0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BU9797FUV-E2

BU9797FUV-E2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    TSSOP48

  • 描述:

    ICLCDDVR144SEGMENT48TSSOP

  • 数据手册
  • 价格&库存
BU9797FUV-E2 数据手册
Datasheet Standard LCD Segment Driver BU9797FUV MAX 144 Segments (SEG36×COM4) Features „ Integrated RAM for Display Data (DDRAM): 36 x 4 bit (Max 144 Segment) „ LCD Drive Output: 4 Common Output, Max 36 Segment Output „ Integrated Buffer AMP for LCD Driving „ Integrated Oscillator Circuit „ No External Components „ Low Power Consumption Design Key Specifications ■ Supply Voltage Range: +2.5V to +5.5V ■ Operating Temperature Range: -40°C to +85°C ■ Max Segments: 144Segments ■ Display Duty: 1/4 ■ Bias: 1/2, 1/3 selectable ■ Interface: 2wire serial interface W (Typ) x D (Typ) x H (Max) Package Applications „ Telephone „ FAX „ Portable equipment (POS, ECR, PDA etc.) „ DSC „ DVC „ Car audio „ Home electrical appliance „ Meter equipment Etc. TSSOP-C48V 8.1mm x 12.5mm x 1.0mm Typical Application Circuit VDD BU9797FUV VDD VLCD COM0 COM1 COM2 COM3 SDA SCL Controller SEG0 SEG1 ・・ ・・ ・・ ・ SEG35 OSCIN TEST1 VSS Segment LCD ・・ ・・ ・・ ・ Using internal oscillator Figure 1. Typical application circuit ○Product structure:Silicon monolithic integrated circuit www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・14・001 ○This product has no designed protection against radioactive rays. 1/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Block Diagram / Pin Configuration / Pin Description BU9797FUV COM0……COM3 SEG0 …… SEG35 VDD LCD voltage generator + - Common driver Segment driver LCD BIAS SELECTOR Common counter + - Blink timing generator Power On Reset SEG29 SEG33 SEG28 SEG34 SEG27 SEG35 SEG26 COM0 SEG25 COM1 SEG24 COM2 SEG23 COM3 SEG22 VLCD SEG21 VDD SEG20 VSS SEG19 TEST1 SEG18 OSCIN SEG17 SCL SEG16 SDA SEG15 NC SEG14 SEG0 SEG13 SEG1 SEG12 SEG2 SEG11 SEG3 SEG10 SEG4 SEG9 SEG5 SEG8 SEG6 SEG7 Command Data Decoder Command register OSCILLATOR SEG30 SEG32 DDRAM VLCD OSCIN SEG31 Serial interface IF FILTER VSS SDA SCL Figure 3. Pin Configuration (TOP VIEW) Figure 2. Block Diagram Table 1. Pin Description Pin Name Pin No. I/O TEST1 13 I NC 17 OSCIN 14 I SDA 16 I/O SCL 15 I VSS 12 Ground VDD 11 Power supply VLCD 10 Power supply for LCD driving SEG0 to 35 18-48, 1-5 O SEGMENT output for LCD driving COM0 to 3 6-9 O COMMON output for LCD driving www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 Function Test input (ROHM use only) Must be connect to VSS OPEN terminal External clock input External clock and Internal clock can be selected by command Must be connect to VSS when use internal oscillator Serial data in-out terminal Serial clock for data transfer terminal 2/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Absolute Maximum Ratings (Ta=25°C, VSS=0V) Parameter Symbol Ratings Unit Remarks Power Supply Voltage1 VDD -0.5 to +7.0 V Power supply Power Supply Voltage2 VLCD -0.5 to VDD V LCD drive voltage Power Dissipation Pd 0.64 W When use more than Ta=25°C, subtract 6.4mW per degree. (Package only) Input Voltage Range Operational Temperature Range Storage Temperature Range VIN -0.5 to VDD+0.5 V Topr -40 to +85 °C Tstg -55 to +125 °C Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Recommended Operating Conditions (Ta=-40°C to +85°C, VSS=0V) Ratings Parameter Symbol Min Typ Max Unit Remarks Power Supply Voltage1 VDD 2.5 - 5.5 V Power supply Power Supply Voltage2 VLCD 0 - VDD-2.4 V LCD drive voltage, VDD-VLCD ≥ 2.4V Electrical Characteristics DC Characteristics (VDD=2.5V to 5.5V, VLCD=0V, VSS=0V, Ta=-40°C to 85°C, unless otherwise specified) Limits Parameter Symbol Unit Conditions Min Typ Max “H” Level Input Voltage VIH 0.7VDD - VDD V SDA,SCL “L” Level Input Voltage VIL VSS - 0.3VDD V SDA,SCL “H” Level Input Current IIH - - 1 µA SDA,SCL “L” Level Input Current SDA “L” Level Output Voltage SEG LCD Driver On Resistance COM IIL -1 - - µA SDA,SCL VOL_sda 0 - 0.4 µA Iload = 3mA RON - 3 - KΩ RON - 3 - kΩ Standby Current IDD1 - - 5 µA Display off, Oscillation off Operating Power Consumption IDD2 - 7.5 20 µA VDD=3.3V, VLCD=0V, Ta=25°C Power save mode1, FR=71Hz 1/3 bias, Frame inverse Iload=±10µA Oscillation Characteristics (VDD=2.5V to 5.5V, VLCD=0V, VSS=0V, Ta=-40°C to 85°C, unless otherwise specified) Limits Parameter Symbol Unit Conditions Min Typ Max FR = 80Hz setting, Frame Frequency1 fCLK1 56 80 104 Hz VDD=2.5V to 5.5V, Ta=-40°C to 85°C Frame Frequency2 fCLK2 70 80 90 Hz FR = 80Hz setting, VDD=3.5V, Ta=25°C Frame Frequency3 fCLK3 77.5 87.5 97.5 Hz Frame Frequency4 fCLK4 67.5 87.5 102 Hz External Frequency fEXCLK 15 - 300 KHz FR = 80Hz setting, VDD=5.0V, Ta=25°C FR = 80Hz setting, VDD=5.0V, Ta=-40°C to 85°C External clock use case (Note1) (Note1) DISCTL 80HZ setting: Frame frequency [Hz] = external clock [Hz] ÷ 512 DISCTL 71HZ setting: Frame frequency [Hz] = external clock [Hz] ÷ 576 DISCTL 64HZ setting: Frame frequency [Hz] = external clock [Hz] ÷ 648 DISCTL 53HZ setting: Frame frequency [Hz] = external clock [Hz] ÷ 768 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 3/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Electrical Characteristics - continued MPU interface Characteristics (VDD=2.5V to 5.5V, VLCD=0V, VSS=0V, Ta=-40°C to 85°C, unless otherwise specified) Limits Parameter Symbol Unit Conditions Min Typ Max Input Rise Time tr - - 0.3 µs Input Fall Time tf - - 0.3 µs SCL Cycle Time tSCYC 2.5 - - µs “H” SCL Pulse Width tSHW 0.6 - - µs “L” SCL Pulse Width tSLW 1.3 - - µs SDA Setup Time tSDS 100 - - µs SDA Hold Time tSDH 100 - - us Buss Free Time tBUF 1.3 - - µs tHD;STA 0.6 - - µs tSU;STA 0.6 - - µs tSU;STO 0.6 - - µs START Condition Hold Time START Condition Setup Time STOP Condition Setup Time SDA tBUF tf tS LW tSCYC SCL tHD; STA tr tSDH tS HW tSDS SDA tSU; STO tSU; STA Figure 4. Interface Timing I/O equivalence circuit VDD VDD VLCD VSS VSS SDA SCL VSS VSS VDD TEST1 VSS VDD VDD OSCIN SEG/COM VSS VSS Figure 5. I/O equivalence circuit www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 4/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Example of recommended circuit VDD VDD VLCD COM 0 COM 1 COM 2 COM 3 SDA SCL Controller SEG0 SEG1 ・ ・ ・ ・ ・ ・ ・ SEG 35 OSCIN TEST 1 VSS Segment LCD ・ ・ ・ ・ ・ ・ ・ Internal Oscillator circuit mode VDD VDD VLCD Controller COM 0 COM 1 COM 2 COM 3 SDA SCL SEG0 SEG1 ・ ・ ・ ・ ・ ・ ・ SEG35 OSCIN TEST 1 VSS Segment LCD ・ ・ ・ ・ ・ ・ ・ External clock input mode Figure 6. Example of recommended circuit www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 5/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Functional descriptions Command /Data transfer method This device is controlled by 2wire signal (SDA, SCL). SDA SCL START condition STOP condition Figure 7. 2 wire Command/Data transfer Format It has to generate the condition such as START condition and STOP condition in 2wire serial interface transfer method. Slave address A Command S 0 1 1 1 1 1 0M A C A P Display Data 0 R/W START condition Command or data judgment bit STOP condition Acknowledge Figure 8. Interface protcol Method of how to transfer command and data is shown as follows. (1) Generate “START condition”. (2) Issue Slave address. (3) Transfer command and display data. Acknowledge (ACK) Data format is 8bits and return Acknowledge after transfer 8bits data. When SCL 8th=’L’ after transfer 8bit data (Slave Address, Command, Display Data), output ’L’ and open SDA line. When SCL 9th=’L’, stop output function. (As Output format is NMOS-Open-Drain, can’t output ‘H’ level.) If no need Acknowledge function, please input ‘L’ level from SCL 8th=’L’ to SCL 9th=’L’. SDA 1-7 8 9 1-7 8 9 1-7 8 9 SCL S START condition P SLAVE ADDRESS ACK DATA ACK DATA ACK STOP condition Figure 9. Acknowledge timing www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 6/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Command transfer method Issue Slave Address (“01111100” for Write Mode or “01111101” for Read Mode) after generate “START condition”. 1byte after Slave Address always becomes command input. The least significant bit (LSB” of the Slave Address determines if the operation to be done is Write or Read operation. MSB (“command or data judge bit”) of command decide to next data is command or display data. When set “command or data judge bit”=‘1’, next byte will be command. When set “command or data judge bit”=‘0’, next byte data is display data. S Slave address A 1 Command A 1 Command A 1 Command A 0 Command A Display Data … P Once it becomes display data transfer condition, it cannot input command. When want to input command again, please generate “START condition” once. If “START condition” or “STOP condition” are inputted in the middle of command transmission, command will be canceled. If Slave address is continuously inputted following “START condition”, it will be in command input condition. Please input “Slave Address” in the first data transmission after “START condition”. When Slave Address cannot be recognized in the first data transmission, Acknowledge does not return and next transmission will be invalid. When data transmission is in invalid status, if “START conditions” are transmitted again, it will return to valid status. Please consider the MPU interface characteristic such as Input rise time and Setup/Hold time when transferring command and data (Refer to MPU Interface). Write display and transfer method Set R/W bit to “0” to come into Write Mode. This device has Display Data RAM (DDRAM) of 36×4=144bit. The relationship between data input and display data, DDRAM data and address are as follows; Slave address S Command Command 0111110 0 A 1 1101 000 A 0 0000000 A a b c d e f g h A i j k l m n o p A … P Display Data R/W=0 (Write Mode) 8 bit data will be stored in DDRAM. The address to be written is the address specified by ADSET command, and the address is automatically incremented in every 4bit data. Data can be continuously written in DDRAM by transmitting Data continuously. (When RAM data is written successively after writing RAM data to 23h (SEG35), the address is returned to 00h (SEG0) by the auto-increment function. BIT 04 DDRAM address 05 06 07 00 01 02 03 0 a e i m COM0 1 b f j n COM1 2 c g k o COM2 3 d h l p COM3 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 ・・・ 21h SEG33 22h SEG34 23h SEG35 Data transference to DDRAM will be executed in every 4bit data. So it will be finished to transfer with no need to wait ACK. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 7/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Read Display Data and Transfer Method If the LSB of the slave address is “1”, it will be set read mode. The display data and command register value can be read during read mode. The read mode sequence is shown below. Slave address S 0111110 Command Command 0 R/W(Write Mode) A 1 1101000 A 0000000 1 Set ICSET [P2]=0 Slave address A S 0111110 ADSET command 1 A Data A …... Data NA P R/W(Read Mode) During read mode, the display data can be read from the DDRAM through the SDA line. The data will output with SCL input synchronous. First it has to set address by write mode ADSET command to read display data. If DDRAM address does not specify before DDRAM read, the read address will be start from the current DDRAM address. Address will be increment +2 addresses by 8bit data output automatically. Master side should be output ACK output by each 8bit data output. It will be able to keep read mode and address increment by ACK from master side. If there is no ACK response, SDA output status will be released, please transmit “STOP condition”. Read mode will be stopped by “STOP condition” transfer. Address will be set 00h automatically after 23h. (It does not increment to 24h or 25h address) An example of the display data read sequence is shown below. S SDA P Slave Address (read) A D7 D6 D5 D4 D3 D2 D1 D0 A D7 D6 D5 D4 D3 D2 D1 D0 NA SCL www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 8/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Read command register and transfer method Also the command registers can be read during read mode. The sequence for the command register read is shown below and is similar to the display data read sequence. Command Slave address S 0111110 0 A 1 R/W Slave address Command 110 1100 ADSET A A S 1 A 0111110 Set ICSET [P2]=1 Data NA P R/W Regarding address setting, please refer to ADSET command. It will be able to read register values if it set address 24h or 25h. Address does not increment automatically after register value read. REG1: Register D7 D6 D5 D4 D3 D2 D1 D0 Address REG1 0 0 P5 P4 P3 P2 P1 P0 24h REG2 P7 P6 P5 P4 P3 P2 P1 P0 25h P5 = Bias setting P4 = Internal/External clock setting P3 = Software Reset setting P2 to P0 = Blink setting REG2: P7 to P6 = Frame Frequency (FR) setting P5 to P4 = Power Save Mode (SR) setting P3 = Frame/Line inversion setting P2 = Display ON/OFF setting P1 = APON setting P0 = APOFF setting Address map between ADSET and ICSET is shown as follows; RAM address Write Mode ADSET D7 D6 D5 D[4:0] D7 D6 D5 D4 D3 D2* D1 D0 0 0 0 0 0 0 0 0000 to 1 1111 0 0000 to 0 0011 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 00 0000 to 01 1111 (bin) 10 0000 to 10 0011 (bin) RAM address ICSET Read mode ADSET ICSET D7 D6 D5 D[4:0] D7 D6 D5 D4 D3 D2* D1 D0 1 1 0 0 0 0 0 0000 to 1 1111 0 0000 to 0 0101 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 00 0000 to 01 1111 (bin) 10 0000 to 10 0101 (bin) (Note) Please take care ICSET [P2] setting. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 9/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) OSCILLATOR The clock signals for logic and analog circuit can be generated from internal oscillator or external clock. If internal oscillator circuit is used, OSCIN must be connected to VSS level. When using external clock mode, input external clock from OSCIN terminal after ICSET command setting. OSCIN OSCIN BU9797 Clock BU9797 VSS VSS Figure 10. Internal oscillator circuit mode Figure 11. Ext clock input mode LCD Driver Bias Circuit This device generates LCD driving voltage with on-chip Buffer AMP. And it can drive LCD at low power consumption. 1/3 and 1/2Bias can set in MODESET command. Line and frame inversion can set in DISCTL command. Refer to the “LCD driving waveform” about each LCD driving waveform. Blink timing generator This device has Blink function. This device will be Blink mode with BLKCTL command. Blink frequency varies widely by characteristic of fCLK, when internal oscillation circuit. About the characteristics of fCLK, refer to Oscillation Characteristics. Reset initialize condition Initial condition after execute Software Reset is as follows. ・Display is OFF. ・DDRAM address is initialized (DDRAM Data is not initialized). Refer to Command Description about initialize value of register. Command / Function List Description List of Command / Function No. Command Function 1 Set IC Operation (ICSET) Software reset, internal/external clock setting 2 Display control (DISCTL) Frame frequency, power save mode setting 3 Address set (ADSET) DRAM address setting (00h to 23h) Register address setting (24 to 25h) 4 Mode set (MODESET) Display on/off,1/2bias,1/3bias 5 Blink control (BLKCTL) Blink off/0.5s/1s/2s/3s/5s blink setting 6 All pixel control (APCTL) All pixels on/off during DISON www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 10/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Detailed command description D7 (MSB) is bit for command or data judgment. Refer to Command and data transfer method. C: 0: Next byte is RAM write data. 1: Next byte is command. Set IC Operation (ICSET) MSB D7 D6 D5 C 1 1 D4 0 D3 1 D2 P2 D1 P1 LSB D0 P0 P2: MSB data of DDRAM address. Please refer to “ADSET” command. Set Software Reset condition. Setup P1 No operation 0 Software reset 1 When “Software Reset” is executed, this device is reset to initial condition. (Refer to Reset initialize condition) Don’t set Software Reset (P1) with P2, P0 at the same time. Switch between internal clock and external clock. Setup Internal clock External clock input P0 0 1 In Internal clock mode: In external clock input mode:: Initial condition ○ OSCIN must be connect to VSS level. Input external clock from OSCIN terminal.. Command ICSET OSCIN_EN ( Internal signal) Internal clock mode External clock mode Internal oscillation ( Internal signal) External clock ( OSCIN ) OSC MODE switch timing www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 11/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Display control (DISCTL) MSB D7 D6 D5 C 0 1 D4 P4 D3 P3 D2 P2 LSB D0 P0 D1 P1 Set Power save mode FR. Setup Normal mode(80Hz) Power save mode1(71Hz) Power save mode2(64Hz) Power save mode3(53Hz) P4 P3 0 0 1 1 0 1 0 1 Reset initialize condition ○ (Note) Operation current decrease in order as Normal mode > Power save mode1 > Power save mode2 > Power save mode 3. Set LCD drive waveform. Setup Line inversion mode Frame inversion mode P2 0 1 Reset initialize condition ○ (Note) Operation current is Line inversion > Frame inversion Regarding driving waveform, refer to LCD driving waveform. Set Power save mode SR. Setup Power save mode 1 Power save mode 2 Normal mode High power mode P1 P0 0 0 1 1 0 1 0 1 Reset initialize condition ○ (Note1) Operation current increase in order as Power save mode 1 < Power save mode 2 < Normal mode < High power mode. (Note2) Please use VDD- VLCD ≥ 3.0V in High power mode condition. (Reference current consumption data) Setup Current consumption Power save mode 1 ×0.5 Power save mode 2 ×0.67 Normal mode ×1.0 High power mode ×1.8 (Note) Above current consumption data is reference value. Change according to panel load. Power save mode FR / LCD drive waveform / Power save mode SR will affect display image. Select the best setting in point of current consumption and display image view using LCD panel. Mode Flicker Display grade/Contrast Power save mode FR ○ LCD waveform ○ ○ Power save mode SR ○ Address set (ADSET) MSB LSB D7 D6 D5 D4 D3 D2 D1 D0 C 0 0 P4 P3 P2 P1 P0 In the write mode, the range of address can be set from 000000 to 100011(bin). In the read mode, the range of address can be set from 000000 to 100101(bin). (Note) Address [5:0]: MSB bit is specified in ICSET P2 and [4:0] are specified as ADSET P4 - P0. Don’t specify another address, otherwise address will be set to “000000”. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 12/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Mode Set (MODE SET) MSB D7 D6 D5 C 1 0 D4 * D3 P3 D2 P2 D1 * LSB D0 * (* : Don’t care) Set display ON and OFF. Setup Reset initialize condition ○ P3 Display OFF (DISPOFF) Display ON (DISPON) 0 1 Display OFF: Despite of the contents of DDRAM, All of SEGMENT and COMMON output will stop after 1 frame period. Display OFF mode will finish in Display ON (DISPON). Display ON: SEGMENT and COMMON output is active, start read operation to Display from DDRAM. Set Bias level Setup Reset initialize condition ○ P2 1/3 Bias 0 1/2 Bias 1 Regarding driving waveform, refer to LCD driving waveform. Blink control (BLKCTL) MSB D7 D6 D5 C 1 1 D4 1 D3 0 D2 P2 D1 P1 LSB D0 P0 Set Blink condition. Setup P2 P1 P0 OFF 0.5Hz 1Hz 2Hz 0.3Hz 0.2Hz 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 All pixel control (APCTL) MSB D7 D6 D5 C 1 1 D4 1 D3 1 Reset initialize condition ○ D2 1 D1 P1 LSB D0 P0 All display Set ON, OFF Setup Normal All pixel ON (APON) Setup P1 0 1 P0 Reset initialize condition ○ Reset initialize condition ○ Normal 0 All pixel OFF (APOFF) 1 All pixels ON : All pixels are ON regardless of DDRAM data. All pixels OFF : All pixels are OFF regardless of DDRAM data. (Note) All pixels ON/OFF is effective only at Display ON status. The contents of DDRAM do not change at this time. When set P1 and P0=’1’, APOFF is selected. APOFF has higher priority than APON. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 13/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) LCD driving waveform (1/3bias) Line inversion Frame inversion SEGn SEGn+1 SEGn+2 SEGn+3 SEGn SEGn+1 SEGn+2 SEGn+3 COM0 stateA COM0 stateA COM1 stateB COM1 stateB COM2 COM2 COM3 COM3 VDD 1frame 1frame VDD COM0 COM0 VLCD VLCD VDD VDD COM1 COM1 VLCD VDD VLCD VDD COM2 COM2 VLCD VDD VLCD VDD COM3 COM3 VLCD VLCD VDD VDD SEGn SEGn VLCD VLCD VDD VDD SEGn+1 SEGn+1 VLCD VDD VLCD VDD SEGn+2 SEGn+2 VLCD VDD VLCD VDD SEGn+3 SEGn+3 VLCD VLCD stateA (COM0-SEGn) stateB (COM1-SEGn) stateA (COM0-SEGn) stateB (COM1-SEGn) Figure 12. LCD waveform at line inversion (1/3bias) www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 Figure 13. 14/25 LCD waveform at frame inversion (1/3bias) TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) (1/2bias) Line inversion Frame inversion SEGn SEGn+1 SEGn+2 SEGn+3 SEGn SEGn+1 SEGn+2 SEGn+3 COM0 stateA COM0 stateA COM1 stateB COM1 stateB COM2 COM2 COM3 COM3 VDD 1frame 1frame VDD COM0 COM0 VLCD VLCD VDD VDD COM1 COM1 VLCD VLCD VDD VDD COM2 COM2 VLCD VLCD VDD VDD COM3 COM3 VLCD VLCD VDD VDD SEGn SEGn VLCD VLCD VDD VDD SEGn+1 SEGn+1 VLCD VLCD VDD VDD SEGn+2 SEGn+2 VLCD VLCD VDD VDD SEGn+3 SEGn+3 VLCD stateA (COM0-SEGn) stateB (COM1-SEGn) Figure 14. LCD waveform in line inversion (1/2bias) www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 VLCD stateA (COM0-SEGn) stateB (COM1-SEGn) Figure 15. LCD waveform in frame inversion (1/2bias) 15/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Example of display data If LCD layout pattern is like as Figure 16, Figure 17, and display pattern is like as Figure 18. Display data will be shown as follows; COM0 COM1 COM2 COM3 Figure 16. E.g. COM line pattern SEG1 SEG3 SEG2 SEG5 SEG7 SEG4 SEG6 SEG8 SEG9 SEG10 Figure 17. E.g. SEG line pattern Figure 18. E.g. Display pattern S E G 0 S E G 1 S E G 2 S E G 3 S E G 4 S E G 5 S E G 6 S E G 7 S E G 8 S E G 9 S E G 10 S E G 11 S E G 12 S E G 13 S E G 14 S E G 15 S E G 16 S E G 17 S E G 18 S E G 19 COM0 D0 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 COM1 D1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 COM2 D2 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 COM3 D3 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Address 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 16/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Initialize sequence Please follow below sequence after Power-on to set this LSI to initial condition. Power on ↓ STOP condition ↓ START condition ↓ Issue slave address ↓ Execute Software Reset by sending ICSET command. (Note) Each register value and DDRAM address, DDRAM data are random condition after power on till initialize sequence is executed. D7 D6 D5 D4 D3 D2 D1 D0 Descriptions VDD=0→5V (Tr: max 5ms) Initialize IC Stop condition Start condition 1 1 1 1 1 0 0 Issue slave address 1 1 1 0 1 0 1 0 Software Reset 1 1 1 1 0 0 0 0 Blink OFF 1 0 1 0 0 1 0 0 80Hz, Frame inv., Power save mode1 1 1 1 0 1 0 0 1 External clock input 0 0 0 0 0 0 0 0 RAM address set * * * * * * * * * * * * * * * * address address 00h to 01h 02h to 03h * * * * * * * * address 22h to 23h … 0 … Start sequence Start sequence example1 No. Input 1 Power on ↓ 2 wait 100µs ↓ 3 Stop ↓ 4 Start ↓ 5 Slave address ↓ 6 ICSET ↓ 7 BLKCTL ↓ 8 DISCTL ↓ 9 ICSET ↓ 10 ADSET ↓ 11 Display Data Display Data 12 13 14 15 16 Display Data ↓ Stop ↓ Start ↓ Slave address ↓ MODESET ↓ Stop www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 Stop condition Start condition 0 1 1 1 1 1 0 0 Issue slave address 1 1 0 * 1 0 * * Display ON, 1/3bias Stop condition *: don’t care 17/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Start sequence example2 Initialize Initialize Sequence DISPON DISPON Sequence RAM write RAM write Sequence DISPOFF DISPOFF Sequence This LSI is initialized with Initialize Sequence. And start to display with DISPON Sequence. This LSI will update display data with RAM write Sequence. And stop the display with DISPOFF sequence. If you want to restart to display, This LSI will restart to display with DISPON Sequence. Initialize sequence Input Power on Wait 100us STOP START Slave address APOFF MODESET ICSET DISCTL ICSET ADSET Display Data D7 D6 D5 0 1 1 1 1 1 0 * 1 1 1 1 0 1 0 * 1 1 0 1 1 1 0 * D7 D6 D5 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 D7 D6 D5 0 1 1 1 1 1 0 * 1 0 1 1 1 1 0 * 1 1 1 1 0 1 0 * D7 D6 D5 0 1 1 1 1 0 DATA D4 D3 1 1 * 0 1 0 0 * D2 D1 D0 1 1 0 0 1 0 0 * 0 0 * 1 1 0 0 * 0 1 * 0 0 0 0 * D2 D1 D0 1 1 0 1 0 0 1 0 0 * 0 0 0 0 * D2 D1 D0 1 1 0 1 0 0 0 * 0 1 0 0 0 0 0 * 0 0 0 0 0 0 0 * D2 D1 D0 1 0 0 0 0 0 1 1 0 1 0 1 0 * Description 7C Set all pixel off Set display off Software reset Set DISCTL setting Set MSB of RAM address Set RAM address STOP DISPON sequence Input START Slave address DISCTL BLKCTL APCTL MODESET STOP DATA D4 D3 1 1 1 1 * 1 0 0 1 1 Description 7C Set DISCTL setting Set blink setting Close all pixel on/off function Set display on RAM write sequence Input START Slave address DISCTL BLKCTL APCTL MODESET ICSET ADSET Display Data DATA D4 D3 1 1 1 1 0 0 0 * 1 0 0 1 1 1 0 * Description 7C Set DISCTL setting Set blink setting Close all pixel on/off function Set display on Set MSB of RAM address Set RAM address STOP DISPOFF sequence Input START Slave address MODESET STOP DATA D4 D3 1 0 1 0 Description 7C Set display off *: don’t care Abnormal operation may occur in BU9797FUV due to the effect of noise or other external factor. To avoid this phenomenon, please input command according to sequence described above during initialization, display ON/OFF and refresh of RAM data. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 18/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) DISCTL setup flow chart START Picture quality Reduce Power consumption or Best picture image quality Power save FR = Normal Mode Line inversion Power save SR = High Power Mode DISCTL setting "10100011" Power save FR = Save mode3 Frame inversion Power save SR = Save mode1 DISCTL setting "10111100" Power save FR = Save mode2 Frame inversion Power save SR = Save mode1 DISCTL setting "10110100" Power save FR = Save mode1 Line inversion Power save SR = Save mode1 DISCTL setting "10101100" Power consumption Power save FR = Save mode3 Frame inversion Power save SR = Save mode1 DISCTL setting "10111100" No Display flicker exist? Yes Power save FR = Save mode2 Frame inversion Power save SR = Save mode1 DISCTL setting "10110100" No Display flicker exist? Yes Power save FR = Save mode1 Frame inversion Power save SR = Save mode1 DISCTL setting "10101100" No Display flicker exist? Yes Power save FR = Normal Frame inversion Power save SR = Save mode1 www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 DISCTL setting "10100100" 19/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Cautions in Power ON/OFF This device has “P.O.R” (Power-On Reset) circuit and Software Reset function. Please keep the following recommended Power-On conditions in order to power up properly. Please set power up conditions to meet the recommended tR, tF, tOFF, and Vbot spec below in order to ensure P.O.R operation VDD tF tR tOFF Vbot Recommended condition of tR, tF, tOFF, Vbot (Ta=25°C) tR tF tOFF Vbot Less than Max 5ms Max 5ms Min 20ms 0.3V Figure 19. Power ON/OFF waveform If it is difficult to meet above conditions, execute the following sequence after Power-On. 1. Generate STOP condition Figure 20. Stop Condition 2. Generate START condition. Figure 21. Start Condition 3. Issue slave address 4. Execute Software Reset (ICSET) command www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 20/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 21/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV MAX 144 segments (SEG36×COM4) Datasheet Operational Notes – continued 11. Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. 12. Regarding the Input Pin of the IC In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages within the values specified in the electrical characteristics of this IC. 13. Ceramic Capacitor When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. 14. Area of Safe Operation (ASO) Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation (ASO). 15. Thermal Shutdown Circuit(TSD) This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage. 16. Over Current Protection Circuit (OCP) This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit. www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 22/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Ordering Information B U 9 7 9 7 F U V Package Part Number FUV : TSSOP-C48V - E2 Packaging and forming specification E2: Embossed tape and reel (TSSOP-C48V) Lineup Package TSSOP-C48V Reel of 2000 Orderable Part Number BU9797FUV-E2 Marking Diagram TSSOP-C48V (TOP VIEW) Part Number Marking BU9797FUV LOT Number 1PIN MARK www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 23/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Physical Dimension Tape and Reel Information Package Name TSSOP-C48V Tape Embossed carrier tape (with dry pack) Quantity 2000pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand Direction of feed 1pin Reel www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 ) ∗ Order quantity needs to be multiple of the minimum quantity. 24/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 BU9797FUV Datasheet MAX 144 segments (SEG36×COM4) Revision History Date 5.Aug.2014 Revision 001 Changes New release www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 25/25 TSZ02201-0P4P0D300820-1-2 5.Aug.2014 Rev.001 Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet BU9797FUV - Web Page Buy Distribution Inventory Part Number Package Unit Quantity Minimum Package Quantity Packing Type Constitution Materials List RoHS BU9797FUV TSSOP-C48V 2000 2000 Taping inquiry Yes
BU9797FUV-E2 价格&库存

很抱歉,暂时无法提供与“BU9797FUV-E2”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BU9797FUV-E2
    •  国内价格
    • 20+16.72227
    • 60+15.93016
    • 100+15.22606

    库存:100

    BU9797FUV-E2
      •  国内价格 香港价格
      • 1+4.996641+0.60368
      • 10+4.8587410+0.58702
      • 50+4.7695250+0.57624
      • 100+4.68029100+0.56546
      • 500+4.65596500+0.56252
      • 1000+4.647851000+0.56154
      • 2000+4.639742000+0.56056
      • 4000+4.631624000+0.55958

      库存:28