0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
9DML4493ANLGI

9DML4493ANLGI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-32

  • 描述:

    VFQFPN 5.00X5.00X0.90 MM, 0.50MM

  • 数据手册
  • 价格&库存
9DML4493ANLGI 数据手册
4:4 Clock MUX for PCI Express Gen1–5 9DML4493A Datasheet Description Features The 9DML4493A is a 4-input, 4-output clock multiplexer. It can also operate as a dual 2-input, 2-output clock multiplexer. It has very low additive phase jitter and is suitable for all PCIe data rates. Pin straps configure the device, making it ideal for applications where a serial configuration bus is not available. ▪ Four differential inputs support LVPECL, LVDS, HCSL or The device supports today's complex system power sequencing requirements with Power Down Tolerant and Flexible Power Sequencing features. ▪ Power-Down Tolerant (PDT) inputs: CLK_SEL_tri, OE pins, LVCMOS reference clocks ▪ Flexible Power Sequencing (FPS) ensures good behavior when powered up without input clock, or when the input clock is present without power IOA_tri, IOB_tri, ZOUTSEL may be driven when the 9DML4493 is not powered up ▪ Accepts input frequencies ranging from 1PPS (1Hz) to 350MHz ▪ Strapping pin selects differential output impedances of 100Ω or Typical Applications ▪ ▪ ▪ ▪ ▪ 85Ω, saving up to 16 resistors Servers Storage Networking High-Performance computing Accelerators ▪ ▪ ▪ ▪ ▪ ▪ ▪ Key Specifications ▪ Additive phase jitter: Three pin-selectable output amplitudes per bank Pin selectable 4:4 mode or dual 2:2 MUX mode Glitch-free output enable pins for each output Spread spectrum tolerant Voltage supply of 1.8V, 2.5V, or 3.3V -40°C to +85°C ambient operating temperature 5 × 5 mm 32-VFQFPN package • 12fs RMS typical (PCIe Gen5 CC at 100MHz) • 66fs RMS typical (12kHz–20MHz at 156.25M) ▪ Supports PCIe Gen1–5 PCIe Refclk requirements ▪ Supports PCIe CC and IR (SRIS, SRNS) timing architectures ▪ Propagation delay < 1.2ns typical Block Diagram VDDCLK x4 vOEA[1:0] ^vCLK_SEL_tri[1:0] VDDCORE VDDOA VDDOB 2 2 CLKA0 CLKA0# CLKIN0 CLKIN0# CLKIN3 CLKIN3# CLKA1 CLKA1# CLKIN1 CLKIN1# CLKB0 CLKB0# CLKIN2 CLKIN2# CLKB1 CLKB1# vOEB[1:0] ^vIOA_tri ^vIOB_tri ^ZOUTSEL 2 Logic EPAD is GND ©2021 Renesas Electronics Corporation 1 February 19, 2021 9DML4493A Datasheet Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Clock Input Bias Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Alternate Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Phase Jitter Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Marking Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ©2021 Renesas Electronics Corporation 2 February 19, 2021 9DML4493A Datasheet Pin Assignments CLKIN1# CLKIN1 vOEB0 VDDCLK1 CLKIN0# VDDCLK0 vOEA0 CLKIN0 Figure 1. Pin Assignments for 5 × 5 mm 32-VFQFPN Package – Top View 32 31 30 29 28 27 26 25 vOEA1 ^vIOA_tri CLKA0 CLKA0# VDDO_A CLKA1 1 2 3 4 5 6 9DML4493 Connect EPAD to GND CLKA1# 7 ^vCLK_SEL0_tri 8 24 vOEB1 23 ^vIOB_tri 22 CLKB0 21 CLKB0# 20 VDDO_B 19 CLKB1 18 CLKB1# 17 ^vCLK_SEL1_tri CLKIN2# CLKIN2 ^ZOUTSEL VDDCLK2 CLKIN3# VDDCLK3 VDDCORE CLKIN3 9 10 11 12 13 14 15 16 32-pin VFQFPN, 5 x 5 mm, 0.5mm pitch ^ prefix indicates internal pull-up resistor v prefix indicates internal pull-down resistor ^v prefix indicates internal pull-up and pull-down resistor biasing to VDD/2 Clock Input Bias Network VDD 50kΩ CLK_IN# CLK_IN 50kΩ ©2021 Renesas Electronics Corporation 50kΩ 3 February 19, 2021 9DML4493A Datasheet Pin Descriptions Table 1. Pin Descriptions Number Name Type Description 1 vOEA1 Input Active high input for enabling output 1 of bank A. This pin has internal pull-down. 0 =disable output low, 1 = enable output. 2 ^vIOA_tri Input Sets nominal amplitude of Bank A outputs. This is a tri-level input with internal pull-up and pull down resistors. See Output Amplitude Select, High Impedance Loads table for details. 3 CLKA0 Output True output of bank A clock 0. 4 CLKA0# Output Complementary output of bank A clock 0. 5 VDDO_A Power Power supply for output group A. 6 CLKA1 Output True output of bank A clock 1. 7 CLKA1# Output Complementary output of bank A clock 1. 8 ^vCLK_SEL0_tri Input Input clock selection pin. This is a tri-level input with internal pull-up and pull-down resistors that bias the pin to VDD/2 when left open. See the Input Select table for details. 9 CLKIN3 Input True side of differential input clock 3. 10 CLKIN3# Input Complementary side of differential input clock 3. 11 VDDCLK3 Power Power supply for clock input 3. 12 VDDCORE Power Power supply for core logic. 13 ^ZOUTSEL Input Input to select differential output impedance. This input has an internal pull-up resistor. See the Output Impedance Select table for details. 14 VDDCLK2 Power Power supply for clock input 2. 15 CLKIN2# Input Complementary side of differential input clock 2. 16 CLKIN2 Input True side of differential input clock 2. 17 ^vCLK_SEL1_tri Input Input clock selection pin. This is a tri-level input with internal pull-up and pull-down resistors that bias the pin to VDD/2 when left open. See the Input Select table for details. 18 CLKB1# Output Complementary output of bank B clock 1. 19 CLKB1 Output True output of bank B clock 1. 20 VDDO_B Power Power supply for output group B. 21 CLKB0# Output Complementary output of bank B clock 0. 22 CLKB0 Output True output of bank B clock 0. 23 ^vIOB_tri Input Sets nominal amplitude of Bank B outputs. This is a tri-level input with internal pull-up and pull-down resistors. See Output Amplitude Select, High Impedance Loads table for details. 24 vOEB1 Input Active high input for enabling output 1 of bank B. This pin has internal pull-down. 0 = disable output low, 1 = enable output. 25 CLKIN1 Input True side of differential input clock 1. 26 CLKIN1# Input Complementary side of differential input clock 1. 27 VDDCLK1 Power Power supply for clock input 1. 28 vOEB0 Input Active high input for enabling output 0 of bank B. This pin has internal pull-down. 0 = disable output low, 1 = enable output. ©2021 Renesas Electronics Corporation 4 February 19, 2021 9DML4493A Datasheet Table 1. Pin Descriptions (Cont.) Number Name Type Description 29 vOEA0 Input Active high input for enabling output 0 of bank A. This pin has internal pull-down. 0 =disable output low, 1 = enable output. 30 VDDCLK0 Power Power supply for clock input 0. 31 CLKIN0# Input Complementary side of differential input clock 0. 32 CLKIN0 Input True side of differential input clock 0. 33 EPAD GND Connect to ground. Table 2. Power Management OExx Pin CLKINx 1 0 CLKA[1:0], CLKB[1:0] True Output Complementary Output Running Running Running Running Low Low Table 3. Power Connections Pin Number Description VDD GND 5 33 (EPAD) Output Bank A 11 33 (EPAD) Input CLK3 12 33 (EPAD) Core Logic 14 33 (EPAD) Input CLK2 20 33 (EPAD) Output Bank B 27 33 (EPAD) Input CLK1 30 33 (EPAD) Input CLK0 CLK_SEL0_tri CLK_SEL1_tri Description 0 0 CLK0 drives Bank A and B. 0 1 CLK1 drives Bank A and B. 1 0 CLK2 drives Bank A and B. 1 1 CLK3 drives Bank A and B. M M Reserved. M 0 CLK0 drives Bank A and CLK1 drives Bank B. Table 4. Input Select ©2021 Renesas Electronics Corporation 5 February 19, 2021 9DML4493A Datasheet Table 4. Input Select CLK_SEL0_tri CLK_SEL1_tri Description M 1 CLK0 drives Bank A and CLK2 drives Bank B. 0 M CLK3 drives Bank A and CLK1 drives Bank B. 1 M CLK3 drives Bank A and CLK2 drives Bank B. Table 5. Output Impedance Select ZOUTSEL Differential Output Impedance (Ω) 0 85 (42.5 single-ended) 1 100 (50 single-ended) Table 6. Output Amplitude Select, High Impedance Loads IOA_tri, IOB_tri 2.5V or 3.3V Operation 1.8V Operation M 750mV nominal Vhigh 700mV nominal Vhigh 0 825mV nominal Vhigh 750mV nominal Vhigh 1 925mV nominal Vhigh 825mV nominal Vhigh Absolute Maximum Ratings The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 9DML4493A at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 7. Absolute Maximum Ratings Parameter Symbol Supply Voltage VDDx Input Voltage VIN Continuous Current IO Surge Current IO Storage Temperature Minimum Typical Maximum Units Notes - - 3.63 V 1,2 -0.5 - VDD + 0.5 V 1 CLK output pins. - - 40 mA 1 CLK output pins. - - 60 mA 1 TS -65 - 150 °C 1 Junction Temperature TJ - - 125 °C 1 Soldering Temperature TLD - - 260 °C 1 Input ESD Protection ESD Prot 2000 - - V 1 1 Guaranteed 2 Conditions With respect to ground. 10 seconds maximum. Human Body Model. by design and characterization, not 100% tested in production. Operation under these conditions is neither implied nor guaranteed. ©2021 Renesas Electronics Corporation 6 February 19, 2021 9DML4493A Datasheet Electrical Characteristics TA = TAMB, supply voltages per normal operation conditions. See Test Loads for loading conditions. Table 8. PCIe Refclk Jitter Parameter Additive PCIe Refclk Jitter (Common Clocked Architecture) VDD = 1.8V Additive PCIe Refclk Jitter (Common Clocked Architecture) VDD = 2.5V or 3.3V Additive PCIe Refclk Jitter (SRIS Architecture) VDD = 1.8V Additive PCIe Refclk Jitter (SRIS Architecture) VDD = 2.5V or 3.3V 1 2 3 4 5 Symbol Conditions Units Notes tjphPCIeG1-CC PCIe Gen 1 (2.5 GT/s) — 1.1 2.08 86 ps (p-p) 1,2 PCIe Gen 2 Lo Band (5.0 GT/s) — 0.020 0.033 3.1 ps (RMS) 1,2 PCIe Gen 2 Hi Band (5.0 GT/s) — 0.080 0.140 3 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen 3 (8.0 GT/s) — 0.043 0.071 1 ps (RMS) 1,2,3 tjphPCIeG4-CC PCIe Gen 4 (16.0 GT/s) — 0.043 0.071 0.4 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen 5 (32.0 GT/s) — 0.017 0.028 0.08 ps (RMS) 1,2,3,5 tjphPCIeG1-CC PCIe Gen 1 (2.5 GT/s) — 0.750 1.100 86 ps (p-p) 1,2 PCIe Gen 2 Lo Band (5.0 GT/s) — 0.016 0.021 3.1 ps (RMS) 1,2 PCIe Gen 2 Hi Band (5.0 GT/s) — 0.060 0.100 3 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen 3 (8.0 GT/s) — 0.031 0.041 1 ps (RMS) 1,2,3 tjphPCIeG4-CC PCIe Gen 4 (16.0 GT/s) — 0.031 0.041 0.4 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen 5 (32.0 GT/s) — 0.012 0.016 0.08 ps (RMS) 1,2,3,5 tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s) — 0.120 0.200 N/A ps (RMS) 1,2,6 tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s) — 0.100 0.200 N/A ps (RMS) 1,2,6 tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s) — 0.027 0.044 N/A ps (RMS) 1,2,6 tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s) — 0.028 0.046 N/A ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s) — 0.021 0.027 N/A ps (RMS) 1,2,6 tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s) — 0.090 0.120 N/A ps (RMS) 1,2,6 tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s) — 0.080 0.100 N/A ps (RMS) 1,2,6 tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s) — 0.020 0.026 N/A ps (RMS) 1,2,6 tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s) — 0.025 0.041 N/A ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s) — 0.018 0.024 N/A ps (RMS) 1,2,6 tjphPCIeG2-CC tjphPCIeG2-CC Minimum Typical Maximum Limit The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section of the data sheet for the exact measurement setup. Values for the Common Clock architecture are calculated with spread off and spread on at -0.5%. SRIS values are calculated for spread off and spread on at ≤-0.3%. The worst case results for each data rate are summarized in this table. If oscilloscope data is used, equipment noise is removed from all results. See Test Load for PCIe Phase Jitter Measurements. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, Jitter measurements may be made with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system. ©2021 Renesas Electronics Corporation 7 February 19, 2021 9DML4493A Datasheet 6 The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. And additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A “rule-of-thumb” SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS if the clock chip is near the clock input. Table 9. Random Phase Jitter Parameter Symbol tjph100M Additive Phase Jitter tjph156M 1 2 3 Conditions Minimum Typical Maximum Units Notes 100MHz, 12kHz to 20MHz, VDD = 1.8V — 97 158 fs (rms) 1,2,3 100MHz, 12kHz to 20MHz, VDD = 2.5V or 3.3V — 78 111 fs (rms) 1,2,3 156.25MHz, 12kHz to 20MHz, VDD = 1.8V — 66 91 fs (rms) 1,2,3 156.25MHz, 12kHz to 20MHz, VDD = 2.5V or 3.3V — 58 71 fs (rms) 1,2,3 Guaranteed by design and characterization, not 100% tested in production. Driven by Rhode & Schwartz SMA100. For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]. Table 10. Channel to Channel Isolation Parameter Symbol Channel to Channel Isolation tISO 1 2 Conditions Minimum Typical Maximum Units Notes 1.8V operation. -58 — — dBc 1, 2 2.5V or 3.3Voperation. -66 — — dBc 1, 2 Guaranteed by design and characterization, not 100% tested in production. Measured with 3 channels at 100MHz non-spreading and one channel at 100MHz, -0.5% spread. Value represents worst case combination of inputs and outputs. Table 11. Input/Supply/Common Parameters Parameter Supply Voltage Symbol VDDx Conditions Minimum Typical Maximum Units Notes Supply voltage for core and outputs, 3.3V operation. 3.135 3.3 3.465 V Supply voltage for core and outputs, 2.5V operation. 2.375 2.5 2.625 V Supply voltage for core and outputs, 1.8V operation. 1.71 1.8 1.89 V Industrial range. -40 25 85 °C Ambient Operating Temperature TAMB Input High Voltage VIH Single-ended inputs, except SMBus. 0.75 VDD — VDD + 0.3 V Input Low Voltage VIL Single-ended inputs, except SMBus. -0.3 — 0.25 VDD V IIN Single-ended inputs, VIN = GND, VIN = VDD. -5 — 5 μA IINP Single-ended inputs. VIN = 0 V; inputs with internal pull-up resistors. VIN = VDD; inputs with internal pull-down resistors. -150 — 150 μA Input Current ©2021 Renesas Electronics Corporation 8 February 19, 2021 9DML4493A Datasheet Table 11. Input/Supply/Common Parameters (Cont.) Parameter Symbol Input Frequency FIN PPM Error fERROR DC Output Impedance ZO-DC Pin Inductance Lpin Conditions Minimum Typical Maximum 1 PPS — 350 Input to output ppm error. Units Notes 0 MHz 4 ppm 5 85Ω setting (single-ended value). 34 42.5 51 Ω 1 100Ω setting (single-ended value). 40 50 60 Ω 1 — — 7 nH 1 Logic inputs, including CLK. 2.2 2.8 3.2 pF 1 COUT Output pin capacitance. — — 6 pF 1 Clk Stabilization TSTAB From VDD reaching 90% of target, input clock present. — — 3 ms 1,2 Input SS Modulation Frequency PCIe fMODINPCIe Allowable frequency for PCIe applications (Triangular modulation) 30 31.5 33 kHz OE Latency tLATOE Q start after OE assertion. Q stop after OE deassertion. 2 — 10 clocks 1,3 Tfall tF Fall time of single-ended control inputs. — — 5 ns 2 Trise tR Rise time of single-ended control inputs. — — 5 ns 2 CIN Capacitance 1 2 3 4 5 Guaranteed by design and characterization, not 100% tested in production. Control input must be monotonic from 20% to 80% of input swing. Time from deassertion until outputs are > 200mV. “PPS” means Pulse Per Second or Hertz. This device does not alter the ppm accuracy of the input clock. Table 12. Source-Terminated LP-HCSL Driver with High-Impedance Receiver TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions. Parameter Symbol Conditions Minimum Typical Maximum Limit Units Notes Rising/Falling Slew Rate dV/dt 1.4 2.3 3.2 1 to 4 V/ns 2, 3,10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3.2 12 20 % 1,10,12 Absolute Max Output Voltage VMAX — — 900 1150 mV 1, 7, 10 Absolute Min Output Voltage VMIN -142 — — -300 mV 1, 8, 10 Output High Voltage VOH 564 708 881 N/A mV 1,7 Output Low Voltage VOL -104 -6 99 N/A mV 1,8 255 355 446 250 to 550 mV 1, 4, 5,10 — 28 124 140 mV 1, 4, 9, 10 Absolute Crossing Point Voltage 100MHz, IOA_tri, IOB_tri = M VDD = 1.8V VCROSS VCROSS Variation over all Rising Clock Edges VCROSS ©2021 Renesas Electronics Corporation 9 February 19, 2021 9DML4493A Datasheet Table 12. Source-Terminated LP-HCSL Driver with High-Impedance Receiver (Cont.) TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions. Parameter Symbol Conditions Minimum Typical Maximum Limit Units Notes Rising/Falling Slew Rate dV/dt 1.7 2.5 3.5 1 to 4 V/ns 2, 3,10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3.1 12 20 % 1,10,12 Absolute Max Output Voltage VMAX — — 990 1150 mV 1, 7,10 -157 — — -300 mV 1, 8,10 614 766 969 N/A mV 1, 7 -121 -10 96 N/A mV 1, 8 285 380 490 250 to 550 mV 1, 4, 5,10 VCROSS Variation over all Rising Clock Edges VCROSS — 29 107 140 mV 1, 4, 9, 10 Rising/Falling Slew Rate dV/dt 1.6 2.6 3.9 1 to 4 V/ns 2, 3, 10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3.3 12 20 % 1,10,12 Absolute Max Output Voltage VMAX — — 1093 1150 mV 1, 7,10 Absolute Min Output Voltage VMIN -175 — — -300 mV 1, 8,10 Output High Voltage VOH 650 825 1069 N/A mV 1, 7 Output Low Voltage VOL -130 -14 101 N/A mV 1, 8 303 403 512 250 to 550 mV 1, 4, 5, 10 VCROSS Variation over all Rising Clock Edges VCROSS — 31 119 140 mV 1, 4, 9, 10 Rising/Falling Slew Rate dV/dt 2.0 2.5 3.3 1 to 4 V/ns 2, 3,10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3.3 10 20 % 1,10,12 Absolute Max Output Voltage VMAX — — 932 1150 mV 1, 7,10 Absolute Min Output Voltage VMIN -162 — — -300 mV 1, 8,10 Output High Voltage VOH 616 749 906 N/A mV 1, 7 Output Low Voltage VOL -119 -22 79 N/A mV 1, 8 279 372 463 250 to 550 mV 1, 4, 5,10 — 32 125 140 mV 1, 4, 9, 10 Absolute Min Output Voltage VMIN Output High Voltage VOH Output Low Voltage VOL Absolute Crossing Point Voltage Absolute Crossing Point Voltage Absolute Crossing Point Voltage 100MHz, IOA_tri, IOB_tri = 0 VDD = 1.8V VCROSS 100MHz, IOA_tri, IOB_tri = 1 VDD = 1.8V VCROSS 100MHz, IOA_tri, IOB_tri = M VDD = 2.5V or 3.3V VCROSS VCROSS Variation over all Rising Clock Edges VCROSS ©2021 Renesas Electronics Corporation 10 February 19, 2021 9DML4493A Datasheet Table 12. Source-Terminated LP-HCSL Driver with High-Impedance Receiver (Cont.) TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions. Parameter Symbol Conditions Minimum Typical Maximum Limit Units Notes Rising/Falling Slew Rate dV/dt 2.1 2.8 3.6 1 to 4 V/ns 2, 3, 10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3.4 10 20 % 1,10,12 Absolute Max Output Voltage VMAX — — 1007 1150 mV 1, 7, 10 Absolute Min Output Voltage VMIN -175 — — -300 mV 1, 8, 10 Output High Voltage VOH 700 827 979 N/A mV 1, 7 Output Low Voltage VOL -136 -27 93 N/A mV 1, 8 311 405 464 250 to 550 mV 1, 4, 5, 10 VCROSS Variation over all Rising Clock Edges VCROSS — 36 128 140 mV 1, 4, 9, 10 Rising/Falling Slew Rate dV/dt 2.3 3.0 3.9 1 to 4 V/ns 2, 3, 10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3.5 10 20 % 1, 10, 12 Absolute Max Output Voltage VMAX — — 1097 1150 mV 1, 7, 10 Absolute Min Output Voltage VMIN -191 — — -300 mV 1, 8, 10 Output High Voltage VOH 807 917 1075 N/A mV 1, 7 Output Low Voltage VOL -149 -30 98 N/A mV 1, 8 347 439 503 250 to 550 mV 1, 4, 5, 10 — 39 137 140 mV 1, 4, 9, 10 Absolute Crossing Point Voltage Absolute Crossing Point Voltage 100MHz, IOA_tri, IOB_tri = 0 VDD = 2.5V or 3.3V VCROSS 100MHz, IOA_tri, IOB_tri = 1 VDD = 2.5V or 3.3V VCROSS VCROSS Variation over all Rising Clock Edges VCROSS 1 2 3 Measurement taken from single-ended waveform. Measurement taken from differential waveform. Measured from -75mV to +75mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 150 mV measurement window is centered on the differential zero crossing. See Figure 6 “Rise/Fall Measurement Points (Differential Waveform)”. 4 Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-. See Figure 5 “Absolute Cross Point and Swing Measurement Points (Single-ended Waveform)”. 2 Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Figure 2 “Absolute Cross Point and Swing Measurement Points (Single-ended Waveform)”. 6 Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and spread spectrum 7 8 9 modulation. See Figure 5 “Duty Cycle and Clock Period Measurement Points (Differential Waveform)”. Defined as the maximum instantaneous voltage including overshoot. See Figure 2 “Absolute Cross Point and Swing Measurement Points (Single-ended Waveform)”. Defined as the minimum instantaneous voltage including undershoot. See Figure 2 “Absolute Cross Point and Swing Measurement Points (Single-ended Waveform)”. Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system. See Figure 3 “VCROSSDELTA Measurement Points (Single-ended Waveform)”. 10 System board compliance measurements must use the test load card. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL = 2pF. ©2021 Renesas Electronics Corporation 11 February 19, 2021 9DML4493A Datasheet 11 12 PPM refers to parts per million and is a DC absolute period accuracy specification. 1PPM is 1/1,000,000th of 100.000000MHz exactly or 100Hz. For example for 300PPM, then we have an error budget of 100Hz/PPM × 300PPM = 30kHz. The period is to be measured with a frequency counter with measurement window set to 100ms or greater. Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 4 “Rise/Fall Matching Measurement Points (Single-ended Waveform)”. Figure 2. Absolute Cross Point and Swing Measurement Points (Single-ended Waveform) VMAX = 1.15V REFCLK- VHIGH VCROSSMAX VCROSSMIN REFCLK+ VMIN = -0.30V Figure 3. VCROSSDELTA Measurement Points (Single-ended Waveform) REFCLKVCROSSDELTA REFCLK+ Figure 4. Rise/Fall Matching Measurement Points (Single-ended Waveform) REFCLK- REFCLK- VCROSSMEDIAN VCROSSMEDIAN +75mV VCROSSMEDIAN VCROSSMEDIAN -75mV REFCLK+ REFCLK+ TFALL TRISE Figure 5. Duty Cycle and Clock Period Measurement Points (Differential Waveform) Clock Period (differential) Positive Duty Cycle (differential) 0.0V REFCLK+ Minus REFCLK- ©2021 Renesas Electronics Corporation 12 February 19, 2021 9DML4493A Datasheet Figure 6. Rise/Fall Measurement Points (Differential Waveform) Rising Edge Rate Falling Edge Rate VIH = +150mV 0.0V VIL = -150mV REFCLK+ Minus REFCLKTable 13. Source-Terminated LP-HCSL Driver with Receiver Terminated Load (Double-Terminated) TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions. Parameter Symbol Conditions Minimum Typical Maximum Limit Units Notes Rising/Falling Slew Rate dV/dt 1.7 2.6 3.6 1 to 4 V/ns 2, 3,10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3 14 20 % 1, 11, 12 Absolute Max Output Voltage VMAX — — 453 575 mV 1, 7,10 Absolute Min Output Voltage VMIN -27 — — -150 mV 1, 8,10 Output High Voltage VOH 289 367 441 N/A mV 1, 7 Output Low Voltage VOL -17 10 38 N/A mV 1, 8 VCROSS 138 188 246 125 to 275 mV 1, 4, 5, 10 VCROSS — 11 48 70 mV 1, 4, 9, 10 Rising/Falling Slew Rate dV/dt 1.8 2.8 4.1 1.5 to 4.5 V/ns 2, 3,10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3 13 20 % 1, 11, 12 Absolute Max Output Voltage VMAX — — 492 575 mV 1, 7, 10 Absolute Min Output Voltage VMIN -27 — — -150 mV 1, 8, 10 Output High Voltage VOH 309 396 478 N/A mV 1, 7 Output Low Voltage VOL -13 10 36 N/A mV 1, 8 VCROSS 146 201 264 125 to 275 mV 1, 4, 5, 10 VCROSS — 11 51 70 mV 1, 4, 9, 10 Absolute Crossing Point Voltage VCROSS Variation over all Rising Clock Edges Absolute Crossing Point Voltage VCROSS Variation over all Rising Clock Edges ©2021 Renesas Electronics Corporation 100MHz, IOA_tri, IOB_tri = M VDD = 1.8V 100MHz, IOA_tri, IOB_tri = 0 VDD = 1.8V 13 February 19, 2021 9DML4493A Datasheet Table 13. Source-Terminated LP-HCSL Driver with Receiver Terminated Load (Double-Terminated) (Cont.) Parameter Symbol Conditions Minimum Typical Maximum Limit Units Notes Rising/Falling Slew Rate dV/dt 1.9 3.0 4.3 1.5 to 4.5 V/ns 2, 3, 10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3 15 20 % 1, 11, 12 Absolute Max Output Voltage VMAX — — 535 575 mV 1, 7, 10 Absolute Min Output Voltage VMIN -30 — — -150 mV 1, 8, 10 Output High Voltage VOH 317 423 517 N/A mV 1, 7 Output Low Voltage VOL -14 11 37 N/A mV 1, 8 VCROSS 150 215 286 140 to 290 mV 1, 4, 5, 10 VCROSS — 12 54 70 mV 1, 4, 9, 10 Rising/Falling Slew Rate dV/dt 1.9 2.7 3.8 1 to 4 V/ns 2, 3, 10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3 13 20 % 1, 11, 12 Absolute Max Output Voltage VMAX — — 463 575 mV 1, 7, 10 Absolute Min Output Voltage VMIN -27 — — -150 mV 1, 8, 10 Output High Voltage VOH 336 391 451 N/A mV 1, 7 Output Low Voltage VOL -14 9 35 N/A mV 1,8 VCROSS 163 203 254 125 to 275 mV 1, 4, 5, 10 VCROSS — 11 48 70 mV 1, 4, 9, 10 Rising/Falling Slew Rate dV/dt 2.2 3.0 4.0 1 to 4 V/ns 2, 3, 10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3 13 20 % 1, 11, 12 Absolute Max Output Voltage VMAX — — 493 575 mV 1, 7, 10 Absolute Min Output Voltage VMIN -26 — — -150 mV 1, 8, 10 Output High Voltage VOH 379 429 482 N/A mV 1, 7 Output Low Voltage VOL -13 10 34 N/A mV 1, 8 VCROSS 182 221 271 125 to 275 mV 1, 4, 5, 10 VCROSS — 12 50 70 mV 1, 4, 9, 10 Absolute Crossing Point Voltage VCROSS Variation over all Rising Clock Edges Absolute Crossing Point Voltage VCROSS Variation over all Rising Clock Edges Absolute Crossing Point Voltage VCROSS Variation over all Rising Clock Edges ©2021 Renesas Electronics Corporation 100MHz, IOA_tri, IOB_tri = 1 VDD = 1.8V 100MHz, IOA_tri, IOB_tri = M VDD = 2.5V or 3.3V 100MHz, IOA_tri, IOB_tri = 0 VDD = 2.5V or 3.3V 14 February 19, 2021 9DML4493A Datasheet Table 13. Source-Terminated LP-HCSL Driver with Receiver Terminated Load (Double-Terminated) (Cont.) Parameter Symbol Conditions Minimum Typical Maximum Limit Units Notes Rising/Falling Slew Rate dV/dt 1.9 3.0 4.5 1.5 to 4.5 V/ns 2, 3, 10 Rising Edge (REFCLK+) to Falling Edge (REFCLK-) Matching tR/tF — 3 13 20 % 1, 11, 12 Absolute Max Output Voltage VMAX — — 529 575 mV 1, 7, 10 Absolute Min Output Voltage VMIN -30 — — -150 mV 1, 8, 10 Output High Voltage VOH 1 427 469 511 N/A mV 1, 7 Output Low Voltage VOL 1 -11 11 36 N/A mV 1, 8 VCROSS 200 242 293 150 to 300 mV 1, 4, 5, 10 VCROSS — 14 57 70 mV 1, 4, 9, 10 Absolute Crossing Point Voltage VCROSS Variation over all Rising Clock Edges 1 2 3 100MHz, IOA_tri, IOB_tri = 1 VDD = 2.5V or 3.3V Measurement taken from single-ended waveform. Measurement taken from differential waveform. Measured from -75 mV to +75 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 150mV measurement window is centered on the differential zero crossing. See Figure 11 “Rise/Fall Measurement Points (Differential Waveform)”. 4 Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-. See Figure 5 “Absolute Cross Point and Swing Measurement Points (Single-Ended Waveform)”. 7 Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Figure 7 “Absolute Cross Point and Swing Measurement Points (Single-Ended Waveform)”. 6 Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and spread spectrum 7 8 9 modulation. See Figure 10 “Duty Cycle and Clock Period Measurement Points (Differential Waveform)”. Defined as the maximum instantaneous voltage including overshoot. See Figure 7 “Absolute Cross Point and Swing Measurement Points (Single-Ended Waveform)”. Defined as the minimum instantaneous voltage including undershoot. See Figure 7 “Absolute Cross Point and Swing Measurement Points (Single-Ended Waveform)”. Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system. See Figure 8 “VCROSSDELTA Measurement Points (Single-Ended Waveform)”. 10 11 12 System board compliance measurements must use the test load card. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL = 2pF. PPM refers to parts per million and is a DC absolute period accuracy specification. 1PPM is 1/1,000,000th of 100.000000MHz exactly or 100Hz. For example for 300PPM, then we have an error budget of 100Hz/PPM × 300PPM = 30kHz. The period is to be measured with a frequency counter with measurement window set to 100ms or greater. Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 9 “Rise/Fall Matching Measurement Points (Single-Ended Waveform)”. ©2021 Renesas Electronics Corporation 15 February 19, 2021 9DML4493A Datasheet Figure 7. Absolute Cross Point and Swing Measurement Points (Single-ended Waveform) VMAX = 0.575V REFCLK- VHIGH VCROSSMAX VCROSSMIN REFCLK+ VMIN = -0.15V Figure 8. VCROSSDELTA Measurement Points (Single-ended Waveform) REFCLKVCROSSDELTA REFCLK+ Figure 9. Rise/Fall Matching Measurement Points (Single-ended Waveform) REFCLK- REFCLK- VCROSSMEDIAN VCROSSMEDIAN +37.5mV VCROSSMEDIAN VCROSSMEDIAN -37.5mV REFCLK+ REFCLK+ TFALL TRISE Figure 10. Duty Cycle and Clock Period Measurement Points (Differential Waveform) Clock Period (differential) Positive Duty Cycle (differential) 0.0V REFCLK+ Minus REFCLK- ©2021 Renesas Electronics Corporation 16 February 19, 2021 9DML4493A Datasheet Figure 11. Rise/Fall Measurement Points (Differential Waveform) Rising Edge Rate Falling Edge Rate VIH = +75mV 0.0V VIL = -75mV REFCLK+ Minus REFCLKTable 14. Differential Clock Input Parameters Parameter Symbol Conditions Input High Current–CLKINx, CLKINx# IIH VDDCLKx = 3.465V, 2.625V or 1.89V = VIN. — — 150 μA 1 VDD = 3.465V, 2.625V or 1.89V, VIN = 0V. -5 — — μA 1 VDD = 3.465V, 2.625V or 1.89V, VIN = 0V. -150 — — μA 1 Single-ended input swing. 0.15 — 1.3 V 2 0.075 — VDDCLKx – 1.2 V 2,3 Input Low Current–CLKINx IIL Input Low Current–CLKINx# Peak-to-peak Voltage VP2P Common Mode Input Voltage VCMR 1 2 3 Minimum Typical Maximum Units Notes CLKINx denotes input clocks where x = 0 to 3. VIL should not be less than –0.3V. VIH should not be higher than VDDCLKx. Common mode voltage is defined as the cross-point. Table 15. Output Duty Cycle, Jitter, and Skew Characteristics Parameter Symbol Duty Cycle Distortion tDCD Skew, Input to Output Skew, Output to Output 1 Minimum Typical Maximum Units Notes Measured differentially at 100MHz. -0.9 -0.4 0.2 % 1,3 tPD VT = 50%. 0.73 1.2 1.6 ns 1 tSK3 VT = 50%. — 4.9 22 ps 1  Guaranteed by design and characterization, not 100% tested in production. 2 Measured 3 Conditions from differential waveform. Duty cycle distortion is the difference in duty cycle between the output and the input clock. Table 16. Current Consumption Parameter Operating Supply Current, VDD = 1.8V Symbol IDDCORE IDDOx IDDCLKx Conditions Minimum Typical Maximum Units VDDCORE, All outputs active at 100MHz. — 13 16 mA Total VDDO, All outputs active at 100MHz. — 46 60 mA Total VDDCLK, All CLK inputs active at 100MHz. — 10 12 mA ©2021 Renesas Electronics Corporation 17 Notes February 19, 2021 9DML4493A Datasheet Table 16. Current Consumption (Cont.) Parameter Operating Supply Current, VDD = 2.5V or 3.3V Standby Current, VDD = 1.8V Standby Current, VDD = 2.5V or 3.3V 1 Symbol Minimum Typical Maximum Units VDDCORE, All outputs active at 100MHz. — 16 21 mA Total VDDO, All outputs active at 100MHz. — 66 82 mA IDDCLKx Total VDDCLK, All CLK inputs active at 100MHz. — 12 16 mA IDDCORE VDDCORE, all outputs disabled. — 13 16 mA 1 Total VDDO, all outputs disabled. — 24 34 mA 1 IDDCLKx Total VDDCLKx, all outputs disabled. — 6 8 mA 1 IDDCORE VDDCORE, all outputs disabled. — 16 21 mA 1 Total VDDO, all outputs disabled. — 35 42 mA 1 Total VDDCLKx, all outputs disabled. — 7 9 mA 1 IDDCORE IDDOx IDDOx IDDOx IDDCLKx Conditions Notes CLKINx/CLKINx# set low/low. ©2021 Renesas Electronics Corporation 18 February 19, 2021 9DML4493A Datasheet Test Loads Figure 12. Source-Terminated Driver with High-Impedance Receiver Rs CL L Diff Device Zo Test Points Differential Load Zo CL Rs Table 17. Parameters for Source-Terminated Driver with High-Impedance Receiver[a] ZOUTSEL Differential Device Zo (Ω) Rs (Ω) Differential Load Zo (Ω) L (Inches) CL (pF) 0 85 Internal 85 10 2 0 85 External 7.5 100 10 2 1 100 Internal 100 10 2 [a] This load is only used for signal integrity measurements at 100MHz into a 10 inch load (PCIe). Higher frequencies use the Double-Terminated test load for signal integrity measurements. Figure 13. Source-Terminated Driver with Receiver Termination (Double-Terminated) Rs L Diff Device Zo CL Rp Differential Load Zo Test Points Rp CL Rs Table 18. Parameters for Source-Terminated Driver with Receiver Termination (Double Terminated)[a] ZOUTSEL Differential Device Zo (Ω) Rs (Ω) Differential Load Zo (Ω) L (Inches) CL (pF) RP (pF) 0 85 Internal 85 10 2 42.5 0 85 External 7.5 100 10 2 50 1 100 Internal 100 10 2 50 [a] This load is used for signal integrity measurements at frequencies higher than 100MHz. It may also be used at 100MHz. Alternate Terminations The LP-HCSL output can easily drive other logic families. See “AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's “Universal” Low-Power HCSL Outputs” for termination schemes for LVPECL, LVDS, CML and SSTL. ©2021 Renesas Electronics Corporation 19 February 19, 2021 9DML4493A Datasheet Phase Jitter Test Loads Figure 14. Test Setup for Additive Phase Jitter Measurements PNA Coax Cables L CKIN+ CK+ CK+ Zo (differential) DUT Clock Source CKIN- CK- Balun 0.1uF CK- 50 SMA Connectors Table 19. Parameters for Phase Jitter Measurements Clock Source ZOUTSEL Differential Device Zo (Ω) Rs (Ω) Differential Load Zo (Ω) L (Inches) SMA100B 0 85 Internal 85 10 SMA100B 1 100 Internal 100 10 ©2021 Renesas Electronics Corporation 20 February 19, 2021 9DML4493A Datasheet Package Outline Drawings The package outline drawings are located at the end of this document. The package information is the most current data available and is subject to change without revision of this document. Thermal Characteristics Table 20. Thermal Characteristics1 Parameter Thermal Resistance 1 Symbol Parameter Package Value Units θJB Junction to base. 1.9 °C/W θJC Junction to case. 34.6 °C/W θJA0 Junction to Air, still air. 43.5 °C/W θJA1 Junction to Air, 1 m/s air flow. 36.7 °C/W θJA3 Junction to Air, 3 m/s air flow. 32.9 °C/W θJA5 Junction to Air, 5 m/s air flow. 31.4 °C/W NLG32 EPAD soldered to ground. Marking Diagram ▪ Lines 2 and 3 indicate the part number. ▪ Line 4 indicates the following: • “#” denotes the stepping. • “YY” is the last two digits of the year; “WW” is the work week number when the part was assembled. • “$” denotes the mark code. Ordering Information Orderable Part Number Package Carrier Type Temperature 9DML4493ANLGI 5 × 5 mm 32-VFQFPN Tray -40° to +85°C 9DML4493ANLGI8 5 × 5 mm 32-VFQFPN Tape and Reel -40° to +85°C “G” suffix denotes Pb-free configuration, RoHS compliant. ©2021 Renesas Electronics Corporation 21 February 19, 2021 9DML4493A Datasheet Revision History Revision Date February 19, 2021 June 17, 2020 Description of Change ▪ Updated 1st page description. ▪ Updated 1st page Features list. ▪ Added Clock Input Bias Network diagram. ▪ ▪ ▪ ▪ ▪ Updated footnote 2 on table 10. Updated Output High Voltage values for 100MHz, IOA_tri, IOB_tri = 0, VDD = 1.8V. Updated Absolute Max Output Voltage values for 100MHz, IOA_tri, IOB_tri = 1, VDD = 1.8V. Updated values in tables 8, 12, 13, and 16. Changed ZOUTSEL from an internal pull-down to an internal pull-up resistor in Block Diagram, Pin Assignments, and Pin Descriptions. ▪ Corrected pull-up typo in pin descriptions for pin 1, 24, 28, and 29; changed to pull-down. ▪ Updated maximum values for standby and supply current specifications. June 1, 2020 Re-arranged and updated electrical tables and moved to final. May 19, 2020 Updated typical values in electrical tables. May 15, 2020 Updated electrical tables, added typical values and moved to preliminary April 6, 2020 Initial release. ©2021 Renesas Electronics Corporation 22 February 19, 2021 32-VFQFPN, Package Outline Drawing 5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm. NLG32P1, PSC-4171-01, Rev 02, Page 1 32-VFQFPN, Package Outline Drawing 5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm. NLG32P1, PSC-4171-01, Rev 02, Page 2 Package Revision History Description Date Created Rev No. April 12, 2018 Rev 02 New Format Feb 8, 2016 Rev 01 Added "k: Value IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
9DML4493ANLGI 价格&库存

很抱歉,暂时无法提供与“9DML4493ANLGI”相匹配的价格&库存,您可以联系我们找货

免费人工找货