0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BU33JA3DG-CTR

BU33JA3DG-CTR

  • 厂商:

    ROHM(罗姆)

  • 封装:

    SC-74A

  • 描述:

    PMIC - 稳压器 - 线性 正 固定 1 输出 300mA 5-SSOP

  • 数据手册
  • 价格&库存
BU33JA3DG-CTR 数据手册
Datasheet For Automotive 300 mA CMOS LDO Regulators BUxxJA3DG-C series General Description Key Specifications ◼ ◼ ◼ ◼ ◼ ◼ The BUxxJA3DG-C series are linear regulators designed as low current consumption products for power supplies in various automotive applications. These products are designed for up to 6.5 V as an absolute maximum voltage and to operate until 300 mA for the output current with low current consumption 37 µA (Typ). These can regulate the output with a very high accuracy, ±2 %. These regulators are therefore an ideal for any applications requiring a low current consumption. A logical “HIGH” at the EN pin turns on the device, and in the other side, the devices are controlled to disable by a logical “LOW” input to the EN pin. The devices feature the integrated Over Current Protection to protect the device from a damage caused by a shortcircuiting or an overload. These products also integrate Thermal Shutdown Protection to avoid the damage by overheating. Furthermore, low ESR ceramic capacitors are sufficiently applicable for the phase compensation. Wide Temperature Range (Tj): Operating Input Range: Low Current Consumption: Output Current Capability: High Output Voltage Accuracy: Output Voltage: Package SSOP5 -40 °C to +150 °C 1.7 V to 6.0 V 37 µA (Typ) 300 mA ±2 % 1.2 V to 3.3 V W(Typ) x D(Typ) x H(Max) 2.9 mm x 2.8 mm x 1.25 mm Features ◼ ◼ ◼ ◼ AEC-Q100 Qualified(Note 1) Output Shutdown Function (EN Function) Over Current Protection (OCP) Thermal Shutdown Protection (TSD) (Note 1) Grade 1 Applications ◼ Automotive (Power Train, Body ECU, Infotainment, Cluster, etc.) Typical Application Circuit ◼ Components Externally Connected Capacitor: 0.1 µF ≤ CIN (Min), 0.47 µF ≤ COUT ≤ 47 µF(Note 2) (Note 2) Electrolytic ( ESR < 1 Ω), tantalum and ceramic capacitors can be used. 〇Product structure : Silicon integrated circuit www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 14 • 001 〇This product has no designed protection against radioactive rays. 1/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Ordering Information B U Part Number x x Output Voltage 12 : 1.2 V 15 : 1.5 V 18 : 1.8 V 25 : 2.5 V 30 : 3.0 V 33 : 3.3 V J A 3 D Series Name Output Current Capability: 300 mA Maximum Power Supply Voltage: 6.5 V G - Package G : SSOP5 C y y Product Rank Packaging and forming specification C : for Automotive Embossed tape and reel TR : The pin number 1 is the upper right TL : The pin number 1 is the lower left Lineup Ordering Output Voltage BU12JA3DG-CTR 1.2 V SSOP5 Reel of 3000 BU15JA3DG-CTR 1.5 V SSOP5 Reel of 3000 BU18JA3DG-CTR 1.8 V SSOP5 Reel of 3000 BU25JA3DG-CTR 2.5 V SSOP5 Reel of 3000 BU30JA3DG-CTR 3.0 V SSOP5 Reel of 3000 BU33JA3DG-CTR 3.3 V SSOP5 Reel of 3000 BU12JA3DG-CTL 1.2 V SSOP5 Reel of 3000 BU15JA3DG-CTL 1.5 V SSOP5 Reel of 3000 BU18JA3DG-CTL 1.8 V SSOP5 Reel of 3000 BU25JA3DG-CTL 2.5 V SSOP5 Reel of 3000 BU30JA3DG-CTL 3.0 V SSOP5 Reel of 3000 BU33JA3DG-CTL 3.3 V SSOP5 Reel of 3000 www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Package 2/93 Packing Specification TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Contents General Description ........................................................................................................................................................................ 1 Features.......................................................................................................................................................................................... 1 Applications .................................................................................................................................................................................... 1 Key Specifications .......................................................................................................................................................................... 1 Package .......................................................................................................................................................................................... 1 Typical Application Circuit ............................................................................................................................................................... 1 Ordering Information ....................................................................................................................................................................... 2 Lineup ............................................................................................................................................................................................. 2 Contents ......................................................................................................................................................................................... 3 Pin Configurations .......................................................................................................................................................................... 4 Pin Descriptions .............................................................................................................................................................................. 4 Block Diagram ................................................................................................................................................................................ 5 Description of Blocks ...................................................................................................................................................................... 5 Absolute Maximum Ratings ............................................................................................................................................................ 6 Thermal Resistance ........................................................................................................................................................................ 6 Operating Conditions ...................................................................................................................................................................... 7 Electrical Characteristics................................................................................................................................................................. 8 Typical Performance Curves (BU12JA3DG-C) ............................................................................................................................... 9 Typical Performance Curves (BU15JA3DG-C) ............................................................................................................................. 21 Typical Performance Curves (BU18JA3DG-C) ............................................................................................................................. 33 Typical Performance Curves (BU25JA3DG-C) ............................................................................................................................. 45 Typical Performance Curves (BU30JA3DG-C) ............................................................................................................................. 57 Typical Performance Curves (BU33JA3DG-C) ............................................................................................................................. 68 Typical Performance Curves......................................................................................................................................................... 79 Application and Implementation .................................................................................................................................................... 81 Selection of External Components ............................................................................................................................................ 81 Input Pin Capacitor ................................................................................................................................................................ 81 Output Pin Capacitor ............................................................................................................................................................. 81 Typical Application ..................................................................................................................................................................... 82 Surge Voltage Protection for Linear Regulators ........................................................................................................................ 83 Positive Surge to the Input..................................................................................................................................................... 83 Negative Surge to the Input ................................................................................................................................................... 83 Reverse Voltage Protection for Linear Regulators .................................................................................................................... 83 Protection Against Reverse Input/Output Voltage .................................................................................................................. 83 Protection Against Input Reverse Voltage.............................................................................................................................. 84 Protection Against Reverse Output Voltage when Output Connect to an Inductor ................................................................ 85 Power Dissipation ......................................................................................................................................................................... 86 SSOP5 ...................................................................................................................................................................................... 86 Thermal Design ............................................................................................................................................................................ 87 I/O Equivalence Circuits................................................................................................................................................................ 88 Operational Notes ......................................................................................................................................................................... 89 1. Reverse Connection of Power Supply ............................................................................................................................ 89 2. Power Supply Lines ........................................................................................................................................................ 89 3. Ground Voltage............................................................................................................................................................... 89 4. Ground Wiring Pattern .................................................................................................................................................... 89 5. Operating Conditions ...................................................................................................................................................... 89 6. Inrush Current................................................................................................................................................................. 89 7. Thermal Consideration ................................................................................................................................................... 89 8. Testing on Application Boards ........................................................................................................................................ 89 9. Inter-pin Short and Mounting Errors ............................................................................................................................... 89 10. Unused Input Pins .......................................................................................................................................................... 89 11. Regarding the Input Pin of the IC ................................................................................................................................... 90 12. Ceramic Capacitor .......................................................................................................................................................... 90 13. Thermal Shutdown Protection Circuit (TSD) ................................................................................................................... 90 14. Over Current Protection Circuit (OCP) ........................................................................................................................... 90 15. Enable Pin ...................................................................................................................................................................... 90 Marking Diagram .......................................................................................................................................................................... 91 Physical Dimension and Packing Information ............................................................................................................................... 92 Revision History ............................................................................................................................................................................ 93 www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 3/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Pin Configurations SSOP5 (TOP VIEW) N.C. VOUT VIN GND EN Pin Descriptions Pin No. Pin Name Pin Function Descriptions 1 VIN Input Voltage Pin Set a capacitor with a capacitance of 0.1 μF (Min) or higher between the VIN pin and GND. The selecting method is described in Selection of External Components. If the inductance of power supply line is high, please adjust input capacitor value. 2 GND Ground Pin 3 EN Enable Input Pin 4 N.C. - 5 VOUT Output Voltage Pin www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Ground. A logical “HIGH” (VENH ≥ 1.1 V) at the EN pin enables the device and “LOW” (VENL ≤ 0.5 V) at the EN pin disables the device. This pin is not connected to the chip. It can keep open or it’s also possible to connect to GND. Set a capacitor with a capacitance of 0.47 μF (Min) or higher between the VOUT pin and GND. The selecting method is described in Selection of External Components. 4/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Block Diagram Description of Blocks Block Name Function Description of Blocks Enable Input A logical “HIGH” (VENH ≥ 1.1 V) at the EN pin enables the device and “LOW” (VENL ≤ 0.5 V) at the EN pin disables the device. Thermal Shutdown Protection In case maximum power dissipation exceeds or the ambient temperature is higher than the Maximum Junction Temperature, overheating causes the chip temperature (Tj) to rise. The TSD protection circuit detects this and forces the gate of output MOSFET(Power Tr.) to turn off in order to protect the device from overheating. When the junction temperature decreases to low, the output turns on automatically. VREF Reference Voltage Generate the reference voltage. AMP Error Amplifier The error amplifier amplifies the difference between the feedback voltage of the output voltage and the reference voltage. Over Current Protection If the output current increases higher than the maximum output current, it is limited by Over Current Protection to protect the device from damage caused by an over current. While this block is operating, the output voltage may decrease because the output current is limited. If an abnormal state is removed and the output current value returns to normal, the output voltage also returns to normal state. Output Discharge Function Output pin is discharged by the internal resistance (Typ: 40 Ω) when EN = “LOW” input. EN TSD OCP DISCHARGE www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 5/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Absolute Maximum Ratings Parameter Symbol Ratings Unit VIN Pin Voltage(Note 1) VIN -0.3 to +6.5 V Voltage(Note 2) VEN -0.3 to +6.5 V VOUT -0.3 to +6.5 (≤ VIN + 0.3) V Junction Temperature Range Tj -40 to +150 °C Storage Temperature Range Tstg -55 to +150 °C Tjmax 150 °C ESD Withstand Voltage (HBM)(Note 3) VESD_HBM ±2000 V (CDM)(Note 4) VESD_CDM ±750 V EN Pin VOUT Pin Voltage Maximum Junction Temperature ESD Withstand Voltage Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance and power dissipation taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating. (Note 1) Do not exceed Tjmax. (Note 2) The start-up orders of power supply (VIN) and the VEN do not influence if the voltage is within the operation power supply voltage range. (Note 3) ESD susceptibility Human Body Model “HBM”; base on ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF). (Note 4) ESD susceptibility Charged Device Model “CDM”; base on JEDEC JESD22-C101. Thermal Resistance(Note 5) Parameter Symbol Thermal Resistance (Typ) 1s(Note 7) 2s2p(Note 8) Unit SSOP5 Junction to Ambient θJA 264.4 135.7 °C/W Junction to Top Characterization Parameter(Note 6) ΨJT 34 27 °C/W (Note 5) Based on JESD51-2A(Still-Air). Using BUxxJA3DG-C. (Note 6) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. (Note 7) Using a PCB board based on JESD51-3. (Note 8) Using a PCB board based on JESD51-7,. Layer Number of Measurement Board Single Material Board Size FR-4 114.3 mm x 76.2 mm x 1.57 mmt Top Copper Pattern Thickness Footprints and Traces 70 μm Layer Number of Measurement Board 4 Layers Material Board Size FR-4 114.3 mm x 76.2 mm x 1.6 mmt Top 2 Internal Layers Bottom Copper Pattern Thickness Copper Pattern Thickness Copper Pattern Thickness Footprints and Traces 70 μm 74.2 mm x 74.2 mm 35 μm 74.2 mm x 74.2 mm 70 μm www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 6/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Operating Conditions (-40 °C ≤ Tj ≤ +150 °C) Parameter Symbol Min Max Unit VIN VOUT (Max) + ΔVd (Max) 6.0 V VIN Start-Up 1.7 - V Enable Input Voltage VEN 0 6.0 V Output Current IOUT 0 300 mA CIN 0.1 - µF COUT 0.47 47 µF ESR(COUT) - 1 Ω Ta -40 +125 °C VIN Input Voltage(Note 1) Start-Up Voltage Input Capacitor(Note 2) Output Capacitor(Note 3) Output Capacitor Equivalent Series Resistance Operating Temperature (Note 1) Minimum Input Voltage must be 1.7 V or more. Please consider that the output voltage would be dropped (Dropout voltage ΔVd) depending on the output current. (Note 2) If the inductance of power supply line is high, please adjust input capacitor value in order to lower the input impedance. A lower input impedance can bring out the ideal characteristic of IC as much as possible. It also has the effect of preventing the voltage-drop at the input line. (Note 3) Set capacitor value which do not fall below the minimum value. This value needs to consider the temperature characteristics and DC device characteristics. www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 7/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Electrical Characteristics Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = VOUT + 1.0 V(Note 1), IOUT = 0 mA, VEN = 1.5 V Typical values are defined at Tj = 25 °C, VIN = VOUT + 1.0 V(Note 1) Limit Parameter Shutdown Current Current Consumption Symbol Unit Conditions 2 µA VEN = 0 V, Tj = -40 °C to +85 °C - 10 µA - 37 55 µA - 37 62 µA - 37 80 µA MIN TYP MAX - - - ISD ICC VEN = 0 V, Tj = -40 °C to +125 °C IOUT ≤ 500 µA, VIN ≤ 5.5 V Tj = +25 °C IOUT ≤ 500 µA, VIN ≤ 5.5 V Tj = -40 °C to +85 °C IOUT ≤ 500 µA Tj = -40 °C to +125 °C IOUT = 1 mA to 300 mA VOUT > 2.5 V VIN = VOUT + 0.5 V to 5.5 V VOUT ≤ 2.5 V VIN = 3.0 V to 5.5 V VOUT ×0.98 VOUT VOUT ×1.02 V - 4 8 mV IOUT = 10 mA VOUT ≤ 2.5 V VIN = 3.0 V to 5.5 V - 6 12 mV IOUT = 10 mA VOUT > 2.5 V VIN = VOUT + 0.5 V to 5.5 V - - 15 mV IOUT = 1 mA to 300 mA - - 500 mV IOUT = 300 mA, VOUT = 1.2 V - - 365 mV IOUT = 300 mA, VOUT = 1.5 V - - 330 mV IOUT = 300 mA, VOUT = 1.8 V - - 240 mV IOUT = 300 mA, VOUT = 2.5 V - - 220 mV IOUT = 300 mA, VOUT = 3.0 V - - 200 mV IOUT = 300 mA, VOUT = 3.3 V IOMAX 300 - - mA VIN > VOUT (Max) + ΔVd (Max) IOUT(OCP) - 450 600 mA R.R. - 60 - dB Output Noise(Note 3) VNOISE - 30 - µVrms Discharge Resistor RDSC 25 40 75 Ω Enable HIGH Voltage VENH 1.1 - 6.0 V - Enable LOW Voltage VENL 0 - 0.5 V - Enable Bias Current IEN - - 4 µA - TTSD 155 175 195 °C - TTSDHYS - 15 - °C - Output Voltage Line Regulation Load Regulation Dropout Voltage(Note 2) Maximum Output Current Over Current Protection(Note 3) Ripple Rejection Ratio Thermal Shutdown Temperature(Note 3) Thermal Shutdown Hysteresis(Note 3) VOUT Reg.I Reg.L ΔVd Applied VOUT × 0.95 for the VOUT Pin VRR = 1 Vp-p, fRR = 1 kHz IOUT = 300 mA, VIN = 5 V BW = 10 Hz to 100 kHz VOUT = 1.2 V VIN = 4.0 V, VEN = 0 V VOUT = 4.0 V (Note 1) VIN = 3.0 V for VOUT < 2.5 V. (Note 2) VIN = VOUT x 0.98. For outputs below 1.7 V, dropout voltage means the minimum input-to-output differential voltage with IOUT = 300 mA for regulate. (Note 3) Not measured. www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 8/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) 1.4 70 1.2 60 Circuit Current: ICC [µA] Output Voltage: VOUT [V] Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 1 0.8 Tj = Tj = Tj = Tj = Tj = 0.6 0.4 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 50 40 30 0.2 10 0 0 0 2 4 Tj = Tj = Tj = Tj = Tj = 20 0 6 2 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 4 6 Input Voltage: VIN [V] Input Voltage: VIN [V] Figure 1. Output Voltage vs Input Voltage VOUT = 1.2 V Figure 2. Circuit Current vs Input Voltage VOUT = 1.2 V 0.5 0.45 Tj = Tj = Tj = Tj = Tj = 0.4 1 Dropout Voltage: VDO [V] Output Voltage: VOUT [V] 1.2 0.8 0.6 Tj = Tj = Tj = Tj = Tj = 0.4 0.2 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.35 0.3 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.25 0.2 0.15 0.1 0.05 0 0 0 0.2 0.4 0 0.6 0.2 0.3 Output Current: IOUT [A] Output Current: IOUT [A] Figure 3. Output Current Limit VOUT = 1.2 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.1 Figure 4. Dropout Voltage vs Output Current VIN = 1.7 V, VOUT = 1.2 V 9/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 15 1.25 Output Voltage: VOUT [V] 1.23 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Load Regulation: Reg.L. [mV] Tj = Tj = Tj = Tj = Tj = 1.21 1.19 1.17 Tj = Tj = Tj = Tj = Tj = 10 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 5 0 1.15 1. 7 2. 7 3. 7 4. 7 0 5. 7 0. 1 Input Voltage: VIN [V] Figure 5. Line Regulation VOUT = 1.2 V, IOUT = 50 mA 80 IO UT = 50 mA 90 70 IO UT = 100 mA 80 IO UT = 300 mA Ripple Rejection: R.R. [dB] Ripple Rejection: R.R. [dB] 0. 3 Figure 6. Load Regulation VOUT = 1.2 V, IOUT = 1 mA to 300 mA 100 70 60 50 40 30 20 60 50 40 30 Tj = -40 ° C 20 Tj = +25 ° C 10 10 0 0.01 0.1 0. 2 Output Current: IOUT [A] Tj = +125 ° C 0 1 10 100 1000 10000 0.01 Frequency: f [kHz] 1 10 100 1000 10000 Frequency: f [kHz] Figure 7. PSRR vs Frequency and Output Current CIN = 0 µF, COUT = 10 µF VOUT = 1.2 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.1 Figure 8. PSRR vs Frequency and Temparature CIN = 0 µF, COUT = 10 µF VIN = 5 V, VOUT = 1.2 V, IOUT = 300 mA 10/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 80 1.218 60 1.206 1.200 1.194 IO UT = 1 mA 1.188 IO UT = 50 mA IO UT = 100 mA 1.182 IO UT = 300 mA 10 60 IO UT 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 110 0 0 160 100 Figure 9. Output Voltage vs Junction temperature VOUT = 1.2 V 0.6 AC-Coupled Output Voltage [mV] 0.5 40 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 -100 0 0 100 200 300 400 500 0.6 VOU T 60 IO UT 0.5 40 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 -100 500 0 0 Time [μs] 100 200 300 400 500 Time [μs] Figure 11. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 25 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 400 80 VOU T IO UT 300 Figure 10. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = -40 °C Output Current [A] AC-Coupled Output Voltage [mV] 80 200 Time [μs] Junction Temperature: Tj [° C] 60 0.5 40 -100 1.176 -40 VOU T Output Current [A] Output Voltage: VOUT [V] 1.212 0.6 Output Current [A] AC-Coupled Output Voltage [mV] 1.224 Figure 12. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 150 °C 11/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 100 100 0.8 0.8 IO UT 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 0.1 -250 100 200 300 400 0.7 IO UT 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 0.1 -250 0 0 50 0 0 500 Time [μs] Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0.7 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 50 100 200 300 400 500 Time [μs] Figure 13. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 100 Figure 14. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C 0.8 50 0.7 IO UT 0.6 0 0.5 -50 0.4 -100 0.3 -150 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0.2 -200 0.1 -250 0 0 100 200 300 400 500 Time [μs] Figure 15. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 12/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 100 200 300 400 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 IO UT 20 0 0 500 Time [μs] Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 100 200 300 400 500 Time [μs] Figure 16. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 40 Figure 17. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0 0 100 200 300 400 500 Time [μs] Figure 18. Load Transient VOUT = 1.2 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 13/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF AC-Coupled Output Voltage [mV] 0.7 0.6 0 0.5 0.4 -50 0.3 Output Current [A] AC-Coupled Output Voltage [mV] VOU T IO UT 0.2 -100 0.1 -150 100 200 300 400 0.7 IO UT 0.6 0 0.5 0.4 -50 0.3 0.2 -100 0.1 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 19. Load Transient VOUT = 1.2 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C Figure 20. Load Transient VOUT = 1.2 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C 0.8 50 VOU T 0.7 IO UT 0.6 0 0.5 0.4 -50 0.3 Output Current [A] AC-Coupled Output Voltage [mV] VOU T -150 0 0 0.8 50 Output Current [A] 0.8 50 0.2 -100 0.1 -150 0 0 100 200 300 400 500 Time [μs] Figure 21. Load Transient VOUT = 1.2 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 14/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0.4 0 0.3 -20 0.2 -40 0.1 -60 100 200 300 400 0.5 0.4 0 0.3 -20 0.2 -40 0.1 -60 0 0 IO UT 20 0 0 500 Time [μs] Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 100 200 300 400 500 Time [μs] Figure 22. Load Transient VOUT = 1.2 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 40 Figure 23. Load Transient VOUT = 1.2 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 IO UT 20 0.5 0.4 0 0.3 -20 0.2 -40 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0.1 -60 0 0 100 200 300 400 500 Time [μs] Figure 24. Load Transient VOUT = 1.2 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 15/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 20 1 0 VIN 0.5 -20 VOU T 0 100 200 40 1.5 20 1 0 VIN -20 VOU T 0 300 -40 0 100 200 300 Time [μs] Time [μs] Figure 25. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = -40 °C Figure 26. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 25 °C 3 3 100 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 100 200 80 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 0 100 2.5 Input Voltage [V] 80 2.5 Input Voltage [V] 60 2 0.5 -40 0 80 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 27. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 85 °C Figure 28. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 16/93 AC Cupled Output Voltage [mV] 40 1.5 AC Cupled Output Voltage [mV] Input Voltage [V] 60 2 100 2.5 Input Voltage [V] 80 2.5 3 AC Cupled Output Voltage [mV] 100 AC Cupled Output Voltage [mV] 3 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 20 1 0 VIN 0.5 -20 VOU T 0 100 200 40 1.5 20 1 0 VIN -20 VOU T 0 300 -40 0 100 200 300 Time [μs] Time [μs] Figure 29. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = -40 °C Figure 30. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 25 °C 3 3 100 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 100 200 80 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 0 100 2.5 Input Voltage [V] 80 2.5 Input Voltage [V] 60 2 0.5 -40 0 80 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 31. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 85 °C Figure 32. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 17/93 AC Cupled Output Voltage [mV] 40 1.5 AC Cupled Output Voltage [mV] Input Voltage [V] 60 2 100 2.5 Input Voltage [V] 80 2.5 3 AC Cupled Output Voltage [mV] 100 AC Cupled Output Voltage [mV] 3 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 20 1 0 VIN 0.5 -20 VOU T 0 100 200 40 1.5 20 1 0 VIN -20 VOU T 0 300 -40 0 100 200 300 Time [μs] Time [μs] Figure 33. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = -40 °C Figure 34. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 25 °C 3 3 100 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 100 200 80 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 0 100 2.5 Input Voltage [V] 80 2.5 Input Voltage [V] 60 2 0.5 -40 0 80 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 35. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 85 °C Figure 36. Line Transient VOUT = 1.2 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 18/93 AC Cupled Output Voltage [mV] 40 1.5 AC Cupled Output Voltage [mV] Input Voltage [V] 60 2 100 2.5 Input Voltage [V] 80 2.5 3 AC Cupled Output Voltage [mV] 100 AC Cupled Output Voltage [mV] 3 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 5 300 250 IO UT 3.5 200 3 2.5 150 2 100 1.5 1 250 VOU T 4 IO UT 3.5 Voltage [V] VOU T EN 200 3 2.5 150 2 100 1.5 1 50 0.5 Output Current [mA] 4.5 EN 4 300 VIN Output Current [mA] 4.5 Voltage [V] 5 VIN 50 0.5 0 0 0 100 200 0 300 0 0 Time [μs] 100 200 300 Time [μs] Figure 37. Start Up Waveform VOUT = 1.2 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = -40 °C 5 Figure 38. Start Up Waveform VOUT = 1.2 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = 25 °C 300 VIN EN IO UT 3.5 Voltage [V] 250 VOU T 4 200 3 2.5 150 2 100 1.5 1 Output Current [mA] 4.5 50 0.5 0 0 0 100 200 300 Time [μs] Figure 39. Start Up Waveform VOUT = 1.2 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 19/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU12JA3DG-C) - continued 300 6 300 5 250 5 250 200 VIN EN VOU T 3 150 IO UT 2 100 1 0 0 100 200 4 Voltage [V] Voltage [V] 4 Output Current [mA] 6 150 IO UT 50 1 50 0 0 300 0 0 100 200 300 Time [μs] Figure 41. Start Up Waveform VOUT = 1.2 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 25 °C 6 300 5 250 200 VIN EN VOU T 150 IO UT 2 100 1 50 0 Output Current [mA] Voltage [V] VOU T 3 100 Figure 40. Start Up Waveform VOUT = 1.2 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = -40 °C 3 EN 2 Time [μs] 4 200 VIN Output Current [mA] Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 0 0 100 200 300 Time [μs] Figure 42. Start Up Waveform VOUT = 1.2 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 20/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) 1.6 70 1.4 60 1.2 Circuit Current: ICC [µA] Output Voltage: VOUT [V] Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 1 0.8 Tj = Tj = Tj = Tj = Tj = 0.6 0.4 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 50 40 30 Tj = Tj = Tj = Tj = Tj = 20 10 0.2 0 0 0 2 4 0 6 2 4 6 Input Voltage: VIN [V] Input Voltage: VIN [V] Figure 43. Output Voltage vs Input Voltage VOUT = 1.5 V Figure 44. Circuit Current vs Input Voltage VOUT = 1.5 V 1.6 0.35 1.4 Tj = Tj = Tj = Tj = Tj = 0.3 1.2 Dropout Voltage: VDO [V] Output Voltage: VOUT [V] -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 1 0.8 0.6 Tj = Tj = Tj = Tj = Tj = 0.4 0.2 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.2 0.4 0.15 0.1 0 0 0.6 0.1 0.2 0.3 Output Current: IOUT [A] Output Current: IOUT [A] Figure 45. Output Current Limit VOUT = 1.5 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.2 0.05 0 0 0.25 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Figure 46. Dropout Voltage vs Output Current VIN = 1.7 V, VOUT = 1.5 V 21/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 15 1.55 Output Voltage: VOUT [V] 1.53 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Load Regulation: Reg.L. [mV] Tj = Tj = Tj = Tj = Tj = 1.51 1.49 Tj = Tj = Tj = Tj = Tj = 10 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 5 1.47 0 1.45 2 3 4 5 0 6 0.1 Input Voltage: VIN [V] Figure 47. Line Regulation VOUT = 1.5 V, IOUT = 50 mA 80 IO UT = 50 mA 90 70 IO UT = 100 mA 80 IO UT = 300 mA Ripple Rejection: R.R. [dB] Ripple Rejection: R.R. [dB] 0.3 Figure 48. Load Regulation VOUT = 1.5 V, IOUT = 1 mA to 300 mA 100 70 60 50 40 30 20 60 50 40 30 Tj = -40 ° C 20 Tj = +25 ° C 10 10 0 0.01 0.1 0.2 Output Current: IOUT [A] 1 10 0 0.01 100 1000 10000 Frequency: f [kHz] 0.1 1 10 100 1000 10000 Frequency: f [kHz] Figure 49. PSRR vs Frequency and Output Current CIN = 0 µF, COUT = 10 µF VOUT = 1.5 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Tj = +125 ° C Figure 50. PSRR vs Frequency and Temparature CIN = 0 µF, COUT = 10 µF VIN = 5 V, VOUT = 1.5 V, IOUT = 300 mA 22/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 80 1.51 1.5 1.49 IO UT = 1 mA IO UT = 50 mA 1.48 IO UT = 100 mA IO UT = 300 mA 1.47 -40 10 60 110 VOU T 60 IO UT 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 -100 160 0 0 100 Junction Tem pera ture: Tj [° C] AC-Coupled Output Voltage [mV] 0.4 0 0.3 -20 -40 0.2 Output Current [A] AC-Coupled Output Voltage [mV] 0.5 40 20 -60 0.1 -80 -100 100 200 300 400 0.6 VOU T 60 IO UT 0.5 40 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 53. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 25 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 500 -100 0 0 400 80 VOU T IO UT 300 Figure 52. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = -40 °C 0.6 60 200 Time [μs] Figure 51. Output Voltage vs Junction temperature VOUT = 1.5 V 80 0.5 40 Output Current [A] Output Voltage: VOUT [V] 1.52 0.6 Output Current [A] AC-Coupled Output Voltage [mV] 1.53 Figure 54. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 150 °C 23/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 100 100 0.8 0.8 IO UT 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 0.1 -250 100 200 300 400 0.7 IO UT 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 0.1 -250 0 0 50 0 0 500 Time [μs] Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0.7 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 50 100 200 300 400 500 Time [μs] Figure 55. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 100 Figure 56. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C 0.8 50 0.7 IO UT 0.6 0 0.5 -50 0.4 -100 0.3 -150 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0.2 -200 0.1 -250 0 0 100 200 300 400 500 Time [μs] Figure 57. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 24/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 100 200 300 400 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 IO UT 20 0 0 500 Time [μs] Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 100 200 300 400 500 Time [μs] Figure 58. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 40 Figure 59. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0 0 100 200 300 400 500 Time [μs] Figure 60. Load Transient VOUT = 1.5 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 25/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF AC-Coupled Output Voltage [mV] 0.7 0.6 0 0.5 0.4 -50 0.3 Output Current [A] AC-Coupled Output Voltage [mV] VOU T IO UT 0.2 -100 0.1 -150 100 200 300 400 0.7 IO UT 0.6 0 0.5 0.4 -50 0.3 0.2 -100 0.1 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 61. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C Figure 62. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C 0.8 50 VOU T 0.7 IO UT 0.6 0 0.5 0.4 -50 0.3 Output Current [A] AC-Coupled Output Voltage [mV] VOU T -150 0 0 0.8 50 Output Current [A] 0.8 50 0.2 -100 0.1 -150 0 0 100 200 300 400 500 Time [μs] Figure 63. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 26/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 0.6 40 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 500 0 0 Time [μs] Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 100 200 300 400 500 Time [μs] Figure 64. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 40 Figure 65. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Figure 66. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 27/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 2 40 1.5 20 1 0 VIN -20 VOU T 0 100 200 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 0 3 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 67. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = -40 °C Figure 68. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 25 °C 3.5 3.5 100 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 Input Voltage [V] 3 0 100 200 100 3 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 69. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 85 °C Figure 70. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 28/93 AC Cupled Output Voltage [mV] 60 100 AC Cupled Output Voltage [mV] 2.5 Input Voltage [V] 80 AC Cupled Output Voltage [mV] 3 0.5 Input Voltage [V] 3.5 100 AC Cupled Output Voltage [mV] Input Voltage [V] 3.5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 2 40 1.5 20 1 0 VIN -20 VOU T 0 100 200 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 0 3 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 71. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = -40 °C Figure 72. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 25 °C 3.5 3.5 100 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 Input Voltage [V] 3 0 100 200 100 3 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 73. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 85 °C Figure 74. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 29/93 AC Cupled Output Voltage [mV] 60 100 AC Cupled Output Voltage [mV] 2.5 Input Voltage [V] 80 AC Cupled Output Voltage [mV] 3 0.5 Input Voltage [V] 3.5 100 AC Cupled Output Voltage [mV] Input Voltage [V] 3.5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 2 40 1.5 20 1 0 VIN -20 VOU T 0 100 200 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 0 3 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 75. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = -40 °C Figure 76. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 25 °C 3.5 3.5 100 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 Input Voltage [V] 3 0 100 200 100 3 80 2.5 60 2 40 1.5 20 1 0 VIN 0.5 -20 VOU T 0 -40 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 77. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 85 °C Figure 78. Line Transient VOUT = 1.5 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 30/93 AC Cupled Output Voltage [mV] 60 100 AC Cupled Output Voltage [mV] 2.5 Input Voltage [V] 80 AC Cupled Output Voltage [mV] 3 0.5 Input Voltage [V] 3.5 100 AC Cupled Output Voltage [mV] Input Voltage [V] 3.5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 5 5 300 300 250 IO UT 3.5 200 3 2.5 150 2 100 1.5 1 EN 250 VOU T 4 IO UT 3.5 Voltage [V] VOU T 4 Voltage [V] 4.5 EN Output Current [mA] 4.5 VIN 200 3 2.5 150 2 100 1.5 1 50 0.5 Output Current [mA] VIN 50 0.5 0 0 0 0 100 200 0 0 300 Time [μs] 100 200 300 Time [μs] Figure 79. Start Up Waveform VOUT = 1.5 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = -40 °C 5 Figure 80. Start Up Waveform VOUT = 1.5 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = 25 °C 300 VIN EN IO UT 3.5 Voltage [V] 250 VOU T 4 200 3 2.5 150 2 100 1.5 1 Output Current [mA] 4.5 50 0.5 0 0 0 100 200 300 Time [μs] Figure 81. Start Up Waveform VOUT = 1.5 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 31/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU15JA3DG-C) - continued 300 6 300 5 250 5 250 200 VIN EN 3 150 VOU T IO UT 2 100 1 0 0 100 200 4 Voltage [V] Voltage [V] 4 Output Current [mA] 6 150 IO UT 50 1 50 0 0 0 0 300 100 200 300 Time [μs] Figure 83. Start Up Waveform VOUT = 1.5 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 25 °C 6 300 5 250 200 VIN EN 150 VOU T IO UT 2 100 1 50 0 Output Current [mA] Voltage [V] VOU T 3 100 Figure 82. Start Up Waveform VOUT = 1.5 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = -40 °C 3 EN 2 Time [μs] 4 200 VIN Output Current [mA] Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 0 0 100 200 300 Time [μs] Figure 84. Start Up Waveform VOUT = 1.5 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 32/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 70 2 1.8 60 Circuit Current: ICC [µA] Output Voltage: VOUT [V] 1.6 1.4 1.2 1 Tj = Tj = Tj = Tj = Tj = 0.8 0.6 0.4 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 50 40 30 Tj = Tj = Tj = Tj = Tj = 20 10 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.2 0 0 0 2 4 0 6 2 4 6 Input Voltage: VIN [V] Input Voltage: VIN [V] Figure 85. Output Voltage vs Input Voltage VOUT = 1.8 V Figure 86. Circuit Current vs Input Voltage VOUT = 1.8 V 2 0.3 1.8 Dropout Voltage: VDO [V] Output Voltage: VOUT [V] 1.6 1.4 1.2 1 0.8 Tj = Tj = Tj = Tj = Tj = 0.6 0.4 0.2 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Tj = Tj = Tj = Tj = Tj = 0.25 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.2 0.15 0.1 0.05 0 0 0 0.2 0.4 0 0.6 Figure 87. Output Current Limit VOUT = 1.8 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.1 0.2 0.3 Output Current: IOUT [A] Output Current: IOUT [A] Figure 88. Dropout Voltage vs Output Current VIN = 1.764 V, VOUT = 1.8 V 33/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 15 1.85 Output Voltage: VOUT [V] 1.83 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Load Regulation: Reg.L. [mV] Tj = Tj = Tj = Tj = Tj = 1.81 1.79 1.77 1.75 Tj = Tj = Tj = Tj = Tj = 10 5 0 2.3 3.3 4.3 0 5.3 0.1 0.2 0.3 Output Current: IOUT [A] Input Voltage: VIN [V] Figure 89. Line Regulation VOUT = 1.8 V, IOUT = 50 mA Figure 90. Load Regulation VOUT = 1.8 V, IOUT = 1 mA to 300 mA s 100 90 90 IO UT=50mA 80 IO UT=100mA 70 IO UT=300mA 80 Ripple Rejection: R.R. [dB] Ripple Rejection: R.R. [dB] -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 60 50 40 30 20 10 70 60 50 40 30 Tj = -40 ° C 20 Tj = +25 ° C 10 Tj = +125 ° C 0 0.01 0.1 1 10 0 100 1000 10000 0.01 Frequency: f [kHz] 0.1 1 10 100 1000 10000 Frequency: f [kHz] Figure 91. PSRR vs Frequency and Output Current CIN = 0 µF, COUT = 10 µF VOUT = 1.8 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Figure 92. PSRR vs Frequency and Temparature CIN = 0 µF, COUT = 10 µF VIN = 5 V, VOUT = 1.8 V, IOUT = 300 mA 34/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 80 1.812 1.800 1.788 IO UT=1mA IO UT=50mA 1.776 IO UT=100mA IO UT=300mA 1.764 VOU T 60 IO UT 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 -100 -40 10 60 110 160 0 0 100 Tj(℃) 80 AC-Coupled Output Voltage [mV] IO UT 0.5 20 0.4 0 0.3 -20 -40 0.2 Output Current [A] 40 -60 0.1 -80 -100 200 300 400 0.6 VOU T 60 IO UT 0.5 40 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 95. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 25 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 500 -100 0 100 400 80 0.6 0 300 Figure 94. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = -40 °C VOU T 60 200 Time [μs] Figure 93. Output Voltage vs Junction temperature VOUT = 1.8 V AC-Coupled Output Voltage [mV] 0.5 40 Output Current [A] Output Voltage: VOUT[V] 1.824 0.6 Output Current [A] AC-Coupled Output Voltage [mV] 1.836 Figure 96. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 150 °C 35/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 100 100 0.8 0.8 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 0 100 200 300 400 50 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 0 0 500 Time [μs] 0.7 IO UT 100 200 300 400 Output Current [A] IO UT 0 AC-Coupled Output Voltage [mV] VOU T 0.7 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 50 500 Time [μs] Figure 97. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 100 Figure 98. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C 0.8 50 0.7 IO UT 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 0 0 100 200 300 400 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Figure 99. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 36/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 IO UT 20 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 500 0.5 100 200 300 400 Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Time [μs] Figure 100. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C Figure 101. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 40 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0 0 100 200 300 400 500 Time [μs] Figure 102. Load Transient VOUT = 1.8 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 37/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 100 100 0.8 0.8 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 0 100 200 300 400 50 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 0 0 500 Time [μs] 0.7 IO UT 100 200 300 400 Output Current [A] IO UT 0 AC-Coupled Output Voltage [mV] VOU T 0.7 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 50 500 Time [μs] Figure 103. Load Transient VOUT = 1.8 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 100 Figure 104. Load Transient VOUT = 1.8 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C 0.8 50 0.7 IO UT 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0 0 100 200 300 400 500 Time [μs] Figure 105. Load Transient VOUT = 1.8 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 38/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 IO UT 20 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 500 Time [μs] 0.5 100 200 300 400 Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Figure 106. Load Transient VOUT = 1.8 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 40 Figure 107. Load Transient VOUT = 1.8 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Figure 108. Load Transient VOUT = 1.8 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 39/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 3 100 200 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 80 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 109. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = -40 °C Figure 110. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 25 °C 4 4 100 80 3 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 3 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 3.5 Input Voltage(V) 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 111. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 85 °C Figure 112. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 40/93 AC Cupled Output Voltage(V) 60 AC Cupled Output Voltage(V) Input Voltage(V) 3 100 3.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 3.5 Input Voltage(V) 4 100 AC Cupled Output Voltage(V) 4 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 3 100 200 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 80 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 113. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = -40 °C Figure 114. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 25 °C 4 4 100 80 3 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 3 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 3.5 Input Voltage(V) 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 115. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 85 °C Figure 116. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 41/93 AC Cupled Output Voltage(V) 60 AC Cupled Output Voltage(V) Input Voltage(V) 3 100 3.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 3.5 Input Voltage(V) 4 100 AC Cupled Output Voltage(V) 4 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 3 100 200 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 80 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 117. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = -40 °C Figure 118. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 25 °C 4 4 100 80 3 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 3 60 2.5 40 2 20 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 3.5 Input Voltage(V) 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 119. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 85 °C Figure 120. Line Transient VOUT = 1.8 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 42/93 AC Cupled Output Voltage(V) 60 AC Cupled Output Voltage(V) Input Voltage(V) 3 100 3.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 3.5 Input Voltage(V) 4 100 AC Cupled Output Voltage(V) 4 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 250 IO UT 3.5 200 3 2.5 150 2 100 1.5 1 250 VOU T IO UT 3.5 200 3 2.5 150 2 100 1.5 1 50 0.5 50 0.5 0 0 0 0 100 200 0 0 300 Time(μs) 100 200 300 Time(μs) Figure 121. Start Up Waveform VOUT = 1.8 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = -40 °C 5 Figure 122. Start Up Waveform VOUT = 1.8 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = 25 °C 300 VIN EN 250 VOU T 4 IO UT 3.5 200 3 2.5 150 2 100 1.5 1 Output Current(mA) 4.5 Voltage(V) EN 4 Voltage(V) VOU T 4 300 VIN 4.5 EN Output Current(mA) 4.5 Voltage(V) 5 300 VIN Output Current(mA) 5 50 0.5 0 0 0 100 200 300 Time(μs) Figure 123. Start Up Waveform VOUT = 1.8 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 43/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU18JA3DG-C) - continued 300 6 300 5 250 5 250 200 VIN EN VOU T 3 150 IO UT 2 100 1 0 0 100 200 4 Voltage(V) Voltage(V) 4 Output Current(mA) 6 150 IO UT 50 1 50 0 0 0 0 300 100 200 300 Time(μs) Figure 125. Start Up Waveform VOUT = 1.8 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 25 °C 6 300 5 250 200 VIN EN VOU T 150 IO UT 2 100 1 50 0 Output Current(mA) Voltage(V) VOU T 3 100 Figure 124. Start Up Waveform VOUT = 1.8 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = -40 °C 3 EN 2 Time(μs) 4 200 VIN Output Current(mA) Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 0 0 100 200 300 Time(μs) Figure 126. Start Up Waveform VOUT = 1.8 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 44/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 80 70 Circuit Current: ICC [µA] Output Voltage: VOUT [V] 2.5 2 1.5 1 Tj = Tj = Tj = Tj = Tj = 0.5 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 60 50 40 30 Tj = Tj = Tj = Tj = Tj = 20 10 0 0 0 2 4 0 6 2 Figure 127. Output Voltage vs Input Voltage VOUT = 2.5 V Dropout Voltage: VDO [V] Output Voltage: VOUT [V] Tj = Tj = Tj = Tj = Tj = 0.2 2 1.5 0.5 6 Figure 128. Circuit Current vs Input Voltage VOUT = 2.5 V 2.5 Tj = Tj = Tj = Tj = Tj = 4 Input Voltage: VIN [V] Input Voltage: VIN [V] 1 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0 0.15 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.1 0.05 0 0 0.2 0.4 0.6 0 Output Current: IOUT [A] Figure 129. Output Current Limit VOUT = 2.5 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.1 0.2 0.3 Output Current: IOUT [A] Figure 130. Dropout Voltage vs Output Current VIN = 2.45 V, VOUT = 2.5 V 45/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 15 2.55 Output Voltage: VOUT [V] 2.53 2.52 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Load Regulation: Reg.L. [mV] Tj = Tj = Tj = Tj = Tj = 2.54 2.51 2.5 2.49 2.48 2.47 Tj = Tj = Tj = Tj = Tj = 10 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 5 2.46 0 2.45 3 4 5 0 6 0.1 Input Voltage: VIN [V] Figure 131. Line Regulation VOUT = 2.5 V, IOUT = 50 mA 90 90 80 80 Tj = -40 ° C 70 70 Tj = +25 ° C 60 Tj = +125 ° C 60 50 40 30 IO UT=50mA 20 IO UT=100mA 10 IO UT=300mA 0 0.01 0.1 1 10 0.3 Figure 132. Load Regulation VOUT = 2.5 V, IOUT = 1 mA to 300 mA Ripple Rejection: R.R. [dB] Ripple Rejection: R.R. [dB] 0.2 Output Current: IOUT [A] 50 40 30 20 10 0 0.01 100 1000 10000 Figure 133. PSRR vs Frequency and Output Current CIN = 0 µF, COUT = 10 µF VOUT = 2.5 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.1 1 10 100 1000 10000 Frequency: f [kHz] Frequency: f [kHz] Figure 134. PSRR vs Frequency and Temparature CIN = 0 µF, COUT = 10 µF VIN = 5 V, VOUT = 2.5 V, IOUT = 300 mA 46/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 80 2.54 60 2.52 2.51 2.5 2.49 2.48 IO UT = 1 mA 2.47 IO UT = 50 mA IO UT = 100 mA 2.46 IO UT = 300 mA 2.45 -40 10 60 110 VOU T IO UT 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 -100 160 0 0 100 Junction Tem pera ture: Tj [° C] AC-Coupled Output Voltage [mV] 40 0.4 0 0.3 -20 -40 0.2 Output Current [A] AC-Coupled Output Voltage [mV] 0.5 20 -60 0.1 -80 -100 100 200 300 400 0.6 VOU T 60 IO UT 0.5 40 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 137. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 25 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 500 -100 0 0 400 80 0.6 IO UT 300 Figure 136. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = -40 °C VOU T 60 200 Time [μs] Figure 135. Output Voltage vs Junction temperature VOUT = 2.5 V 80 0.5 40 Output Current [A] Output Voltage: VOUT [V] 2.53 0.6 Output Current [A] AC-Coupled Output Voltage [mV] 2.55 Figure 138. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 150 °C 47/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 150 0.7 100 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 AC-Coupled Output Voltage [mV] VOU T 0.2 -200 -250 0.1 -300 0 0 100 200 300 400 VOU T 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 500 100 Time [μs] AC-Coupled Output Voltage [mV] 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 200 300 400 500 0.8 VOU T 100 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 141. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 400 150 0.8 VOU T 100 300 Figure 140. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C Output Current [A] AC-Coupled Output Voltage [mV] 150 0 200 Time [μs] Figure 139. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 100 0.7 IO UT Output Current [A] 100 0.8 Output Current [A] 0.8 Output Current [A] AC-Coupled Output Voltage [mV] 150 Figure 142. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF Tj = 150 °C 48/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 IO UT 20 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 500 0.5 100 200 300 400 Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Time [μs] Figure 143. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C Figure 144. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 40 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0 0 100 200 300 400 500 Time [μs] Figure 145. Load Transient VOUT = 2.5 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 49/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 150 0.7 100 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 AC-Coupled Output Voltage [mV] VOU T 0.2 -200 -250 0.1 -300 0 0 100 200 300 400 VOU T 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 500 100 Time [μs] AC-Coupled Output Voltage [mV] 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 0.1 -250 -300 300 400 0.8 VOU T 100 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 0.1 -250 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 148. Load Transient VOUT = 2.5 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 500 -300 0 200 400 150 0.8 VOU T 100 300 Figure 147. Load Transient VOUT = 2.5 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C Output Current [A] AC-Coupled Output Voltage [mV] 150 0 200 Time [μs] Figure 146. Load Transient VOUT = 2.5 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 100 0.7 IO UT Output Current [A] 100 0.8 Output Current [A] 0.8 Output Current [A] AC-Coupled Output Voltage [mV] 150 Figure 149. Load Transient VOUT = 2.5 V tR = tF = 10 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF Tj = 150 °C 50/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 IO UT 20 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 500 Time [μs] 0.5 100 200 300 400 Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Figure 150. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 40 Figure 151. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Figure 152. Load Transient VOUT = 1.5 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 51/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 153. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = -40 °C Figure 154. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage(V) 4.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 155. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 85 °C Figure 156. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 52/93 AC Cupled Output Voltage(V) 60 3.5 80 4 AC Cupled Output Voltage(V) Input Voltage(V) 4 100 4.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 4.5 Input Voltage(V) 5 100 AC Cupled Output Voltage(V) 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 157. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = -40 °C Figure 158. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage(V) 4.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 159. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 85 °C Figure 160. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 53/93 AC Cupled Output Voltage(V) 60 3.5 80 4 AC Cupled Output Voltage(V) Input Voltage(V) 4 100 4.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 4.5 Input Voltage(V) 5 100 AC Cupled Output Voltage(V) 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 161. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = -40 °C Figure 162. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage(V) 4.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 163. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 85 °C Figure 164. Line Transient VOUT = 2.5 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 54/93 AC Cupled Output Voltage(V) 60 3.5 80 4 AC Cupled Output Voltage(V) Input Voltage(V) 4 100 4.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 4.5 Input Voltage(V) 5 100 AC Cupled Output Voltage(V) 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 250 IO UT 3.5 200 3 2.5 150 2 100 1.5 1 250 VOU T IO UT 3.5 200 3 2.5 150 2 100 1.5 1 50 0.5 50 0.5 0 0 0 0 100 200 300 0 0 400 Time(μs) 100 200 300 400 Time(μs) Figure 165. Start Up Waveform VOUT = 2.5 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = -40 °C 5 Figure 166. Start Up Waveform VOUT = 2.5 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = 25 °C 300 VIN EN 250 VOU T 4 IO UT 3.5 200 3 2.5 150 2 100 1.5 1 Output Current(mA) 4.5 Voltage(V) EN 4 Voltage(V) VOU T 4 300 VIN 4.5 EN Output Current(mA) 4.5 Voltage(V) 5 300 VIN Output Current(mA) 5 50 0.5 0 0 0 100 200 300 400 Time(μs) Figure 167. Start Up Waveform VOUT = 2.5 V, IOUT = 50 mA VIN = 3.3 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 55/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU25JA3DG-C) - continued 6 300 6 300 5 250 5 250 VOU T IO UT 3 150 2 100 1 0 0 100 200 300 VIN 4 Voltage(V) Voltage(V) 200 EN Output Current(mA) VIN 4 200 EN VOU T IO UT 3 150 2 100 50 1 50 0 0 0 0 400 Time(μs) Output Current(mA) Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 100 200 300 400 Time(μs) Figure 168. Start Up Waveform VOUT = 2.5 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = -40 °C Figure 169. Start Up Waveform VOUT = 2.5 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 25 °C 6 300 5 250 EN Voltage(V) 4 200 VOU T IO UT 3 150 2 100 1 50 0 Output Current(mA) VIN 0 0 100 200 300 400 Time(μs) Figure 170. Start Up Waveform VOUT = 2.5 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 56/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 100 Tj = Tj = Tj = Tj = Tj = 90 80 2.5 Circuit Current: ICC [µA] Output Voltage: VOUT [V] 3 2 1.5 Tj = Tj = Tj = Tj = Tj = 1 0.5 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 70 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 60 50 40 30 20 10 0 0 0 2 4 0 6 Input Voltage: VIN [V] 2 4 6 Input Voltage: VIN [V] Figure 171. Output Voltage vs Input Voltage VOUT = 3.0 V Figure 172. Circuit Current vs Input Voltage VOUT = 3.0 V 0.2 0.18 Tj = Tj = Tj = Tj = Tj = 0.16 2.5 Dropout Voltage: VDO [V] Output Voltage: VOUT [V] 3 2 1.5 1 Tj = Tj = Tj = Tj = Tj = 0.5 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.14 0.12 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.1 0.08 0.06 0.04 0.02 0 0 0 0.2 0.4 0.6 0 Output Current: IOUT [A] Figure 173. Output Current Limit VOUT = 3.0 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.1 0.2 0.3 Output Current: IOUT [A] Figure 174. Dropout Voltage vs Output Current VIN = 2.94 V, VOUT = 3.0 V 57/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF Tj = Tj = Tj = Tj = Tj = 3.04 Output Voltage: VOUT [V] 3.03 3.02 15 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Load Regulation: Reg.L. [mV] 3.05 3.01 3 2.99 2.98 2.97 Tj = Tj = Tj = Tj = Tj = 10 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 5 2.96 0 2.95 3.5 4 4.5 5 5.5 0 6 0.1 Input Voltage: VIN [V] 100 80 90 70 80 70 60 50 40 20 10 0 0.01 0.1 IO UT = 50 mA IO UT = 100 mA IO UT = 300 mA 1 10 60 50 40 30 Tj = -40 ° C 20 Tj = +25 ° C 10 0 0.01 100 1000 10000 Frequency: f [kHz] Tj = +125 ° C 0.1 1 10 100 1000 10000 Frequency: f [kHz] Figure 177. PSRR vs Frequency and Output Current CIN = 0 µF, COUT = 10 µF VOUT = 3.0 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.3 Figure 176. Load Regulation VOUT = 3.0V, IOUT = 1 mA to 300 mA Ripple Rejection: R.R. [dB] Ripple Rejection: R.R. [dB] Figure 175. Line Regulation VOUT = 3.0V, IOUT = 50 mA 30 0.2 Output Current: IOUT [A] Figure 178. PSRR vs Frequency and Temparature CIN = 0 µF, COUT = 10 µF VIN = 5 V, VOUT = 3.0 V, IOUT = 300 mA 58/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 80 3.02 3 2.98 IO UT = 1 mA IO UT = 50 mA 2.96 IO UT = 100 mA IO UT = 300 mA 2.94 -40 10 60 110 VOU T 60 IO UT 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 -100 160 0 0 100 Junction Tem pera ture: Tj [° C] AC-Coupled Output Voltage [mV] 40 0.4 0 0.3 -20 -40 0.2 Output Current [A] AC-Coupled Output Voltage [mV] 0.5 20 -60 0.1 -80 -100 100 200 300 400 0.6 VOU T 60 IO UT 0.5 40 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 181. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 25 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 500 -100 0 0 400 80 0.6 IO UT 300 Figure 180. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = -40 °C VOU T 60 200 Time [μs] Figure 179. Output Voltage vs Junction temperature VOUT = 3.0 V 80 0.5 40 Output Current [A] Output Voltage: VOUT [V] 3.04 0.6 Output Current [A] AC-Coupled Output Voltage [mV] 3.06 Figure 182. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 150 °C 59/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 150 0.7 100 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 AC-Coupled Output Voltage [mV] VOU T 0.2 -200 -250 0.1 -300 0 0 100 200 300 400 VOU T 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 500 100 Time [μs] 100 AC-Coupled Output Voltage [mV] 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 0 300 400 Output Current [A] AC-Coupled Output Voltage [mV] 0.7 IO UT 200 500 0.8 VOU T 100 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 185. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 400 150 0.8 100 300 Figure 184. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C VOU T 0 200 Time [μs] Figure 183. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 50 0.7 IO UT Output Current [A] 100 0.8 Output Current [A] 0.8 Output Current [A] AC-Coupled Output Voltage [mV] 150 Figure 186. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF Tj = 150 °C 60/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 IO UT 20 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 500 0.5 100 200 300 400 Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Time [μs] Figure 187. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C Figure 188. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 40 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 0 0 100 200 300 400 500 Time [μs] Figure 189. Load Transient VOUT = 3.0 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 61/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 100 100 0.8 0.8 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 0 200 300 400 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 0 0 500 100 Time [μs] 100 AC-Coupled Output Voltage [mV] 0.7 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 -300 Output Current [A] AC-Coupled Output Voltage [mV] 500 0.8 VOU T IO UT 300 400 0.7 IO UT 0 0.6 -50 0.5 -100 0.4 -150 0.3 -200 0.2 -250 0.1 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 192. Load Transient VOUT = 3.0 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 50 -300 0 200 400 100 0.8 100 300 Figure 191. Load Transient VOUT = 3.0 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C VOU T 0 200 Time [μs] Figure 190. Load Transient VOUT = 3.0 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 50 0.7 IO UT Output Current [A] 100 50 Output Current [A] IO UT 0 AC-Coupled Output Voltage [mV] VOU T 0.7 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 50 Figure 193. Load Transient VOUT = 3.0 V tR = tF = 10 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF Tj = 150 °C 62/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 40 40 0.6 0.6 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 IO UT 20 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 500 Time [μs] 0.5 100 200 300 400 Output Current [A] IO UT 20 AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Figure 194. Load Transient VOUT = 3.0 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 40 Figure 195. Load Transient VOUT = 3.0 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 IO UT 20 0.5 0 0.4 -20 0.3 -40 0.2 -60 0.1 -80 0 0 100 200 300 400 Output Current [A] AC-Coupled Output Voltage [mV] VOU T 500 Time [μs] Figure 196. Load Transient VOUT = 3.0 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 63/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 197. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = -40 °C Figure 198. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage [V] 4.5 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 199. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 85 °C Figure 200. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 64/93 AC Cupled Output Voltage [mV] 60 3.5 80 4 AC Cupled Output Voltage [mV] Input Voltage [V] 4 100 4.5 Input Voltage [V] 80 AC Cupled Output Voltage [mV] 4.5 Input Voltage [V] 5 100 AC Cupled Output Voltage [mV] 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 201. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = -40 °C Figure 202. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage [V] 4.5 -40 0 300 100 200 300 Time [μs] Time [μs] Figure 203. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 85 °C Figure 204. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 65/93 AC Cupled Output Voltage [mV] 60 3.5 80 4 AC Cupled Output Voltage [mV] Input Voltage [V] 4 100 4.5 Input Voltage [V] 80 AC Cupled Output Voltage [mV] 4.5 Input Voltage [V] 5 100 AC Cupled Output Voltage [mV] 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 205. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = -40 °C Figure 206. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage(V) 4.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 207. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 85 °C Figure 208. Line Transient VOUT = 3.0 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 66/93 AC Cupled Output Voltage(V) 60 3.5 80 4 AC Cupled Output Voltage(V) Input Voltage(V) 4 100 4.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 4.5 Input Voltage(V) 5 100 AC Cupled Output Voltage(V) 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU30JA3DG-C) - continued 300 6 300 5 250 5 250 Voltage [V] EN VOU T IO UT 200 3 150 2 100 1 0 0 100 200 300 4 Voltage [V] VIN 4 Output Current [mA] 6 VOU T IO UT 200 150 2 100 50 1 50 0 0 0 0 400 100 200 300 400 Time [μs] Figure 210. Start Up Waveform VOUT = 3.0 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 25 °C 6 300 5 250 VIN VOU T EN IO UT 200 3 150 2 100 1 50 0 Output Current [mA] Figure 209. Start Up Waveform VOUT = 3.0 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = -40 °C Voltage [V] EN 3 Time [μs] 4 VIN Output Current [mA] Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 0 0 100 200 300 400 Time [μs] Figure 211. Start Up Waveform VOUT = 3.0 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 67/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3.5 90 80 70 Circuit Current: ICC [µA] Output Voltage: VOUT [V] 3 2.5 2 1.5 Tj = Tj = Tj = Tj = Tj = 1 0.5 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 60 50 40 30 Tj = Tj = Tj = Tj = Tj = 20 10 0 0 0 2 4 0 6 2 4 6 Input Voltage: VIN [V] Input Voltage: VIN [V] Figure 212. Output Voltage vs Input Voltage VOUT = 3.3 V Figure 213. Circuit Current vs Input Voltage VOUT = 3.3 V 0.18 3.5 0.16 Dropout Voltage: VDO [V] 3 Output Voltage: VOUT [V] -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 2.5 2 1.5 Tj = Tj = Tj = Tj = Tj = 1 0.5 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Tj = Tj = Tj = Tj = Tj = 0.14 0.12 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 0.1 0.08 0.06 0.04 0.02 0 0 0 0.2 0.4 0.6 0 Output Current: IOUT [A] 0.2 0.3 Output Current: IOUT [A] Figure 214. Output Current Limit VOUT = 3.3 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.1 Figure 215. Dropout Voltage vs Output Current VIN = 3.234 V, VOUT = 3.3 V 68/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C)- continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF Tj = Tj = Tj = Tj = Tj = Output Voltage: VOUT [V] 3.33 15 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Load Regulation: Reg.L. [mV] 3.35 3.31 3.29 3.27 3.25 Tj = Tj = Tj = Tj = Tj = 10 5 0 3.8 4.3 4.8 5.3 5.8 0 0.1 Input Voltage: VIN [V] 70 70 Ripple Rejection: R.R. [dB] 80 60 50 40 30 IO UT=50mA IO UT=100mA 10 0.3 Figure 217. Load Regulation VOUT = 3.3 V, IOUT = 1 mA to 300 mA 80 20 0.2 Output Current: IOUT [A] Figure 216. Line Regulation VOUT = 3.3 V, IOUT = 50 mA Ripple Rejection: R.R. [dB] -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 60 50 40 30 Tj = -40 ° C 20 Tj = +25 ° C 10 IO UT=300mA 0 Tj = +125 ° C 0 0.01 0.1 1 10 100 1000 10000 0.01 Frequency: f [kHz] 1 10 100 1000 10000 Frequency: f [kHz] Figure 218. PSRR vs Frequency and Output Current CIN = 0 µF, COUT = 10 µF VOUT = 3.3 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0.1 Figure 219. PSRR vs Frequency and Temparature CIN = 0 µF, COUT = 10 µF VIN = 5 V, VOUT = 3.3 V, IOUT = 300 mA 69/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 80 3.334 3.314 3.294 IO UT = 1 mA IO UT = 50 mA 3.254 IO UT = 100 mA IO UT = 300 mA 3.234 -40 10 60 110 IO UT 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 -100 160 0 0 100 Junction Temperature: Tj [° C] AC-Coupled Output Voltage [mV] 40 0.4 0 0.3 -20 -40 0.2 Output Current [A] AC-Coupled Output Voltage [mV] 0.5 20 -60 0.1 -80 -100 100 200 300 400 0.6 VOU T 60 IO UT 0.5 40 20 0.4 0 0.3 -20 -40 0.2 -60 0.1 -80 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 222. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 25 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 500 -100 0 0 400 80 0.6 IO UT 300 Figure 221. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = -40 °C VOU T 60 200 Time [μs] Figure 220. Output Voltage vs Junction temperature VOUT = 3.3 V 80 0.5 40 Output Current [A] 3.274 VOU T 60 Output Current [A] AC-Coupled Output Voltage [mV] Output Voltage: VOUT [V] 3.354 0.6 Figure 223. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF Tj = 150 °C 70/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 150 AC-Coupled Output Voltage [mV] VOU T 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 100 200 300 400 100 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 500 100 Figure 224. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C AC-Coupled Output Voltage [mV] 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 200 300 400 500 0.8 VOU T 100 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 226. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 400 150 0.8 VOU T 100 300 Figure 225. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C Output Current [A] AC-Coupled Output Voltage [mV] 150 0 200 Time [μs] Time [μs] 100 0.7 IO UT Output Current [A] 100 0.8 VOU T Output Current [A] 0.8 Output Current [A] AC-Coupled Output Voltage [mV] 150 Figure 227. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF Tj = 150 °C 71/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 60 60 0.6 0.6 0.5 20 0.4 0 -20 0.3 -40 0.2 -60 0.1 -80 -100 100 200 300 400 IO UT 0.5 20 0.4 0 -20 0.3 -40 0.2 -60 0.1 -80 -100 0 0 40 0 0 500 Time [μs] Output Current [A] IO UT AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 40 100 200 300 400 500 Time [μs] Figure 228. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 60 Figure 229. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 40 IO UT 0.5 20 0.4 0 -20 0.3 -40 0.2 Output Current [A] AC-Coupled Output Voltage [mV] VOU T -60 0.1 -80 -100 0 0 100 200 300 400 500 Time [μs] Figure 230. Load Transient VOUT = 3.3 V tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 72/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 150 0.7 100 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 AC-Coupled Output Voltage [mV] VOU T 0.2 -200 -250 0.1 -300 0 0 100 200 300 400 VOU T 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 -250 0.1 -300 0 0 500 100 Time [μs] AC-Coupled Output Voltage [mV] 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 0.1 -250 -300 300 400 0.8 VOU T 100 0.7 IO UT 50 0.6 0 0.5 -50 0.4 -100 0.3 -150 0.2 -200 0.1 -250 0 0 500 Time [μs] 100 200 300 400 500 Time [μs] Figure 233. Load Transient VOUT = 3.3 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 500 -300 0 200 400 150 0.8 VOU T 100 300 Figure 232. Load Transient VOUT = 3.3 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = 25 °C Output Current [A] AC-Coupled Output Voltage [mV] 150 0 200 Time [μs] Figure 231. Load Transient VOUT = 3.3 V tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF Tj = -40 °C 100 0.7 IO UT Output Current [A] 100 0.8 Output Current [A] 0.8 Output Current [A] AC-Coupled Output Voltage [mV] 150 Figure 234. Load Transient VOUT = 3.3 V tR = tF = 10 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF Tj = 150 °C 73/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 60 60 0.6 0.6 0.5 20 0.4 0 -20 0.3 -40 0.2 -60 0.1 -80 -100 100 200 300 400 IO UT 0.5 20 0.4 0 -20 0.3 -40 0.2 -60 0.1 -80 -100 0 0 40 0 0 500 Time [μs] Output Current [A] IO UT AC-Coupled Output Voltage [mV] VOU T Output Current [A] AC-Coupled Output Voltage [mV] VOU T 40 100 200 300 400 500 Time [μs] Figure 235. Load Transient VOUT = 3.3 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = -40 °C 60 Figure 236. Load Transient VOUT = 3.3 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 25 °C 0.6 40 IO UT 0.5 20 0.4 0 -20 0.3 -40 0.2 Output Current [A] AC-Coupled Output Voltage [mV] VOU T -60 0.1 -80 -100 0 0 100 200 300 400 500 Time [μs] Figure 237. Load Transient VOUT = 3.3 V tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 74/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 238. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = -40 °C Figure 239. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage(V) 4.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 240. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 85 °C Figure 241. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 75/93 AC Cupled Output Voltage(V) 60 3.5 80 4 AC Cupled Output Voltage(V) Input Voltage(V) 4 100 4.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 4.5 Input Voltage(V) 5 100 AC Cupled Output Voltage(V) 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 242. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = -40 °C Figure 243. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage(V) 4.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 244. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 85 °C Figure 245. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 76/93 AC Cupled Output Voltage(V) 60 3.5 80 4 AC Cupled Output Voltage(V) Input Voltage(V) 4 100 4.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 4.5 Input Voltage(V) 5 100 AC Cupled Output Voltage(V) 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 60 3.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 246. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = -40 °C Figure 247. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 25 °C 5 5 100 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 100 200 80 4 60 3.5 3 40 2.5 20 2 1.5 0 1 VIN 0.5 -20 VOU T 0 -40 0 100 4.5 Input Voltage(V) 4.5 -40 0 300 100 200 300 Time(μs) Time(μs) Figure 248. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 85 °C Figure 249. Line Transient VOUT = 3.3 V tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 77/93 AC Cupled Output Voltage(V) 60 3.5 80 4 AC Cupled Output Voltage(V) Input Voltage(V) 4 100 4.5 Input Voltage(V) 80 AC Cupled Output Voltage(V) 4.5 Input Voltage(V) 5 100 AC Cupled Output Voltage(V) 5 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves (BU33JA3DG-C) - continued 300 6 300 5 250 5 250 Voltage(V) EN IO UT 200 3 150 2 100 1 0 0 100 200 300 4 Voltage(V) VIN VOU T 4 Output Current(mA) 6 VOU T IO UT 200 150 2 100 50 1 50 0 0 0 0 400 100 200 300 400 Time(μs) Figure 251. Start Up Waveform VOUT = 3.3 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 25 °C 6 300 5 250 VIN EN VOU T IO UT 200 3 150 2 100 1 50 0 Output Current(mA) Figure 250. Start Up Waveform VOUT = 3.3 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = -40 °C Voltage(V) EN 3 Time(μs) 4 VIN Output Current(mA) Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 0 0 100 200 300 400 Time(μs) Figure 252. Start Up Waveform VOUT = 3.3 V, IOUT = 50 mA VIN = 5.0 V, COUT = 10 µF Tj = 150 °C www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 78/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves Unless otherwise specified, VIN = VOUT + 1.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 120 Tj = Tj = Tj = Tj = Tj = 8 -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C 100 GND Current: IGND [μA] Shutdown Current: ISD [μA] 10 6 4 2 80 60 Tj = Tj = Tj = Tj = Tj = 40 20 0 0 0 2 4 0 6 0.1 Figure 253. Shutdown Current vs Input Voltage (VEN = 0 V) 60 1.2 Output Voltage:VOUT [V] 1.4 50 40 30 IOUT = 500 μA 10 IOUT = 50 mA 10 60 110 0.8 0.6 0.4 0 160 -40 Junction Temparature: Tj [°C] 10 60 110 160 Junction Temparature: Tj [° C] Figure 255. GND Current vs Junction Temparature www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 1 0.2 0 -40 0.3 Figure 254. GND Current vs Output Current 70 20 0.2 Output Current: IOUT [A] Input Voltage: VIN [V] GND Current: IGND [μA] -40 ° C +25 ° C +85 ° C +125 ° C +150 ° C Figure 256. Thermal Shutdown Activation VOUT = 1.2 V 79/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Typical Performance Curves - continued Unless otherwise specified, VIN = VOUT+1.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF 1.1 4.0 E N On Threshold Enable Input Current: IEN [μA] 1 EN Voltage: VEN [V] Tj = -40 ° C 3.5 E N Off Threshold 0.9 0.8 0.7 0.6 Tj = +25 ° C Tj = +85 ° C 3.0 Tj = +150 ° C 2.5 2.0 1.5 1.0 0.5 0.5 -40 10 60 110 0.0 160 0 Junction Temparature: Tj [°C] Figure 257. EN Threshold Voltage vs Junction Temperature 4 6 Figure 258. Enable Input Current vs Enable Input Voltage 10 Output Noise Density [μV/√Hz] 10 Output Noise Density [μV/√Hz] 2 Enable Input Voltage: VEN [V] 1 0.1 IO UT = 0 mA IO UT = 50 mA IO UT = 300 mA 1 0.1 IO UT = 0 mA IO UT = 50 mA IO UT = 300 mA 0.01 0.01 10 100 1k 10k 10 100k 1k 10k 100k Frequency [Hz] Frequency [Hz] Figure 259. Output Noise Density vs Frequency VOUT = 1.2 V www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 100 Figure 260. Output Noise Density vs Frequency VOUT = 3.3 V 80/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Application and Implementation Notice: The following information is given as a reference or hint for the application and the implementation. Therefore, it does not guarantee its operation on a specific function, accuracy, or external components in the application. Application should be designed with sufficient margin by enough understanding the characteristics of the external components, e.g., capacitor, and also by appropriate verification in the actual operating conditions. Selection of External Components Input Pin Capacitor If the battery is placed far from the regulator or the impedance of the input-side is high, higher capacitance is required for the input capacitor in order to prevent the voltage-drop at the input line. The input capacitor and its capacitance should be selected depending on the line impedance which is between the input pin and the smoothing filter circuit of the power supply. Therefore, an appropriate capacitance value which is selected by the consideration of the input impedance is different for each application. Generally, the capacitor with capacitance value of 0.1 µF (Min) with good high frequency characteristic is recommended for this regulator. In addition, to prevent regulator characteristics from getting affected by deviation or variation of the external capacitor characteristic, all input capacitors mentioned above is recommended to have a good DC bias characteristic and a stable temperature characteristic (approximately ±15 %, e.g., X7R and X8R), satisfying high absolute maximum voltage rating based on EIA standard. This capacitor must be placed close to the input pin and is better to be mounted on the same board side of the regulator. Output Pin Capacitor The output capacitor is mandatory for the regulator in order to realize stable operation. The output capacitor with capacitance value ≥ 0.47 µF (Min) and ESR up to 1 Ω (Max) is required between the output pin and the GND pin. Appropriately selected capacitance value and ESR for the output capacitor can improve the transient behavior of the regulator and can also keep the stability with better regulation loop. The correlation of the output capacitance value and ESR is shown in the graph Output Capacitance COUT, ESR Available Area on the next page. As described in the graph, this regulator is designed to be stable with ceramic capacitors such as MLCC, with capacitance value from 0.47 µF to 47 µF, and with ESR value in the range of approximately 0 Ω to 1 Ω. The frequency range of ESR can be generally considered as within about 10 kHz to 100 kHz. Note that the provided stable area of the capacitance value and ESR in the graph is obtained under a specific set of conditions which is based on the measurement result of a single IC on our board with a resistive load. In the actual environment, the stability is affected by wire impedance on the board, input power supply impedance, and by load impedance. Therefore, also note that a careful evaluation with actual application, actual usage environment, and actual conditions is necessary to confirm the actual stability of the system. Generally, in the transient event which exceeds the gain bandwidth of regulation loop caused by the input voltage fluctuation or by the load fluctuation, the transient response ability of the regulator depends on the capacitance value of the output capacitor. Basically, capacitance value 0.47 µF (Min) and more for the output capacitor is recommended as shown in the table of Output Capacitance COUT, ESR Available Area. It is expected that the bigger the capacitance value is the better the transient response ability will be in high frequency. Various type of capacitors can be used for this high capacity of the output capacitor including electrolytic capacitor, electro-conductive polymer capacitor, and tantalum capacitor. Note that depending on the type of capacitors, the size of ESR (≤1 Ω) absolute value, temperature dependency of capacitance value, and increasing ESR at cold temperature needs to be taken into consideration. Similar to the input pin capacitor, to avoid the influence of the deviation and variation caused by the external capacitor characteristic, all output capacitor mentioned above must select good DC bias characteristic and temperature characteristic (approximately ±15 %, e.g., X7R, X8R) satisfying high absolute maximum voltage rating based on EIA standard. These capacitors should be placed close to the output pin and mounted on the same board side of the regulator, not to be influenced by implement impedance. www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 81/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Application and Implementation - continued 1.2 Unstable Available Area 1 ESR(COUT) [Ω] 0.8 Stable Available Area 0.47 μF ≤ COUT ≤ 47 μF ESR(COUT) ≤ 1 Ω 0.6 0.4 0.2 0 0.1 1 10 Output Capacitance COUT [μF] Figure 261. Output Capacitance COUT, ESR Stable Available Area (-40 °C ≤ Tj ≤ +150 °C, 1.7 V ≤ VIN ≤ 6.5 V, VEN = 1.5 V, IOUT = 0 mA to 300 mA) Typical Application Parameter Symbol Reference Value for Application Output Current Range IOUT IOUT ≤ 300 mA Output Voltage Range VOUT 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V, 3.3 V Output Capacitor COUT 1.0 µF VIN 5.0 V CIN 0.1 µF Input Voltage Input Capacitor (Note 1) Enable Mode Voltage VENH 1.1 V to VIN Disable Mode Voltage VENL 0 V to 0.5 V (Note 1) If the inductance of power supply line is high, please adjust input capacitor value. www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 82/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Application and Implementation - continued Surge Voltage Protection for Linear Regulators The following shows some helpful tips to protect ICs from the possibility of surge being input which exceeds absolute maximum rating. Positive Surge to the Input If there is any potential risk that positive surge higher than absolute maximum rating, e.g., 6.5 V, may be applied to the input, a Zener Diode should be insert between the VIN and the GND to protect the device as shown in Figure 262. VIN VIN D1 VOUT GND CIN VOUT COUT Figure 262. Surges Higher than 6.5 V is applied to the Input Negative Surge to the Input If there is any potential risk that negative surge lower than the absolute maximum rating, e.g., -0.3 V, may be applied to the input, a Schottky Diode should be insert between the VIN and the GND to protect the device as shown in Figure 263. VIN VIN D1 CIN VOUT GND VOUT COUT Figure 263. Surges Lower than -0.3 V is applied to the Input Reverse Voltage Protection for Linear Regulators A linear regulator which is one of the integrated circuits (IC) operates normally in the condition that higher input voltage is always supplied than the output voltage. However, there is a possibility of abnormal situation to occur where the output voltage becomes higher than the input voltage. As for the input and output, voltage and current condition may be reversed due to reverse polarity connection and certain inductor component. If the countermeasure is not implemented, it may cause damage to the IC. The following describe protection method of ICs in reverse voltage occasion. Protection Against Reverse Input/Output Voltage In the case where MOS FET is used as a pass transistor, a parasitic body diode generally exists between the drain-source. If the output voltage becomes higher than the input voltage and with its voltage difference exceeding VF of the body diode, the reverse current flows from the output to the input via body diode as shown in Figure 264. Because this body diode is parasitic element, current which flows in it is not limited by the protection function. Therefore, too much reverse current may cause damage to degrade or may destroy the semiconductor elements of the regulator. IR VOUT VIN Error AMP. VREF Figure 264. Reverse Current Path in a MOS Linear Regulator www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 83/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Protection Against Reverse Input/Output Voltage – continued To prevent the reverse current flow inside the IC, as an effective solution implement an external bypass diode as shown in Figure 265. Note that the bypass diode must be turned on prior to the body diode inside the IC. Forward voltage VF lower than the internal body diode should be selected as external bypass diode. Should select a diode which has a rated reverse voltage greater than the IC’s input maximum voltage and also which has a rated forward current greater than the anticipated reverse current in the actual application. D1 VIN VIN VOUT VOUT GND CIN COUT Figure 265. Bypass Diode for Reverse Current Diversion A Schottky barrier diode which has a characteristic of low forward voltage (VF) matches the requirement for the external diode to protect the IC from the reverse current, however it also has a characteristic that the leakage (I R) caused by the reverse voltage can be bigger than other diodes. Therefore, it should be taken into a consideration when choosing it, because if IR is large, it may cause current consumption to increase, or output voltage to rise in the light-load current condition. IR of Schottky diode has positive temperature characteristic, which the details should be checked by the datasheet of the product, and careful confirmation of the behavior in the actual application is mandatory. Even in the condition where the input/output voltage is inverted, if the VIN pin becomes open as shown in Figure 266, or if the VIN pin becomes high impedance as designed in the system, it cannot damage or degrade the parasitic element. It is because a reverse current via pass transistor becomes extremely low. In this case, therefore, the protection external diode is not necessary. ON→OFF IBIAS VIN VIN VOUT VOUT GND CIN COUT Figure 266. Open VIN Protection Against Input Reverse Voltage When connecting input of IC to power supply, if accidentally reverse connect the plus and minus or if input may become lower than the GND pin, large current which flows in the internal electrostatic breakdown prevention diode set between VIN and GND as shown in Figure 267 may destroy the IC. Simplest way to prevent this problem is to connect Schottky barrier diode or rectifier diode to power supply line in series as shown in Figure 268. However, it increases a power loss calculated as VF × IIN, and due to forward voltage VF of diode the voltage drop occurs to input voltage at the normal power supply line. Generally, the Schottky barrier diode has lower VF than rectifier diode and contributes to rather smaller power loss. If IC has load currents, the required input current to the IC is also bigger. In this case, this external diode generates heat more, therefore it should be taken into the consideration of a selection for diode with enough margin in power dissipation. On the other hands, in the reverse connection condition, a reverse current passes this diode, however, it can be negligible because its small amount. VIN VIN VOUT VOUT - D1 VIN CIN GND COUT CIN + GND VOUT GND VOUT COUT GND Figure 267. Current Path in Reverse Input Connection www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 VIN 84/93 Figure 268. Protection against Reverse Polarity 1 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Protection Against Input Reverse Voltage - continued Figure 269 shows a circuit in which a P-channel MOSFET is connected in series to the power. The body diode (parasitic element) is located in the drain-source junction area of the MOSFET. The drop voltage in a forward connection is calculated by the on-state resistance of the MOSFET and the output current IO. Because it is smaller than the drop voltage by the diode as shown in Figure 268, as a result power loss becomes less. No current flows in a reverse connection where the MOSFET remains off in Figure 269. If the gate-source voltage exceeds maximum rating of MOSFET gate-source junction with considered derating curve, reduce the gate-source junction voltage by connecting resistor voltage divider as shown in Figure 270. Q1 VIN Q1 VIN VIN GND CIN VOUT VOUT VOUT VIN R1 COUT R2 CIN VOUT GND COUT Figure 270. Protection against Reverse Polarity 3 Figure 269. Protection against Reverse Polarity 2 Protection Against Reverse Output Voltage when Output Connect to an Inductor If the output load is inductive, electrical energy accumulated in the inductive load is released to the ground at the moment that the output voltage is turned off. There is an ESD protection diode between output and ground pin inside the IC and large current flowing in this diode may eventually destruct the IC. To prevent this situation, connect a Schottky barrier diode in parallel to the diode as shown in Figure 271. Further, if a long wire is used to connect the output pin of the IC and the load, observe the waveform on an oscilloscope to confirm whether the negative voltage is generated at the VOUT pin or not when the output voltage is turned off, since there is a possibility of the load to become inductive. An additional diode is required for a motor load that is affected by its counter electromotive force, as it produces an electrical current in a similar way. VIN VIN VOUT VOUT GND CIN COUT GND D1 XLL GND Figure 271. Current Path in Inductive Load (Output: Off) www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 85/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Power Dissipation SSOP5 (1): 1-layer PCB (Copper foil area on the reverse side of PCB: 0 mm × 0 mm) Board material: FR-4 Board size: 114.3 mm × 76.2 mm × 1.57 mmt Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper. 1 (2)0.92 W Power Dissipation: Pd [W] 0.8 (2): 4-layer PCB (Copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm) Board material: FR-4 Board size: 114.3 mm × 76.2 mm × 1.60 mmt Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper. 2 inner layers copper foil area of PCB: 74.2 mm x 74.2 mm, 1 oz. copper. Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm, 2 oz. copper. 0.6 (1)0.47 W 0.4 0.2 0 0 25 50 75 100 125 Ambient Temperature: Ta [°C] 150 Condition (1): θJA = 264.4 °C/W, ΨJT (top center) = 34 °C/W Condition (2): θJA = 135.7 °C/W, ΨJT (top center) = 27 °C/W Figure 272. Power Dissipation Graph www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 86/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Thermal Design This product exposes a frame on the back side of the package for thermal efficiency improvement. The power consumption of the IC is decided by the dropout voltage condition, the load current and the current consumption. Refer to power dissipation curves illustrated in Figure 12 when using the IC in an environment of Ta ≥ 25 °C. Even if the ambient temperature Ta is at 25°C, chip junction temperature (Tj) can be very high depending on the input voltage and the load current. Consider the design to be Tj ≤ Tjmax = 150 °C in whole operating temperature range. Should by any condition the maximum junction temperature Tjmax = 150 °C rating be exceeded by the temperature increase of the chip, it may result in deterioration of the properties of the chip. The thermal impedance in this specification is based on recommended PCB and measurement condition by JEDEC standard. Therefore, need to be careful because it might be different from the actual use condition. Verify the application and allow sufficient margins in the thermal design by the following method to calculate the junction temperature Tj. Tj can be calculated by either of the two following methods. 1. The following method is used to calculate the junction temperature Tj with ambient temperature Ta. 𝑇𝑗 = 𝑇𝑎 + 𝑃𝐶 × 𝜃𝐽𝐴 [°C] Where: Tj Ta PC θJA is the Junction Temperature is the Ambient Temperature is the Power Consumption is the Thermal Resistance (Junction to Ambient) 2. The following method is also used to calculate the junction temperature Tj with top center of case’s (mold) temperature TT. 𝑇𝑗 = 𝑇𝑇 + 𝑃𝐶 × 𝛹𝐽𝑇 [°C] Where: Tj TT PC ΨJT is the Junction Temperature is the Top Center of Case’s (mold) Temperature is the Power consumption is the Thermal Resistance (Junction to Top Center of Case) 3. The following method is used to calculate the power consumption Pc (W). 𝑃𝑐 = (𝑉𝐼𝑁 − 𝑉𝑂𝑈𝑇 ) × 𝐼𝑂𝑈𝑇 + 𝑉𝐼𝑁 × 𝐼𝐶𝐶 [W] Where: PC VIN VOUT IOUT ICC is the Power Consumption is the Input Voltage is the Output Voltage is the Load Current is the Current Consumption Calculation Example If VIN = 5.0 V, VOUT = 3.3 V, IOUT = 100 mA, ICC = 37 μA, the power consumption Pc can be calculated as follows: 𝑃𝐶 = (𝑉𝐼𝑁 − 𝑉𝑂𝑈𝑇 ) × 𝐼𝑂𝑈𝑇 + 𝑉𝐼𝑁 × 𝐼𝐶𝐶 = (5.0 𝑉 – 3.3 𝑉) × 100 𝑚𝐴 + 5.0 𝑉 × 37 𝜇𝐴 = 0.17 𝑊 At ambient temperature Ta = 125 °C, the thermal impedance (Junction to Ambient) θJA = 135.7 °C/W (4-layer PCB) 𝑇𝑗 = 𝑇𝑎𝑚𝑎𝑥 + 𝑃𝐶 × 𝜃𝐽𝐴 = 125 °𝐶 + 0.17 𝑊 × 135.7 °𝐶/𝑊 = 148.1 °𝐶 When operating the IC, the top center of case’s (mold) temperature TT = 100 °C, ΨJT = 27 °C/W (4-layer PCB) 𝑇𝑗 = 𝑇𝑇 + 𝑃𝐶 × 𝛹𝐽𝑇 = 100 °𝐶 + 0.17 𝑊 × 27 °𝐶/𝑊 = 104.6 °𝐶 If it is difficult to ensure the margin by the calculations above, it is recommended to expand the copper foil area of the board, increasing the layer and thermal via between thermal land pad for optimum thermal performance. www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 87/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series I/O Equivalence Circuits Pin 1 (VIN) Pin 3 (EN) Pin 5 (VOUT) VIN VIN VIN 2.6 MΩ (Typ) Internal Circuit EN VOUT R1 55 kΩ (Typ) www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 R2 88/93 40 Ω (Typ) Output Voltage [V] (Typ) R1 [kΩ] (Typ) R2 [kΩ] (Typ) 1.2 1.5 1.8 2.5 3.0 3.3 99 144 190 290 364 410 76 76 76 76 76 76 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Operating Conditions The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics. 6. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 7. Thermal Consideration The power dissipation under actual operating conditions should be taken into consideration and a sufficient margin should be allowed in the thermal design. On the reverse side of the package this product has an exposed heat pad for improving the heat dissipation. The amount of heat generation depends on the voltage difference between the input and output, load current, and bias current. Therefore, when actually using the chip, ensure that the generated heat does not exceed the Pd rating. If Junction temperature is over Tjmax (= 150 °C), IC characteristics may be worse due to rising chip temperature. Heat resistance in specification is measurement under PCB condition and environment recommended in JEDEC. Ensure that heat resistance in specification is different from actual environment. 8. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 9. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. 10. Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 89/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Operational Notes – continued 11. Regarding the Input Pin of the IC In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages within the values specified in the electrical characteristics of this IC. 12. Ceramic Capacitor When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. 13. Thermal Shutdown Protection Circuit (TSD) This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage. 14. Over Current Protection Circuit (OCP) This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit. 15. Enable Pin The EN pin is for controlling ON/OFF the output voltage. Do not make voltage level of chip enable keep floating level, or between VENH and VENL. Otherwise, the output voltage would be unstable or indefinite. www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 90/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Marking Diagram SSOP5(TOP VIEW) Part Number Marking Lot Number Part Number BU12JA3DG-CTR BU12JA3DG-CTL BU15JA3DG-CTR BU15JA3DG-CTL BU18JA3DG-CTR BU18JA3DG-CTL BU25JA3DG-CTR BU25JA3DG-CTL BU30JA3DG-CTR BU30JA3DG-CTL BU33JA3DG-CTR BU33JA3DG-CTL www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Output Voltage [V] Part Number Marking 1.2 ar 1.5 au 1.8 ay 2.5 ba 3.0 bb 3.3 bd 91/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Physical Dimension and Packing Information Package Name www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 SSOP5 92/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 BUxxJA3DG-C series Revision History Date Revision 15.Nov.2021 001 New Release 27.Jun.2022 002 Add Typical Performance data www.rohm.com © 2021 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Changes 93/93 TSZ02201-0BHB0AD00070-1-2 27.Jun.2022 Rev.002 Notice Precaution on using ROHM Products 1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PAA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.004 Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl 2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PAA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.004 Datasheet General Precaution 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales representative. 3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccuracy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001
BU33JA3DG-CTR 价格&库存

很抱歉,暂时无法提供与“BU33JA3DG-CTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BU33JA3DG-CTR
    •  国内价格 香港价格
    • 1+8.914451+1.07702
    • 10+5.1994210+0.62818
    • 50+3.2689150+0.39494
    • 100+2.82278100+0.34104
    • 500+2.37665500+0.28714
    • 1000+2.287421000+0.27636
    • 2000+2.230642000+0.26950
    • 4000+2.141424000+0.25872

    库存:2854

    BU33JA3DG-CTR
      •  国内价格
      • 5+6.18724
      • 50+3.01881
      • 100+2.75478
      • 200+2.74598

      库存:393

      BU33JA3DG-CTR

        库存:0

        BU33JA3DG-CTR

          库存:0