0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
R1211X

R1211X

  • 厂商:

    RICOH(理光)

  • 封装:

  • 描述:

    R1211X - Step-up DC/DC Controller - RICOH electronics devices division

  • 数据手册
  • 价格&库存
R1211X 数据手册
2001.8.30 Step-up DC/DC Controller R1211X Series s OUTLINE The R1211X Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current. Each of the R1211X Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resisters, and capacitors. Phase compensation has been made internally in the R1211X002B/D Series, while phase compensation can be made externally as for R1211X002A/C Series. B/D version has stand-by mode. Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211X Series latch the external driver with its off state, or Latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again. s FEATURES q Standby Current • • • • • • • • • • • • • • • • • TYP. 0µA (for B/D version) q Input Voltage Range • • • • • • • • • • • • • • • 2.5V to 6.0V q Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor) q Two Options of Basic Oscillator Frequency • • 300kHz, 700kHz q Max Duty Cycle • • • • • • • • • • • • • • • • • • Typ. 90% q High Reference Voltage Accuracy • • • • • • • ±1.5% q U.V.L.O. Threshold level • • • • • • • • • • • • • Typ. 2.2V (Hysteresis TYP. 0.13V) q Small Package • • • • • SOT-23-6W or thin (package height MAX. 0.85mm) SON-6 (Under Development) s APPLICATIONS q Constant Voltage Power Source for portable equipment. q Constant Voltage Power Source for LCD and CCD. Rev. 1.10 -1- s BLOCK DIAGRAMS Version A VFB OSC DTC EXT AMPOUT Vref VIN UVLO GND Latch DELAY Version B VFB OSC DTC EXT VIN Vref UVLO GND CE Chip Enable Latch DELAY Rev. 1.10 -2- s SELECTION GUIDE In the R1211X Series, the oscillator frequency, the optional function, and the package type for the ICs can be selected at the user’s request. The selection can be made with designating the part number as shown below; R1211X002X-TR ↑ a Code a ↑ b b Contents Designation of Package Type: D: SON-6 N: SOT23-6W Designation of Optional Function A : 700kHz, with AMPOUT pin (External Phase Compensation Type) B : 700 kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) C : 300kHz, with AMPOUT pin (External Phase Compensation Type) D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) s PIN CONFIGURATIONS SON-6 6 SOT-23-6W 5 4 EXT 1 DELAY AMPOUT/CE (MARK SIDE) 6 GND VIN 2 GND VFB 5 (MARK SIDE) 3 EXT VIN 4 DELAY AMPOUT/CE VFB 1 2 3 Rev. 1.10 -3- s PIN DESCRIPTIONS Pin No. SON6 1 2 3 4 5 6 Symbol SOT23-6W 1 DELAY 5 GND 6 EXT 4 VIN 3 VFB 2 AMPOUT or CE Description Pin for External Capacitor (for Setting Output Delay of Protection) Ground Pin External FET Drive Pin (CMOS Output) Power Supply Pin Feedback Pin for monitoring Output Voltage Amplifier Output Pin(A/C Version) or Chip Enable Pin(B/D Version, Active at “H”) s ABSOLUTE MAXIMUM RATINGS Symbol VIN VEXT VDLY VAMP VCE VFB IAMP IEXT PD Topt Tstg Item VIN Pin Voltage EXT Pin Output Voltage DELAY Pin Voltage AMPOUT Pin Voltage CE Pin Input Voltage VFB Pin Voltage AMPOUT Pin Current EXT Pin Inductor Drive Output Current Power Dissipation Operating Temperature Range Storage Temperature Range Rating 6.5 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 -0.3∼VIN+0.3 ±10 ±50 250 -40∼+85 -55∼+125 Unit V V V V V V mA mA mW °C °C Rev. 1.10 -4- s ELECTRICAL CHARACTERISTICS qR1211X002A Symbol Item VIN Operating Input Voltage VFB VFB Voltage Tolerance ∆VFB/ VFB Voltage Temperature Coefficient ∆T IFB VFB Input Current fOSC Oscillator Frequency ∆fOSC/ Oscillator Frequency Temperature Coefficient ∆T IDD1 Supply Current 1 maxdty Maximum Duty Cycle REXTH EXT “H” ON Resistance REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2 EXT “L” ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Conditions VIN=3.3V -40°C≤ Topt ≤ 85°C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40°C≤ Topt ≤ 85°C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT “H” side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V→2V VIN=3.3V at 90% of rising edge VIN=3.3V→0V, VDLY=VFB=0V VIN=0V→3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V MIN. 2.5 0.985 TYP. 1.000 ±150 (Topt=25°C) MAX. Unit 6.0 V 1.015 V ppm/°C 0.1 805 µA kHz kHz/°C µA % Ω Ω µA mA V ms V V mA µA -0.1 595 700 ±1.4 600 90 5 3 82 900 94 10 6 7.5 9.0 1.05 13.5 2.3 0.18 1.50 90 2.5 2.5 0.95 4.5 2.1 0.08 0.45 30 5.0 5.5 1.00 9.0 2.2 0.13 0.90 60 Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP “H” Output Current AMP “L” Output Current Rev. 1.10 -5- qR1211X002B Symbol VIN VFB ∆VFB/ ∆T IFB fOSC ∆fOSC/ ∆T IDD1 Item Conditions MIN. 2.5 TYP. (Topt=25°C) MAX. Unit 6.0 V V ppm/°C 0.1 µA kHz kHz/°C 900 94 10 6 7.5 9.0 1.05 13.5 2.3 0.18 1 0.5 0.5 0.3 µA % Ω Ω µA mA V ms V V µA µA µA V V Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 VIN=3.3V -40°C≤ Topt ≤ 85°C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40°C≤ Topt ≤ 85°C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT “H” side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA 0.985 1.000 ±150 1.015 -0.1 595 700 ±1.4 600 82 90 5 3 2.5 2.5 0.95 4.5 2.1 0.08 -0.5 -0.5 1.5 5.0 5.5 1.00 9.0 2.2 0.13 0 805 maxdty Maximum Duty Cycle REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 ISTB ICEH ICEL VCEH VCEL EXT “H” ON Resistance EXT “L” ON Resistance Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V Delay Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V→2V VIN=3.3V VIN=3.3V→0V, VDLY=VFB=0V VIN=0V→3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V→6V VIN=2.5V, VCE=2V→0V Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis Standby Current CE “H” Input Current CE “L” Input Current CE “H” Input Voltage CE “L” Input Voltage Rev. 1.10 -6- qR1211X002C Symbol Item VIN Operating Input Voltage VFB VFB Voltage Tolerance ∆VFB/ VFB Voltage Temperature Coefficient ∆T IFB VFB Input Current fOSC Oscillator Frequency ∆fOSC/ Oscillator Frequency Temperature Coefficient ∆T IDD1 Supply Current 1 maxdty Maximum Duty Cycle REXTH EXT “H” ON Resistance REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2 EXT “L” ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Conditions VIN=3.3V -40°C≤ Topt ≤ 85°C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40°C≤ Topt ≤ 85°C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT “H” side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V→2V VIN=3.3V VIN=3.3V→0V, VDLY=VFB=0V VIN=0V→3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V MIN. 2.5 0.985 TYP. 1.000 ±150 (Topt=25°C) MAX. Unit 6.0 V 1.015 V ppm/°C 0.1 360 µA kHz kHz/°C µA % Ω Ω µA mA V ms V V mA µA -0.1 240 300 ±0.6 300 90 5 3 82 500 94 10 6 7.0 9.0 1.05 16.0 2.3 0.18 1.50 75 2.0 2.5 0.95 5.0 2.1 0.08 0.45 25 4.5 5.5 1.00 10.5 2.2 0.13 0.90 50 Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP “H” Output Current AMP “L” Output Current Rev. 1.10 -7- qR1211X002D Symbol VIN VFB ∆VFB/ ∆T IFB fOSC ∆fOSC/ ∆T IDD1 Item Conditions MIN. 2.5 TYP. MAX. 6.0 Unit V V ppm/°C Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 VIN=3.3V -40°C≤ Topt ≤ 85°C VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40°C≤ Topt ≤ 85°C VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT “H” side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA 0.985 1.000 ±150 1.015 -0.1 240 300 ±0.6 300 82 90 5 3 2.0 2.5 0.95 5.0 2.1 0.08 -0.5 -0.5 1.5 4.5 5.5 1.00 10.5 2.2 0.13 0 0.1 360 µA kHz kHz/°C 500 94 10 6 7.0 9.0 1.05 16.0 2.3 0.18 1 0.5 0.5 0.3 µA % Ω Ω µA mA V ms V V µA µA µA V V maxdty Maximum Duty Cycle REXTH REXTL IDLY1 IDLY2 VDLY EXT “H” ON Resistance EXT “L” ON Resistance Delay Pin Charge Current VIN=3.3V, VDLY=VFB=0V Delay Pin Discharge Current VIN=VFB=2.5V, VDLY=0.1V Delay Pin Detector Threshold VIN=3.3V, VFB=0V, VDLY=0V→2V TSTART Soft-start Time VIN=3.3V VUVLO1 UVLO Detector Threshold VIN=3.3V→0V, VDLY=VFB=0V VUVLO2 ISTB ICEH ICEL VCEH VCEL UVLO Detector Hysteresis Standby Current CE “H” Input Current CE “L” Input Current CE “H” Input Voltage CE “L” Input Voltage VIN=0V→3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V→6V VIN=2.5V, VCE=2V→0V Rev. 1.10 -8- s TYPICAL APPLICATIONS AND TECHNICAL NOTES Inductor Diode VIN C1 C2 DELAY EXT VFB NMOS C4 R1 C3 R3 GND AMPOUT C5 R4 R2 NMOS: IRF7601 (International Rectifier) Inductor : LDR655312T-100 10µH (TDK) for R1211X002A : LDR655312T-220 22µH (TDK) for R1211X002C Diode: CRS02 (Toshiba) C1: 4.7µF (Ceramic) R1: Output Voltage Setting Resistor 1 C2: 0.22µF (Ceramic) R2: Output Voltage Setting Resistor 2 C3: 10µF (Ceramic) R3: 30kΩ C4: 680pF(Ceramic) R4: 30kΩ C5: 2200pF(Ceramic) Inductor Diode VIN C1 C2 GND DELAY EXT VFB NMOS C4 R1 C3 R3 CE R2 CE Control NMOS: IRF7601 (International Rectifier) Inductor: LDR655312T-100 10µH (TDK) for R1211X002B LDR655312T-220 22µH (TDK) for R1211X002D Diode: CRS02 (Toshiba) C1: 4.7µF (Ceramic) R1: Setting Output Voltage Resistor1 C2: 0.22µF (Ceramic) R2: Setting Output Voltage Resistor2 C3: 10µF (Ceramic) R3 : 30kΩ C4: 680pF(Ceramic) [Note] These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose other external components. Rev. 1.10 -9- q Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical applications above. q In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of the previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance. q Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the previous page. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type. q Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is between 100pF and 1000pF. q Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical applications of the previous page. Refer to the next formula. Output Voltage = VFB×(R1+R2)/R2 R1+R2=100kΩ is recommended range of resistances. q The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs “L” to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of B/D version. Otherwise, restart with power on. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2×VDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs “L”. q As for R1211X002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram are just an example combination. These are for making phase compensation. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the range from 10kΩ to 50kΩ. Then, noise level will be decreased. q As for R1211X002B/D version, EXT pin outputs GND level at standby mode. q Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type, and with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting voltage or more. ✩The performance of power circuit with using this IC depends on external components. Choose the most suitable components for your application. Rev. 1.10 - 10 - s Output Current and Selection of External Components i2 Inductor Diode IOUT VOUT VIN i1 Lx Tr CL GND Discontinuous Mode IL ILxmax IL Continuous Mode ILxmax ILxmin ILxmin Tf Iconst t Ton T=1/fosc Toff Ton T=1/fosc Toff t There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN ×t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula. PON=∫VIN ×t/L dt 0 TON 2 Formula 1 With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT-VIN)×t/L, therefore electric power, POFF is described as in next formula. POFF=∫VIN×(VOUT-VIN)×t/L dt 0 Tf Formula 2 In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, PAV is described as in the next formula. PAV=1/(Ton+Toff)×{∫VIN ×t/L dt + ∫VIN×(VOUT-VIN)×t/L dt} Formula 3 0 0 TON 2 Tf In PWM control, when Tf=Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. In the continuous mode, the deviation of the current is equal between on time and off time. VIN×Ton/L=(VOUT-VIN)×Toff/L Formula 4 Further, the electric power, PAV is equal to output electric power, VOUT×IOUT, thus, IOUT = fOSC × VIN ×TON /{2×L ×(VOUT-VIN)}=VIN ×TON/(2×L×VOUT) Formula 5 When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes 2 2 2 Rev. 1.10 - 11 - continuous. The continuous current through the inductor is described as Iconst, then, IOUT = fOSC ×VIN ×tON /(2×L×(VOUT-VIN))+VIN×Iconst/VOUT 2 2 Formula 6 In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows: ILxmax = Iconst +VIN×Ton/L With the formula 4,6, and ILxmax is, ILxmax = VOUT/VIN×IOUT+VIN×Ton/(2×L) Formula 8 Formula 7 Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered. s TIMING CHART q R1211X002A/R1211X002C DTC VREF SS EXT VOUT R1 R2 q R1211X002B/R1211X002D VFB AMPOUT EXT OP AMP PWM Comparator DTC VREF SS EXT VOUT R1 R2 VFB AMPOUT EXT OP AMP PWM Comparator Soft-start operation is starting from power-on as follows: (Step1) The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on, therefore, VFB voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT is at “L”, and switching does not start. (Step2) Rev. 1.10 - 12 - When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM comparator. (Step3) When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching operation becomes normal mode. SS,VREF VFB SS VFB,VREF DTC AMPOUT AMPOUT Step1 Step2 VOUT V IN The operation of Latch protection circuit is as follows: When AMPOUT becomes “H” and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs “L” to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of R1211X002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY pin is fixed at GND level. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2×VDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs “L”. Output Short AMPOUT AMPOUT VDLY DTC Normal DELAY maxduty Operation Latched EXT Rev. 1.10 - 13 - s TEST CIRCUITS q R1211X002A/R1211X002C *Consumption Current Test 6V EXT OSCILLOSCO OSCILLOSCOPE *Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test 3.3V VIN A VIN VFB GND DELAY VFB GND DELAY *EXT “H” ON Resistance 3.3V VIN EXT OSCILLOSCOPE OSC ILLOSCO *EXT “L” ON Resistance 3.3V VIN EXT 150Ω V GND V FB V FB GND DELAY 150Ω DELAY *DELAY Pin Charge Current 3.3V VIN *DELAY PIn Discharge Current 2.5V VIN VFB GND DELAY VFB A GND DELAY A 0.1V Rev. 1.10 - 14 - *DELAY Pin Detector Threshold Voltage Test 3.3V VIN EXT OSC OSCILLOSC OPE *AMP “H” Output Current/”L” Output Current Test 3.3V VIN AMPOUT V FB A 1V V FB GND DELAY GND DELAY *UVLO Detector Threshold/Hysteresis Range Test VIN EXT OSC OSCILLOSC OPE V FB GND DELAY *Soft-start Time Test Coil Diode V OUT C2 Rout C1 C4 R4 R3 R1 OSC OSCILLOSCOPE ILLOSCOPE C5 VIN C3 EXT AM T POU V FB GND DELA Y NM OS R2 Inductor (L) Diode (SD) Capacitors : 22µH (TDK LDR655312T-220) : CRS02 (Toshiba) C1: 680pF(Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic), C3: 68µF (Tantalum)+2.2µF (Ceramic), C4: 2200pF(Ceramic), C5: 22µF(Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90kΩ, R2:10kΩ, R3:30kΩ, R4:30kΩ, Rout:1kΩ/330Ω Rev. 1.10 - 15 - q R1211X002B/R1211X002D *Consumption Current Test 6V EXT CE V FB GND DELAY OSCILLOSCOPE OSCILLOSCOPE *Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test 3.3V VIN A VIN CE V FB GND DELAY *EXT “H” ON Resistance 3.3V VIN EXT CE V FB OSCILLOSCOPE OSC ILLOSCOPE *EXT “L” ON Resistance 3.3V VIN EXT CE V FB V 150Ω 150Ω GND DELAY GND DELAY *DELAY Pin Charge Current 3.3V VIN CE V FB GND DELAY A *DELAY PIn Discharge Current 2.5V VIN CE V FB GND DELAY A 0.1V Rev. 1.10 - 16 - *DELAY Pin Detector Threshold Voltage Test 3.3V V IN EXT CE V FB GND DELAY OSCILLOSCOPE OSCILLOSCOPE *Standby Current Test 6V A VIN CE V FB GND DELAY *UVLO Detector Threshold/Hysteresis Range Test VIN EXT CE VFB GND DELAY * CE “L” Input Current/”H” Input Current Test VIN OSCILLOSCOPE OSCILLOSCOPE CE V FB GND DELAY A 0V/6V *CE “L” Input Voltage/”H” Input Voltage Test VIN EXT CE OSCILLOSCO OSCILLOSCOPE V FB GND DELAY *Soft-start Time Test Coil C5 VIN C3 EXT CE V FB R3 GND DELAY R2 C1 0V/3.3V R1 VOUT C2 OSCILLOSCO OSCILLOSCOPE NMOS Rout Rev. 1.10 - 17 - Inductor (L) Diode (SD) Capacitors : 22µH (TDK LDR655312T-220) : CRS02 (Toshiba) C1: 680pF(Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic), C3: 68µF (Tantalum)+2.2µF (Ceramic), C5: 22µF (Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90kΩ, R2: 10kΩ, R3: 30kΩ s TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current R1211X002A 5.1 Output Voltage VOUT [V] L=10uH VOUT =5V R1211X002A 10.2 Output Voltage VOUT [V] L=10uH VOUT=10V 5 VIN=2.5V VIN=3.3V 10 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 4.9 1 10 100 Output Current IOUT [mA] L=10uH VOUT=15V 1000 1 10 100 Output Current IOUT [mA] L=10uH VOUT =5V 1000 R1211X002A 15.3 R1211X002B 5.1 Output Voltage VOUT [V] 15 VIN=2.5V VIN=3.3V VIN=5.0V 14.7 1 10 100 Output Current IOUT [mA] L=10uH VOUT=10V 1000 Output Voltage VOUT [V] 5 VIN=2.5V VIN=3.3V 4.9 1 10 100 Output Current IOUT [mA] 1000 R1211X002B 10.2 Output Voltage VOUT [V] R1211X002B 15.3 Output Voltage VOUT[V] L=10uH V OUT=15V 10 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 Output Current IOUT [mA] 1000 15 V IN=2.5V V IN=3.3V V IN=5.0V 1 10 100 Output Current IOUT [mA] 1000 14.7 Rev. 1.10 - 18 - R1211X002C 5.1 Output Voltage V [V] OUT L=22uH VOUT=5V R1211X002C 10.2 Output Voltage V [V] OUT L=22uH VOUT=10V 5 VIN=2.5V VIN=3.3V 10 VIN=2.5V VIN=3.3V VIN=5.0V 4.9 1 10 100 Output Current IOUT [mA] R1211X002C 15.3 L=22uH VOUT=15V 1000 9.8 1 10 100 Output Current IOUT [mA] R1211X002D 5.1 Output Voltage V [V] OUT L=22uH VOUT=5V 1000 Output Voltage V [V] OUT 15 VIN=2.5V VIN=3.3V VIN=5.0V 5 VIN=2.5V VIN=3.3V 4.9 14.7 1 10 100 Output Current IOUT [mA] R1211X002D 10.2 L=22uH VOUT=10V 1000 1 10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=15V 1000 15.3 Output Voltage V [V] OUT 10 VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 Output Current IOUT [mA] 1000 Output Voltage V [V] OUT 15 VIN=2.5V VIN=3.3V VIN=5.0V 14.7 1 10 100 Output Current IOUT [mA] 1000 Rev. 1.10 - 19 - 2) Efficiency vs. Output Current R1211X002A 100 80 Efficiency η[%] Efficiency η[%] 60 40 20 0 1 10 100 Output Current IOUT [mA] L=10uH VOUT=15V 1000 L=10uH VOUT=5V R1211X002A 100 80 60 40 20 0 1 10 100 Output Current IOUT [mA] R1211X002B 100 80 Efficiency η[%] 60 40 20 0 1 10 100 Output Current IOUT [mA] R1211X002B 100 80 Efficiency η[%] Efficiency η[%] 60 40 20 0 1 10 100 Output Current IOUT [mA] 1000 VIN=2.5V VIN=3.3V VIN=5.0V L=10uH VOUT=10V 1000 1 10 100 Output Current IOUT [mA] R1211X002B 100 80 60 40 20 0 1 10 100 Output Current IOUT [mA] 1000 VIN=2.5V VIN=3.3V VIN=5.0V L=10uH VOUT=15V 1000 VIN=2.5V VIN=3.3V L=10uH VOUT=5V 1000 VIN=2.5V VIN=3.3V VIN=5.0V L=10uH VOUT=10V VIN=2.5V VIN=3.3V R1211X002A 100 80 Efficiency η[%] 60 40 20 0 VIN=2.5V VIN=3.3V VIN=5.0V Rev. 1.10 - 20 - R1211X002C 100 80 L=22uH VOUT=5V R1211X002C 100 80 Efficiency η[%] 60 L=22uH VOUT=10V Efficiency η[%] 60 VIN=2.5V 40 20 0 1 10 100 Output Current IOUT [mA] R1211X002C L=22uH VOUT=15V 1000 VIN=3.3V VIN=2.5V 40 20 0 1 10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=5V 1000 VIN=3.3V VIN=5.0V 100 80 Efficiency η[%] 60 40 20 0 1 100 80 Efficiency η[%] 60 40 20 0 VIN=2.5V VIN=3.3V VIN=5.0V VIN=2.5V VIN=3.3V 10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=10V 1000 1 10 100 Output Current IOUT [mA] R1211X002D L=22uH VOUT=15V 1000 100 80 Efficiency η[%] 100 80 Efficiency η[%] 60 40 20 0 60 40 20 0 1 10 100 Output Current IOUT [mA] 1000 VIN=2.5V VIN=3.3V VIN=5.0V VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 Output Current IOUT [mA] 1000 Rev. 1.10 - 21 - 3) VFB Voltage vs. Input Voltage (Topt =25°C) R1211X002X 1015 1010 VFB Voltage [mV] 1005 1000 995 990 985 2 3 4 5 Input Voltage VIN [V] 6 4) Oscillator Frequency vs. Input Voltage (Topt=25°C) R1211X002A/B 900 Oscillator Frequency [kHz] Oscillator Frequency[kHz] 400 R1211X002C/D 800 350 700 300 600 250 500 2 3 4 Input Voltage VIN [V] 5 6 200 2 3 4 5 Input Voltage VIN [V] 6 5) Supply Current vs. Input Voltage (Topt=25°C) R1211X002A 600 500 Supply Current [uA] 400 300 200 100 0 2 3 4 5 Input Voltage VIN [V] 6 Supply Current [uA] 600 500 400 300 200 100 0 2 3 4 5 Input Voltage VIN [V] 6 R1211X002B Rev. 1.10 - 22 - R1211X002C 400 400 R1211X002D Supply Current [uA] 200 100 Supply Current [uA] 300 300 200 100 0 2 3 4 5 Input Voltage VIN [V] 6 0 2 3 4 5 Input Voltage VIN [V] 6 6) Maximum Duty Cycle vs. Input Voltage (Topt=25°C) R1211X002A/B 96 94 Maximum Duty Cycle [%] Maximum Duty Cycle [%] 92 90 88 86 84 82 80 2 3 4 5 Input Voltage VIN [V] 6 96 94 92 90 88 86 84 82 80 2 3 4 5 Input Voltage VIN [V] 6 R1211X002C/D 7) VFB Voltage vs. Temperature R1211X002X 1015 1010 VFB Voltage [mV] 1005 1000 995 990 985 -50 -25 0 25 50 75 Temperature Topt (°C) 100 VIN=3.3V Rev. 1.10 - 23 - 8) Oscillator Frequency vs. Temperature R1211X002A/B VIN=3.3V 900 Oscillator Frequency[kHz] Oscillator Frequency [kHz] 400 R1211X002C/D VIN=3.3V 800 350 700 300 600 250 500 -50 -25 0 25 50 Temperature Topt (°C) 75 100 200 -50 -25 0 25 50 75 Temperature Topt (°C) 100 9) Supply Current vs. Temperature R1211X002A 600 500 Supply Current[uA] 400 300 200 100 0 -50 -25 0 25 50 75 Temperature Topt (°C) VIN=3.3V 400 100 VIN=3.3V 600 500 Supply Current [uA] 400 300 200 100 0 -50 -25 0 25 50 Temperature Topt (°C) VIN=3.3V 75 100 R1211X002B VIN=3.3V R1211X002C 400 R1211X002D Supply Current [uA] Supply Current [uA] 300 300 200 200 100 100 0 -50 -25 0 25 50 75 Temperature Topt (°C) 100 0 -50 -25 0 25 50 Temperature Topt(°C) 75 100 Rev. 1.10 - 24 - 10) Maximum Duty Cycle vs. Temperature R1211X002A/B 96 94 Maximum Duty Cycle [%] 92 90 88 86 84 82 80 -50 -25 0 25 50 Temperature Topt (°C) 75 100 Maximum Duty Cycle [%] VIN=3.3V 96 94 92 90 88 86 84 82 80 -50 -25 0 25 50 Temperature Topt(°C) 75 100 R1211X002C/D VIN=3.3V 11) EXT”H” Output Current vs. Temperature R1211X002X 8 EXT"H"ON Resistance [ohm] 7 6 5 4 3 2 -50 -25 0 25 50 Temperature Topt (°C) 75 100 VIN=3.3V 12) EXT”L” Output Current vs. Temperature R1211X002X 5 EXT"L"ON Resistance [ohm] VIN=3.3V 4 3 2 1 -50 -25 0 25 50 75 100 Temperature Topt(°C) Rev. 1.10 - 25 - 13) Soft-start Time vs. Temperature R1211X002A/B 16 14 Soft-start Time [ms] 12 10 8 6 -50 -25 0 25 50 Temperature Topt (°C) 75 100 VIN=3.3V 16 14 Soft-start Time [ms] 12 10 8 6 -50 -25 0 25 50 Temperature Topt(°C) 75 100 R1211X002C/D VIN=3.3V 14) UVLO Detector Threshold vs. Temperature R1211X002X 2300 UVLO Detector Threshold [mV] VIN=3.3V 2250 2200 2150 2100 -50 -25 0 25 50 Temperature Topt(°C) 75 100 15) AMP “H” Output Current vs. Temperature R1211X002A/C 1600 AMP"H" Output Current [uA] 1400 1200 1000 800 600 400 -50 -25 0 25 50 75 Temperature Topt (°C) 100 VIN=3.3V Rev. 1.10 - 26 - 16) AMP “L” Output Current vs. Temperature R1211X002A 80 AMP"L" Output Current [uA] 70 60 50 40 30 20 -50 -25 0 25 50 Temperature Topt (°C) 75 100 AMP"L" Output Current [uA] VIN=3.3V 80 70 60 50 40 30 20 -50 -25 0 25 50 75 Temperature Topt (°C) 100 R1211X002C VIN=3.3V 17) DELAY Pin Charge Current vs. Temperature R1211X002A/B 7 DELAY Pin Charge Current [uA] DELAY Pin Charge Current [uA] 6 5 4 3 2 -50 -25 0 25 50 Temperature Topt (°C) 75 100 VIN=3.3V 7 6 5 4 3 2 -50 -25 0 25 50 75 100 Temperature Topt (°C) R1211X002C/D VIN=3.3V 18) DELAY Pin Detector Threshold vs. Temperature R1211X002X VIN=3.3V DELAY Pin Detector Threshold [mV] 1040 1020 1000 980 960 -50 -25 0 25 50 75 Temperature Topt (°C) 100 Rev. 1.10 - 27 - 19) DELAY Pin Discharge Current vs. Temperature R1211X002X DELAY Pin Discharge Current [uA] 10 8 6 4 2 0 -50 -25 0 25 50 Temperature Topt (°C) 75 100 VIN=2.5V 20) CE “L” Input Voltage vs. Temperature R1211X002B/D 1200 1100 1000 900 800 700 600 -50 -25 0 25 50 75 Temperature Topt (°C) 100 VIN=2.5V 21) CE “H” Input Voltage vs. Temperature R1211X002B/D VIN=6.0V CE"L" Input Voltage [mV] 1200 CE"H" Input Voltage [mV] 1100 1000 900 800 700 600 -50 -25 0 25 50 75 Temperature Topt (°C) 100 Rev. 1.10 - 28 - 22) Standby Current vs. Temperature R1211X002B/D VIN=6.0V 1 0.8 Standby Current [uA] 0.6 0.4 0.2 0 -0.2 -50 -25 0 25 50 Temperature Topt (°C) 75 100 23) Load Transient Response R1211X002A 5.6 L=10uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA Output Voltage V [V] OUT VOUT 5.0 200 100 IOUT 4.4 Time [5ms/div] 0 R1211X002A 11.2 VOUT 10.0 200 100 IOUT 8.8 Time [5ms/div] 0 R1211X002A Output Voltage VOUT [V] 16.8 VOUT 15.0 200 100 IOUT 13.2 Time [5ms/div] 0 Rev. 1.10 - 29 - Output Current IOUT [mA] L=10uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA 300 Output Current IOUT [mA] L=10uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA Output Voltage V [V] OUT 300 Output Current IOUT [mA] 300 R1211X002B Output Voltage V [V] OUT 5.6 5.0 VOUT 200 100 IOUT 4.4 Time [5ms/div] 0 R1211X002B Output Voltage V [V] OUT 11.2 VOUT 10.0 200 100 8.8 IOUT Time [5ms/div] 0 R1211X002B Output Voltage VOUT [V] 16.8 15.0 VOUT 200 100 13.2 IOUT Time [5ms/div] 0 R1211X002C Output Voltage V [V] OUT 5.6 VOUT 5.0 200 100 IOUT 4.4 Time [5ms/div] 0 Rev. 1.10 - 30 - Output Current IOUT [mA] L=22uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA 300 Output Current IOUT [mA] L=10uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA 300 Output Current IOUT [mA] L=10uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA 300 Output Current IOUT [mA] L=10uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA 300 R1211X002C Output Voltage V [V] OUT 11.2 VOUT 10.0 200 100 IOUT 8.8 Time [5ms/div] 0 R1211X002C Output Voltage V [V] OUT 16.8 VOUT 15.0 200 100 13.2 IOUT Time [5ms/div] 0 R1211X002D Output Voltage V [V] OUT 5.6 VOUT 5.0 300 200 100 IOUT 4.4 Time [5ms/div] 0 R1211X002D Output Voltage V [V] OUT 11.2 VOUT 10.0 200 100 IOUT 8.8 Time [5ms/div] 0 Rev. 1.10 - 31 - Output Current IOUT [mA] L=22uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA 300 Output Current IOUT [mA] L=22uH VIN=3.3V , C3=22uF VOUT=5V , IOUT=1-100mA Output Current IOUT [mA] L=22uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA 300 Output Current IOUT [mA] L=22uH VIN=3.3V , C3=22uF VOUT=10V , IOUT=1-100mA 300 R1211X002D Output Voltage V [V] OUT 16.8 VOUT 15.0 200 100 IOUT 13.2 Time [5ms/div] 0 24) Power-on Response R1211X002A 16 14 Output Voltage [V] 12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V L=10uH VIN=3.3V , IOUT=10mA (c)VOUT=15V Output Voltage [V] R1211X002B 16 14 12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V L=10uH VIN=3.3V , IOUT=10mA (c)VOUT=15V Time [5ms/div] R1211X002C 16 14 Output Voltage [V] 12 10 8 6 4 2 0 0 5 10 15 Time [5ms/div] 20 25 VIN (b)VOUT=10V (a)VOUT=5V L=22uH VIN=3.3V , IOUT=10mA (c)VOUT=15V Output Voltage [V] R1211X002D 16 14 12 10 8 6 4 2 0 0 5 Time [5ms/div] L=22uH VIN=3.3V , IOUT=10mA (c)VOUT=15V (b)VOUT=10V (a)VOUT=5V VIN 10 15 20 25 Time [5ms/div] Rev. 1.10 - 32 - Output Current IOUT [mA] L=22uH VIN=3.3V , C3=22uF VOUT=15V , IOUT=1-50mA 300 25) Turn-on speed with CE pin R1211X002B 16 14 Output Voltage [V] 12 10 8 6 4 2 0 0 5 10 15 20 25 (b)VOUT=10V (a)VOUT=5V CE L=10uH VIN=3.3V , IOUT=10mA (c)VOUT=15V Output Voltage [V] R1211X002D 16 14 12 10 8 6 4 2 0 0 5 10 15 20 25 CE (b)VOUT=10V (a)VOUT=5V L=22uH VIN=3.3V , IOUT=10mA (c)VOUT=15V Time [5ms/div] Time [5ms/div] Rev. 1.10 - 33 -
R1211X 价格&库存

很抱歉,暂时无法提供与“R1211X”相匹配的价格&库存,您可以联系我们找货

免费人工找货