Select Register .............................................................
STAT0: Line Status Register 0 (real time status monitor).............................................
STAT1: Line Status Register 1 (real time status monitor).............................................
INTS0: Interrupt Status Register 0 ................................................................................
INTS1: Interrupt Status Register 1 ................................................................................
CNT0: Error Counter L-byte Register 0.........................................................................
CNT1: Error Counter H-byte Register 1 ........................................................................
Hardware Control Pin Summary ...................................................................................
Absolute Maximum Rating ............................................................................................
Recommended Operation Conditions ...........................................................................
Power Consumption......................................................................................................
DC Characteristics ........................................................................................................
E1 Receiver Electrical Characteristics ..........................................................................
T1/J1 Receiver Electrical Characteristics......................................................................
E1 Transmitter Electrical Characteristics ......................................................................
T1/J1 Transmitter Electrical Characteristics..................................................................
Transmitter and Receiver Timing Characteristics .........................................................
Jitter Tolerance .............................................................................................................
Jitter Attenuator Characteristics ....................................................................................
Serial Interface Timing Characteristics .........................................................................
Multiplexed Motorola Read Timing Characteristics.......................................................
Multiplexed Motorola Write Timing Characteristics .......................................................
Multiplexed Intel Read Timing Characteristics ..............................................................
Multiplexed Intel Write Timing Characteristics ..............................................................
7
49
50
51
52
53
54
56
57
58
59
59
60
62
62
63
63
64
65
66
67
68
69
72
75
76
77
78
79
November 14, 2012
IDT82V2081
1
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
IDT82V2081 PIN CONFIGURATIONS
Figure-2 IDT82V2081 TQFP Package Pin Assignment
IDT82V2081 Pin Configurations
8
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Figure-3 IDT82V2081 NLG Package Pin Assignment
IDT82V2081 Pin Configurations
9
November 14, 2012
IDT82V2081
2
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
PIN DESCRIPTION
Table-1 Pin Description
Name
Type
TQFP 44 QFN 48
Pin No. Pin No.
Description
TTIP
TRING
Analog
output
37
36
40
39
TTIP/TRING: Transmit Bipolar Tip/Ring
These pins are the differential line driver outputs. They will be in high impedance state under the following conditions:
•
THZ pin is high;
•
THZ bit is set to 1;
•
Loss of MCLK;
•
Loss of TCLK (exceptions: Remote Loopback; transmit internal pattern by MCLK);
•
Transmit path power down;
•
After software reset; pin reset and power on.
RTIP
RRING
Analog
input
41
40
44
43
RTIP/RRING: Receive Bipolar Tip/Ring
These signals are the differential receiver inputs.
TD/TDP
TDN
I
2
3
2
3
TD: Transmit Data
When the device is in single rail mode, the NRZ data to be transmitted is input on this pin. Data on TD pin is sampled into
the device on the active edge of TCLK and is encoded by AMI, HDB3 or B8ZS line code rules before being transmitted.
In this mode, TDN should be connected to ground.
TDP/TDN: Positive/Negative Transmit Data
When the device is in dual rail mode, the NRZ data to be transmitted for positive/negative pulse is input on these pins.
Data on TDP/TDN pin is sampled into the device on the active edge of TCLK. The line code in dual rail mode is as follows:
TDP
TDN
0
0
Space
Output Pulse
0
1
Positive Pulse
1
0
Negative Pulse
1
1
Space
TCLK
I
1
1
TCLK: Transmit Clock input
This pin inputs 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode transmit clock. The transmit data at TD/TDP or TDN
is sampled into the device on the active edge of TCLK. If TCLK is missing1 and the TCLK missing interrupt is not masked,
an interrupt will be generated.
RD/RDP
CV/RDN
O
5
6
5
6
RD: Receive Data output
In single rail mode, this pin outputs NRZ data. The data is decoded according to AMI, HDB3 or B8ZS line code rules.
CV: Code Violation indication
In single rail mode, the BPV/CV code violation will be reported by driving the CV pin to high level for a full clock cycle.
B8ZS/HDB3 line code violation can be indicated if the B8ZS/HDB3 decoder is enabled. When AMI decoder is selected,
bipolar violation will be indicated.
In hardware control mode, the EXZ, BPV/CV errors in received data stream are always monitored by the CV pin if single
rail mode is chosen.
RDP/RDN: Positive/Negative Receive Data output
In dual rail mode, this pin outputs the re-timed NRZ data when CDR is enabled, or directly outputs the raw RZ slicer data
if CDR is bypassed.
Active edge and level select:
Data on RDP/RDN or RD is clocked with either the rising or the falling edge of RCLK. The active polarity is also selectable.
Notes:
1. TCLK missing: the state of TCLK continues to be high level or low level over 70 MCLK cycles.
Pin Description
10
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-1 Pin Description (Continued)
Name
Type
TQFP 44 QFN 48
Pin No. Pin No.
Description
RCLK
O
4
4
RCLK: Receive Clock output
This pin outputs 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode receive clock. Under LOS condition with AIS
enabled (bit AISE=1), RCLK is derived from MCLK. In clock recovery mode, this signal provides the clock recovered from
the RTIP/RRING signal. The receive data (RD in single rail mode or RDP and RDN in dual rail mode) is clocked out of
the device on the active edge of RCLK. If clock recovery is bypassed, RCLK is the exclusive OR (XOR) output of the dual
rail slicer data RDP and RDN. This signal can be used in applications with external clock recovery circuitry.
MCLK
I
9
9
MCLK: Master Clock input
A built-in clock system that accepts selectable 2.048MHz reference for E1 operating mode and 1.544MHz reference for
T1/J1 operating mode. This reference clock is used to generate several internal reference signals:
•
Timing reference for the integrated clock recovery unit.
•
Timing reference for the integrated digital jitter attenuator.
•
Timing reference for microcontroller interface.
•
Generation of RCLK signal during a loss of signal condition.
•
Reference clock to transmit All Ones, all zeros, PRBS/QRSS pattern as well as activate or deactivate Inband
Loopback code if MCLK is selected as the reference clock. Note that for ATAO and AIS, MCLK is always used as
the reference clock.
•
Reference clock during the Transmit All Ones (TAO) condition or sending PRBS/QRSS in hardware control mode.
The loss of MCLK will turn TTIP/TRING into high impedance status.
LOS
O
7
7
LOS: Loss of Signal Output
This is an active high signal used to indicate the loss of received signal. When LOS pin becomes high, it indicates the loss
of received signal. The LOS pin will become low automatically when valid received signal is detected again. The criteria
of loss of signal are described in 3.6 Los And AIS Detection.
REF
I
43
46
REF: reference resister
An external resistor (3 K, 1%) is used to connect this pin to ground to provide a standard reference current for internal
circuit.
MODE1
MODE0
I
17
16
19
18
MODE[1:0]: operation mode of Control interface select
The level on this pin determines which control mode is used to control the device as follows:
MODE[1:0]
•
•
•
RCLKE
I
Pin Description
11
11
Control Interface mode
00
Hardware interface
01
Serial Microcontroller Interface
10
Parallel –Multiplexed -Motorola Interface
11
Parallel –Multiplexed -Intel Interface
The serial microcontroller Interface consists of CS, SCLK, SCLKE, SDI, SDO and INT pins. SCLKE is used for the
selection of the active edge of SCLK.
The parallel multiplexed microcontroller interface consists of CS, AD[7:0], DS/RD, R/W/WR, ALE/AS, ACK/RDY
and INT pins. (refer to 3.12 Microcontroller Interfaces for details)
Hardware interface consists of PULS[3:0], THZ, RCLKE, LP[1:0], PATT[1:0], JA[1:0], MONT, TERM, EQ, RPD,
MODE[1:0] and RXTXM[1:0]
RCLKE: the active edge of RCLK select
In hardware control mode, this pin selects the active edge of RCLK
•
L= select the rising edge as the active edge of RCLK
•
H= select the falling edge as the active edge of RCLK
In software control mode, this pin should be connected to GNDIO.
11
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-1 Pin Description (Continued)
Name
Type
CS
I
TQFP 44 QFN 48
Pin No. Pin No.
21
23
RXTXM1
Description
CS: Chip Select
In serial or parallel microcontroller interface mode, this is the active low enable signal. A low level on this pin enables serial
or parallel microcontroller interface.
RXTXM[1:0]: Receive and transmit path operation mode select
In hardware control mode, these pins are used to select the single rail or dual rail operation modes as well as AMI or
HDB3/B8ZS line coding:
•
00= single rail with HDB3/B8ZS coding
•
01= single rail with AMI coding
•
10= dual rail interface with CDR enabled
•
11= slicer mode (dual rail interface with CDR disabled)
INT
O
RXTXM0
I
SCLK
I
20
22
INT: Interrupt Request
In software control mode, this pin outputs the general interrupt request for all interrupt sources. These interrupt sources
can be masked individually via registers (INTM0, 14H) and (INTM1, 15H). The interrupt status is reported via the registers
(INTS0, 19H) and (INTS1, 1AH).
Output characteristics of this pin can be defined to be push-pull (active high or active low) or open-drain (active low) by
setting INT_PIN[1:0] (GCF, 02H).
RXTXM0
See RXTXM1 above.
25
27
SCLK: Shift Clock
In serial microcontroller interface mode, this signal is the shift clock for the serial interface. Configuration data on SDI pin
is sampled on the rising edge of SCLK. Configuration and status data on SDO pin is clocked out of the device on the falling
edge of SCLK if SCLKE pin is high, or on the rising edge of SCLK if SCLKE pin is low.
ALE
ALE: Address Latch Enable
In parallel microcontroller interface mode with multiplexed Intel interface, the address on AD[7:0] is sampled into the
device on the falling edge of ALE.
AS
AS: Address Strobe
In parallel microcontroller interface mode with multiplexed Motorola interface, the address on AD[7:0] is latched into the
device on the falling edge of AS.
LP1
LP[1:0]: Loopback mode select
When the chip is configured by hardware, this pin is used to select loopback operation modes (Inband Loopback is not
provided in hardware control mode):
•
00= no loopback
•
01= analog loopback
•
10= digital loopback
•
11= remote loopback
SDI
I
24
26
SDI: Serial Data Input
In serial microcontroller interface mode, this signal is the input data to the serial interface. Configuration data at SDI pin
is sampled by the device on the rising edge of SCLK.
WR
WR: Write Strobe
In Intel parallel multiplexed interface mode, this pin is asserted low by the microcontroller to initiate a write cycle. The data
on AD[7:0] is sampled into the device in a write operation.
R/W
R/W: Read/Write Select
In Motorola parallel multiplexed interface mode, this pin is low for write operation and high for read operation.
LP0
LP0
See LP1 above.
Pin Description
12
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-1 Pin Description (Continued)
Name
Type
SDO
O
TQFP 44 QFN 48
Pin No. Pin No.
23
25
Description
SDO: Serial Data Output
In serial microcontroller interface mode, this signal is the output data of the serial interface. Configuration or Status data
at SDO pin is clocked out of the device on the falling edge of SCLK if SCLKE pin is high, or on the rising edge of SCLK
if SCLKE pin is low.
ACK
ACK: Acknowledge Output
In Motorola parallel mode interface, the low level on this pin means:
•
The valid information is on the data bus during a read operation.
•
The write data has been accepted during a write cycle.
RDY
RDY: Ready signal output
In Intel parallel mode interface, the low level on this pin means a read or write operation is in progress; a high acknowledges a read or write operation has been completed.
TERM
I
SCLKE
I
TERM: Internal or external termination select in hardware mode
This pin selects internal or external impedance matching for both receiver and transmitter.
•
0 = ternary interface with external impedance matching network
•
1 = ternary interface with internal impedance matching network
22
24
SCLKE: Serial Clock Edge Select
In serial microcontroller interface mode, this signal selects the active edge of SCLK for outputting SDO. The output data
is valid after some delay from the active clock edge. It can be sampled on the opposite edge of the clock. The active clock
edge which clocks the data out of the device is selected as shown below:
SCLKE
SCLK
Low
Rising edge is the active edge.
High
Falling edge is the active edge.
RD: Read Strobe
In Intel parallel multiplexed interface mode, the data is driven to AD[7:0] by the device during low level of RD in a read
operation.
RD
DS
DS: Data Strobe
In Motorola parallel multiplexed interface mode, this signal is the data strobe of the parallel interface. In a write operation
(R/W = 0), the data on AD[7:0] is sampled into the device. In a read operation (R/W = 1), the data is driven to AD[7:0] by
the device.
MONT
MONT: Receive Monitor gain select
In hardware control mode with ternary interface, this pin selects the receive monitor gain of receiver:
0= 0 dB
1= 26 dB
AD7
I/O
PULS3
I
Pin Description
33
35
AD7: Address/Data Bus bit7
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 k resistor.
PULS[3:0]: these pins are used to select the following functions in hardware control mode:
•
T1/J1/E1 mode
•
Transmit pulse template
•
Internal termination impedance (75/120/100/110)
13
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-1 Pin Description (Continued)
Name
Type
AD6
I/O
PULS2
I
AD5
I/O
PULS1
I
AD4
I/O
PULS0
I
AD3
I/O
EQ
I
AD2
I/O
RPD
I
AD1
I/O
PATT1
I
AD0
I/O
PATT0
I
Pin Description
TQFP 44 QFN 48
Pin No. Pin No.
Description
32
34
AD6: Address/Data Bus bit6
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 k resistor.
31
33
AD5: Address/Data Bus bit5
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 k resistor.
See above.
See above.
30
32
AD4: Address/Data Bus bit4
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 k resistor.
See above.
29
31
AD3: Address/Data Bus bit3
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 k resistor.
EQ: Receive Equalizer on/off control in hardware control mode
•
0= short haul (10 dB)
•
1= long haul (36 dB for T1/J1, 43 dB for E1)
28
30
AD2: Address/Data Bus bit2
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 k resistor.
RPD: Receiver power down control in hardware control mode
•
0= normal operation
•
1= receiver power down
27
29
AD1: Address/Data Bus bit1
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 k resistor.
PATT[1:0]: Transmit pattern select
In hardware control mode, this pin selects the transmit pattern
•
00 = normal
•
01= All Ones
•
10= PRBS
•
11= transmitter power down
26
28
AD0: Address/Data Bus bit0
In Intel/Motorola multiplexed interface mode, this signal is the multiplexed bi-directional address/data bus of the microcontroller interface.
In serial microcontroller interface mode, this pin should be connected to ground through a 10 k resistor.
See above.
14
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-1 Pin Description (Continued)
Name
Type
TQFP 44 QFN 48
Pin No. Pin No.
Description
JA1
I
15
17
JA[1:0]: Jitter attenuation position, bandwidth and the depth of FIFO select (only used for hardware control
mode)
•
00 = JA is disabled
•
01 = JA in receiver, broad bandwidth, FIFO=64 bits
•
10 = JA in receiver, narrow bandwidth, FIFO=128 bits
•
11 = JA in transmitter, narrow bandwidth, FIFO=128 bits
In software control mode, this pin should be connected to ground.
JA0
I
14
16
See above.
RST
I
12
14
RST: Hardware reset
The chip is forced to reset state if a low signal is input on this pin for more than 100 ns. MCLK must be active during reset.
THZ
I
13
15
THZ: Transmitter Driver High Impedance Enable
This signal enables or disables transmitter driver. A low level on this pin enables the driver while a high level on this pin
places driver in high impedance state. Note that the functionality of the internal circuits is not affected by this signal.
Power Supplies and Grounds
VDDIO
-
19
21
3.3 V I/O power supply
GNDIO
-
18
20
I/O ground
VDDT
-
35
38
3.3 V power supply for transmitter driver
GNDT
-
38
41
Analog ground for transmitter driver
VDDA
-
42
45
3.3 V analog core power supply
GNDA
-
39
42
Analog core ground
VDDD
-
8
8
Digital core power supply
GNDD
-
10
10
Digital core ground
IC1
-
34
37
IC: Internal connection
Internal Use. This pin should be left open when in normal operation.
IC2
-
44
47
IC: Internal connection
Internal Use. This pin should be connected to ground when in normal operation.
nc
-
-
Others
Pin Description
12, 13, NC: Not connected
36, 48 These pins should be left open.
15
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3
FUNCTIONAL DESCRIPTION
3.1
CONTROL MODE SELECTION
bit (TCF0, 05H). And the active level of the data on TD/TDP and TDN can
be selected by the TD_INV bit (TCF0, 05H). In hardware control mode, the
falling edge of TCLK and the active high of transmit data are always used.
The IDT82V2081 can be configured by software or by hardware. The
software control mode supports Serial Control Interface, Motorola Multiplexed Control Interface and Intel Multiplexed Control Interface. The Control mode is selected by MODE1 and MODE0 pins as follows:
The transmit data from the system side can be provided in two different
ways: Single Rail and Dual Rail. In Single Rail mode, only TD pin is used
for transmitting data and the T_MD[1] bit (TCF0, 05H) should be set to ‘0’.
In Dual Rail Mode, both TDP pin and TDN pin are used for transmitting data,
the T_MD[1] bit (TCF0, 05H) should be set to ‘1’.
Control Interface mode
00
Hardware interface
01
Serial Microcontroller Interface.
10
Parallel –Multiplexed -Motorola Interface
11
Parallel –Multiplexed -Intel Interface
3.3.2
In Single Rail mode, when T1/J1 mode is selected, the Encoder can be
selected to be a B8ZS encoder or an AMI encoder by setting T_MD[0] bit
(TCF0, 05H).
In Single Rail mode, when E1 mode is selected, the Encoder can be configured to be a HDB3 encoder or an AMI encoder by setting T_MD[0] bit
(TCF0, 05H).
The serial microcontroller Interface consists of CS, SCLK, SCLKE,
SDI, SDO and INT pins. SCLKE is used for the selection of active
edge of SCLK.
The parallel Multiplexed microcontroller Interface consists of CS,
AD[7:0], DS/RD, R/W/WR, ALE/AS, ACK/RDY and INT pins.
Hardware interface consists of PULS[3:0], THZ, RCLKE, LP[1:0],
PATT[1:0], JA[1:0], MONT, TERM, EQ, RPD, MODE[1:0] and
RXTXM[1:0]. Refer to chapter 5 Hardware Control Pin Summary for
details about hardware control.
•
•
•
3.2
In both T1/J1 mode and E1 mode, when Dual Rail mode is selected (bit
T_MD[1] is ‘1’), the Encoder is by-passed. In Dual Rail mode, a logic ‘1’ on
the TDP pin and a logic ‘0’ on the TDN pin results in a negative pulse on the
TTIP/TRING; a logic ‘0’ on TDP pin and a logic ‘1’ on TDN pin results in a
positive pulse on the TTIP/TRING. If both TDP and TDN are high or low,
the TTIP/TRING outputs a space (Refer to TD/TDP, TDN Pin Description).
In hardware control mode, the operation mode of receive and transmit
path can be selected by setting RXTXM1 and RXTXM0 pins. Refer to 5
Hardware Control Pin Summary for details.
T1/E1/J1 MODE SELECTION
When the chip is configured by software, T1/E1/J1 mode is selected by
the T1E1 bit (GCF, 02H). In E1 application, the T1E1 bit (GCF, 02H) should
be set to ‘0’. In T1/J1 application, the T1E1 bit should be set to ‘1’.
3.3.3
TRANSMIT PATH
In software control mode, the pulse shape can be selected by setting
the related registers.
The transmit path of IDT82V2081 consists of an Encoder, an optional
Jitter Attenuator, a Waveform Shaper, a set of LBOs, a Line Driver and a
Programmable Transmit Termination.
3.3.1
In hardware control mode, the pulse shape can be selected by setting
PULS[3:0] pins. Refer to 5 Hardware Control Pin Summary for details.
TRANSMIT PATH SYSTEM INTERFACE
3.3.3.1 PRESET PULSE TEMPLATES
The transmit path system interface consists of TCLK pin, TD/TDP pin
and TDN pin. In E1 mode, TCLK is a 2.048 MHz clock. In T1/J1 mode, TCLK
is a 1.544 MHz clock. If TCLK is missing for more than 70 MCLK cycles, an
interrupt will be generated if it is not masked.
For E1 applications, the pulse shape is shown in Figure-4 according to
the G.703 and the measuring diagram is shown in Figure-5. In internal
impedance matching mode, if the cable impedance is 75 , the PULS[3:0]
bits (TCF1, 06H) should be set to ‘0000’; if the cable impedance is 120 ,
the PULS[3:0] bits (TCF1, 06H) should be set to ‘0001’. In external impedance matching mode, for both E1/75 and E1/120 cable impedance,
PULS[3:0] should be set to ‘0001’.
Transmit data is sampled on the TD/TDP and TDN pins by the active
edge of TCLK. The active edge of TCLK can be selected by the TCLK_SEL
Functional Description
PULSE SHAPER
The IDT82V2081 provides three ways of manipulating the pulse shape
before sending it. The first is to use preset pulse templates for short haul
application, the second is to use LBO (Line Build Out) for long haul application and the other way is to use user-programmable arbitrary waveform
template.
When the chip is configured by hardware, T1/E1/J1 mode is selected
by PULS[3:0] pins. These pins also determine transmit pulse template and
internal termination impedance. Refer to 5 Hardware Control Pin Summary
for details.
3.3
ENCODER
16
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Figure-4 E1 Waveform Template Diagram
Figure-6 DSX-1 Waveform Template
TCF1, 06H) should be set to ‘0111’. Table-14 lists these values.
Figure-5 E1 Pulse Template Test Circuit
3.3.3.2 LBO (LINE BUILD OUT)
For T1 applications, the pulse shape is shown in Figure-6 according to
the T1.102 and the measuring diagram is shown in Figure-6. This also
meets the requirement of G.703, 2001. The cable length is divided into five
grades, and there are five pulse templates used for each of the cable length.
The pulse template is selected by PULS[3:0] bits (TCF1, 06H).
Functional Description
To prevent the cross-talk at the far end, the output of TTIP/TRING could
be attenuated before transmission for long haul applications. The FCC Part
68 Regulations specifies four grades of attenuation with a step of 7.5 dB.
Three LBOs are used to implement the pulse attenuation. The PULS[3:0]
bits (TCF1, 06H) are used to select the attenuation grade. Both Table-14
and Table-15 list these values.
17
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.3.3.3 USER-PROGRAMMABLE ARBITRARY WAVEFORM
When more than one UI is used to compose the pulse template, the overlap of two consecutive pulses could make the pulse amplitude overflow
(exceed the maximum limitation) if the pulse amplitude is not set properly.
This overflow is captured by DAC_OV_IS bit (INTS1, 1AH), and, if enabled
by the DAC_OV_IM bit (INTM1, 15H), an interrupt will be generated.
When the PULS[3:0] bits are set to ‘11xx’, user-programmable arbitrary
waveform generator mode can be used. This allows the transmitter performance to be tuned for a wide variety of line condition or special application.
Each pulse shape can extend up to 4 UIs (Unit Interval), addressed by
UI[1:0] bits (TCF3, 08H) and each UI is divided into 16 sub-phases,
addressed by the SAMP[3:0] bits (TCF3, 08H). The pulse amplitude of each
phase is represented by a binary byte, within the range from +63 to -63,
stored in WDAT[6:0] bits (TCF4, 09H) in signed magnitude form. The most
positive number +63 (D) represents the positive maximum amplitude of the
transmit pulse while the most negative number -63 (D) represents the maximum negative amplitude of the transmit pulse. Therefore, up to 64 bytes
are used.
There are twelve standard templates which are stored in an on-chip ROM.
User can select one of them as reference and make some changes to get
the desired waveform.
The following tables give all the sample data based on the preset pulse
templates and LBOs in detail for reference. For preset pulse templates and
LBOs, scaling up/down against the pulse amplitude is not supported.
1.Table-2 Transmit Waveform Value For E1 75
2.Table-3 Transmit Waveform Value For E1 120
3. Table-4 Transmit Waveform Value For T1 0~133 ft
4.Table-5 Transmit Waveform Value For T1 133~266 ft
5.Table-6 Transmit Waveform Value For T1 266~399 ft
6.Table-7 Transmit Waveform Value For T1 399~533 ft
7.Table-8 Transmit Waveform Value For T1 533~655 ft
8.Table-9 Transmit Waveform Value For J1 0~655 ft
9.Table-10 Transmit Waveform Value For DS1 0 dB LBO
10.Table-11 Transmit Waveform Value For DS1 -7.5 dB LBO
11.Table-12 Transmit Waveform Value For DS1 -15.0 dB LBO
12.Table-13 Transmit Waveform Value For DS1 -22.5 dB LBO
User can change the wave shape and the amplitude to get the desired
pulse shape. In order to do this, firstly, users can choose a set of waveform
value from the following twelve tables, which is the most similar to the
desired pulse shape. Table-2, Table-3, Table-4, Table-5, Table-6, Table-7,
Table-8, Table-9, Table-10, Table-11, Table-12 and Table-13 list the sample
data and scaling data of each of the twelve templates. Then modify the corresponding sample data to get the desired transmit pulse shape.
Table-2 Transmit Waveform Value For E1 75 ohm
Secondly, through the value of SCAL[5:0] bits increased or decreased
by 1, the pulse amplitude can be scaled up or down at the percentage ratio
against the standard pulse amplitude if needed. For different pulse shapes,
the value of SCAL[5:0] bits and the scaling percentage ratio are different.
The following twelve tables list these values.
Do the followings step by step, the desired waveform can be programmed, based on the selected waveform template:
(1).Select the UI by UI[1:0] bits (TCF3, 08H)
(2).Specify the sample address in the selected UI by SAMP [3:0] bits
(TCF3, 08H)
(3).Write sample data to WDAT[6:0] bits (TCF4, 09H). It contains the
data to be stored in the RAM, addressed by the selected UI and the
corresponding sample address.
(4).Set the RW bit (TCF3, 08H) to ‘0’ to implement writing data to RAM,
or to ‘1’ to implement read data from RAM
(5).Implement the Read from RAM/Write to RAM by setting the DONE
bit (TCF3, 08H)
Repeat the above steps until all the sample data are written to or read
from the internal RAM.
(6).Write the scaling data to SCAL[5:0] bits (TCF2, 07H) to scale the
amplitude of the waveform based on the selected standard pulse
amplitude
Functional Description
Sample
UI 1
UI 2
UI 3
UI 4
1
0000000
0000000
0000000
0000000
2
0000000
0000000
0000000
0000000
3
0000000
0000000
0000000
0000000
4
0001100
0000000
0000000
0000000
5
0110000
0000000
0000000
0000000
6
0110000
0000000
0000000
0000000
7
0110000
0000000
0000000
0000000
8
0110000
0000000
0000000
0000000
9
0110000
0000000
0000000
0000000
10
0110000
0000000
0000000
0000000
11
0110000
0000000
0000000
0000000
12
0110000
0000000
0000000
0000000
13
0000000
0000000
0000000
0000000
14
0000000
0000000
0000000
0000000
15
0000000
0000000
0000000
0000000
16
0000000
0000000
0000000
0000000
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]
results in 3% scaling up/down against the pulse amplitude.
18
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-3 Transmit Waveform Value For E1 120 ohm
Table-5 Transmit Waveform Value For T1 133~266 ft
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0000000
0000000
0000000
0000000
1
0011011
1000011
0000000
0000000
2
0000000
0000000
0000000
0000000
2
0101110
1000010
0000000
0000000
3
0000000
0000000
0000000
0000000
3
0101100
1000001
0000000
0000000
4
0001111
0000000
0000000
0000000
4
0101010
0000000
0000000
0000000
5
0111100
0000000
0000000
0000000
5
0101001
0000000
0000000
0000000
6
0111100
0000000
0000000
0000000
6
0101000
0000000
0000000
0000000
7
0111100
0000000
0000000
0000000
7
0100111
0000000
0000000
0000000
8
0111100
0000000
0000000
0000000
8
0100110
0000000
0000000
0000000
9
0111100
0000000
0000000
0000000
9
0100101
0000000
0000000
0000000
10
0111100
0000000
0000000
0000000
10
1010000
0000000
0000000
0000000
11
0111100
0000000
0000000
0000000
11
1001111
0000000
0000000
0000000
12
0111100
0000000
0000000
0000000
12
1001101
0000000
0000000
0000000
13
0000000
0000000
0000000
0000000
13
1001010
0000000
0000000
0000000
14
0000000
0000000
0000000
0000000
14
1001000
0000000
0000000
0000000
15
0000000
0000000
0000000
0000000
15
1000110
0000000
0000000
0000000
16
0000000
0000000
0000000
0000000
16
1000100
0000000
0000000
0000000
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]
results in 3% scaling up/down against the pulse amplitude.
See Table-4
Table-6 Transmit Waveform Value For T1 266~399 ft
Table-4 Transmit Waveform Value For T1 0~133 ft
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0011111
1000011
0000000
0000000
1
0010111
1000010
0000000
0000000
2
0110100
1000010
0000000
0000000
2
0100111
1000001
0000000
0000000
3
0101111
1000001
0000000
0000000
3
0100111
0000000
0000000
0000000
4
0101100
0000000
0000000
0000000
4
0100110
0000000
0000000
0000000
5
0101011
0000000
0000000
0000000
5
0100101
0000000
0000000
0000000
6
0101010
0000000
0000000
0000000
6
0100101
0000000
0000000
0000000
7
0101001
0000000
0000000
0000000
7
0100101
0000000
0000000
0000000
8
0101000
0000000
0000000
0000000
8
0100100
0000000
0000000
0000000
9
0100101
0000000
0000000
0000000
9
0100011
0000000
0000000
0000000
10
1010111
0000000
0000000
0000000
10
1001010
0000000
0000000
0000000
11
1010011
0000000
0000000
0000000
11
1001010
0000000
0000000
0000000
12
1010000
0000000
0000000
0000000
12
1001001
0000000
0000000
0000000
13
1001011
0000000
0000000
0000000
13
1000111
0000000
0000000
0000000
14
1001000
0000000
0000000
0000000
14
1000101
0000000
0000000
0000000
15
1000110
0000000
0000000
0000000
15
1000100
0000000
0000000
0000000
16
1000100
0000000
0000000
0000000
16
1000011
0000000
0000000
0000000
See Table-4
SCAL[5:0] = 1101101 (default), One step change of this value of SCAL[5:0]
results in 2% scaling up/down against the pulse amplitude.
1. In T1 mode, when arbitrary pulse for short haul application is configured,
users should write ‘110110’ to SCAL[5:0] bits if no scaling is required.
Functional Description
19
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-7 Transmit Waveform Value For T1 399~533 ft
Table-9 Transmit Waveform Value For J1 0~655 ft
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0100000
1000011
0000000
0000000
1
0010111
1000010
0000000
0000000
2
0111011
1000010
0000000
0000000
2
0100111
1000001
0000000
0000000
3
0110101
1000001
0000000
0000000
3
0100111
0000000
0000000
0000000
4
0101111
0000000
0000000
0000000
4
0100110
0000000
0000000
0000000
5
0101110
0000000
0000000
0000000
5
0100101
0000000
0000000
0000000
6
0101101
0000000
0000000
0000000
6
0100101
0000000
0000000
0000000
7
0101100
0000000
0000000
0000000
7
0100101
0000000
0000000
0000000
8
0101010
0000000
0000000
0000000
8
0100100
0000000
0000000
0000000
9
0101000
0000000
0000000
0000000
9
0100011
0000000
0000000
0000000
10
1011000
0000000
0000000
0000000
10
1001010
0000000
0000000
0000000
11
1011000
0000000
0000000
0000000
11
1001010
0000000
0000000
0000000
12
1010011
0000000
0000000
0000000
12
1001001
0000000
0000000
0000000
13
1001100
0000000
0000000
0000000
13
1000111
0000000
0000000
0000000
14
1001000
0000000
0000000
0000000
14
1000101
0000000
0000000
0000000
15
1000110
0000000
0000000
0000000
15
1000100
0000000
0000000
0000000
16
1000100
0000000
0000000
0000000
16
1000011
0000000
0000000
0000000
See Table-4
SCAL[5:0] = 110110 (default), One step change of this value of SCAL[5:0]
results in 2% scaling up/down against the pulse amplitude.
Table-8 Transmit Waveform Value For T1 533~655 ft
Table-10 Transmit Waveform Value For DS1 0 dB LBO
Sample
UI 1
UI 2
UI 3
UI 4
1
0100000
1000011
0000000
0000000
Sample
UI 1
UI 2
UI 3
UI 4
2
0111111
1000010
0000000
0000000
1
0010111
1000010
0000000
0000000
0100111
1000001
0000000
0000000
3
0111000
1000001
0000000
0000000
2
4
0110011
0000000
0000000
0000000
3
0100111
0000000
0000000
0000000
0100110
0000000
0000000
0000000
5
0101111
0000000
0000000
0000000
4
6
0101110
0000000
0000000
0000000
5
0100101
0000000
0000000
0000000
0100101
0000000
0000000
0000000
7
0101101
0000000
0000000
0000000
6
8
0101100
0000000
0000000
0000000
7
0100101
0000000
0000000
0000000
8
0100100
0000000
0000000
0000000
9
0101001
0000000
0000000
0000000
10
1011111
0000000
0000000
0000000
9
0100011
0000000
0000000
0000000
10
1001010
0000000
0000000
0000000
11
1011110
0000000
0000000
0000000
12
1010111
0000000
0000000
0000000
11
1001010
0000000
0000000
0000000
1001001
0000000
0000000
0000000
13
1001111
0000000
0000000
0000000
12
14
1001001
0000000
0000000
0000000
13
1000111
0000000
0000000
0000000
1000101
0000000
0000000
0000000
15
1000111
0000000
0000000
0000000
14
16
1000100
0000000
0000000
0000000
15
1000100
0000000
0000000
0000000
16
1000011
0000000
0000000
0000000
See Table-4
SCAL[5:0] = 110110 (default), One step change of this Value results in 2%
scaling up/down against the pulse amplitude.
Functional Description
20
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-11 Transmit Waveform Value For DS1 -7.5 dB LBO
Table-13 Transmit Waveform Value For DS1 -22.5 dB LBO
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0000000
0010100
0000010
0000000
1
0000000
0101100
0011110
0001000
2
0000010
0010010
0000010
0000000
2
0000000
0101110
0011100
0000111
3
0001001
0010000
0000010
0000000
3
0000000
0110000
0011010
0000110
4
0010011
0001110
0000010
0000000
4
0000000
0110001
0011000
0000101
5
0011101
0001100
0000010
0000000
5
0000001
0110010
0010111
0000101
6
0100101
0001011
0000001
0000000
6
0000011
0110010
0010101
0000100
7
0101011
0001010
0000001
0000000
7
0000111
0110010
0010100
0000100
8
0110001
0001001
0000001
0000000
8
0001011
0110001
0010011
0000011
9
0110110
0001000
0000001
0000000
9
0001111
0110000
0010001
0000011
10
0111010
0000111
0000001
0000000
10
0010101
0101110
0010000
0000010
11
0111001
0000110
0000001
0000000
11
0011001
0101100
0001111
0000010
12
0110000
0000101
0000001
0000000
12
0011100
0101001
0001110
0000010
13
0101000
0000100
0000000
0000000
13
0100000
0100111
0001101
0000001
14
0100000
0000100
0000000
0000000
14
0100011
0100100
0001100
0000001
15
0011010
0000011
0000000
0000000
15
0100111
0100010
0001010
0000001
16
0010111
0000011
0000000
0000000
16
0101010
0100000
0001001
0000001
SCAL[5:0] = 010001 (default), One step change of this value of SCAL[5:0]
results in 6.25% scaling up/down against the pulse amplitude.
SCAL[5:0] = 000100 (default), One step change of this value of SCAL[5:0]
results in 25% scaling up/down against the pulse amplitude.
Table-12 Transmit Waveform Value For DS1 -15.0 dB LBO
Sample
UI 1
UI 2
UI 3
UI 4
1
0000000
0110101
0001111
0000011
2
0000000
0110011
0001101
0000010
3
0000000
0110000
0001100
0000010
4
0000001
0101101
0001011
0000010
5
0000100
0101010
0001010
0000010
6
0001000
0100111
0001001
0000001
7
0001110
0100100
0001000
0000001
8
0010100
0100001
0000111
0000001
9
0011011
0011110
0000110
0000001
10
0100010
0011100
0000110
0000001
11
0101010
0011010
0000101
0000001
12
0110000
0010111
0000101
0000001
13
0110101
0010101
0000100
0000001
14
0110111
0010100
0000100
0000000
15
0111000
0010010
0000011
0000000
16
0110111
0010000
0000011
0000000
SCAL[5:0] = 001000 (default), One step change of the value of SCAL[5:0]
results in 12.5% scaling up/down against the pulse amplitude.
Functional Description
21
November 14, 2012
IDT82V2081
3.3.4
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
TRANSMIT PATH LINE INTERFACE
PULS[3:0] pins will be set to select the specific internal impedance. Refer
to 5 Hardware Control Pin Summary for details.
The transmit line interface consists of TTIP pin and TRING pin. The
impedance matching can be realized by the internal impedance matching
circuit or the external impedance matching circuit. If T_TERM[2] is set to
‘0’, the internal impedance matching circuit will be selected. In this case,
the T_TERM[1:0] bits (TERM, 03H) can be set to choose 75 , 100 , 110
or 120 internal impedance of TTIP/TRING. If T_TERM[2] is set to ‘1’,
the internal impedance matching circuit will be disabled. In this case, the
external impedance matching circuit will be used to realize the impedance
matching. For T1/J1 mode, the external impedance matching circuit for the
transmitter is not supported. Figure-8 shows the appropriate external components to connect with the cable. Table-14 is the list of the recommended
impedance matching for transmitter.
The TTIP/TRING pins can also be turned into high impedance by setting
the THZ bit (TCF1, 06H) to ‘1’. In this state, the internal transmit circuits are
still active.
In hardware control mode, TTIP/TRING can be turned into high impedance by pulling THZ pin to high. Refer to 5 Hardware Control Pin Summary
for details.
Besides, in the following cases, both TTIP/TRING pins will also become
high impedance:
•
Loss of MCLK;
•
Loss of TCLK (exceptions: Remote Loopback; Transmit internal
pattern by MCLK);
•
Transmit path power down;
•
After software reset; pin reset and power on.
In hardware control mode, TERM pin can be used to select impedance
matching for both receiver and transmitter. If TERM pin is low, external
impedance network will be used for impedance matching. If TERM pin is
high, internal impedance will be used for impedance matching and
Table-14 Impedance Matching for Transmitter
Cable Configuration
E1/75
Internal Termination
External Termination
T_TERM[2:0]
PULS[3:0]
RT
T_TERM[2:0]
PULS[3:0]
RT
000
0000
0
1XX
0001
9.4
E1/120
001
0001
T1/0~133 ft
010
0010
T1/133~266 ft
0011
T1/266~399 ft
0100
T1/399~533 ft
0101
T1/533~655 ft
0110
J1/0~655 ft
011
0111
0 dB LBO
010
1000
-7.5 dB LBO
1001
-15.0 dB LBO
1010
-22.5 dB LBO
1011
0001
-
-
-
Note: The precision of the resistors should be better than ± 1%
3.3.5
TRANSMIT PATH POWER DOWN
In hardware control mode, the transmit path can be powered down by
pulling both PATT1 and PATT0 pins to high. Refer to 5 Hardware Control
Pin Summary for details.
The transmit path can be powered down by setting the T_OFF bit (TCF0,
05H) to ‘1’. In this case, the TTIP/TRING pins are turned into high impedance.
Functional Description
22
November 14, 2012
IDT82V2081
3.4
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
RECEIVE PATH
is set to ‘0’, the internal impedance matching circuit will be selected. In this
case, the R_TERM[1:0] bits (TERM, 03H) can be set to choose 75 , 100
, 110 or 120 internal impedance of RTIP/RRING. If R_TERM[2] is
set to ‘1’, the internal impedance matching circuit will be disabled. In this
case, the external impedance matching circuit will be used to realize the
impedance matching. Figure-8 shows the appropriate external components to connect with the cable. Table-15 is the list of the recommended
impedance matching for receiver.
The receive path consists of Receive Internal Termination, Monitor
Gain, Amplitude/Wave Shape Detector, Digital Tuning Controller, Adaptive
Equalizer, Data Slicer, CDR (Clock & Data Recovery), Optional Jitter
Attenuator, Decoder and LOS/AIS Detector. Refer to Figure-7.
3.4.1
RECEIVE INTERNAL TERMINATION
The impedance matching can be realized by the internal impedance
matching circuit or the external impedance matching circuit. If R_TERM[2]
Figure-7 Receive Monitor Gain Adaptive Equalizer
Table-15 Impedance Matching for Receiver
Cable Configuration
Internal Termination
External Termination
R_TERM[2:0]
RR
R_TERM[2:0]
E1/75
000
120
1XX
E1/120
001
120
T1
010
100
J1
011
110
Functional Description
23
RR
75
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Note: 1. Common decoupling capacitor, one per chip
2. Cp 0-560 (pF)
3. D1 - D8, Motorola - MBR0540T1; International Rectifier - 11DQ04 or 10BQ060
4. RT/ RR: refer toTable-14 and Table-15 respectively for RT and RR values
Figure-8 Transmit/Receive Line Circuit
In hardware control mode, TERM and PULS[3:0] pins can be used to
select impedance matching for both receiver and transmitter. If TERM pin
is low, external impedance network will be used for impedance matching.
If TERM pin is high, internal impedance will be used for impedance matching and PULS[3:0] pins can be set to select the specific internal impedance.
Refer to 5 Hardware Control Pin Summary for details.
3.4.2
LINE MONITOR
In both T1/J1 and E1 short haul applications, the non-intrusive monitoring on channels located in other chips can be performed by tapping the monitored channel through a high impedance bridging circuit. Refer to Figure9 and Figure-11.
After a high resistance bridging circuit, the signal arriving at the RTIP/
RRING is dramatically attenuated. To compensate this attenuation, the
Monitor Gain can be used to boost the signal by 22 dB, 26 dB and 32 dB,
selected by MG[1:0] bits (RCF2, 0CH). For normal operation, the Monitor
Gain should be set to 0 dB.
Figure-9 Monitoring Receive Line in Another Chip
In hardware control mode, MONT pin can be used to set the Monitor
Gain. When MONT pin is low, the Monitor Gain is 0 dB. When MONT pin
is high, the Monitor Gain is 26 dB. Refer to 5 Hardware Control Pin Summary
for details.
Note that LOS indication is not supported if the device is operated in Line
Monitor Mode
Figure-10 Monitor Transmit Line in Another Chip
Functional Description
24
November 14, 2012
IDT82V2081
3.4.3
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.4.4
ADAPTIVE EQUALIZER
RECEIVE SENSITIVITY
The Adaptive Equalizer can remove most of the signal distortion due to
intersymbol interference caused by cable attenuation. It can be enabled or
disabled by setting EQ_ON bit to ‘1’ or ‘0’ (RCF1, 0BH).
For short haul application, the Receive Sensitivity for both E1 and T1/
J1 is -10 dB. For long haul application, the receive sensitivity is -43 dB for
E1 and -36 dB for T1/J1.
When the adaptive equalizer is out of range, EQ_S bit (STAT0, 17H) will
be set to ‘1’ to indicate the status of equalizer. If EQ_IES bit (INTES, 16H)
is set to ‘1’, any changes of EQ_S bit will generate an interrupt and EQ_IS
bit (INTS0, 19H) will be set to ‘1’ if it is not masked. If EQ_IES is set to ‘0’,
only the ‘0’ to ‘1’ transition of the EQ_S bit will generate an interrupt and
EQ_IS bit will be set to ‘1’ if it is not masked. The EQ_IS bit will be reset after
being read.
When the chip is configured by hardware, the short haul or long haul
operating mode can be selected by setting EQ pin. For short haul mode,
the Receive Sensitivity for both E1 and T1/J1 is -10 dB. For long haul mode,
the receive sensitivity is -43 dB for E1 and -36 dB for T1/J1. Refer to 5 Hardware Control Pin Summary for details.
3.4.5
DATA SLICER
The Data Slicer is used to generate a standard amplitude mark or a
space according to the amplitude of the input signals. The threshold can
be 40%, 50%, 60% or 70%, as selected by the SLICE[1:0] bits (RCF2, 0CH).
The output of the Data Slicer is forwarded to the CDR (Clock & Data Recovery) unit or to the RDP/RDN pins directly if the CDR is disabled.
The Amplitude/wave shape detector keeps on measuring the amplitude/wave shape of the incoming signals during an observation period. This
observation period can be 32, 64, 128 or 256 symbol periods, as selected
by UPDW[1:0] bits (RCF2, 0CH). A shorter observation period allows
quicker responses to pulse amplitude variation while a longer observation
period can minimize the possible overshoots. The default observation
period is 128 symbol periods.
3.4.6
CDR (CLOCK & DATA RECOVERY)
The CDR is used to recover the clock and data from the received signal.
The recovered clock tracks the jitter in the data output from the Data Slicer
and keeps the phase relationship between data and clock during the
absence of the incoming pulse. The CDR can also be by-passed in the Dual
Rail mode. When CDR is by-passed, the data from the Data Slicer is output
to the RDP/RDN pins directly.
Based on the observed peak value for a period, the equalizer will be
adjusted to achieve a normalized signal. LATT[4:0] bits (STAT1, 18H) indicate the signal attenuation introduced by the cable in approximately 2 dB
per step.
3.4.7
DECODER
In T1/J1 applications, the R_MD[1:0] bits (RCF0, 0AH) is used to select
the AMI decoder or B8ZS decoder. In E1 applications, the R_MD[1:0] bits
(RCF0, 0AH) are used to select the AMI decoder or HDB3 decoder.
When the chip is configured by hardware, the operation mode of receive
and transmit path can be selected by setting RXTXM1 and RXTXM0 pins.
Refer to 5 Hardware Control Pin Summary for details.
Functional Description
25
November 14, 2012
IDT82V2081
3.4.8
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.5
RECEIVE PATH SYSTEM INTERFACE
JITTER ATTENUATOR
The receive path system interface consists of RCLK pin, RD/RDP pin
and RDN pin. In E1 mode, the RCLK outputs a recovered 2.048 MHz clock.
In T1/J1 mode, the RCLK outputs a recovered 1.544 MHz clock. The
received data is updated on the RD/RDP and RDN pins on the active edge
of RCLK. The active edge of RCLK can be selected by the RCLK_SEL bit
(RCF0, 0AH). And the active level of the data on RD/RDP and RDN can be
selected by the RD_INV bit (RCF0, 0AH).
There is one Jitter Attenuator in the IDT82V2081. The Jitter Attenuator
can be deployed in the transmit path or the receive path, and can also be
disabled. This is selected by the JACF[1:0] bits (JACF, 04H).
In hardware control mode, only the active edge of RCLK can be
selected. If RCLKE is set to high, the falling edge will be chosen as the active
edge of RCLK. If RCLKE is set to low, the rising edge will be chosen as the
active edge of RCLK. The active level of the data on RD/RDP and RDN is
the same as that in software control mode.
3.5.1
In hardware control mode, Jitter Attenuator position, bandwidth and the
depth of FIFO can be selected by JA[1:0] pins. Refer to 5 Hardware Control
Pin Summary for details.
JITTER ATTENUATION FUNCTION DESCRIPTION
The Jitter Attenuator is composed of a FIFO and a DPLL, as shown in
Figure-11. The FIFO is used as a pool to buffer the jittered input data, then
the data is clocked out of the FIFO by a de-jittered clock. The depth of the
FIFO can be 32 bits, 64 bits or 128 bits, as selected by the JADP[1:0] bits
(JACF, 04H). In hardware control mode, the depth of FIFO can be selected
by JA[1:0] pins. Refer to 5 Hardware Control Pin Summary for details. Consequently, the constant delay of the Jitter Attenuator will be 16 bits, 32 bits
or 64 bits. Deeper FIFO can tolerate larger jitter, but at the cost of increasing
data latency time.
The received data can be output to the system side in two different ways:
Single Rail or Dual Rail, as selected by R_MD bit [1] (RCF0, 0AH). In Single
Rail mode, only RD pin is used to output data and the RDN/CV pin is used
to report the received errors. In Dual Rail Mode, both RDP pin and RDN pin
are used for outputting data.
In the receive Dual Rail mode, the CDR unit can be by-passed by setting
R_MD[1:0] to ‘11’ (binary). In this situation, the output data from the Data
Slicer will be output to the RDP/RDN pins directly, and the RCLK outputs
the exclusive OR (XOR) of the RDP and RDN. This is called receiver slicer
mode. In this case, the transmit path is still operating in Dual Rail mode.
3.4.9
RECEIVE PATH POWER DOWN
The receive path can be powered down by setting R_OFF bit (RCF0,
0AH) to ‘1’. In this case, the RCLK, RD/RDP, RDN and LOS will be logic low.
In hardware control mode, receiver power down can be selected by pulling RPD pin to high. Refer to 5 Hardware Control Pin Summary for more
details.
Figure-11 Jitter Attenuator
In E1 applications, the Corner Frequency of the DPLL can be 0.9 Hz or
6.8 Hz, as selected by the JABW bit (JACF, 04H). In T1/J1 applications,
the Corner Frequency of the DPLL can be 1.25 Hz or 5.00 Hz, as selected
by the JABW bit (JACF, 04H). The lower the Corner Frequency is, the longer
time is needed to achieve synchronization.
When the incoming data moves faster than the outgoing data, the FIFO
will overflow. This overflow is captured by the JAOV_IS bit (INTS1, 1AH).
If the incoming data moves slower than the outgoing data, the FIFO will
underflow. This underflow is captured by the JAUD_IS bit (INTS1, 1AH). For
some applications that are sensitive to data corruption, the JA limit mode
can be enabled by setting JA_LIMIT bit (JACF, 04H) to ‘1’. In the JA limit
mode, the speed of the outgoing data will be adjusted automatically when
the FIFO is close to its full or emptiness. The criteria of starting speed adjustment are shown in Table-16. The JA limit mode can reduce the possibility
of FIFO overflow and underflow, but the quality of jitter attenuation is deteriorated.
Functional Description
26
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-16 Criteria of Starting Speed Adjustment
FIFO Depth
Criteria for Adjusting Data Outgoing Speed
32 Bits
2 bits close to its full or emptiness
3.5.2
64 Bits
3 bits close to its full or emptiness
128 Bits
4 bits close to its full or emptiness
JITTER ATTENUATOR PERFORMANCE
The performance of the Jitter Attenuator in the IDT82V2081 meets the
ITU-T I.431, G.703, G.736-739, G.823, G.824, ETSI 300011, ETSI TBR12/
13, AT&T TR62411 specifications. Details of the Jitter Attenuator performance is shown in Table-63 Jitter Tolerance and Table-64 Jitter Attenuator
Characteristics.
3.6
LOS AND AIS DETECTION
3.6.1
LOS DETECTION
Figure-12 LOS Declare and Clear
• LOS detect level threshold
In short haul mode, the amplitude threshold Q is fixed on 800 mVpp,
while P=Q+200 mVpp (200 mVpp is the LOS level detect hysteresis).
The Loss of Signal Detector monitors the amplitude of the incoming signal level and pulse density of the received signal on RTIP and RRING.
• LOS declare (LOS=1)
A LOS is detected when the incoming signal has “no transitions”, i.e.,
when the signal level is less than Q dB below nominal for N consecutive
pulse intervals. Here N is defined by LAC bit (MAINT0, 0DH). LOS will be
declared by pulling LOS pin to high (LOS=1) and LOS interrupt will be generated if it is not masked.
In long haul mode, the value of Q can be selected by LOS[4:0] bit (RCF1,
0BH), while P=Q+4 dB (4 dB is the LOS level detect hysteresis). The Table30LOS[4:0] default value is 10101 (-46 dB).
When the chip is configured by hardware, the LOS detect level is fixed
if the IDT82V2081 operates in long haul mode. It is -46 dB (E1) and -38 dB
(T1/J1).
• Criteria for declare and clear of a LOS detect
The detection supports ANSI T1.231 and I.431 for T1/J1 mode and
G.775 and ETSI 300233/I.431 for E1 mode. The criteria can be selected
by LAC bit (MAINT0, 0DH) and T1E1 bit (GCF, 02H).
Note that LOS indication is not supported if the device is operated in Line
Monitor Mode. Refer to 3.4.2 Line Monitor.
• LOS clear (LOS=0)
The LOS is cleared when the incoming signal has “transitions”, i.e.,
when the signal level is greater than P dB below nominal and has an average pulse density of at least 12.5% for M consecutive pulse intervals, starting with the receipt of a pulse. Here M is defined by LAC bit (MAINT0, 0DH).
LOS status is cleared by pulling LOS pin to low.
Table-17 and Table-18 summarize LOS declare and clear criteria for
both short haul and long haul application.
• All Ones output during LOS
On the system side, the RDP/RDN will reflect the input pulse “transition”
at the RTIP/RRING side and output recovered clock (but the quality of the
output clock can not be guaranteed when the input level is lower than the
maximum receive sensitivity) when AISE bit (MAINT0, 0DH) is 0; or output
All Ones as AIS when AISE bit (MAINT0, 0DH) is 1. In this case, RCLK output is replaced by MCLK.
On the line side, the TTIP/TRING will output All Ones as AIS when ATAO
bit (MAINT0, 0DH) is 1. The All Ones pattern uses MCLK as the reference
clock.
LOS indicator is always active for all kinds of loopback modes.
Functional Description
27
November 14, 2012
IDT82V2081
SINGLE CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-17 LOS Declare and Clear Criteria for Short Haul Mode
Control bit
T1E1
LOS declare threshold
LOS clear threshold
LAC
0=T1.231
Level < 800 mVpp
N=175 bits
Level > 1 Vpp
M=128 bits
12.5% mark density
1 Vpp
M=128 bits
12.5% mark density
1 Vpp
M=32 bits
12.5% mark density
1 Vpp
M=32 bits
12.5% mark density
Q+ 4dB
M=128 bits
12.5% mark density
Q+ 4dB
M=128 bits
12.5% mark density
Q+ 4dB
M=32 bits
12.5% mark density
Q+ 4dB
M=32 bits
12.5% mark density