0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL28190FRUZ-T7

ISL28190FRUZ-T7

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    UFDFN6

  • 描述:

    IC OPAMP VFB 1 CIRCUIT 6UTDFN

  • 数据手册
  • 价格&库存
ISL28190FRUZ-T7 数据手册
Datasheet ISL28290 Dual Single Supply Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail Output, Op Amp The ISL28290 is a dual ultra-low noise, ultra-low distortion operational amplifiers. Fully specified to operated down to +3V single supply. The amplifier has outputs that swing rail-to-rail, and an input common mode voltage that extends below ground (ground sensing). The ISL28290 is unity gain stable with an input referred voltage noise of 1nV/√Hz. The part features 0.00017% THD+N at 1kHz. The ISL28290 is available in the 10 Ld UTQFN (1.8mmx1.4mm), 10 Ld MSOP and 8 LD SOIC packages. Device operation is guaranteed over −40°C to +125°C. Related Information Features ▪ 1nV/√Hz input voltage noise ▪ 1kHz THD+N typical 0.00017% at 2VP−P VOUT ▪ Harmonic Distortion −87dBc, −90dBc, fO = 1MHz ▪ 170MHz −3dB bandwidth ▪ 50V/µs slew rate ▪ 700µV maximum offset voltage ▪ 10µA typical input bias current ▪ 103dB typical CMRR ▪ 3V to 5.5V single supply voltage range ▪ Rail-to-rail output ▪ Ground sensing For a full list of related documents, visit our website: ▪ Enable pin (not available in the 8 Ld SOIC package option) ▪ ISL28290 device page ▪ Pb-free (RoHS compliant) Applications ▪ Low noise signal processing ▪ Low noise microphones/preamplifiers ▪ ADC buffers ▪ DAC output amplifiers ▪ Digital scales ▪ Strain gauges/sensor amplifiers ▪ Radio systems ▪ Portable equipment ▪ Infrared detectors FN6247 Rev.12.0 Jan.12.21 Page 1 ISL28290 Datasheet Contents 1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 2. Pin Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 2.2 3. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 3.2 3.3 3.4 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 6 7 4. Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5. Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enable/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using Only One Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Bypassing and Printed Circuit Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 15 16 16 16 6. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7. Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 FN6247 Rev.12.0 Jan.25.21 Page 2 ISL28290 Datasheet 1. Overview 1.1 Ordering Information Part[1] Marking Part Number Temp Range (°C) ISL28290FUZ 8290Z −40 to +125 ISL28290FUZ-T7 8290Z −40 to +125 ISL28290FRUZ-T7 E −40 to +125 ISL28290FBZ 28290 FBZ −40 to +125 ISL28290FBZ-T7 28290 FBZ −40 to +125 ISL28290EVAL1Z Evaluation Board 1. The part marking is located on the bottom of the part. 2. See TB347 for details about reel specifications. FN6247 Rev.12.0 Jan.25.21 Tape and Reel[2] (Units) Package (RoHS Compliant) Pkg. Dwg. # 10 Ld MSOP M10.118A 1.5k 10 Ld MSOP M10.118A 3k 10 Ld UTQFN L10.1.8x1.4A 8 Ld SOIC M8.15E 8 Ld SOIC M8.15E 1k Page 3 ISL28290 Datasheet 2. Pin Information Pin Configuration + V- 4 ENABLE_A 5 7 IN+_B IN-_A OUT_B 8 IN-_B 10 9 8 1 7 6 ENABLE_B IN+_A IN-_B + + 6 IN+_B 2 3 4 5 ENABLE_B IN+_A 3 9 OUT_B + ENABLE_A IN-_A 2 10 V+ V+ OUT_A 1 ISL28290 (10 Ld UTQFN) Top View OUT_A ISL28290 (10 Ld MSOP) Top View V- 2.1 ISL28290 (8 Ld SOIC) Top View OUT_A 1 IN-_A 2 IN+_A 3 8 V+ + V- 4 2.2 7 OUT_B + 6 IN-_B 5 IN+_B Pin Descriptions ISL28290 ISL28290 ISL28290 Pin (10 Ld MSOP) (10 Ld UTQFN) (8 Ld SOIC) Name Function Equivalent 1 (A) 7 (B) 2 (A) 6 (B) IN− IN−_A IN−_B Inverting input 2 (A) 8 (B) Circuit V+ IN- IN+ V- Circuit 1 2 (A) 6 (B) 3 (A) 5 (B) IN+ IN+_A IN+_B Non-inverting input 3 (A) 7 (B) 4 3 4 V− Negative supply FN6247 Rev.12.0 Jan.25.21 (See Circuit 1) Page 4 ISL28290 Datasheet ISL28290 ISL28290 ISL28290 Pin Equivalent (10 Ld MSOP) (10 Ld UTQFN) (8 Ld SOIC) Name Function 10 (A) 8 (B) 1 (A) 7 (B) OUT OUT_A OUT_B Output 1 (A) 9 (B) Circuit V+ OUT V- Circuit 2 10 9 5 (A) 6 (B) 4 (A) 5 (B) 8 V+ Positive supply N/A EN EN_A EN_B Enable BAR pin internal pull-down; Logic “1” selects the disabled state; Logic “0” selects the enabled state. V+ EN V- Circuit 3 FN6247 Rev.12.0 Jan.25.21 Page 5 ISL28290 Datasheet 3. Specifications 3.1 Absolute Maximum Ratings Parameter Minimum Maximum Unit 5.5 mA Supply Turn-On Voltage Slew Rate 1 V/µs Differential Input Current 5 mA Differential Input Voltage 0.5 V V+ + 0.5 V Supply Voltage Input Voltage V- − 0.5 ESD Rating Value Unit 3 kV Machine Model 300 V Charged Device Model (Tested per JS-002-2014) 1200 V Human Body Model (Tested per JS-001-2017) CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty. 3.2 Thermal Information Thermal Resistance (Typical)[1] [2] [3] [4] θJA (°C/W) θJC (°C/W) 8 Ld SOIC Package 110 82 10 Ld MSOP Package 175 90 10 Ld UTQFN Package 190 140 1. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 2. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with direct attach features. See Tech Brief TB379. 3. For θJC, the case temperature location is the center of the exposed metal pad on the package underside. 4. For θJC, the case temperature location is taken at the package top center. Parameter Minimum Maximum Junction Temperature Maximum Storage Temperature Range −65 Pb-Free Reflow Profile 3.3 Maximum Unit +125 °C +150 °C see TB493 Recommended Operation Conditions Parameter Minimum Supply Voltage Ambient Temperature FN6247 Rev.12.0 Jan.25.21 −40 Maximum Unit 5.0 V +125 °C Page 6 ISL28290 Datasheet 3.4 Electrical Specifications V+ = 5.0V, V− = GND, RL = Open, RF = 1kΩ, AV = −1 unless otherwise specified. Parameters are per amplifier. Typical values are at V+ = 5V, TA = +25°C. Boldface limits apply over the operating temperature range, −40°C to +125°C, temperature data established by characterization. Parameter Symbol Test Conditions Min[1] Typ Max[1] Unit −1100 240 700 µV DC Specifications Input Offset Voltage VOS 900 Input Offset Drift vs Temperature ΔV OS --------------ΔT Input Offset Current IIO See Figure 21 1.9 40 µV⁄°C 500 nA 900 Input Bias Current IB 10 16 µA 18 Common-Mode Voltage Range VCM 0 3.8 V Common-Mode Rejection Ratio CMRR VCM = 0V to 3.8V 78 103 dB Power Supply Rejection Ratio PSRR VS = 3V to 5V 74 80 dB Large Signal Voltage Gain AVOL VO = 0.5V to 4V, RL = 1kΩ 94 102 dB 90 Maximum Output Voltage Swing VOUT Output low, RL = 1kΩ 20 50 mV 80 Output high, RL = 1kΩ, V+ = 5V 4.95 4.97 V 4.92 Supply Current per Channel, Enabled IS,ON Supply Current, Disabled IS,OFF 8.5 11 mA 13 26 35 µA 52 Short-Circuit Output Current IO+ RL = 10Ω 95 144 mA 90 FN6247 Rev.12.0 Jan.25.21 Page 7 ISL28290 Datasheet V+ = 5.0V, V− = GND, RL = Open, RF = 1kΩ, AV = −1 unless otherwise specified. Parameters are per amplifier. Typical values are at V+ = 5V, TA = +25°C. Boldface limits apply over the operating temperature range, −40°C to +125°C, temperature data established by characterization.(Cont.) Parameter Symbol Short-Circuit Output Current IO− Test Conditions RL = 10Ω Min[1] Typ 95 135 Max[1] Unit mA 90 Supply Operating Range VSUPPLY V+ to V− 3 2 EN High Level VENH Referred to V− EN Low Level VENL Referred to V− EN Pin Input High Current IENH VEN = V+ 5.5 V V 0.8 0.8 V 1.2 µA 1.4 EN Pin Input Low Current IENL VEN = V− 20 80 nA 100 AC Specifications −3dB Unity Gain Bandwidth GBW Total Harmonic Distortion + Noise THD+N f = 1kHz, VOUT + 2VP−P, AV = +1, RL = 10kΩ 2nd Harmonic Distortion HD (1MHz) VOUT = 2VP−P, AV = 1 3rd Harmonic Distortion Off-state Isolation fO = 100kHz Channel-to-Channel Crosstalk fO = 100kHz ISO X-TALK RF = 0Ω CL = 20pF, AV = 1, RL = 10kΩ 170 MHz 0.000 17 % −87 dBc −90 dBc AV = +1; VIN = 100mVP−P; RF = 0Ω, CL = 20pF, AV = 1, RL = 10kΩ −38 dB VS = ±2.5V; AV = +1; VIN = 1VP−P, RF = 0Ω, CL = 20pF, AV = 1, RL = 10kΩ −105 dB Power Supply Rejection Ratio fO = 100kHz PSRR VS = ±2.5V; AV = +1; VSOURCE = 1VP−P, RF = 0Ω, CL = 20pF, AV = 1, RL = 10kΩ −70 dB Common Mode Rejection Ratio fO = 100kHz CMRR VS = ±2.5V; AV = +1; VCM = 1VP−P, RF = 0Ω, CL = 20pF, AV = 1, RL = 10kΩ −65 dB Input Referred Voltage Noise en fO = 1kHz 1 nV/√Hz Input Referred Current Noise in fO = 10kHz 2.1 pA/√Hz 50 V/µs 1.0 ns 3.3 ns 6.3 ns Transient Response Slew Rate SR 30 25 Propagation Delay 10% VIN − 10% VOUT Rise Time, tr 10% to 90% Fall Time, tf 10% to 90% FN6247 Rev.12.0 Jan.25.21 tpd AV = 1, VOUT = 100mVP−P, RF = 0Ω, CL = 1.2pF tr, tf, Small AV = +1, VOUT = 0.1VP−P, RF = 0Ω, Signal CL = 1.2pF Page 8 ISL28290 Datasheet V+ = 5.0V, V− = GND, RL = Open, RF = 1kΩ, AV = −1 unless otherwise specified. Parameters are per amplifier. Typical values are at V+ = 5V, TA = +25°C. Boldface limits apply over the operating temperature range, −40°C to +125°C, temperature data established by characterization.(Cont.) Parameter Rise Time, tr 10% to 90% Fall Time, tf 10% to 90% Symbol tr, tf Large Signal Rise Time, tr 10% to 90% Fall Time, tf 10% to 90% Settling Time to 0.1% 90% VOUT to 0.1% VOUT ENABLE to Output Turn-on Delay Time; 10% EN − 10% VOUT ENABLE to Output Turn-off Delay Time; 10% EN − 10% VOUT 1. ts tEN Test Conditions Min[1] Typ Max[1] Unit AV = +2, VOUT = 1VP−P, RF = RG = 499Ω, RL = 10kΩ, CL = 1.2pF 44 ns 51 ns AV = +2, VOUT = 4.7VP−P, RF = RG = 499Ω, RL = 10kΩ, CL = 1.2pF 190 ns 187 ns AV = 1, VOUT = 1VP−P, RF = 0Ω, CL = 1.2pF 45 ns AV = 1, VOUT = 1VDC, RL = 10kΩ, CL = 1.2pF 330 ns AV = 1, VOUT = 0VDC, RL = 10kΩ, CL = 1.2pF 50 ns Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. FN6247 Rev.12.0 Jan.25.21 Page 9 ISL28290 Datasheet 4. Typical Performance Curves 2 0 RL = 10k -1 CLOSED LOOP GAIN (dB) CLOSED LOOP GAIN (dB) 10 RL = 100k 1 RL = 100 -2 -3 -4 RL = 1k -5 V+ = 5V -6 AV = +1 C = 10pF -7 V L = 10mV OUT P-P -8 100k 1M 100M 10M CL = 92pF CL = 57pF CL = 32pF 0 CL = 20pF -2 -4 V+ = 5V -6 AV = +1 R = 10kΩ -8 V L = 10mV OUT P-P -10 10k 100k 0 VOUT = 1VP-P -2 VOUT = 100mVP-P -4 V+ = 5V AV = +1 RL = 10kΩ CL = 10pF -6 -7 -8 10k VOUT = 10mVP-P 1M 10M 10 100M AV = 1, RF = 0, RG = INF -10 10k 1G 100k 1M 10M 100M FREQUENCY (Hz) Figure 3. -3dB Bandwidth vs VOUT Figure 4. Frequency Response vs Closed Loop Gain 1M 1M 100k OUTPUT IMPEDANCE (Ω) INPUT IMPEDANCE (Ω) VOUT = 100mVP-P AV = 10, RF = 4.42k, RG = 499 FREQUENCY (Hz) 10k 1k 100 1G 30 0 100k 100M AV = 1000, RF = 499k, RG = 499 V+ = 5V RL = 10k 50 AV = 100, RF = 49.9k, RG = 499 40 20 -5 10M 70 60 -3 1M Figure 2. Gain vs Frequency For Various CLOAD VOUT = 1mVP-P -1 CL = 1pF FREQUENCY (Hz) GAIN (dB) CLOSED LOOP GAIN (dB) 6 2 1G Figure 1. Gain vs Frequency For Various RLOAD 1 CL = 110pF 4 FREQUENCY (Hz) 2 8 V+ = 5V, 3V ENABLED AND DISABLED VSOURCE = 1VP-P 10 100k 1M 10M 100M FREQUENCY (Hz) Figure 5. Input Impedance vs Frequency FN6247 Rev.12.0 Jan.25.21 1G 100k 10k 1k 100 V+ = 5V, 3V VSOURCE = 1VP-P 10 100k 1M 10M 100M 1G FREQUENCY (Hz) Figure 6. Disabled Output Impedance vs Frequency Page 10 ISL28290 Datasheet 0 100 -10 -20 10 -30 CMRR (dB) OUTPUT IMPEDANCE (Ω) V+ = 5V, 3V 1 -40 -50 -60 -70 V+ = 5V AV = +1 RL = 10kΩ CL = 10pF VCM = 100mVP-P -80 0.1 -90 -100 0.01 100k 1M 10M 100M -110 1k 1G 10k 100k FREQUENCY (Hz) Figure 7. Enabled Output Impedance vs Frequency -10 -20 PSRR (dB) -30 V+ = 5V AV = +1 RL = 10kΩ CL = 10pF VSOURCE = 100mVP-P -10 PSRR+ -50 -60 -70 VP-P = 100mV -30 -40 -50 -60 100k 1M FREQUENCY (Hz) 10M VP-P = 10mV -80 10k 100M Figure 9. PSRR vs Frequency 100k 1M 10M FREQUENCY (Hz) 100M 1G Figure 10. Off Isolation vs Frequency 0.1 -20 V+ = 5V RL = 10k -30 THD + NOISE (%) -40 CROSSTALK (dB) V+ = 5V AV = +1 RL = 10kΩ CL = 10pF -70 -80 10k 100M VP-P = 1V -20 PSRR- -40 -90 1k 10M Figure 8. CMRR vs Frequency OFF ISOLATION (dB) 0 1M FREQUENCY (Hz) -50 -60 -70 VP-P = 1V -80 -90 RF = 0, AV = 1 VOUT = 2VP-P 400Hz TO 22kHz FILTER 0.01 0.001 -100 -110 -120 10k 100k 1M 10M FREQUENCY (Hz) 100M 1G Figure 11. Channel-To-Channel Crosstalk vs Frequency FN6247 Rev.12.0 Jan.25.21 0.0001 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k FREQUENCY (Hz) Figure 12. THD+N vs Frequency Page 11 ISL28290 Datasheet 10 V+ = 5V RL = 10k RF = 0, AV = 1 FREQUENCY= 1kHz 400Hz TO 22kHz FILTER 1 THD + NOISE (%) INPUT VOLTAGE NOISE (nV/√Hz) 10 0.1 0.01 0.001 0.0001 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1 0.1 0.1 4.0 1 10 VOUT (VP-P) Figure 13. THD+N at 1kHz vs VOUT 1k 10k 100k Figure 14. Input Referred Noise Voltage vs Frequency 1000 5 V+ = 5V AV = +1 RL = 10kΩ CL = 10pF VIN = 1VDC EN INPUT 4 100 VOLTS (V) CURRENT NOISE (pA/√Hz) 100 FREQUENCY (Hz) 3 2 ENABLE 10 DISABLE ENABLE 1 OUTPUT 1 0.1 1 10 100 1k 10k 0 100k -1 0 1 FREQUENCY (Hz) 0.08 0.8 0.06 0.6 VOUT 0.02 VIN 0 -0.02 V+ = ±2.5V AV = +1 RL = 10kΩ VOUT = 100mVP-P -0.04 -0.06 -0.08 0 20 40 60 80 100 120 140 160 180 200 TIME (ns) Figure 17. Small Signal Step Response FN6247 Rev.12.0 Jan.25.21 4 3 Figure 16. Enable/Disable Timing LARGE SIGNAL (V) SMALL SIGNAL (V) Figure 15. Input Referred Noise Current vs Frequency 0.04 2 TIME (µs) VOUT 0.4 VIN 0.2 0 -0.2 V+ = ±2.5V AV = +2 RF = RG = 499Ω RL = 10kΩ VOUT = 1VP-P -0.4 -0.6 -0.8 0 100 200 300 400 500 TIME (ns) 600 700 800 Figure 18. Large Signal (1V) Step Response Page 12 ISL28290 Datasheet 3 6.0 VOUT 2 MAX 1 0 V+ = ±2.5V AV = +2 RF = RG = 499Ω RL = 10kΩ VOUT = 4.7VP-P -1 -2 0 400 800 5.0 CURRENT (mA) LARGE SIGNAL (V) VIN -3 n = 50 5.5 MEDIAN 4.5 4.0 MIN 3.5 3.0 1200 1600 2.5 -40 2000 -20 0 TIME (ns) Figure 19. Large Signal (4.7V) Step Response 600 500 -9 120 n = 50 -10 MAX MAX 300 200 -11 MEDIAN IBIAS+ (µA) VOS (µV) 100 Figure 20. Supply Current vs Temperature, VS = ±2.5V Enabled, RL = INF n = 50 400 20 40 60 80 TEMPERATURE (°C) 100 0 -100 -12 MEDIAN -13 -200 MIN MIN -300 -14 -400 -500 -40 -20 0 20 40 60 80 100 -15 -40 120 -20 0 Figure 21. VOS vs Temperature VS = ±2.5V 800 80 100 120 n = 50 600 MAX -11 400 IIO (nA) IBIAS- (µA) 60 Figure 22. IBIAS+ vs Temperature VS = ±2.5V n = 50 -10 40 TEMPERATURE (°C) TEMPERATURE (°C) -9 20 MEDIAN -12 -13 MAX 200 0 MEDIAN MIN -14 -200 -15 -40 -400 -40 MIN -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 Figure 23. IBIAS- vs Temperature VS = ±2.5V FN6247 Rev.12.0 Jan.25.21 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 24. IIO vs Temperature VS = ±2.5V Page 13 ISL28290 Datasheet 140 83 n = 50 MAX 130 MEDIAN 81 PSRR (dB) CMRR (dB) 120 110 100 MIN 90 80 79 MEDIAN 78 MIN 76 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 4.982 75 -40 120 50 MAX 40 60 80 100 120 n = 50 40 4.976 VOUT (mV) 4.974 MEDIAN 4.970 MIN 4.968 MAX 35 30 MEDIAN 25 MIN 20 4.966 15 4.964 4.962 -40 20 45 4.978 4.972 0 Figure 26. PSRR vs Temperature ±1.5V to ±2.5V n = 50 4.980 -20 TEMPERATURE (°C) Figure 25. CMRR vs Temperature, VCM = 3.8V, VS = ±2.5V VOUT (V) MAX 77 80 70 n = 50 82 -20 0 20 40 60 80 100 120 10 -40 -20 0 Figure 27. Positive VOUT vs Temperature RL = 1k, VS = ±2.5V VCM OVERHEAD TO SUPPLY RAILS (V) 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) Figure 28. Negative VOUT vs Temperature RL = 1k, VS = ±2.5V 1.2 1.0 0.8 INPUT VOLTAGE TO THE POSITIVE RAIL (V+ - VCM) 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -60 INPUT VOLTAGE TO THE NEGATIVE RAIL (V- + VCM) -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 140 Figure 29. Input Common Mode Voltage vs Temperature FN6247 Rev.12.0 Jan.25.21 Page 14 ISL28290 Datasheet 5. Applications Information 5.1 Product Description The ISL28290 is a voltage feedback operational amplifier designed for communication and imaging applications requiring low distortion, very low voltage and current noise. The part features high bandwidth while drawing moderately low supply current. The ISL28290 uses a classical voltage-feedback topology, which allows it to be used in a variety of applications where current-feedback amplifiers are not appropriate because of restrictions placed upon the feedback element used with the amplifier. 5.2 Enable/Power-Down The ISL28290 amplifier is disabled by applying a voltage greater than 2V to the EN pin, with respect to the V- pin. In this condition, the output(s) will be in a high impedance state and the amplifier current will be reduced to 13µA ⁄Amp. By disabling the part, multiple parts can be connected together as a MUX. The outputs are tied together in parallel and a channel can be selected by the EN pin. The EN pin also has an internal pull-down. If left open, the EN pin will pull to the negative rail and the device will be enabled by default. 5.3 Input Protection All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. The device has additional back-to-back diodes across the input terminals (as shown in Figure 30). In pulse applications where the input Slew Rate exceeds the Slew Rate of the amplifier, the possibility exists for the input protection diodes to become forward biased. This can cause excessive input current and distortion at the outputs. If overdriving the inputs is necessary, the external input current must never exceed 5mA. An external series resistor may be used to limit the current, as shown in Figure 30. + Figure 30. Limiting the Input Current to Less Than 5mA 5.4 Using Only One Channel The ISL28290 is a Dual channel op amp. If the application only requires one channel when using the ISL28290, the user must configure the unused channel to prevent it from oscillating. Oscillation can occur if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 31). + Figure 31. Preventing Oscillations in Unused Channels FN6247 Rev.12.0 Jan.25.21 Page 15 ISL28290 Datasheet 5.5 Power Supply Bypassing and Printed Circuit Board Layout As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Low impedance ground plane construction is essential. Surface mount components are recommended, but if leaded components are used, lead lengths should be as short as possible. The power supply pins must be well bypassed to reduce the risk of oscillation. The combination of a 4.7µF tantalum capacitor in parallel with a 0.01µF capacitor has been shown to work well when placed at each supply pin. For good AC performance, parasitic capacitance should be kept to a minimum, especially at the inverting input. When ground plane construction is used, it should be removed from the area near the inverting input to minimize any stray capacitance at that node. Carbon or Metal-Film resistors are acceptable with the Metal-Film resistors giving slightly less peaking and bandwidth because of additional series inductance. Use of sockets, particularly for the SO package, should be avoided if possible. Sockets add parasitic inductance and capacitance, which will result in additional peaking and overshoot. 5.6 Current Limiting The ISL28290 has no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device. This is why output short circuit current is specified and tested with RL = 10Ω. 5.7 Power Dissipation It is possible to exceed the +125°C maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related as follows: (EQ. 1) T JMAX = T MAX + ( θ JA xPD MAXTOTAL ) where: ▪ PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) ▪ PDMAX for each amplifier can be calculated as follows: (EQ. 2) V OUTMAX PD MAX = 2*V S × I SMAX + ( V S - V OUTMAX ) × ---------------------------RL ▪ where TMAX = Maximum ambient temperature ▪ θJA = Thermal resistance of the package ▪ PDMAX = Maximum power dissipation of 1 amplifier ▪ VS = Supply voltage ▪ IMAX = Maximum supply current of 1 amplifier ▪ VOUTMAX = Maximum output voltage swing of the application ▪ RL = Load resistance FN6247 Rev.12.0 Jan.25.21 Page 16 ISL28290 Datasheet 6. Revision History Rev. Description 12.00 Jan.12.21 FN6247 Rev.12.0 Jan.25.21 Description Datasheet formatting overhaul. Removed all references to ISL28190. Page 17 ISL28290 Datasheet 7. Package Outline Drawings L10.1.8x1.4A 10 Lead Ultra Thin Quad Flat No-lead Plastic Package Rev 6, 8/13 1.80 B C0.10 IN #1 ID 6 A 1 1 1.40 3 10 0.50 6 PIN 1 INDEX AREA 9 X 0.40 2 10X 0.20 4 0.10 M C A B 0.05 M C 0.70 8 5 0.10 7 2X 4X 0.30 6 6X 0.40 TOP VIEW BOTTOM VIEW SEE DETAIL "X" 0.10 C MAX. 0.55 2.20 1 3 10 (0.70) SIDE VIEW 1.80 (10X 0.20) C SEATING PLANE 0.08 C 8 C 5 (9X 0.60) 6 0.127 REF 7 (6X 0.40) PACKAGE OUTLINE 0-0.05 TYPICAL RECOMMENDED LAND PATTERN DETAIL "X" NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to ASME Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Lead width dimension applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 5. JEDEC reference MO-255. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. FN6247 Rev.12.0 Jan.25.21 Page 18 ISL28290 Datasheet M8.15E 8 Lead Narrow Body Small Outline Plastic Package Rev 0, 08/09 4 4.90 ± 0.10 A DETAIL "A" 0.22 ± 0.03 B 6.0 ± 0.20 3.90 ± 0.10 4 PIN NO.1 ID MARK 5 (0.35) x 45° 4° ± 4° 0.43 ± 0.076 1.27 0.25 M C A B SIDE VIEW “B” TOP VIEW 1.75 MAX 1.45 ± 0.1 0.25 GAUGE PLANE C SEATING PLANE 0.10 C 0.175 ± 0.075 SIDE VIEW “A 0.63 ±0.23 DETAIL "A" (1.27) (0.60) NOTES: (1.50) (5.40) 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. 3. Unless otherwise specified, tolerance : Decimal ± 0.05 4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. 5. The pin #1 identifier may be either a mold or mark feature. 6. Reference to JEDEC MS-012. TYPICAL RECOMMENDED LAND PATTERN FN6247 Rev.12.0 Jan.25.21 Page 19 ISL28290 Datasheet M10.118A (JEDEC MO-187-BA) 10 Lead Mini Small Outline Plastic Package (MSOP) Rev 0, 9/09 3.0 ± 0.1 A 0.25 10 DETAIL "X" CAB 0.18 ± 0.05 SIDE VIEW 2 4.9 ± 0.15 3.0 ± 0.1 1.10 Max B PIN# 1 ID 1 2 0.95 BSC 0.5 BSC TOP VIEW Gauge Plane 0.86 ± 0.09 H 0.25 C 3°±3° SEATING PLANE 0.10 ± 0.05 0.23 +0.07/ -0.08 0.08 C AB 0.55 ± 0.15 0.10 C DETAIL "X" SIDE VIEW 1 5.80 4.40 3.00 NOTES: 0.50 0.30 1. Dimensions are in millimeters. 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. 3. Plastic or metal protrusions of 0.15mm max per side are not included. Plastic interlead protrusions of 0.25mm max per side are not included. 4. 1.40 5. Dimensions “D” and “E1” are measured at Datum Plane “H”. TYPICAL RECOMMENDED LAND PATTERN 6. This replaces existing drawing # MDP0043 MSOP10L. FN6247 Rev.12.0 Jan.25.21 Page 20 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2021 Renesas Electronics Corporation. All rights reserved.
ISL28190FRUZ-T7 价格&库存

很抱歉,暂时无法提供与“ISL28190FRUZ-T7”相匹配的价格&库存,您可以联系我们找货

免费人工找货