0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ZL2101ALAF

ZL2101ALAF

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN36

  • 描述:

    IC REG BUCK ADJ/PROG 6A 36QFN

  • 数据手册
  • 价格&库存
ZL2101ALAF 数据手册
DATASHEET NOT RECOMMEN DED FOR NEW DESIGNS RECOMMENDED REPLACEMENT PART ZL2102 ZL2101 FN7730 Rev 0.00 January 23, 2012 6A Digital Synchronous Step-Down DC/DC Converter with Auto Compensation The ZL2101 is a 6A digital converter with auto compensation and integrated power management that combines an integrated synchronous step-down DC/DC converter with key power management functions in a small package, resulting in a flexible and integrated solution. Features The ZL2101 can provide an output voltage from 0.54V to 5.5V (with margin) from an input voltage between 4.5V and 14V. Internal low rDS(ON) synchronous power MOSFETs enable the ZL2101 to deliver continuous loads up to 6A with high efficiency. An internal Schottky bootstrap diode reduces discrete component count. The ZL2101 also supports phase spreading to reduce system input capacitance. • Auto Compensation Power management features such as digital soft-start delay and ramp, sequencing, tracking, and margining can be configured by simple pin-strapping or through an on-chip serial port. The ZL2101 uses the PMBus™ protocol for communication with a host controller and the Digital-DC bus for interoperability between other Zilker Labs devices. • Telecom, Networking, Storage equipment • Integrated MOSFET Switches • 6A Continuous Output Current • ±1% Output Voltage Accuracy • Snapshot™ Parametric Capture • I2C/SMBus Interface, PMBus Compatible • Internal Non-Volatile Memory (NVM) Applications • Test and Measurement Equipment • Industrial Control Equipment • 5V and 12V Distributed Power Systems Related Literature • AN2010 “Thermal and Layout Guidelines for Digital-DC™ Products” • AN2033 “Zilker Labs PMBus Command Set - DDC Products” • AN2035 “Compensation Using CompZL™” 100 VOUT = 3.3V EFFICIENCY (%) 90 80 70 60 50 40 0.0 VIN = 12V fSW = 200kHz L = 6µH 1.0 2.0 3.0 4.0 5.0 6.0 IOUT (A) FIGURE 1. ZL2101 EFFICIENCY FN7730 Rev 0.00 January 23, 2012 Page 1 of 27 ZL2101 Typical Application Circuit The following application circuit represents a typical implementation of the ZL2101. For PMBus operation, it is recommended to tie the enable pin (EN) to SGND. C RA 4.7 µF F.B. C IN 100 µF BST 26 3 SYNC SW 25 SW 24 ZL2106 ZL2101 5 SA LOUT 2.2µH SW 23 6 SCL SW 22 7 SDA SW 21 SW 20 18 PGND 17 PG ND VOUT 3.3V C OUT 150 µF PGND 19 16 PGND 15 PGND 13 VSEN 12 VTRK 11 SS 10 CFG 9 FC 14 SGND 8 SALRT e PAD (SG ND) CB 47nF VDDP 27 2 DGND 4 VSET I2C/ SMBus †† VDDP 29 1 PG VDDP 28 VR 31 VDDS 30 VRA 32 DDC 34 V2P5 33 MGN 35 EN 36 PGOOD VIN 12V C DD 2.2 µF CR 4.7µF C 25 10 µF † DDC Bus ENABLE ‡ Notes: ‡ Ferrite bead is optional for input noise suppression. † The DDC bus pull-up resistance will vary based on the capacitive loading of the bus, including the number of devices connected. The 10 k default value, assuming a maximum of 100 pF per device, provides the necessary 1 µs pull-up rise time. Please refer to the Digital-DC Bus section for more details. †† 2 The I C/SMBus pull -up resistance will vary based on the capacitive loading of the bus, including the number of devices connected. Please refer to the I2 C/SMBus specifications for more details. FIGURE 2. 12V TO 3.3V/6A APPLICATION CIRCUIT (5ms SS DELAY, 5ms SS RAMP) Block Diagram 2.5V LDO 5V LDO 7V LDO VDDP VDDS VR EN VRA V2P5 VIN BST PG VTRK SMBus SALRT SA SCL DDC Bus SDA DDC PWM Control & Drivers SW VOUT VSEN NVM PGND Power Mgmt SYNC MGN VSET CFG SS FIGURE 3. BLOCK DIAGRAM FN7730 Rev 0.00 January 23, 2012 Page 2 of 27 ZL2101 Pin Configuration 28 29 30 31 32 33 34 1 27 2 26 3 25 4 24 ZL2101 ZL2106 5 23 22 6 7 Exposed Paddle 8 Connect to SGND 21 20 19 18 17 16 15 14 13 12 VDDP BST SW SW SW SW SW SW PGND CFG SS VTRK VSEN SGND PGND PGND PGND PGND 11 9 10 PG DGND SYNC VSET SA SCL SDA SALRT FC 35 36 EN MGN DDC V2P5 VRA VR VDDS VDDP VDDP ZL2101 (36 LD QFN) TOP VIEW FIGURE 4. Pin Descriptions PIN LABEL TYPE (Note 1) 1 PG O 2 DGND PWR 3 SYNC I/O, M (Note 2) 4 VSET I, M Output voltage select pin. Used to set VOUT set-point and VOUT max. 5 SA I, M Serial address select pin. Used to assign unique SMBus address to each IC. 6 SCL I/O Serial clock. Connect to external host interface. 7 SDA I/O Serial data. Connect to external host interface. 8 SALRT O 9 FC I, M Auto compensation configuration pin. Used to set up auto compensation. 10 CFG I, M Configuration pin. Used to control the SYNC pin, sequencing and enable tracking. 11 SS I, M Soft-start pin. Used to set the ramp delay and ramp time, sets UVLO and configure tracking. 12 VTRK I Track sense pin. Used to track an external voltage source. 13 VSEN I Output voltage positive feedback sensing pin. 14 SGND PWR Common return for analog signals. Connect to low impedance ground plane. 15, 16, 17, 18, 19 PGND PWR Power ground. Common return for internal switching MOSFETs. Connect to low impedance ground plane. 20, 21, 22, 23, 24, 25 SW I/O 26 BST PWR Bootstrap voltage for level-shift driver (referenced to SW). 27, 28, 29 VDDP PWR Bias supply voltage for internal switching MOSFETs (return is PGND). 30 VDDS PWR IC supply voltage (return is SGND). FN7730 Rev 0.00 January 23, 2012 DESCRIPTION Power-good. This pin transitions high 100ms after output voltage stabilizes within regulation band. Selectable open drain or push-pull output. Factory default is open drain. Digital ground. Common return for digital signals. Connect to low impedance ground plane. Clock synchronization pin. Used to set switching frequency of internal clock or for synchronization to external frequency reference. Serial alert. Connect to external host interface if desired. Switching node (level-shift common). Page 3 of 27 ZL2101 Pin Descriptions (Continued) PIN LABEL TYPE (Note 1) 31 VR PWR Regulated bias from internal 7V low-dropout regulator (return is PGND). Decouple with a 4.7µF capacitor to PGND. 32 VRA PWR Regulated bias from internal 5V low-dropout regulator for internal analog circuitry (return is SGND). Decouple with a 4.7µF capacitor to SGND. 33 V2P5 PWR Regulated bias from internal 2.5V low-dropout regulator for internal digital circuitry (return is DGND). Decouple with a 10µF capacitor. 34 DDC I/O 35 MGN I Margin pin. Used to enable margining of the output voltage. 36 EN I Enable pin. Used to enable the device (active high). ePad SGND PWR DESCRIPTION Digital-DC Bus (open drain). Interoperability between Zilker Labs devices. Exposed thermal pad. Common return for analog signals. Connect to low impedance ground plane. NOTES: 1. I = Input, O = Output, PWR = Power or Ground, M = Multi-mode pins. Please refer to Section “Multi-mode Pins” on page 11. 2. The SYNC pin can be used as a logic pin, a clock input or a clock output. Ordering Information PART NUMBER (Notes 4, 5) PART MARKING TEMP RANGE (°C) PACKAGE PKG. DWG. # ZL2101ALAF 2101 -40 to +85 36 Ld 6mmx6mm QFN L36.6x6C ZL2101ALAFT (Note 3) 2101 -40 to +85 36 Ld 6mmx6mm QFN L36.6x6C ZL2101ALAFTK (Note 3) 2101 -40 to +85 36 Ld 6mmx6mm QFN L36.6x6C ZL2101EVAL1Z Evaluation Board NOTES: 3. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications. 4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 5. For Moisture Sensitivity Level (MSL), please see device information page for ZL2101. For more information on MSL please see techbrief TB363. FN7730 Rev 0.00 January 23, 2012 Page 4 of 27 ZL2101 Table of Contents Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ZL2101 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Digital-DC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Power Conversion Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Power Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Multi-mode Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin-strap Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Resistor Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C/SMBus Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power Conversion Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Internal Bias Regulators and Input Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 High-side Driver Boost Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Start-up Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Soft-start Delay and Ramp Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power-good (PG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Switching Frequency and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Configuration A: SYNC OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Configuration B: SYNC INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Configuration C: SYNC AUTO DETECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Design Goal Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Input Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Bootstrap Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CV2P5 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CVR Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CVRA Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Current Sensing and Current Limit Threshold Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Driver Dead-time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power Management Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Input Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output Pre-Bias Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Output Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Thermal Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Voltage Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Tracking Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Tracking Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Tracking Configured by Pin-Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Voltage Margining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I2C/SMBus Communications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 I2C/SMBus Device Address Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Digital-DC Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Phase Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Output Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Fault Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Monitoring via I2C/SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Snapshot™ Parametric Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Non-Volatile Memory and Device Security Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 FN7730 Rev 0.00 January 23, 2012 Page 5 of 27 ZL2101 Absolute Maximum Ratings Thermal Information DC Supply Voltage for VDDP, VDDS Pins . . . . . . . . . . . . . . . . . . -0.3V to 17V High-Side Supply Voltage for BST Pin. . . . . . . . . . . . . . . . . . . . . -0.3V to 25V High-Side Boost Voltage for BST - SW Pins . . . . . . . . . . . . . . . . . -0.3V to 8V Internal MOSFET Reference for VR Pin . . . . . . . . . . . . . . . . . . -0.3V to 8.5V Internal Analog Reference for VRA Pin . . . . . . . . . . . . . . . . . . -0.3V to 6.5V Internal 2.5V Reference for V2P5 Pin . . . . . . . . . . . . . . . . . . . . . -0.3V to 3V Logic I/O Voltage for EN, CFG, DDC, FC, MGN, PG, SDA, SCL, SA, SALRT, SS, SYNC, VTRK, VSET, VSEN Pins . . . . . . . . . . -0.3V to 6.5V Ground Differential for DGND - SGND, PGND - SGND Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.3V MOSFET Drive Reference Current for VR Pin Internal Bias Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA Switch Node Current for SW Pin Peak (Sink Or Source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10A ESD Rating Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 2kV Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . 750V Machine Model (Tested per JESD22-A115-A) . . . . . . . . . . . . . . . . . 200V Latch-Up (Tested per JESD78C) Thermal Resistance (Typical) JA (°C/W) JC (°C/W) 36 Ld QFN (Notes 6, 7) . . . . . . . . . . . . . . . . 28 1.7 Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C Dissipation Limits (Note 8) TA = +25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5W TA = +55°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5W TA = +85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4W Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Recommended Operating Conditions Input Supply Voltage Range, VDDP, VDDS (See Figure 14) VDDS tied to VR, VRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 5.5V VDDS tied to VR, VRA Floating . . . . . . . . . . . . . . . . . . . . . . . . 5.5V to 7.5V VR, VRA Floating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.5V to 14V Output Voltage Range, VOUT (Note 9) . . . . . . . . . . . . . . . . . . . . 0.54V to 5.5V Operating Junction Temperature Range, TJ . . . . . . . . . . . . .-40°C to +125°C CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 6. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech Brief TB379. 7. For JC, the “case temp” location is the center of the exposed metal pad on the package underside. 8. Thermal impedance depends on layout. 9. Includes margin limits. Electrical Specifications VDDP = VDDS = 12V, TA = -40°C to +85°C unless otherwise noted. (Note 10) Typical values are at TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. MIN (Note 20) TYP MAX (Note 20) UNIT fSW = 200kHz, no load - 11 20 mA fSW = 1MHz, no load - 15 30 mA IDDS Shutdown Current EN = 0V, No I2C/SMBus activity - 0.6 1 mA VR Reference Output Voltage VDD > 8V, IVR < 10mA 6.5 7.0 7.5 V VRA Reference Output Voltage VDD > 5.5V, IVRA < 20mA 4.5 5.1 5.5 V V2P5 Reference Output Voltage IV2P5 < 20mA 2.25 2.5 2.75 V PARAMETER CONDITIONS INPUT AND SUPPLY CHARACTERISTICS IDD Supply Current OUTPUT CHARACTERISTICS Output Current IRMS, Continuous Output Voltage Adjustment Range (Note 11) VIN > VOUT - - 6 A 0.6 - 5.0 V Output Voltage Setpoint Resolution Set using resistors - 10 - mV Set using I2C/SMBus - ±0.025 - % FS (Note 12) VSEN Output Voltage Accuracy Includes line, load, temp -1 - 1 % VSEN Input Bias Current VSEN = 5.5V - 110 200 µA Soft-start Delay Duration Range (Note 13) Set using SS pin or resistor 2 - 20 ms 0.002 - 500 s Set using FN7730 Rev 0.00 January 23, 2012 I2C/SMBus Page 6 of 27 ZL2101 Electrical Specifications VDDP = VDDS = 12V, TA = -40°C to +85°C unless otherwise noted. (Note 10) Typical values are at TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued) MIN (Note 20) TYP MAX (Note 20) UNIT Turn-on delay (precise mode) (Notes 13, 14) - ±0.25 - ms Turn-on delay (normal mode) (Note 15) - -0.25/+4 - ms Turn-off delay (Note 15) - -0.25/+4 - ms Set using SS pin or resistor 2 - 20 ms 0 - 200 ms - 100 – µs -250 - 250 nA - - 0.8 V - 1.4 - V 2.0 - - V PARAMETER Soft-start Delay Duration Accuracy Soft-start Ramp Duration Range CONDITIONS Set using I2C/SMBus Soft-start Ramp Duration Accuracy LOGIC INPUT/OUTPUT CHARACTERISTICS Logic Input Leakage Current Digital pins Logic input low, VIL Logic input OPEN (N/C) Multi-mode logic pins Logic Input High, VIH Logic Output Low, VOL IOL  4mA - - 0.4 V Logic Output High, VOH IOH  -2mA 2.25 - - V - - 9 A 200 - 1000 kHz OSCILLATOR AND SWITCHING CHARACTERISTICS Switch Node Current, ISW Peak (source or sink) (Note 16) Switching Frequency Range Switching Frequency Set-point Accuracy Predefined settings (Table 9) -5 - 5 % PWM Duty Cycle (max) Factory default (Note 17) - - 95 (Note 18) % 150 - - ns SYNC Pulse Width (min) Input Clock Frequency Drift Tolerance External clock source -13 - 13 % rDS(ON) of High Side N-channel FETs ISW = 6A, VGS = 6.5V - 60 85 m rDS(ON) of Low Side N-channel FETs ISW = 6A, VGS = 12V - 43 65 m VTRK Input Bias Current VTRK = 5.5V - 110 200 µA VTRK Tracking Ramp Accuracy 100% Tracking, VOUT - VTRK -100 - 100 mV VTRK Regulation Accuracy 100% Tracking, VOUT - VTRK -1 - 1 % Configurable via I2C/SMBus 2.85 - 16 V -150 - 150 mV - 3 - % 0 - 100 % - - 2.5 µs TRACKING FAULT PROTECTION CHARACTERISTICS UVLO Threshold Range UVLO Set-point Accuracy UVLO Hysteresis Factory default Configurable via I2C/SMBus UVLO Delay Power-good VOUT Threshold Factory default - 90 - % VOUT Power-good VOUT Hysteresis Factory default - 5 - % Power-good Delay Using pin-strap or resistor 2 - 20 ms 0 - 500 s Configurable via FN7730 Rev 0.00 January 23, 2012 I2C/SMBus Page 7 of 27 ZL2101 Electrical Specifications VDDP = VDDS = 12V, TA = -40°C to +85°C unless otherwise noted. (Note 10) Typical values are at TA = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued) PARAMETER VSEN Undervoltage Threshold VSEN Overvoltage Threshold MIN (Note 20) TYP MAX (Note 20) UNIT Factory default - 85 - % VOUT Configurable via I2C/SMBus 0 - 110 % VOUT Factory default - 115 - % VOUT Configurable via I2C/SMBus 0 - 115 % VOUT - 5 - % VOUT CONDITIONS VSEN Undervoltage Hysteresis VSEN Undervoltage/Overvoltage Fault Response Time Factory default - 16 - µs Configurable via I2C/SMBus 5 - 60 µs Peak Current Limit Threshold Factory default - - 9.0 A 0.2 - 9.0 A - ±10 - % FS (Note 12) Factory default - 5 - tSW (Note 19) Configurable via I2C/SMBus 1 - 32 tSW (Note 19) - 125 - °C -40 - 125 °C - 15 - °C Configurable via I2C/SMBus Current Limit Set-point Accuracy Current Limit Protection Delay Thermal Protection Threshold (Junction Temperature) Factory default Configurable via I2C/SMBus Thermal Protection Hysteresis NOTES: 10. Refer to Safe Operating Area in Figure 8 and thermal design guidelines in AN2010. 11. Does not include margin limits. 12. Percentage of Full Scale (FS) with temperature compensation applied. 13. The device requires a delay period following an enable signal and prior to ramping its output. Precise timing mode limits this delay period to approximately 2ms, where in normal mode it may vary up to 4ms. 14. Precise ramp timing mode is only valid when using EN pin to enable the device rather than PMBus enable. Precise ramp timing mode is automatically disabled for a self-enabled device (EN pin tied high). 15. The devices may require up to a 4ms delay following the assertion of the enable signal (normal mode) or following the de-assertion of the enable signal. Precise mode requires Re-Enable delay = TOFF+TFALL+10µs. 16. Switch node current should not exceed IRMS of 6A. 17. Factory default is the initial value in firmware. The value can be changed via PMBus commands. 18. Maximum duty cycle is limited by the equation MAX_DUTY(%) = [1 - (150×10-9 × fSW)] × 100 and not to exceed 95%. 19. tSW = 1/fSW, where fSW is the switching frequency. 20. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. FN7730 Rev 0.00 January 23, 2012 Page 8 of 27 ZL2101 Typical Performance Curves 1.4 1.4 1.3 1.3 NORMALIZED rDS(ON) NORMALIZED rDS(ON) For some applications, ZL2101 operating conditions (input voltage, output voltage, switching frequency, temperature) may require de-rating to remain within the Safe Operating Area (SOA). VIN = VDDP = VDDS, TJ = +125°C 1.2 1.1 1.0 0.9 0.8 0 25 50 75 1.2 1.1 1.0 0.9 0.8 100 0 25 50 TJ (°C) TJ (°C) 70 6 65 5 60 TJ = +110°C TJ = +80°C 50 7 8 3 VIN = 8.6V TO 14V 1 TJ = +25°C 6 VIN = 6V 2 TJ = +50°C 40 VIN = 7.5V 4 55 45 100 FIGURE 6. HIGH-SIDE rDS(ON) vs TJ NORMALIZED FOR TJ = +25°C (VDDS = 12V, BST – SW = 6.5V, IDRAIN = 0.3A) VOUT (V) rDS(ON) (m) FIGURE 5. LOW-SIDE rDS(ON) vs TJ NORMALIZED FOR TJ = +25°C (VDDS = 12V, IDRAIN = 0.3A) 75 9 10 11 12 0 13 0.2 0.3 0.4 VDDS (V) 0.5 0.6 0.7 0.8 0.9 1 1.0 fSW (MHz) FIGURE 8. SAFE OPERATING AREA, TJ +125°C FIGURE 7. LOW-SIDE r DS(ON) vs V DDS WITH TJ 0.95 VOUT MAY NOT EXCEED 5.5V AT ANY TIME 0.90 VOUT/VIN (V) 0.85 0.80 0.75 0.70 0.65 0.60 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 fSW (MHz) FIGURE 9. MAXIMUM CONVERSION RATIO, TJ +125°C FN7730 Rev 0.00 January 23, 2012 Page 9 of 27 ZL2101 ZL2101 Overview Digital-DC Architecture The ZL2101 is an innovative mixed-signal power conversion and power management IC based on Zilker Labs patented Digital-DC technology that provides an integrated, high performance stepdown converter for point of load applications. The ZL2101 integrates all necessary PWM control circuitry as well as low rDS(ON) synchronous power MOSFETs to provide an extremely small solution for supplying load currents up to 6A. Its unique PWM loop utilizes an ideal mix of analog and digital blocks to enable precise control of the entire power conversion process with no software required, resulting in a very flexible device that is also very easy to use. An extensive set of power management functions are fully integrated and can be configured using simple pin connections. The user configuration can be saved in an internal non-volatile memory (NVM). Additionally, all functions can be configured and monitored via the SMBus hardware interface using standard PMBus commands, allowing ultimate flexibility. The ZL2101 can be configured by simply connecting its pins according to the tables provided in the following sections. Additionally, a comprehensive set of application notes are available to help simplify the design process. An evaluation board is also available to help the user become familiar with the device. This board can be evaluated as a standalone platform using pin configuration settings. A Windows™-based GUI is also provided to enable full configuration and monitoring capability via the I2C/SMBus interface using an available computer and the included USB cable. Power Conversion Overview The ZL2101 operates as a voltage-mode, synchronous buck converter with a selectable constant frequency pulse width modulator (PWM) control scheme. The ZL2101 integrates dual low rDS(ON) synchronous MOSFETs to minimize the circuit footprint. Figure 10 illustrates the basic synchronous buck converter topology showing the primary power train components. This converter is also called a step-down converter, as the output voltage must always be lower than the input voltage. Once enabled, the ZL2101 is immediately ready to regulate power and perform power management tasks with no programming required. Advanced configuration options and realtime configuration changes are available via the I2C/SMBus interface if desired and continuous monitoring of multiple operating parameters is possible with minimal interaction from a host controller. Integrated sub-regulation circuitry enables single supply operation from any external supply between 4.5V and 14V with no secondary bias supplies needed. The ZL2101 can also be configured to operate from a 3.3V or 5V standby supply when the main power rail is not present, allowing the user to configure and/or read diagnostic information from the device when the main power has been interrupted or is disabled. VIN CIN LDO DB QH CB VOUT QL FIGURE 10. SYNCHRONOUS BUCK CONVERTER VTRK VSET POWER MANAGEMENT DIGITAL DIGITAL COMPENSATOR COMPENSATOR FC LDO NVM BST ISENSE HS FET DRIVER D-PWM SYNC GEN SYNC VDDP SS VDDS EN MGN CFG > VRA VR PG COUT ZL INPUT VOLTAGE BUS > L1 PWM SW VOUT LS FET DRIVER PLL  ADC - + ISENSE ADC RESET REF DDC SALRT SDA SCL SA VDD ADC COMMUNICATION VSEN MUX TEMP SENSOR FIGURE 11. ZL2101 BLOCK DIAGRAM FN7730 Rev 0.00 January 23, 2012 Page 10 of 27 ZL2101 The ZL2101 integrates two N-channel power MOSFETs; QH is the top control MOSFET and QL is the bottom synchronous MOSFET. The amount of time that QH is on as a fraction of the total switching period is known as the duty cycle D, which is described by Equation 1: D VOUT VIN (EQ. 1) During time D, QH is on and VIN – VOUT is applied across the inductor. The output current ramps up as shown in Figure 12. When QH turns off (time 1-D), the current flowing in the inductor must continue to flow from the ground up through QL, during which the current ramps down. Since the output capacitor COUT exhibits low impedance at the switching frequency, the AC component of the inductor current is filtered from the output voltage so the load sees nearly a DC voltage. The maximum conversion ratio is shown in Figure 9. Typically, buck converters specify a maximum duty cycle that effectively limits the maximum output voltage that can be realized for a given input voltage and switching frequency. This duty cycle limit ensures that the low-side MOSFET is allowed to turn on for a minimum amount of time during each switching cycle, which enables the bootstrap capacitor to be charged up and provide adequate gate drive voltage for the high-side MOSFET. VIN - VOUT IO 0 Current (A) Voltage (V) IL PK ILV -VOUT value with an analog to digital (A/D) converter. The digital signal is also applied to an adjustable digital compensation filter and the compensated signal is used to derive the appropriate PWM duty cycle for driving the internal MOSFETs in a way that produces the desired output. Power Management Overview The ZL2101 incorporates a wide range of configurable power management features that are simple to implement without additional components. Also, the ZL2101 includes circuit protection features that continuously safeguard the device and load from damage due to unexpected system faults. The ZL2101 can continuously monitor input voltage, output voltage/current and internal temperature. A Power-good output signal is also included to enable power-on reset functionality for an external processor. All power management functions can be configured using either pin configuration techniques (see Figure 13) or via the I2C/SMBus interface. Monitoring parameters can also be preconfigured to provide alerts for specific conditions. See Application Note AN2033 for more details on SMBus monitoring. Multi-mode Pins In order to simplify circuit design, the ZL2101 incorporates patented multi-mode pins that allow the user to easily configure many aspects of the device without programming. Most power management features can be configured using these pins. The multi-mode pins can respond to four different connections, as shown in Table 1. These pins are sampled when power is applied or by issuing a PMBus Restore command (See Application Note AN2033). PIN-STRAP SETTINGS This is the simplest method, as no additional components are required. Using this method, each pin can take on one of three possible states: LOW, OPEN, or HIGH. These pins can be connected to the V2P5 pin for logic HIGH settings as this pin provides a regulated voltage higher than 2V. Using a single pin one of three settings can be selected. TABLE 1. MULTI-MODE PIN CONFIGURATION D 1-D PIN TIED TO VALUE FIGURE 12. INDUCTOR WAVEFORM LOW (Logic LOW) < 0.8VDC In general, the size of components L1 and COUT as well as the overall efficiency of the circuit are inversely proportional to the switching frequency, fSW. Therefore, the highest efficiency circuit may be realized by switching the MOSFETs at the lowest possible frequency; however, this will result in the largest component size. Conversely, the smallest possible footprint may be realized by switching at the fastest possible frequency but this gives a somewhat lower efficiency. Each user should determine the optimal combination of size and efficiency when determining the switching frequency for each application. OPEN (N/C) No connection HIGH (Logic HIGH) > 2.0VDC Resistor to SGND Set by resistor value Time The block diagram for the ZL2101 is illustrated in Figure 11. In this circuit, the target output voltage is regulated by connecting the VSEN pin directly to the output regulation point. The VSEN signal is then compared to an internal reference voltage that had been set to the desired output voltage level by the user. The error signal derived from this comparison is converted to a digital FN7730 Rev 0.00 January 23, 2012 Logic high Open ZL ZL Multi- mode Pin Multi- mode Pin RSET Logic low Pinstrap Settings Resistor Settings FIGURE 13. PIN-STRAP AND RESISTOR SETTING EXAMPLES Page 11 of 27 ZL2101 RESISTOR SETTINGS This method allows a greater range of adjustability when connecting a finite value resistor (in a specified range) between the multi-mode pin and SGND. Standard 1% resistor values are used, and only every fourth E96 resistor value is used so the device can reliably recognize the value of resistance connected to the pin while eliminating the error associated with the resistor accuracy. Up to 31 unique selections are available using a single resistor. I2C/SMBUS METHOD ZL2101 functions can be configured via the I2C/SMBus interface using standard PMBus commands. Additionally, any value that has been configured using the pin-strap or resistor setting methods can also be re-configured and/or verified via the I2C/SMBus. See Application Note AN2033 for more details. The SMBus device address and VOUT_MAX are the only parameters that must be set by external pins. All other device parameters can be set via the I2C/SMBus. The device address is set using the SA pin. VOUT_MAX is determined as 10% greater than the voltage set by the VSET pin. Resistor pin-straps are recommended to be used for all available device parameters to allow a safe initial power-up before configuration is stored via the I2C/SMBus. For example, this can be accomplished by pin-strapping the undervoltage lockout threshold (using SS pin) to a value greater than the expected input voltage, thus preventing the device from enabling prior to loading a configuration file. Power Conversion Functional Description Internal Bias Regulators and Input Supply Connections The ZL2101 employs three internal low dropout (LDO) regulators to supply bias voltages for internal circuitry, allowing it to operate from a single input supply. The internal bias regulators are as follows: • VR: The VR LDO provides a regulated 7V bias supply for the high-side MOSFET driver circuit. It is powered from the VDDS pin and supplies bias current internally. A 4.7µF filter capacitor is required at the VR pin. The VDDS pin directly supplies the low-side MOSFET driver circuit. • VRA: The VRA LDO provides a regulated 5V bias supply for the current sense circuit and other analog circuitry. It is powered from the VDDS pin and supplies bias current internally. A 4.7µF filter capacitor is required at the VRA pin. FN7730 Rev 0.00 January 23, 2012 VIN VIN VIN VDDS VDDS VDDS VR VR VR VRA VRA VRA 4.5V ≤ VIN ≤ 5.5V 5.5V < V IN ≤ 7.5V 7.5V < V IN ≤ 14V FIGURE 14. INPUT SUPPLY CONNECTIONS • V2P5:The V2P5 LDO provides a regulated 2.5V bias supply for the main controller circuitry. It is powered from the VRA LDO and supplies bias current internally. A 10µF filter capacitor is required at the V2P5 pin. When the input supply (VDDS) is higher than 7.5V, the VR and VRA pins should not be connected to any other pins. These pins should only have a filter capacitor attached. Due to the dropout voltage associated with the VR and VRA bias regulators, the VDDS pin must be connected to these pins for designs operating from a supply below 7.5V. Figure 14 illustrates the required connections for all cases. Note: The internal bias regulators, VR and VRA, are not designed to be outputs for powering other circuitry. Do not attach external loads to any of these pins. Only the multi-mode pins may be connected to the V2P5 pin for logic HIGH settings. High-side Driver Boost Circuit The gate drive voltage for the high-side MOSFET driver is generated by a floating bootstrap capacitor, CB (see Figure 10). When the lower MOSFET (QL) is turned on, the SW node is pulled to ground and the capacitor is charged from the internal VR bias regulator through diode DB. When QL turns off and the upper MOSFET (QH) turns on, the SW node is pulled up to VDDP and the voltage on the bootstrap capacitor is boosted approximately 6.5V above VDDP to provide the necessary voltage to power the highside driver. An internal Schottky diode is used with CB to help maximize the high-side drive supply voltage. Output Voltage Selection The output voltage may be set to any voltage between 0.6V and 5.0V provided that the input voltage is higher than the desired output voltage by an amount sufficient to prevent the device from exceeding its maximum duty cycle specification. Using the pin-strap method, VOUT can be set to one of three standard voltages as shown in Table 2. TABLE 2. PIN-STRAP OUTPUT VOLTAGE SETTINGS VSET VOUT LOW 1.2V OPEN 1.5V HIGH 3.3V Page 12 of 27 ZL2101 TABLE 3. ZL2101 START-UP SEQUENCE STEP # STEP NAME DESCRIPTION 1 Power Applied 2 Internal Memory Check The device will check for values stored in its internal memory. This step is also performed after a Restore command. 3 Multi-mode Pin Check The device loads values configured by the multi-mode pins. 4 Device Ready 5 Pre-ramp Delay Input voltage is applied to the ZL2101’s VDD pins (VDDP and VDDS). Depends on input supply ramp time Approximately 5ms to 10ms (device will ignore an enable signal or PMBus traffic during this period) The device is ready to accept an enable signal. - The device requires approximately 2ms following an enable signal and prior to ramping its output. Additional pre-ramp delay may be configured using the SS pin. Approximately 2ms TABLE 4. RESISTORS FOR SETTING OUTPUT VOLTAGE RSET (k) VOUT (V) 10 0.6 11 0.7 12.1 0.75 13.3 0.8 14.7 0.9 16.2 1.0 17.8 1.1 19.6 1.2 21.5 1.25 23.7 1.3 26.1 1.4 28.7 1.5 31.6 1.6 34.8 1.7 38.3 1.8 42.2 1.9 46.4 2.0 51.1 2.1 56.2 2.2 61.9 2.3 68.1 2.4 75 2.5 82.5 2.6 90.9 2.7 100 2.8 110 2.9 121 3.0 133 3.1 147 3.2 162 3.3 178 5.0 FN7730 Rev 0.00 January 23, 2012 TIME DURATION The resistor setting method can be used to set the output voltage to levels not available in Table 2. To set VOUT using resistors, use Table 4 to select the resistor that corresponds to the desired voltage. The output voltage may also be set to any value between 0.6V and 5.0V using the I2C interface. See Application Note AN2033 for details. Start-up Procedure The ZL2101 follows a specific internal start-up procedure after power is applied to the VDD pins (VDDP and VDDS). Table 3 describes the start-up sequence. If the device is to be synchronized to an external clock source, the clock frequency must be stable prior to asserting the EN pin. The device requires approximately 5ms to 10ms to check for specific values stored in its internal memory. If the user has stored values in memory, those values will be loaded. The device will then check the status of all multi-mode pins and load the values associated with the pin settings. Once this process is completed, the device is ready to accept commands via the I2C/SMBus interface and the device is ready to be enabled. Once enabled, the device requires approximately 2ms before its output voltage may be allowed to start its ramp-up process. If a soft-start delay period less than 2ms has been configured (using PMBus commands), the device will default to a 2ms delay period. If a delay period greater than 2ms is configured, the device will wait for the configured delay period prior to starting to ramp its output. After the delay period has expired, the output will begin to ramp towards its target voltage according to the pre-configured soft-start ramp time that has been set using the SS pin. It should be noted that if the EN pin is tied to VDDP or VDDS, the device will still require approximately 5ms to 10ms before the output can begin its ramp-up as described in Table 3. Soft-start Delay and Ramp Times It may be necessary to set a delay from when an enable signal is received until the output voltage starts to ramp to its target value. In addition, the designer may wish to set the time required for VOUT to ramp to its target value after the delay period has expired. These features may be used as part of an overall inrush current management strategy or to control how fast a load IC is turned on. The ZL2101 gives the system designer several options for precisely and independently controlling both the delay and ramp time periods. Page 13 of 27 ZL2101 The soft-start delay period begins when the EN pin is asserted and ends when the delay time expires. The soft-start delay period is set using the SS pin. Precise ramp delay timing mode reduces the delay time variations and is available when the appropriate bit in the MISC_CONFIG register had been set. Please refer to Application Note AN2033 for details. The soft-start ramp timer enables a precisely controlled ramp to the nominal VOUT value that begins once the delay period has expired. The ramp-up is guaranteed monotonic and its slope may be precisely set using the SS pin. Using the pin-strap method, the soft-start delay and ramp times can be set to one of three standard values according to Table 5. TABLE 5. SOFT-START DELAY AND RAMP SETTINGS SS PIN SETTING DELAY AND RAMP TIME (ms) LOW 2 OPEN 5 HIGH 10 UVLO 7.5V If the desired soft-start delay and ramp times are not one of the values listed in Table 5, the times can be set to a custom value by connecting a resistor from the SS pin to SGND using the appropriate resistor value from Table 6. The value of this resistor is measured upon start-up or Restore and will not change if the resistor is varied after power has been applied to the ZL2101 (see Figure 15). SS ZL RSS FIGURE 15. SS PIN RESISTOR CONNECTIONS The soft-start delay and ramp times can also be set to custom values via the I2C/SMBus interface. When the SS delay time is set to 0ms, the device will begin its ramp-up after the internal circuitry has initialized (~2ms). When the soft-start ramp period is set to 0ms, the output will ramp up as quickly as the output load capacitance and loop settings will allow. It is generally recommended to set the soft-start ramp to a value greater than 500µs to prevent inadvertent fault conditions due to excessive inrush current. TABLE 6. DELAY AND RAMP CONFIGURATION RSS (k) DELAY TIME (ms) 10 5 11 10 12.1 20 13.3 5 14.7 10 16.2 20 17.8 5 19.6 10 21.5 20 23.7 5 26.1 10 28.7 20 31.6 5 34.8 10 38.3 20 42.2 5 46.4 10 51.1 20 56.2 5 61.9 10 68.1 20 75 5 82.5 10 90.9 20 100 5 110 10 121 20 133 5 147 10 162 20 RAMP TIME (ms) UVLO (V) 5 4.5 10 2 5 5.5 10 20 2 5 7.5 10 20 Note that when Auto Compensation is enabled, the minimum tON_DELAY is 5ms. Power-good (PG) The ZL2101 provides a Power-good (PG) signal that indicates the output voltage is within a specified tolerance of its target level and no fault condition exists. By default, the PG pin will assert if the output is within +15%/-10% of the target voltage. These limits may be changed via the I2C/SMBus interface. See Application Note AN2033 for details. A PG delay period is the time from when all conditions for asserting PG are met and when the PG pin is actually asserted. This feature is commonly used instead of an external reset controller to signal the power supply is at its target voltage prior to enabling any powered circuitry. By default, the ZL2101 PG delay is set to 1ms and may be changed using the I2C/SMBus interface as described in AN2033. FN7730 Rev 0.00 January 23, 2012 Page 14 of 27 ZL2101 Switching Frequency and PLL The ZL2101 incorporates an internal phase-locked loop (PLL) to clock the internal circuitry. The PLL can be driven by an external clock source connected to the SYNC pin. When using the internal oscillator, the SYNC pin can be configured as a clock source for other Zilker Labs devices. The SYNC pin is a unique pin that can perform multiple functions depending on how it is configured. The CFG pin is used to select the operating mode of the SYNC pin as shown in Table 4. Figure 16 illustrates the typical connections for each mode. TABLE 7. SYNC PIN FUNCTION SELECTION CFG PIN LOW SYNC PIN FUNCTION SYNC is configured as an input OPEN Auto detect mode HIGH SYNC is configured as an output fSW = 400kHz CONFIGURATION A: SYNC OUTPUT When the SYNC pin is configured as an output (CFG pin is tied HIGH), the device will run from its internal oscillator and will drive the resulting internal oscillator signal (preset to 400kHz) onto the SYNC pin so other devices can be synchronized to it. The SYNC pin will not be checked for an incoming clock signal while in this mode. 200kHz to 1MHz with a minimum duty cycle and must be stable when the EN pin is asserted. The external clock signal must also exhibit the necessary performance requirements (see the “Electrical Specifications” table beginning on page 6). In the event of a loss of the external clock signal, the output voltage may show transient over/undershoot. If this happens, the ZL2101 will automatically switch to its internal oscillator and switch at a frequency close to the previous incoming frequency. CONFIGURATION C: SYNC AUTO DETECT When the SYNC pin is configured in auto detect mode (CFG pin is left OPEN), the device will automatically check for a clock signal on the SYNC pin after enable is asserted. If a valid clock signal is present, the ZL2101’s oscillator will then synchronize with the rising edge of the external clock (refer to SYNC INPUT description). If no incoming clock signal is present, the ZL2101 will configure the switching frequency according to the state of the SYNC pin as listed in Table 8. In this mode, the ZL2101 will only read the SYNC pin connection during the start-up sequence. Changes to the SYNC pin connection will not affect fSW until the power (VDDS) is cycled off and on again. TABLE 8. SWITCHING FREQUENCY SELECTION SYNC PIN FREQUENCY CONFIGURATION B: SYNC INPUT LOW 200kHz When the SYNC pin is configured as an input (CFG pin is tied LOW), the device will automatically check for an external clock signal on the SYNC pin each time the EN pin is asserted. The internal oscillator will then synchronize with the rising edge of the external clock. The incoming clock signal must be in the range of OPEN 400kHz HIGH 1MHz Resistor See Table 9 SYNC 200kHz – 1MHz ZL2101 ZL2106 ZL2106 ZL2101 N/C Open SYNC OR Logic low N/C CFG SYNC 200kHz – 1MHz B) SYNC = input Logic high CFG N/C ZL2101 ZL2106 ZL2106 ZL2101 SYNC OR RSYNC CFG A) SYNC = output CFG SYNC 200kHz – 1MHz CFG Logic high ZL2106 ZL2101 C) SYNC = Auto Detect FIGURE 16. SYNC PIN CONFIGURATIONS FN7730 Rev 0.00 January 23, 2012 Page 15 of 27 ZL2101 If the user wishes to run the ZL2101 at a frequency not listed in Table 8, the switching frequency can be set using an external resistor, RSYNC, connected between SYNC and SGND using Table 9. TABLE 9. RSYNC RESISTOR VALUES RSYNC (k) FSW (kHz) 10 200 11 222 12.1 242 13.3 267 14.7 296 16.2 320 17.8 364 19.6 400 21.5 421 23.7 471 26.1 533 28.7 571 TABLE 10. POWER SUPPLY REQUIREMENTS PARAMETER RANGE EXAMPLE VALUE Input voltage (VIN) 4.5V to 14.0V 12V Output voltage (VOUT) 0.6V to 5.0V 3.3V Output current (IOUT) 0A to 6A 4A
ZL2101ALAF 价格&库存

很抱歉,暂时无法提供与“ZL2101ALAF”相匹配的价格&库存,您可以联系我们找货

免费人工找货